ANNALES • Scr. hist. nat. • 13 • 2003 • 2 review article UDK 551.521.17:581.5 received 2003-02-04 THE EFFECTS OF UV-B RADIATION ON AQUATIC AND TERRESTRIAL PRIMARY PRODUCERS Mateja GERM National Institute of Biology, Si-i 000 Ljubljana, Večna pot 111 E-triail: mateja.germ@nib.si Alenka GABERŠČIK Department of Biology, Biotechnical faculty and National Institute of Biology, Sl-l 000 Ljubljana, Večna pot 1 H Tadeja TROŠT-SEDEJ Department of Biology, Biotechntcal Faculty, St-1000 Ljubljana, Večna poi I t 1 Zdenka MAZE,J ER1CO, SI-3320 Velenje, Koroška 58, Slovenia Jože BAVCON Department of Biology, Biotechnical Faculty, SI-1000 Ljubljana, Večna pot 11 i ABSTRACT The effect of enhanced UV-B radiation on aquatic and terrestrial primary producers is reviewed, based on the data from literature and those derived from experiments performed under UV-B doses corresponding to 17% ozone depletion. The changes of the following parameters, i.e. total contents of UV-B absorbing compounds and photo-synthetic pigments, terminal electron transport system (ETS) activity and photochemical efficiency of photosvstem li, were compared in different species. In some species, UV-B induced synthesis of UV-B absorbing compounds, while the others did not respond to enhanced UV-B or synthesized saturated amounts of these substances, with no respect to UV-B level. It was established that the production of UV-8 absorbing compounds demanded additional energy in Scenedesmus quadricauda, Selenastrum capricornutum and Ceratophyllum dernersum, since it was correlated to ETS activity. Generally, no effect on potential and actual photochemical efficiencies of photosystem II was observed. Key words: UV-B radiation, primary producers, UV-B absorbing compounds, photochemical efficiency of PS li, terminal electron transport activity EFFETTI DEILA RADIAZIONE UV-B SU PRODUTTORI PRIMARI ACQUATICI E TERRESTRI SINTESI L'articolo presenta una revisions degli effetti di un'aumentala radiazione UV-B su produttori primari acquatici e terrestri, basata su dati di letteratura e su risultati di esperimenti condotti con dosi di UV-B corrispondenti ad un irn-poverimento in ozono pari al 17%. Le variazioni net seguenti parametri sono state confrontate per diverse specie: contenuto totale di cotnposli e pigmenti fotosintetici assorbenti raggi UV, attivita terminale di traspoito elettroni (EES) ed eflicienza fotochimica del fotosistema II. In alcune specie la radiazione UV-B ha indotto la sintesi di composti assorbenti UV-B, mentre altre specie non hanno manifestato risposta all'aumentata radiazione UV-B o hanno sintetizzato quantita sature di tali sostanze, a prescindere dal liveilo di UV-B. in Scenedesmus quadricauda, Selenastrum capricornutum e Ceratophyllum dernersum, la produzione di composti assorbenti UV-B ha richiesto tassi piu elevari di energia, in quanlo conelata all'attivita ETS. Gli autori non hanno osservato effetti sull'efficienza fotochimica potenziah o effettiva del fotosistema 1!. Parole chiave: radiazione UV-B, produttori primari, composti assorbenti UV-B, efficienza fotochimica di PS II, attivita terminale di trasporto elettroni. 2B1 ANN ALES • Ser. hist. nat. - 13 • 2003 • 2 ■v.aieja GERM«al.THE EFFECTS OF UV-B RADIATION ON AQUATIC AND TERRESTRIAL PRIMARY PRODUCERS. 381-J8S INTRODUCTION Tiie intensive UV research cfLiring recent years is (he result of our concern regarding the thinning of ozone layer in the stratosphere and consequently increasing ultraviolet (UV) radiation levels that may influence terrestrial as well as aquatic ecosystems (Rozema et ai, 1997; Hader et ai, 1998; Trost & Gaberséik, 2001; Gaberscik et a/v 2001; Gaberscik et a!., 2002a, b; Germ ei ai, 2002a, b; Rozema et ai., 2002). UV-B radiation causes damage to nucleic acids by absorption of UV-B photons by DNA and formation of cyciobutane dimmers as well as by formation of free radicals. Membrane damages occur as a consequence of