1 Vegetation of the coastal dunes and wetland of Schinias National Park (NE Attica, Sterea Ellas, Greece) Abstract The vegetation developing on the coastal sand dunes and wetland of Schinias National Park, a Natura 2000 Site, was studied following the Braun-Blanquet method. Vegetation units were delimited using cluster analysis and by applying the fidelity measure; the phi-coefficient was used for the definition of diagnostic spe- cies. The vegetation types distinguished (twenty associations, two sub-associations and thirteen communities not assigned formal rank), which belong to 18 alliances, 16 orders and 12 classes, are discussed and presented in phytosociological tables. Among them Mathiolo tricuspidatae-Anthemidetum tomentosae, Pistacio lentisci- Pinetum halepensis pinetosum pineae, Puccinellio festuciformis-Aeluropetum litoralis cressetosum creticae and T amaricetum tetrandrae are described for the first time. The vegetation types recognized in the study area are linked to twelve EUNIS habitat types, nine of which are related to 13 Annex I habitat types (Directive 92/43/ EEC), and one to a habitat type of national interest (72A0). One Annex I habitat type occurring in the study area has scattered presence in the Natura 2000 network in Greece (1420), two are infrequent (2190, 2260), two are rare (2230, 2270) and three are priority habitat types (1150, 2250, 2270). Iz vleček Z Braun-Blanquetovo metodo smo proučili vegetacijo, ki se razvija na obalnih sipinih in mokriščih v Narodnem parku Schinias, ki je tudi Natura 2000 območje. Vegetacijske enote smo ločili s klastrsko analizo in mero navezanosti; fi koeficient smo uporabili za opredelitev diagnostičnih vrst. Vegetacijske tipe (dvajset asociacij, dve subasociaciji in trinajst združb), ki smo jih uvrstili v 18 zvez, 16 redov in 12 razredov, predstavljamo s fitocenološkimi tabelami. Med njimi so Mathiolo tricuspidatae-Anthemidetum tomentosae, Pistacio lentisci-Pinetum halepensis pinetosum pineae, Puccinellio festuciformis-Aeluropetum litoralis cressetosum creticae in T amaricetum tetrandrae novo opisane. Vegetacijske tipe v obravnavanem območju lahko uvrstimo v dvanajst EUNIS habitatnih tipov, devet izmed njih pa lahko povežemo s trinajstimi habitatni tipi s Priloge I Habitatne direktive (Directive 92/43/EEC) in enega kot habitatni tip državnega pomena (72A0). En habitatni tip s Priloge 1, ki se pojavlja v proučevanem območju je raztreseno razširjen v omrežju Natura 2000 območij v Grčiji (1420), dva nista pogosta (2190, 2260), dva sta redka (2230, 2270) in trije so prednostni habitatni tipi (1150, 2250, 2270). Key words: flora, salt-marsh communities, coastal habitats, Marathon Plain, diagnostic species, cluster analysis. Ključne besede: flora, združbe slanišč, obalni habitati, nižina Maraton, diagnostične vrste, klastrska analiza. Corresponding author: Maria A. Sarika E-mail: msarika@biol.uoa.gr Received: 21. 6. 2022 Accepted: 23. 8. 2022 1 Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece. 2 Section of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece. 3 Centre for Research and Conservation of Cultural Heritage, Faculty of Fine Arts, Nicolaus Copernicus University, Toruń, Poland. Maria A. Sarika1 , Andreas C. Zikos2 & Anastasia N. Christopoulou2 , 3  DOI: 10.2478/hacq-2022-0013 22/1 • 2023, 1–46 22/1 • 2023, 1–46 2 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Introduction Dunes and salt-marshes are essential components of coastal plains. By performing a variety of ecological ser- vices these intertidal, highly dynamic ecosystems ensure the stability and maintenance of diverse coastal habitats (Boorman, 2003; Miller, 2015). Their origin, viabil- ity and functionality depend on the coupled balance of many abiotic and biotic factors, among which vegeta- tion dynamics seem to be of high importance. Pioneer vegetation colonizing coastal marshes and dunes contrib- utes to the trapping and vertical accretion of sediment. This process leads to the creation of suitable habitats for the arrival of more and more plants which also promote the stabilization, maturation and maintenance of these systems (Silvestri & Marani, 2004; Acosta et al., 2007; Day et al., 2011; Prisco, 2012). While the existence of a stable vegetated platform prevents erosion and reduces coastal retreat (Sigren et al., 2014; Shepard et al., 2011), coastal wetlands and dunes around the Mediterranean Basin, but also worldwide, face the risk of extinction as they are subjected to geomorphologic and hydrologic disturbances causing substrate destabilization. Substrate quality degradation leads to the weakening of vegetation vitality and therefore to further deterioration of coastal habitats (Day et al., 2011; Pirone, 2014). Climate change and sea level rise are currently considered to be the main causes of these threats. It is now certain that the ability of coastal systems to cope successfully with them is adversely affected by human activities that can aggravate erosion (e.g. inhibiting sediment inflow, building on dunes, land use changes, degradation of estuarine systems, hydrologi- cal modifications etc.) (Scapini, 2010). The plant communities colonizing coastal dunes are important indicators of the environmental quality of these fragile ecosystems (Pirone, 2014). In well-preserved sandy Mediterranean coastlines where human impact is low, vegetation development patterns follow the gradual change in environmental stressors (salt spray, sand burial, substrate mobility, drought, high temperature, nutrient deficiency, erosion) along the ecological gradient from the coastline inland. This pattern begins with the unstruc- tured pioneer communities (annual vegetation of drift lines) close to sea and continues inland to the more com- plex vegetation types of the back dunes (evergreen sclero- phyllous shrubs and woods), creating a characteristic veg- etation zonation (Prisco, 2012; Miller, 2015). However, erosion and anthropogenic disturbances have profoundly affected the natural zonation patterns of coastal dune veg- etation, which remain unaltered in only a few localities around the Mediterranean Basin (Prisco et al., 2012; Ve- ronico et al., 2017). In Mediterranean coastal marshes the spatial arrange- ment of plant species is mainly regulated by soil salin- ity and summer drought (Dítě et al., 2019). A sequence of vegetation zones usually develops parallel to the coast based on the individualized response of each plant spe- cies to various environmental factors, such as waterlog- ging regime and soil properties, along the elevation gra- dient. This means that different plant species dominate at different elevation levels of the marsh. According to the zonation pattern generated, the marsh can roughly be divided into low, middle and high elevation sectors (Bertness & Pennings, 2002; Cutini et al., 2010). What is more, plant assemblages within each zone develop in mosaic formations. This is because characteristics such as micro-relief, temporal and spatial variability of water re- gime, soil properties and biotic interactions give rise to a variety of micro-habitats (Moreno et al., 2018). The aim of the present study is the inventory of vegeta- tion units developing on the coastal dunes and the salt marsh of Schinias National Park (NE Attica, Greece). To this end, the dominant plant communities were identi- fied, described and classified into habitat types, according to the Council Directive 92/43/EEC (Habitats Directive henceforth). In spite of intense human pressures, the veg- etation of the abovementioned coastal systems is diverse and species rich. Nonetheless, with a few exceptions, it has not been thoroughly studied to date. Apart from a few phytosociological data concerning the herbaceous halophyte salt-marsh communities of Schinias National Park (Economidou, 1975), some additional information on the vegetation of the area is summarized in Brofas & Karetsos (1992) and Spanou et al. (2007). Floristic data for the study area are available by Brofas & Karet- sos (1992), Koumpli-Sovantzi & Vallianatou (1994) and Strid (2016). Materials and methods Study area The study area lies at the eastern part of the Marathon Plain (NE Attica) and is included in Schinias National Park (Figure 1). At a distance of forty kilometers from Athens, Schinias National Park hosts a wide range of ter- restrial and marine ecosystems in a relatively small sur- face area (1384 hectares) and has been integrated into the Natura 2000 network both as a Site of Community Importance (SCI) and as a Special Protection Area (SPA) with the name “Ethniko Parko Schinia-Marathona” and the code GR3000003. The study area is low-lying and only the sandy coastal zone slopes towards the sea. It com- prises the sandy beach, the coastal shifting and stabilized 22/1 • 2023, 1–46 3 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) dunes that run along the shoreline and the marsh extend- ing north of the coastal dunes. The low swampy area of the marsh is closed to the sea and not directly exposed to wave action due to the natural barrier created by the sand dune system along its southern seaward end. The north and eastern side of the marsh are bordered by a series of karstic hills from which the springs of Makaria and Drakonera are discharged. Past alluvial deposits from the Oinoi (Haradros) river define its western boundaries. There is evidence that the natural environment of the marsh of Schinias went through 5 evolutionary stages. According to Margoni et al. (2002), a shallow sea gulf was originally formed in the area (approximately 5000 years ago), which was gradually isolated from the sea by a sandy barrier and became a lagoon. During its sequential evolutionary stages, this lagoon received inflows of water and sediments from both the sea (saline water) and the land (fresh water). Over time it turned into an extended brackish marsh. Today, the marsh retains its brackish character, as it still receives fresh water from the discharge of the karst springs at its northern and eastern bounda- ries but also periodic inflows of seawater from the side of the sand dune barrier (Margoni et al., 2002). Like most Mediterranean coastal marshes, its flooding regime is not regulated by astronomic tidal action but by the seasonal fluctuations of the weather (Ibañez et al., 2002). Hence, it is only seasonally inundated by water and is completely dry in the summer. Until the beginning of the 20 th century the geomor- phologic evolution of the study area was directly cor- related to the action of Oinoi river (which, since the construction of the Marathon dam, is no longer active). The alluvial plain that formed around the river estuary is called the Marathon plain. Morphologically, it resembles the typical coastal plains of Greece “alluvial plains with a terminal swamp area separated from the sea by a sand bar- rier” (Pavlopoulos et al., 2006; Mertzanis & Mertzanis, 2013). Geotectonic units of NE Attica, which are actually Figure 1: Schinias National Park included in the Natura 2000 Network under the name “Ethniko Parko Schinia-Marathona” (GR3000003), and the distribution of performed relevés per vegetation unit within the study area. For vegetation units abbreviations see Figure 2. Slika 1: Narodni park Schinias je vključen v omrežje Natura 2000 kot “Ethniko Parko Schinia-Marathona” (GR3000003). Razširjenost popisov v različnih vegetacijskih tipih v preučevanem območju. Za oznake vegetacijskih tipov glej Sliko 2. 