photoabsorption, peroxidation and changes in the membrane lipid composition. UV-B radiation affects photosynthesis by damaging photosystem Ii (Björn, 1999; Xiong, 2001), disruption of thylakoide membrane, reduction in chlorophyll content, disturbance of membrane permeability and damaging RuBP carboxylase (r ¡bulóse-1 -5-bisphospha-te). It has been established that the activity of respiratory electron transport system (ETS) is enhanced by UV-B (Ferreyra et al., 1997: Gaberscik et a!., 2002a). UV-B radiation also affected the activity of phytochormones by influencing the synthesis or by inactivation. Fiant mor-phogenetic responses to enhanced solar UV B radiation are decreases in height, leaf length, leaf area, increases in leaf thickness, altered leaf angle, plant architecture, canopy structure, altered emergence, phenology, senescence, and seed production (Newsharn et ai, 1996; Rozema et ai, 1997; Gaberscik er al., 2002b). Enhanced UV-B results in the disturbance of motility and orientation of phytoplankton (Gullen et ai, 1992) decrease cell wall thickness, inhibited enzyme activity and metabolism of nitrogen (Hader, 1996; Nielsen, 1996). Protection against UV-B radiation is of primary importance for photosynthetic organisms, which depend on solar radiation as the primary source of energy. Organisms have evolved different strategies and mechanisms to cope with UV-B stress. The general response found in the majority of primary producers is enhanced production of UV-absorbing compounds, which provide a protection screen filtering olí! harmful UV radiation (Sommaruga, 2001; Xiong, 2001; Gaberscik et ai, 2002b, Germ et ai, 2002a). The concentration and type of these compoLinds generally depends on the group of organisms and the level of UV-B radiation (Hotm-Hansen et ai, 1993; Hannach & Sigleo, 1998; Sommaruga & Garcia-Pichel, 1999). Defence mechanisms of higher plants against UV-B damage also include scattering and reflection of UV-B radiation by epidermal and cuticular structures, photoreactivation enzymes, excision of DNA damage and scavenging of radicals, while polyamines may additionally ameliorate UV-B damage to membranes (Stapfeton, 1992; Mitchell & Karentz, 1993; Runeckles & Krupa, 1994). Phytopiankton pro- tects itself by forming cenobia or relative larger ceil size and shading vital cellular structure (Nielsen, 1996; Xiong et ai, 1999; Xiong 2001). The net effect of UV-B on organisms is the result of damage and repair processes and depends on the type of the environment. Aquatic and terrestrial environments differ in many parameters essential for plant survival. Terrestrial plants have evolved structures like cuticle and stoinata, which on the one hand reduce the loss of water, while on the other hand they limit Liptake of carbon dioxide (CO?) from the air. The important role of epidermal and cuticular structures and other leaf properties, such as waxy layer, leaf hairs and leaf bladders, is also scattering and reflection of UV-B radiation. The main factors limiting growth and development of aquatic plants are variable light intensify and slow diffusion of CO; (Frost-Christensen & Sand-jensen, 1992? Covering et ai, 1996; Vad-strup & Mads en, 1996). Plants in aquatic and terrestrial environment are exposed to different radiation conditions, including those in the UV range. The UV-B penetration in water may vary from only few centimetres in highly liLimic lakes to dozen of meters in clear oceanic waters (Smith & Baker, 1931). Optical properties of water depend on water itself, dissolved organic matter (DOM), the photosynthetic biota and particulate matter (Nielsen, 1996; Williamson ei a!., 1996; Sommaruga & Psenner, 1997; HLtovinen et ai, 2003). Aquatic plants could be therefore partly protected from direct UV-B radiation by water filter. Phytop/ankton populafrons are exposed to high solar UV-B level, when they are dose to the water surface and when the water transparency for