22/1 • 2023, 1–46 4 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) a “relatively autochthonous” metamorphic sequence con- stitutes the geological background of the broader area sur- rounding the Marathon plain. Various types of alluvium derived mainly from the former action of the Oinois river represent Quaternary deposits. Both the steep sides of the plain and the fault zones are covered by Pleistocene and Holocene talus cones and scree. T wo fault systems are pre- sent in the area, an older having a NE-SW direction and a younger having a NW-SE direction. Numerous springs exist in the broader area, including the aforementioned Draconera and Makaria whose waters spring up at the east and the north of the plain respectively. The coastline is al- most flat and not affected by tides (tide amplitude is less than 20 cm). Significant changes had been observed on the coastline limit between 1950s and 1960s (about 2 m/ year), slowing (1 m/year) in the last decades (Pavlopoulos et al., 2006). The geology, geomorphology, paleoenviron- ment and contemporary status of the area are discussed in detail by several authors (e.g. Baeteman 1985; Marouk- ian et al., 1993; Pavlopoulos et al., 2006). Climactically speaking, the Marathon plain belongs to the semi-arid bioclimatic zone (Emberger’s pluviometric coefficient Q = 61.45) related to the Oleo-Ceratonion formations and its climate has an intense thermo-Mediterranean charac- ter (xerothermic index: 142.73). Further information on the climate and bioclimatic classification of the study area as well as the vegetation zone to which it belongs can be found in Spanou et al. (2007) and Gaitanis et al. (2015). Data collection and analysis A vegetation study was carried out following the Braun- Blanquet floristic-sociological approach (Westhoff & van der Maarel, 1980; Kent & Coker, 1992). Field data were collected from 222 vegetation sample plots (relevés), most of which (184 rels.) were conducted from April 2017 to July 2019, while the rest (38 rels.) in June and September 2012. Wherever possible, at least five (5) relevés were per- formed for each vegetation type. In the few cases where the size of the vegetation types did not allow as many as five (5) relevés, their number was determined by the availability of each vegetation type within the study area. The size of the plots was relatively constant for each veg- etation type and harmonized with those suggested by Di- mopoulos et al. (2018) for the monitoring and assessment of habitat types of national conservation status. In each sample plot, all vascular plants were recorded and their coverage was estimated using the transformed (9-point) Braun-Blanquet scale (Van der Maarel, 1979). Data were used not only for vegetation classification but also for the identification of habitat types since the latest proposed revisions of the EUNIS habitat classification system are mainly based on the combined assessment of species oc- currence and coverage (Schaminée et al., 2019a). In addi- tion, for each sample plot, data regarding the sampling lo- cality was recorded as proposed by Tsiripidis et al. (2018). Plant specimens collected during the field work were identified mainly according to Davis (1965–85), T utin et al. (1968–1993) and Strid (2016). The nomenclature of taxa follows Dimopoulos et al. (2013, 2016) and Flora of Greece Web (2022). The delimitation of vegetation types was first made by the means of cluster analysis. Hierarchical clustering of the 222 phytosociological relevés was performed by using the “vegan” package (Oksanen et al., 2020) in R statistical environment (R Development Core Team, 2021), after transforming the Braun-Blanquet cover abundance values into a proper rank scale as suggested by Van der Maarel (1979). Single, complete and average linkage clustering methods were performed and the cophenetic correla- tion was used to measure the likeness between original dissimilarities and dissimilarities estimated from the tree produced by each clustering method. Average linkage (UPGMA) method maximized the cophenetic correla- tion. Subsequently, diagnostic species (species concen- trated to particular relevés clusters or species delimiting differentiated subtypes within a cluster of closely related relevés) were defined by applying the fidelity measure and the phi-coefficient, as described in Chytrý et al. (2002). Given the unequal number of relevés per cluster, fidelity values were equalized following Tichý & Chytrý (2006), to mitigate the effect of unequal size of relevé clusters on calculation of fidelity. Fisher’s exact test (p < 0.001) was applied to exclude species whose occurrence concentra- tion on the target relevé clusters was not significant. Se- lection of diagnostic species given in the synoptic table (Table 1) was based on two criteria: (1) fidelity higher than 0.30 and (2) species frequency equal or higher than 40%. The threshold values of these criteria were subjec- tively chosen to be low enough for the identification of a sufficient number of diagnostic species, and high enough so that many generalist species and species that are not ex- clusively present on a single vegetation type would not be considered as diagnostic. Reliability of the results is fur- ther enhanced by the combined application of the above criteria (Šilc et al., 2016; Ditĕ et al. 2019). The threshold frequency value for the constant species was set to 40%, following Chytrý & Tichý (2003). Finally, to exclude spe- cies rarely or never attaining high cover, species having a percentage cover higher than 25% in at least 10% of the relevés (Landucci et al., 2013, Marcenò et al., 2018) were defined as dominant. As many of the