UV-B is high. Higher aquatic plants thriving in the littoral are exposed to UV-B when water level decreases. Amphibious plants deserve special attention in UV-B research, since they thrive at the water/land interface and therefore in contrasting environments regarding availability of water, gas and radiation (Madsen & Breinholt, 1995). The publications on UV-B research experiments are numerous (Rozema et ai, 1997, 2002), but in many cases the results are not comparable due to different methodological approaches. The major problem was the radiation conditions with unrealistic UV-B doses and low ratio of photosynthetic active radiation. The aim of the present article is to compare selected responses of different primary producers exposed to the level of UV-B radiation doses based on expected future scenarios, MATERIAL AND METHODS The data on the following plant species were reviewed: Scenedesmus quadricauda (Turp.) Breb., Selenastrum capricornutum Prinz. Sphagnum mageHanicum Brid., Ranunculus trichophyllus Chaix /Batxachium trichophylium (Chaix) vat! den Boschj, Myosotis scotpi-oides L. ¡M. palustris (L.) Hiflj, Ceratophyllum demetsum L„ Mynophyllum spicaturn I., Potamogeton alpinus Bal- 282 ANNALES ■ Ser. hist. nat. - J 3 2003 • 2 Mjitjit CIS,M er jJ.' THt EfrrCTS OF UV B RADIATION ON AQUATIC AND "I ERRiSTKIAl. PRIMARY PRODUCERS. MI-2R8 bis. Picea abies (l.) Karst, Fagopyrum esculentum Mo-erich fF. vulgare T. Nees, Polygonum fagopyrum L.J, Pultnonaria officinalis L. [P. officinalis L. subsp. macu-losa (I iayne) Gams!, Tropaeolum majus L. and Picea abies (L.) Karst. Plants were treated under similar conditions in outdoor and indoor experiments. Higher plants were exposed to enhanced level of U VB radiation in the semi-controlled conditions in field and indoor experiments. Phytoplankton was treated with enhanced level of UV-B in indoor experiments. Plants from the natural environment were transplanted into natural sediment in semi-controlled conditions in the Botanical Garden of Ljubljana University (46°35'N, 14°55'E), Slovenia. An UV-B supplement system was designed as described by Björn & Teramura (1993). Three different treatments were applied: simulation of 17% ozone depletion yield and £TS activity. Legend: + indicates positive trend, ++ indicates significant positive effect, x indicates no clear effect, - stands for negative effect (n = 4-10, p< 0.05). Tab. 2: Vpliv povečanega UV-B sevanja na razmerje Fv/Fm, učinkovitost in aktivnost FIS- Legenda: + označuje pozitivno težnjo, ++ označuje značilno pozitiven vpliv, x označuje nejasen vpliv, - označuje negativen vpliv (n - 4-10, p< 0,05). Species Fvffm Yield ETS Source S. quadricauda ++ Germ ei al., 2002a 5. capricoriwtum ■H' not published j 5. magelanicur» X X X not published R. trie hophy! his X X X Germ of a)., 2002b C. demerswn X/ X/ +4 not published / Gaberscik 6'f al., 2002a M. spicatum y. X X not published P. alpinus X X X Germ et al., 2002b i j Vf. scùrpioides X X X not published f. escif/entfim X X Gabericir: ei at, 2002b P. officinalis X X Gaberscik et ai., 2001 iT. malus X X not published P. abies X X + , x Trošl & Gaberšrik. 2001 The production of photosynthetic pigments and UV-B absorbing compounds demanded an additional supply of energy, which was provided by increased respiratory 284 ANNALES • Ser. hist. nat. • i 3 - 2003 • 2 Mateja GERM a al.: THf EfFFCTS OF UV-3 RADIATION ON AQUATIC At JO IfRRFSTRlAL PRIMARY PRODUCERS, 281-286 potential. The relation between the amount of UV-B absorbing compounds and ET5 activity was significantly positive as reported for S. quadricauda and C demer-sum (Tab. 2) (Gaberscik et al., 2002a). Increased ETS activity under enhanced UV-B radiation therefore augmented the energetic cost involved in generating the internal mechanisms of photoprotection (Ferreyra et al., 1997; Scott eta I., 1999; Gaberscik eta!., 2002a). SUMMARY Enhanced UV-B radiation due to thinning of the