species on which the cluster separa- tion was based (diagnostic, constant, dominant) are con- 22/1 • 2023, 1–46 5 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) sidered characteristic of high-rank syntaxa listed in the EuroVegChecklist (Mucina et al., 2016), the relevés clus- ters were syntaxonomically interpreted and assigned to phytosociological classes, orders and alliances according to their floristic composition. The clusters whose floris- tic structure resembles that of communities already de- scribed and named according to the formal syntaxonomic code (Theurillat et al., 2021) were assigned to association level and named accordingly. Clusters not resembling ac- cepted associations are described as new vegetation types (associations, sub-associations) but only when the relevés number per cluster was sufficient (higher than 5). Where they were less than 5, they are referred to as communi- ties. Characteristic class species and high-rank syntaxa are presented throughout according to Mucina et al. (2016). Habitat types were interpreted using the concept of in- dicator species (diagnostic, constant, dominant). This was achieved by following the phytosociological approach or by a crosswalk between the EUNIS habitat types (Davies et al., 2004; Schaminée et al., 2019a,b) and the alliances of the EuroVegChecklist hierarchical syntaxonomic sys- tem (Mucina et al. 2016). Many of the diagnostic or con- stant species recognized in the study area, are considered indicator species of particular habitat types included in the EUNIS classification system (Schaminée et al., 2013; 2014; 2019a,b; 2020). Furthermore, the latest changes and revisions in the EUNIS and EuroVegChecklist sys- tems permit a valid crosswalk between alliances and habi- tat types. Habitat coding follows Davies et al. (2004), Schaminée et al. (2019 a,b) and the Interpretation Manu- al of EU Habitat types (Anonymous, 2013), whereas hab- itat types of national interest follow Dafis et al. (2001). Results From the total of 222 relevés, 143 were carried out in the marsh of Schinias and concern salt meadows (43 relevés), reed beds (48 relevés), halophilous scrubs (16 relevés), tamarisk scrubs (14 relevés), saline swards (11 relevés), temporarily flooded grasslands on subsaline soils (6 relevés) and submerged vegetation of brackish waters (5 relevés). Most of the remaining 79 relevés were derived from the coastal sand dunes, while a few originated from the strandline zone (5 relevés). All relevés were processed as described above for the construction of the dendro- gram (Figure 2). The 222 relevés used in the analysis were grouped into 5 large clusters, each one of them il- lustrated by an alphabetic letter. The groups of relevés (corresponding to the alliances or orders recognized in the study area) are indicated with numbers (Figure 2). The cophenetic coefficient associated on the dendrogram, has a value of 0.954. Clusters A, B and C represent the halo-nitrophilous vegetation of drift line and the vegeta- tion of mobile, embryonic and back coastal dunes. These clusters were assigned to the alliances Euphorbion peplidis, Ammophilion, Maresion nanae, Helichryso barrelieri-Cen- taureion spinosae (cluster A), Asparago orientalis-Juniperi- on macrocarpae, Pistacio lentisci-Pinion halepensis, Pinion pineae, Ceratonio-Pistacion lentisci (cluster B) and Mo- linio-Holoschoenion (cluster C). Cluster C also includes four relevés congregated in group 10, for which no pre- cise syntaxonomical assignment to the alliance level was determined. These were classified to the order Elytrigio repentis-Dittrichietalia viscosae. Vegetation colonizing the marsh area is grouped in clusters D and E. Relevés in- cluded in cluster D consist mostly of species-poor, mono- dominant stands preferring or tolerating high soil salinity (average number of species per relevé rarely more than 5). They were classified to the alliances Salicornion fruticosae, Arthrocnemion glauci, Juncion maritimi, Scirpion maritimi and Tamaricion dalmaticae. Cluster E assorts vegetation types usually related to brackish habitats of middle and upper marshes. These relevés groups are ascribed to the al- liances Agropyro-Plantaginion maritimi, Phragmition com- munis, Ruppion maritimae and Trifolion maritimi. Two more relevés classified to the order Limonietalia (group 13) are also placed within cluster E. The classification analysis revealed thirty-five vegetation types (twenty associations, two sub-associations and thir- teen communities, not assigned formal rank) that belong to eighteen alliances, sixteen orders and twelve phyto- sociological classes. The recognized alliances and orders were associated with twelve EUNIS habitat types (Davies et al., 2004; Schaminée et al. 2019a,b), nine of which are related to thirteen habitats of Annex I of the Habitats Di- rective (Anonymous, 2013) and one with a habitat type of national interest for Greece (Dafis et al., 2001). (See Table 2 for the complete syntaxonomic scheme.) Of the identified habitat types included in Annex I, one has a scattered presence in the Natura 2000 network in Greece (1420), two are infrequent (2190, 2260), two are rare (2230, 2270) and three (1150, 2250, 2270) are priority habitat types (Dimopoulos et al., 2006). In the text and Table 2, priority habitat types and the one of Greek inter- est are indicated by one or two asterisks respectively. Discussion A description of plant communities is provided below ac- cording to the main ecosystem types and highest syntaxo- nomic units (classes) encountered in the study area. In the classes mentioned in the following paragraphs the recog- nized vegetation types are assigned to alliances. However, in some cases it was not possible to classify them beyond 22/1 • 2023, 1–46 6 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) order level, due to limited number of diagnostic species or because relevant alliances are listed in EuroVegCheck- list only from the western Mediterranean region. From the total of diagnostic species identified only these with phi ˃ 0.40 (dark shaded in Table 1) are presented in each alliance or order outlined, with the exception of Juncion maritimi. A detailed list of the taxa found in each vegeta- tion unit is given in T ables 3–14, which includes 218 taxa recorded in 222 relevés. The main pressures and threats recorded for different vegetation types and related habitat types are also discussed. Vegetation classification system Coastal dune vegetation Although the sand beach and sand dunes of Schinias are exposed to intense anthropogenic pressure, the patterns of vegetation organization along the gradient of environ- mental factors converge to a satisfactory degree with those expected for a Mediterranean coastal dune ecosystem (Acosta et al., 2007). From the seashore up to the end of the dune alignment various phytosociological units de- velop, ranging from the coastal pioneer halo-nitrophilous (Cakiletea maritimae) and halo-psammophyte commu- nities (Ammophiletea) to the more complex vegetation types of back dunes (Helichryso-Crucianelletea maritimae, Quercetea ilicis). Moreover, throughout the outer belt of the dunes, discontinuous development of low-growing sabulicolous communities (Helianthemetea guttati) is observed. A rush meadow community (Molinio-Arrhe- natheretea) is also encountered in small, humid depres- sions scattered mainly at the terrestrial edges of the pine forest, extending parallel to the coast, across the range of stabilized dunes. Cakiletea maritimae Natura 2000 habitat type: 1210 “Annual vegetation of drift lines” Alliance (Ep) Euphorbion peplidis Tx. ex Oberd. 1952 Diagnostic species: Salsola kali (phi value 1, species fre- quency 100%), Cakile maritima (0.82, 100%), Mat- thiola tricuspidata (0.41, 80%), Eryngium maritimum (0.43, 40%) Constant species: Anthemis tomentosa (species frequency 60%), Elytrigia juncea (60%) Dominant species: none A thick layer of organic matter deposited on the shore- line during storms favors the development of the associa- tion Salsolo kali-Cakiletum maritimae (Table 3, rels. 1–5) which, like all pioneer halo-nitrophilous communities, has high nutritional demands and thrives in localities that are exposed to wave inundation and anthropogenic pres- sure. The limited number of species (with very low cover- abundance indices) is a common feature of this patchy and fragmented vegetation type throughout the Medi- terranean region. This is because few plants can tolerate stormy wind, sand mobility and salt spray (Molina et al., 2003; Sýkora et al., 2003; Alegro et al., 2004; Šilc et al., 2016; Sarika et al., 2018; Stešević et al., 2019). Ammophiletea Natura 2000 habitat type: 2110 “Embryonic shifting dunes” Alliance (Am) Ammophilion Br.-Bl. 1921                                  Figure 2: Cluster dendrogram of performed relevés, using the Average linkage (UPGMA) method. Cluster A refers to the alliances Euphor- bion peplidis (Ep, 1), Ammophilion (Am, 2), Maresion nanae (Mn, 3), Helichryso barrelieri-Centaureion spinosae (Hel-Cent, 4). Cluster B refers to the alliances Asparago orientalis-Juniperion macrocarpae (Asp- Jun, 5), Pistacio lentisci-Pinion halepensis (Pis-Pin, 6), Pinion pineae (Pp, 7), Ceratonio-Pistacion lentisci (Cer-Pis, 8). Cluster C refers to the alliance Molinio-Holoschoenion (Mol-Hol, 9) and the order Elytrigio repentis-Dittrichietalia viscosae (Ely-Dit, 10). Cluster D refers to the alliances Salicornion fruticosae (Sal, 11), Arthrocnemion glauci (Arth, 12), Juncion maritimi (Jm, 14), Scirpion maritimi (Scm, 16) and T ama- ricion dalmaticae (Tad, 18). Cluster E refers to the alliances Agropyro- Plantaginion maritimi (Agr-Plan, 15), Phragmition communis (Phc, 17), Ruppion maritimae (Rum, 19), Trifolion maritimi (T m, 20) and the order Limonietalia (Lim, 13). Slika 2: Dendrogram vegetacijskih popisov z povprečno metodo (UPGMA). Klaster A predstavlja zveze Euphorbion peplidis (Ep, 1), Ammophilion (Am, 2), Maresion nanae (Mn, 3), Helichryso barreli- eri-Centaureion spinosae (Hel-Cent, 4). Klaster B predstavlja zveze Asparago orientalis-Juniperion macrocarpae (Asp-Jun, 5), Pistacio lentisci-Pinion halepensis (Pis-Pin, 6), Pinion pineae (Pp, 7), Ceratonio- -Pistacion lentisci (Cer-Pis, 8). Kalster C predstavlja zvezo Molinio- -Holoschoenion (Mol-Hol, 9) in red Elytrigio repentis-Dittrichietalia viscosae (Ely-Dit, 10). Klaster D predstavlja zveze Salicornion fruticosae (Sal, 11), Arthrocnemion glauci (Arth, 12), Juncion maritimi (Jm, 14), Scirpion maritimi (Scm, 16) in T amaricion dalmaticae (Tad, 18). Klaster E predstavlja zveze Agropyro-Plantaginion maritimi (Agr-Plan, 15), Phragmition communis (Phc, 17), Ruppion maritimae (Rum, 19), Trifolion maritimi (T m, 20) in red Limonietalia (Lim, 13). 