stratospheric ozone layer affects primary producers. The research carried out on many species under similar experimental conditions, i.e. doses corresponding to 17% ozone depletion, showed species specific responses. Data from literature are very controversial. The contents of chlorophyll a were increased in algae 5. quadricauda and S. capricornutum and in submersed macrophyte C. demersum. The increase of chlorophyll a in R abies was observed in spring only, when the protective mechanisms were not fully developed. Other species showed no evident changes in chlorophyll content. The increase of UV-B absorbing compounds with increasing UV-B radiation dose is the most frequent reaction to UV-B radiation reported in literature, ft has been observed for many algae, as well as for 5. quadricauda and 5. capricornutum. UV-B radiation also induced production of UV-B absorbing compounds in higher plants C. demersum and F. esculentum. In many cases, the production of UV-B absorbing compounds does not necessarily depend on UV-B dose. No correlation with the UV-B dose was detected in aquatic plants R. trichcphyllus, M. scor-pioides, P. alpinus, and M. spicatum. It was hypothesized that the receptors triggering the synthesis of UV-8 absorbing compounds are saturated in plants growing in an open environment, thus provoking maximal synthesis at all irradiarices. In P. abies, the production of UV-B absorbing compounds appeared to be dependent more on the developmental state of leaf than induced by enhanced UV-B radiation. In emergent needles only, where UV-B radiation could penetrate into the mesophyll, biosynthesis of UV-8 absorbing compounds was related to UV-B radiation. Many authors report about the effect of UV-B radiation on photochemical efficiency of PS II. None of the studied species exposed to UV-B radiation corresponding to 17% ozone depletion showed decrease of Fv/Fm ratio or Y, which would reflect disturbance in photosynthesis. The production of UV-B absorbing compounds demanded an additional supply of energy, which was provided by higher respiratory potential. The relation between the amount of UV-B absorbing compounds and ETS activity was significantly positive, as reported for S. quadricauda, S. capricornutum and C- demersum. The increased ETS activity under enhanced UV-B radiation therefore provided additional energy needed for the establishment of photoprotection and photorepair mechanisms. ACKNOWLEDGEMENTS This research was part of the project "The role of UV-B radiation on aquatic and terrestrial ecosystems: an experimental and functional analysis of the evolution of protective and adaptive mechanisms in plants, environment and climate" (PL 970637) supported by the EU (DGXII, Environmental Programme, ENV4-C! 97-0580), and part of SLO Alpe2 (3311-01-2183388) financed by Ministry of Education, Science and Sport of the Republic of Slovenia. Their financial support is gratefully acknowledged. VPLIV UV-B SEVANJA NA VODNE IN KOPENSKE PRIMARNE PROIZVAJALCE Mateja CERM Nacionalni inštitut za biologijo, S1-HT0G Ljubljana, Večna pot lit E-mail: mateja.germ@nib.5i Alenka GA8ERŠČIK Oddelek za biologijo, Biotehniška fakulteta in Nacionalni inštitut za biologijo, SI-1000 L jubljana, Večna pot 111 Tadeja TROŠT-SEDEj Oddelek za biologijo, Biotehniška fakulteta, SI-1000 Ljubljana, Večna pot 111 Zdenka MAZFJ ERiCO, 51-3320 Velenje, Koroška 58 jože BAVCON Oddelek za biologijo, Biotehniška fakulteta, SI-100G Ljubljana, Večna pot 111 POVZETEK Povečano (JV B sevanje, ki je posledica tanjšanja ozonske plasti, vpliva na primarne proizvajalce. Raziskave 285 ANN ALES • Ser. hist. nat. - 13 • 2003 • 2 MaiejaÜERM ef.ii / THE FTFECT5 Qf UV-G RAOTATION ON AQi.