22/1 • 2023, 1–46 7 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Diagnostic species: Elytrigia juncea (0.72, 100%), Med- icago marina (0.72, 63%), Allium staticiforme (0.64, 75%), Hedypnois rhagadioloides (0.63, 88%), Pseu- dorlaya pumila (0.61, 63%), Eryngium maritimum (0.59, 50%), Bromus rubens subsp. rubens (0.58, 63%), A nthe mis tomentosa (0.42, 88%), Lagurus ovatus (0.42, 100%), Erodium laciniatum (0.41, 63%), Constant species: Matthiola tricuspidata (75%) Dominant species: Elytrigia juncea, Medicago marina, Sporobolus pungens The associations Eryngio-Sporoboletum virginici and Cypero mucronati-Agropyretum juncei are discontinuously distributed on loose, shifting dunes (Table 3, rels. 6–13). Rhizomatous geophytes and hemicryptophytes such as Elytrigia juncea, Sporobolus pungens and Medicago marina dominate this vegetation type as they are adapted to the harsh physical factors of the coastline and favor the dynam- ics of sand dune formation, evolution and stabilization (Sýkora et al., 2003). When the beach is broad enough, secondary, less mobile, yellow dunes with Ammophila are- naria may exist inland (Sýkora et al., 2003; Alegro et al., 2004). However, in the case of Schinias, the sandy belt is relatively narrow with an average width of ~300m and a direct transition from the embryonic dunes to the wooded area is observable, similarly to the transition reported from the Croatian coasts (Alegro et al., 2004). Helianthemetea guttati Natura 2000 habitat type: 2230 “Malcolmietalia dune grasslands”. Alliance (Mn) Maresion nanae Géhu et al. 1987 Diagnostic species: Medicago littoralis (0.67, 68%), A nthe mis tomentosa (0.51, 86%), Silene colorata (0.47, 45%), Erodium laciniatum (0.41, 50%), Constant species: Lagurus ovatus (77%), Matthiola tri- cuspidata (63%) Dominant species: Medicago littoralis, Anthemis tomen- tosa, Silene colorata, Plantago bellardii In late winter the species Silene colorata (Table 4, rels. 15–18) dominates openings existing along the coastal front of the pine forest, but as spring progresses it is gradu- ally replaced by a vegetation type dominated by Anthemis tomentosa and Matthiola tricuspidata (T able 4, rels. 1–10). This type of vegetation occurs frequently on Greek coasts but has not yet been described at the association level, possibly due to its’ ephemeral nature. Here, it is treated as the new association Matthiolo tricuspidatae-Anthemi- detum tomentosae ass. nov. hoc loco (Table 4, rel. 1–10, holotypus: rel. 2; characteristic taxa: Anthemis tomentosa and Matthiola tricuspidata). At the same time of year, just a few meters farther toward the interior of the forest, two more ephemeral communities emerge on sandy soils less exposed to salt spray. The first is characterized by the dominance of Medicago littoralis and Matthiola tricuspida- ta (T able 4, rels. 11–14) and seems to represent the associ- ation Medicagini littoralis-Anthemidetum tomentosae (first reported from Rhodes Island by Géhu et al. 1989). The second is characterized by the dominance of Plantago bel- lardii (Table 4, rels. 19–22). Díez-Garretas et al. (2003) report that although Anthemis tomentosa and Matthiola tricuspidata do occasionally appear in phytosociological tables referring to the Ammophiletea or Helichryso-Cru- cianeletea (Crucianelion maritimae) classes, they actually belong to the order Vulpietalia and represent a therophyt- ic element between the perennial vegetation of Ammophi- letea. Tomaselli et al. (2011) and Minissale & Sciandrello (2015) also consider Anthemis tomentosa to be a character species of the order Vulpietalia, stating similarly that the communities of this order develop among the perennial vegetation of the classes Ammophiletea, Helichryso-Cruci- aneletea or even of Quercetea ilicis. We have adopted these assumptions and accept that the therophytic vegetation discussed above belongs to the Vulpietalia order (Helian- themetea guttati class), into which the ephemeral sabu- licolous communities of coastal semi-fixed dunes of the Mediterranean region are grouped (Díez-Garretas et al., 2003; Costa et al., 2011). Helichryso-Crucianelletea maritimae Natura 2000 habitat type: 2260 “Cisto-Lavenduletalia dune sclerophyllous scrubs” Alliance (Hel-Cent) Helichryso barrelieri-Centaureion spi- nosae Mucina et Dimopoulos in Mucina et al. 2016 Diagnostic species: Centaurea spinosa (1, 100%), Cype- rus capitatus (0.70, 60%), Elytrigia juncea (0.54, 80%), Malcolmia flexuosa (0.47, 40%) Constant species: Lagurus ovatus (60%) Dominant species: Centaurea spinosa Vegetation stands dominated by Centaurea spinosa de- velop sporadically on the sea facing slopes of semi fixed dunes. The community formed (Table 5, rels. 1–5) be- longs to the Helichryso barrelieri-Centaureion spinosae al- liance. This includes the coastal hemispherical phrygana of south-eastern Aegean and eastern Anatolia (Marcenò et al., 2018). Mucina et al. (2016) emphasize that Cen- taurea spinosa is a floristic element not only of Helichryso- Crucianelletea maritimae class but also of classes such as Ammophiletea, Crithmo-Staticetea and Cisto-Micromeriet- ea. However, when the floristic composition of Centaurea spinosa dominated stands refers to the alliance Helichryso barrelieri-Centaureion spinosae then they represent a dis- tinguishable habitat type, as mentioned here, that differs clearly from any of those linked to the rest of abovemen- tioned classes. 22/1 • 2023, 1–46 8 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Quercetea ilicis Natura 2000 habitat type: 2250 “Coastal dunes with Juniperus spp.” Alliance (Asp-Jun) Asparago orientalis-Juniperion macro- carpae (Díez-Garretas et Asensi 2014) Mucina in Mu- cina et al. 2016 Diagnostic species: Juniperus macrocarpa (0.79, 100%), Bromus rigidus (0.75, 100%), Prasium majus (0.59, 100%), Matthiola tricuspidata (0.52, 100%), Constant species: Anthemis tomentosa (67%), Pistacia lentiscus (67%), Piptatherum miliaceum (67%) Dominant species: Juniperus macrocarpa, Pistacia len- tiscus Juniperus macrocarpa dominated stands occur sporadi- cally on semi fixed dune fields close to the sea. They are fragmented and frequently mixed with phytocoenoses belonging to the Vulpietalia and Ammophiletalia orders. Constant presence of the species Pistacia lentiscus and Pra- sium majus in the relevés (Table 6, rels. 1–3) reinforces the view that they represent the association Prasio