íATIC ANO TEREESTRtAI. PRIMARY PROOUCERS, 2B1-2H8 kažejo, da so se različne vrste, izpostavljene odmerkom, ki ustrezajo približno 17% s tanjšanju ozonske plasti, odzvale različno. Rezultati o vplivu UV-B sevanja na primarne proizvajalce si pogosto nasprotujejo. Vsebnost klorofila a je pod vplivom UV-B sevanja narasla pri algah vrste Scenedesmus quadricauda in Selenastrum capricornutum ter pri podvodni rastlini navadni rogolist. Ceratophvllum demersum. Naraščanje vsebnosti klorofila a pri.navadni smreki Picea abies smo opazili samo spomladi, ko zaščitni mehanizmi še niso bili popolnoma razviti. Druge vrste, ki smo jih preučevali, niso kazale jasnega vpliva UV-B sevanja na vsebnost klorofila a. Glede na podatke v literaturi je naraščanje UV-B zaščitnih snovi najbolj pogost odziv primarnih proizvajalcev na povečano UV-B sevanje. UV-B sevanje je vplivalo na izgradnjo UV-B zaščitnih snovi tudi pri vrstah S. quadricauda in S. capricornutum in višjih rastlinah, kot sta navadni rogolist C. ciemersum in navadna ajda Fagopyrum esculentum, V mnogih primerih pa izgradnja UV-B zaščitnih snovi ni odvisna od odmerka UV-B sevanja. Korelacije med vsebnostjo UV-B zaščitnih snovi in odmerkom UV-B sevanja ni bilo pri lasastolistnr vodni zlatici Ranunculus trichophyllus, alpskem dristavcu Potamogetón alpinos in klasastem rmancu Myriophyílum spicatum, Predpostavljamo, da so receptorji, ki vplivajo na izgradnjo UV-B zaščitnih snovi, nasičeni pri rastlinah, ki rastejo na odprtih rastiščih in tako omogočajo maksimalno izgradnjo pri različni inteziteti obsevanja. Pri navadni smreki P. abies je videti, da je bila izgradnja UV-B zaščitnih snovi bolj odvisna od razvojnega stanja iglic kot od povečanega UV-B sevanja. Izgradnja UV-B zaščitnih snovi je bila povezana z UV-B sevanjam samo pri nerazvitih iglicah, kjer je UV-B sevanje prodiralo do mezofila. Mnogi avtorji so dokazali vpliv UV-B sevanja na fotokemično učinkovitost fotosistema II (FS II/. V naši raziskavi nobena od preučevanih vrst ni pokazala vpliva UV-B sevanja, ki ustreza 17% simulaciji tanjšanja ozonske plasti, na zmanjšanje potencialne biokemične učinkovitosti (Fv/Fm), ali dejanske fotokemične učinkovitosti (angl. yield), ki kažejo na motnje v procesu fotosinteze. Izgradnja UV-B zaščitnih snovi zahteva dodatno zalogo energije, ki si jo organizmi zagotovijo s povečanim dihalnim potencialom (aktivnost ETS), Razmerje med vsebnostjo UV-B zaščitnih snovi in aktivnostjo ETS je bila značilno pozitivna pri vrstah S. quadricauda, S. capricornutum in navac/nem rogolistu C. demersum. Povečana aktivnost ETS pri organizmih, ki so bili izpostavljeni povečanemu UV-B sevanju, je zagotovila dodatno energijo za vzpostavitev fotozaščite in fotopopravijalnih mehanizmov. Ključne besede: UV-B sevanje, primarni proizvajalci, UV-B absorbirajoče snovi, fotokemična učinkovitost FS II, aktivnost terminalnega elektronskega transporta REFERENCES Antonelli, A., D. Grifoni, F, Sabatini & G. Zipoli (1997): Morphological and physiological response of bran plants to supplemental UV radiation in Mediterranean climate. In: Rozema, J., W. W. C. Gieskes., S. C. van den Gejin, C- Nolan & H. de Boois (eds.): UV-B and Biosphere. Kiuwer Academic Publishers, Dordrecht, Boston, London, p. 127-136. Beardalf, J., T. Berman, S. Markager, R. Martinez & V. Montecino (1997): The effects of ultraviolet radiation on respiration and photosynthesis in two species of micro-algae. Can. J. Aquat. Sei., 54, 687-696. Bischof, K., D. Hanelt & C. Wiencke (1998): UV radiation can affect depth-zonation of Antarctic macro-algae. Mar. Biol., 131 (4), 597-605. Björn, L. O. (1999): Effects of ozone depletion and increased ultraviolet-B radiation on terrestrial plants. In: Bau m stark-Khan, C. (ed.): Fundamentals for the assessment of risks from environmental radiation. Kiuwer Academic Publishers, Dordrecht, p. 463-470. Björn, L. O. & T. M. Murphy (1985): Computer call illation of solar ultraviolet radiation at ground level. Physiol. Veg., 23(5), 555-561. Björn, L. O. & A. H. Teramura (1993): Simulation of daylight ultraviolet radiation and effects of ozone depletion. In: Young, A. R., !.. O. Björn, j. Moan & VV. Nultsch (eds): Environmental UV