majoris- Juniperetum macrocarpae of the alliance Asparago orienta- lis-Juniperion macrocarpae, known also from the islands of central southern Aegean area. The maritime juniper is a threatened plant species of the Mediterranean region, and its communities are considered priority habitats for conservation in the framework of the Habitats Directive (Díez-Garretas & Asensi, 2014). Natura 2000 habitat type: 9540 “Mediterranean pine for- ests with endemic Mesogean Pines” and 2270 “Wood- ed dunes with Pinus pinea and/or Pinus pinaster” Alliance (Pis-Pin) Pistacio lentisci-Pinion halepensis Biondi et al. in Biondi et al. 2014 Diagnostic species: Pinus halepensis (0.91, 100%), Rhamnus alaternus (0.71, 88%), Asparagus acutifolius (0.69, 71%), Pistacia lentiscus (0.65, 94%), Prasium majus (0.65, 82%), Quercus coccifera (0.61, 59%), Juni- perus phoenicea (0.52, 47%), Pinus pinea (0.48, 59%), Piptatherum miliaceum (0.47, 82%), Smilax aspera (0.46, 59%) Constant species: Lagurus ovatus (53%) Dominant species: Pinus halepensis, Pinus pinea, Pistacia lentiscus The pine forest of Schinias develops on stabilized dunes, occupying an area of 3 kilometers long and 450 meters wide, bordering the marsh to the north and north-east. Pinus halepensis prevails in the eastern part of the forest (Table 6, rels. 4–10). Approximately halfway to the west P. halepensis start to mix with P. pinea indi- viduals (Table 6, rels. 11–20). The latter species gradually dominates at the western end of the forest area, giving rise to pure P. pinea stands (Table 6, rels. 21–25). Several sclerophyllous evergreen shrubs thrive in the under-sto- rey, among which Pistacia lentiscus plays an important role in the structure of almost all the studied relevés. All P. halepensis stands (Table 6, rels. 4–10 & 11–20) can be attributed to the alliance Pistacio lentisci-Pinion halepen- sis. We consider that pure P. halepensis stands refer to the association Pistacio lentisci-Pinetum halepensis (Konstan- tinidis et al., 2012). Stands of P. halepensis mixed with P. pinea represent a subtype of the aforementioned as- sociation and are described here for the first time. Rel. 13 of Table 6 is considered the type for the initial de- scription of this vegetation type as the new subassocia- tion Pistacio lentisci-Pinetum halepensis pinetosum pineae subass. nov. hoc loco (Table 6, rel. 11–20, holotypus: rel. 13; characteristic taxa: Pinus halepensis and P. pinea). Alliance (Pp) Pinion pineae Feinbrun 1959 Diagnostic species: Pinus pinea (0.66, 100%), Clematis cirrhosa (0.58, 40%), Leontodon tuberosus (0.55, 40%), Helichrysum stoechas subsp. barrelieri (0.49, 60%), Pistacia lentiscus (0.43, 80%), Carlina corymbosa (0.41, 40%), Constant species: Smilax aspera (60%), Piptatherum miliaceum (60%) Dominant species: Pinus pinea, Pistacia lentiscus The stands with P. pinea as dominant (Table 6, rels. 21–25) represent the alliance Pinion pineae. Natura 2000 habitat type: 9320 “Olea and Ceratonia for- ests” Alliance (Cer-Pis) Ceratonio-Pistacion lentisci Zohary et Orshan 1959 Diagnostic species: Pistacia lentiscus (0.55, 100%), Smi- lax aspera (0.64, 100%), Juniperus phoenicea (0.49, 60%), Anthyllis hermaniae (0.43, 40%), Scirpoides hol- oschoenus (0.41, 40%). Constant species: Piptatherum miliaceum (60%), Rham- nus alaternus (60%), Dominant species: Pistacia lentiscus Monospecific Pistacia lentiscus assemblages or mixed with Quercus coccifera (Table 7, rels. 1–5) develop at the edges or in the openings of the pine forest. They belong to the order Pistacio lentisci-Rhamnetalia alaterni, alli- ance Ceratonio-Pistacion lentisci. Tsiourlis et al. (2009) classified Quercus coccifera-Pistacia lentiscus shrublands of continental and insular Greece (apart from Crete), into the association Querco cocciferae-Pistacietum lentisci. They note that this vegetation type is widespread in the Medi- terranean Basin and that due to its wide distribution it has been described by many researchers, while in some cases, it was attributed to different associations. 22/1 • 2023, 1–46 9 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Molinio-Arrhenatheretea Natura 2000 habitat type: 2190 “Humid dune slacks” Alliance (Mol-Hol) Molinio-Holoschoenion Br.-Bl. ex Tchou 1948 Diagnostic species: Scirpoides holoschoenus (0.91, 100%), Bromus hordeaceus (0.62, 40%), Sinapis arvensis (0.55, 40%), Ditrichia viscosa (0.50, 40%), Dominant species: Scirpoides holoschoenus Scirpoides holoschoenus stands (Table 7, rels. 6–10) develop in small, wet depressions scattered in the dune system, mostly along the land borders of the pine forest. Vegetation of this type is traditionally classified to the al- liance Molinio-Holoschoenion as the association Holoschoe- netum vulgaris, which grows on soils subjected to seasonal fluctuation of water table. It tolerates summer drought sufficiently and is usually rich in species characteristic of the Molinio-Arrhenatheretea class (Lastrucci et al., 2012; 2017a). However, the relevés analyzed in the present study do not share species with this class, with the excep- tion of the dominant Scirpoides holoschoenus. Instead, spe- cies related to anthropogenic impacts such as overgrazing or disturbed nitrified soils (Schaminée et al. (2020) were constantly present, but with low cover-abundance degree (e.g. Sinapis arvensis, Bromus hordeaceus, Dittrichia vis- cosa). This situation is rather common in Mediterranean humid dune slacks (Schaminée et al., 2019b). García-Ma- drid et al. (2016) report that Molinio-Holoschoenion com- munities are widespread throughout the entire Mediter- ranean Basin (Macaronesian Islands up to the Black Sea), though with different floristic composition depending on groundwater regime, moisture gradient, soil proper- ties and anthropogenic pressures, whereas Mucina et al. (2016) treat them as western Mediterranean syntaxa. Artemisietea vulgaris Order (Ely-Dit) Elytrigio repentis-Dittrichietalia viscosae Mucina ined. Diagnostic species: Elytrigia obtusiflora (1, 100%) Constant species: Juncus acutus (50%), Juncus maritimus (50%) Dominant species: Elytrigia obtusiflora In the study area Elytrigia obtusiflora occupies areas with human impact, especially the edges of forest roads along which it forms narrow strips (Table 7, rels. 11–14). E. obtusiflora is among the characteristic species of the Artemisietea vulgaris class (Mucina et al,. 