Photobiology. Plenum Press, New York, p. 41-71. Caldwell, M. M. (1968): Solar ultraviolet radiation as an ecological factor for alpine plants, Ecol. Monogr., 38, 243-268. Clevering, O. A., C. W. P. M. Biom & W. Van Vierssen (1996): Growth and morphology of Scirpus lacustris and S. maritimus seedlings as affected by water level and light availability. Funct. Ecol., 10, 286-296. Cul I en, J. J., P. J. Neale & M. P. Lesser (1992): Biological Weighting Function for the Inhibition of Phyto-plankton Photosynthesis by Ultraviolet Radiation, Science, 258, 646-650. Demmig-Adams, B, & W. W. Adams (1992): Photoprotection and other responses of plants to high light: stress. Annu. Rev. Plant Physiol. Plant Mol. Biol., 43, 599-626. De Lange, H. }., E. Van Donk & D. O. Hessen (2000): In situ effects of UV radiation on four species of phyto-plankton and two morphs of Daphnia longispina in an aîpine Sake (Finse, Norway). Verh. int. Verein. Limnol., 27, 1-6. Ferreyra, G. A., S. Demers, P. Del Giorgio & }. P. Cha-nut (1997): Physiological responses of natural plankton communities to ultraviolet-B radiation in Redberry Lake (Saskatchewan, Canada). Can. j. Fish. Aquat. Sei., 54(3), 705-714. 286 ANNALES • Ser. hist. nat. • i 3 - 2003 • 2 Mateja GERM er .if: THF EFFECTS OF UV-B RADIATION on AQUATIC ANO TERRESTRIAL PRIMARY PRODUCERS. 281-283 Frost-Christensen, H. & K. Sand-Jensen (1992): The quantum efficiency of photosynthesis in macroalgae and submerged angiosperms. Oecologia, 95, 377-334. Gaberščik, A., M. Novak, T. Trošt, Z. Mazej, A. M. Germ & L. O. Björn: (2001): The influence of enhanced UV-B radiation on the spring geophyte Pulmonaria officinalis. Plant Ecol., 154(1/2), 49-56. Gaberščik, A., M. Germ, A. Škof, D. Drmaž & T, Trošt (2002a): UV-B radiation screen and respiratory potential in two aquatic primary producers: Scenedesmus quadri-cauda and Ceratophyllum demersum. Verh. int. Verein, Ltmnol., 27, 1-4. Gaberščik, A., M. Vončina, T. Trošt, M. Germ & L. O. Björn (2002b): Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient and enhanced UV-B radiation. J. Pholochem. Photobio!, IT, 60, 30-36. Garde, K. & C. Cailliau (1998): The impact of UV-B radiation and different PAR intensity on growth, "*C-uptake, DOC excretion, ceil morphology and pigmentation in the marine prymnesiophyte, Emiliania huxleyi. Ph.D. Thesis. University of Copenhagen and VK!, Denmark, p. 32-52. Gehrke, C., U. Johanson, D. Gwinn-Jones, L. O. Björn, T. V. CalJaghan & J. A. Lee (1996): Single and interactive effects of enhanced ultraviolet-B radiation and increased atmospheric CO2 on terrestrial and subarctic ecosystems. Ecol. Bull., 45, 192-203. Germ, M., D. Drmaž, M, Šiško & A. Gaberščik (2002a): Effects of UV-B radiation on green alga Scenedesmus quadricauda: growth rate, UV-B absorbing compounds and potential respiration in phosphorus rich and phosphorus poor medium. Phyton, 42, 25-37. Germ, M., Z. Mazoj, A. Gaberščik & D. P. Hader (2002b): The influence of enhanced LJV-B radiation on Batrachium trichophyllum and Polamogeton alpinus-aquatic macrophytes with amphibious character, j. Photochem. Photobiol. 8., 66, 37-46. Hader, D. P. (1996): Effects of enhanced solar UV-B radiation on phytoplankton. Sei. Mar., 60(1), 59-63. Hader, D. P., H. Herrmann & R. Santas (1996): Effect of solar radiation and solar radiation deprived of UV-B and total LJV on pholosynthetic oxygen production and pusie amplitude modulated fluorescence in the brown alga Padina pavonia. FEMS Microbiol. Ecol., 19, 53-61. Hader, D. P., H. D. Kumar, R. C. Smith & R. C. Worrest (1998): Effects on aquatic ecosystems. J. Photochem. Photobiol. B., 46, 53-68. Hannach, G. & A. C. Sigleo (1998): Photoinduction of UV-absorbing compounds in six species of marine phytoplankton. Mar. Ecol. Prog. Set., 174, 207-222. Holm-Hansen, O., N. D. Lubin & E. W. Helbiing (1993): Ultraviolet radiation and its effects on organisms in aquatic environments. In: Young, A. R., L. O. Björn, J. Moan & W. Nultsch (eds.): Environmental IJV Photobi-ology. Plenum Press, New York, p. 379-425. Hunt, J. & D. L. McNeil (1999): The influence of present-day levels of ultraviolet-B radiation on seedlings of two Southern Hemisphere temperate tree species. Plant Ecol., 143(1}, 39-50. Huovinen, P. S., H. Pentillä & M. R. Soimauso (2003): Spectral attenuation of solar ultraviolet radiation in burn tc lakes in Central Finland. Chemosphere, 3, 205-214. Jansen, M. A. K., B. M. Greenberg, M. Edefman, A. K. Mattoo & V. Gaba (1996): Accelerated degradation of the D2 protein of PS II under ultraviolet radiation. Photochem. Photobiol., 63, 517-522. Jeffrey, S. W. & G. F. Humphrey (1975): New Spectro-phometric Equations for determining Chlorophylls a, b, d and c2 in Higher plants. Algae and natural Phytoplankton. Biochem. Physiol. Pflanzen, 167(8), 191-194. Karentz, D., J. Cleaver & D. L. Mitchell (1991): Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation, j. Phyto!, 27, 326-341. Karentz, D., M. L. Bothweli, R. B. Coffin, A. Hanson, G. J. Herndl, S. S. Kilham, M. P. Lesser, M. Lindell, R. E. Moeller, D. P. Morris, P. j. Neale, R. W. Sanders, C. S. Weiler & R. G. Wetzel (1994): Impact of UV-B radiation on pelagic freshwater ecosystems: Report of working group on bacteria and phytoplankton. Ergeb. Limnol., 43, 31-69. Karsten, U., K. Bischof, D. Hanelt, H. Tug & C. Wien-cke (1999): The effect of ultraviolet radiation on photosynthesis artel ultraviolet-absorbing substances in the endemic Arctic macroalga Devaleraea ramentacea (Rhodophyta). Physiol. Plant, 105 (1), 58-66. Kenner, R. A. & S, I. Ahmed (1975): Measurements of electron transport activities in marine phytoplankton. Mar. Biol, 33, 1 19-127. Liu, L., D. C. Gitz ill & J. W. McLtire (1995): Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves. Physiol. Plant., 93, 725733. Madsen, T. V. & M. Breinholt (1995): Effect of air contact on growth, inorganic carbon sources, and nitrogen uptake by an amphibious freshwater macrophyte. Plant Physiol., 'l07, 149-154. Mitchell, D. L. & D. Karentz (1993): The Induction and Repair of DNA photodamage in the Environment. In: Young, A. R., L. O. Björn, J. Moan & W. Nultsch (eds.): Environmental UV Photobioiogy. Plenum Press. New York, p, 345-376. Newsham, K, K., A. R. McLeod, P. D. Greenslande & B. A. Emmet (1996): Appropriate controls in outdoor UV-B supplementation experiments. Global Change Biol., 2, 319-324. Nielsen, T. (1996): Effects of ultraviolet radiation on marine phytoplankton. Ph.D. Thesis. Lund University, Section of plant physiology, Lund. Olsson, L. (1999): Modification of flavonoid content and photosynthesis by ultraviolet-B radiation. Atrazine toler- 287 ANN ALES • Ser. hist. nat. • 13 • 2003 • 2 Maltis CtRM e; a'.: THt Cl fiCTS OF UV-B RAOIAIION ON AQUATIC AND TERRESTRIAL PRIMARY PRODUCtRS, 281-20« ant and sensitive cullivars of Brassica nap us. Ph.D. T tie-sis. Lund University, Section of plant physiology, Lund. Packard, T. T. (1971): The measurement of respiratory electron-transport activity in marine phytoplankton. ). Mar. Res., 29, 235-243. Rau, W. & H. Hoimann (1996); Sensitivity to UV-B of Plants Growing in Different Altitudes in the Alps. J. Plan! Physiol., 148, 21-25. Rozema, J., ). van de Staaij, L. O. Björn & M. Caldwell (1997): UV-B as an environmental factor in plant life: stress and regulation. Tree, 12, 22-28. Rozema, J., L. O. Björn, J. F. Bornmann, A. GaberScik, D. P. Häder, T. Trost, M. Germ, M. Klisch, A. Gröninger, R. P. Sinha, Y, Y. He, M, Lebert, R. Buffoni-Hall, N. V. J. De Bakker, J. van De Staiij & B. Mei-jkamp, (2002): The role of UV B radiation in aquatic and terrestrial ecosystems - an experimental and functional analysis of the evolution of UV-B absorbing compounds. J. Photochem. Photobiol. B„ 66(1), 2-12. Runeckles, V. C. & S. V. Krupa (1994): The impact of UV-B radiation and ozone on terrestrial vegetation. Environ. Pollut., 83, 191-213. Schoefield, O., B. M. A. Kroon & B. B. Prezelin (1995): Impact of ultraviolet-B radiation on photosystem II activity and its relationship to the inhibition of carbon fixation rates for antarctic ice algae communities. J. Phycol., 31, 703-715. Schreiber, U., W. Bilger & C. Neubauer (1995): Chlorophyll fluorescence as a noniritrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze, E. D. & M. M. Caldwell (eds.): Ecophysiology of Photosynthesis. Springer-Verlag, Berlin, Heidelberg, New York, p. 49-61. Scott, ). D., L. Chalker-Scott, A. E. Foreman & M. D'Angelo (1999): Daphnia pulex fed UVB-irradiated Chlamydomonas reinhardtii show decreased survival and fecundity. Photochem. Photobiol., 70, 308-313, Shick,). M., M. P. Lesser & P. L. Jokie (1996): Effects of ultraviolet radiation on corals and other coral reef organisms. Global Change Biol., 2, 527-545, Smith, R. C. & K. S. Baker (1981): Optical properties of the clearest natural waters (200-800 nm). Appl. Optics, 2, 177-184. Sommaruga, R. (2001): The role of solar UV radiation in the ecology of alpine lakes. }. Photochem. Photobiol. B., 1-2, 35-42. Sommaruga, R. & R. Psenner (1997): Ultraviolet radiation in a high mountain lake of the Austrian Alps: air and underwater measurements. Photochem, Photobiol., 65(6), 957-963. Sommaruga, R. & F. Garcia Pichel (1999): UV- absorbing mycosporine-like compounds in plankton ic and benthic organisms from a high-mountain lake. Arch. Hydrobiol., 144(3), 255-269. Stapleton, A. E. (1992); Ultraviolet radiation arid Plants: Burning Question. Plant Cell, 4, 1353-1358. Strid, A., W. S. Chow & J. M. Anderson (1990): Effects of supplementary UV-B radiation on photosynthesis in Pisum sativum. Biophys. Biochem. Acta,, 1020, 260268, Sullivan, f. H., B. W. Howells, C. T. Ruhtand & T. A. Day (1996): Changes in leaf expansion and epidermal screening effectiveness in Uquidambar styraciflua and Pinus taeda in response to LJV-B radiation. Physiol. Plant.., 98, 349-357. Tcramura, A. H. & J. H. Sullivan (1994): Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynthesis Res., 39, 463-473. Tevini, M, (1993): Effects of enhanced UV-B radiation on terrestrial plants. In: Tevini, M. (ed.): UV-B radiation and ozone depletion: Effects on humans, animals, plants, microorganisms, and materials. Lewis Publishers, Boca Raton, FL, p. 125-153. Tosserams, M. & f. Rozema (1996): Effects of ultraviolet-B radiation (UV-B) on growth and physiology of the dune grassland species Calamagrostis epigeios. Environ. Pollut., 89, 209-214. Trost, T. & A. Gaberscik (2001): The effect of enhanced UV-B radiation on Norway spruce (Picea abies (L.) Karst.) needles of two different age criasses. Acta Biol. Slov., 44(3), 13-25. Turunen, M., YV. Heller, S. Stich, H. Saridermann, M. I, Su f inen & Y. Norokwpi (1999); The effects of UV exclusion on the soluble phenol ics of young Scots pine seedlings in the subarctic. Environ. Pollut., 106(2), 219-228. Vndstrup, M. & T. V. Madsen (1996): Growth limitation of submerged aquatic macrophytes by inorganic carbon. Freshw. Biol., 34, 411-419. Veen, A., M, Reuvers & P. Roncak (1997): Effects of acute and chronic UV-B exposure on green alga: a continuous culture study using a computer-controlled light regime. Plant EcoL, 128, 28-40. Williamson, C. E., R. S. Stenibcrger, D. P. Morris, T. M. Frost & S. G. Pausen (1996): Ultraviolet radiation in North American lakes. Attenuation estimates from DPC measurements and implications for plankton communities. Limnol. Oceanogr., 40(15), 1024-1034. Xiong, F. (2001): Evidence that UV-B tolerance of the photosynthetic apparatus in microaigae is related to the D1-turnover mediated repair cycle in vivo. J, Plant Physiol., 158, 285-294. Xiong, F., L. Nedbal & A. Neori (1999): Assessment of UV-B sensitivity of photosynthetic apparatus among microaigae: Short-term laboratory screening versus long-term outdoor exposure, f. Plant Physiol., 155(1), 54-62.