2016) used for formal definition of the EUNIS habitat type E5.1 “An- thropogenic herb stands” (Davies et al., 2004; Schaminée et al., 2019b). This is further divided into sub-types cor- responding to different phytosociological classes includ- ing Artemisietea vulgaris (Schaminée et al., 2020). The community of E. obtusiflora growing in Schinias could be assigned to the order Elytrigio repentis-Dittrichietalia viscosae which frames the anthropogenic sub-ruderal and ruderal grasslands and herblands of submediterranean and Mediterranean Southern Europe. However, the ab- sence of additional diagnostic species in the stands of this vegetation type makes it impossible to classify them in any of the known alliances of this order. Coastal wetland vegetation At the lower Schinias marsh there is no clear predomi- nance of Salicornietea fruticosae shrubs as the halophytic succulents of this class are combined with tall rush com- munities of Juncetetalia maritimi or common reed beds of Phragmito-Magnocaricetea. However, as the marsh surface gradually raises, salt meadows of Juncetetalia maritimi become dominant (middle marsh), while at even higher elevation levels (upper marsh) more competitive plant species prevail up to the outermost boundaries of the wet- land (e.g. Schoenoplectus litoralis, Bolboschoenus mariti- mus, Phragmites australis). Thus, sequential dominance of different species along the elevation gradient creates two well-diversified vegetation zones that correspond to the middle marsh and the upper marsh. Stands of T amarix spp. appear sporadically throughout the marsh, but only towards the uppermost edge do they form small wood- land. Finally, dense beds of the submerged angiosperm Ruppia maritima occupy seasonally flooded openings. Salicornietea fruticosae Natura 2000 habitat type: 1420 “Mediterranean and thermo-Atlantic halophilous scrub (Salicornietea fruti- cosae)”. Alliance (Sal) Salicornion fruticosae Br.-Bl. 1933 Diagnostic species: Sarcocornia perrenis (0.82, 100%) Constant species: Juncus subulatus (50%) Dominant species: Sarcocornia perrenis Well-developed stands of the association Puccinellio festuciformis-Sarcocornietum perennis (Table 8, rels. 1–6) occur in the low and low-middle area of the marsh. Sar- cocornia perennis dominates these stands that are generally poor in species. Low species richness is a typical feature of the highly stressful environments present along the whole elevation gradient of coastal marshes and Salicornietea fruticosae communities all over the Mediterranean region (Silvestri et al., 2005). According to Cutini et al. (2010), salinity and limited soil oxygen act as ecological filters, reducing species richness in coastal marshes. Alliance (Arth) Arthrocnemion glauci Rivas-Mart. et Costa M. 1984 22/1 • 2023, 1–46 10 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Diagnostic species: Arthrocnemum macrostachyum (0.69, 100%) Constant species: Juncus subulatus (88%) Dominant species: Arthrocnemum macrostachyum The association Arthrocnemo-Juncetum subulati (Ta- ble 8, rels. 7–14), which has not, to the best of our knowl- edge, been reported from Greece to date, was mostly found in localities of the mid-upper and upper marsh. This vegetation is usually associated with the better aer- ated, highly saline soils of upper salt marshes that remain moist even during the summer (Tomaselli et al., 2011; Sciandrello & Tomaselli, 2014). Order (Lim) Limonietalia Br.-Bl. et O. de Bolòs 1958 Diagnostic species: Psilurus incurvus (0.91, 100%), Li- monium compactum (0.82, 100%), Schoenus nigricans (0.75, 100%), Elytrigia elongata (0.68, 100%), Arthroc- nemum macrostachyum (0.61, 100%), Puccinellia festu- ciformis (0.46, 50%) Constant species: Aeluropus littoralis (50%), Plantago crassifolia (50%) Dominant species: Limonium compactum Limonium compactum forms a community scattered throughout the elevated, less humid parts of the middle- upper marsh (Table 8, rels. 15–16). Although this com- munity is differentiated by a number of diagnostic spe- cies, it cannot be assigned to any of the known alliances of the order Limonietalia included in Mucina et al. (2016), as these refer to Iberian or Tyrrhernian-Central Medi- terranean vegetation units. Communities dominated by Limonium species are often described as transitional be- tween the hypersaline vegetation of the order Salicornieta- lia fruticosae and the drier and less saline places preferred by vegetation of the order Juncetalia maritimi (Golub et al., 2001; Tomaselli et al., 2011). Viciani et al. (2012) report that remnants of this vegetation type are also often recorded when habitats favouring its occurrence are un- der intensive human pressure. Juncetea maritimi Natura 2000 habitat type: 1410 “Mediterranean salt meadows” Alliance (Jm) Juncion maritimi Br.-Bl. ex Horvatić 1934 Diagnostic species: Aeluropus littoralis (0.36, 58%), Juncus maritimus (0.31, 51%) Constant species: Juncus subulatus (47%) Dominant species: Aeluropus littoralis, Juncus mariti- mus, Juncus subulatus, Elytrigia elongata subsp. elongata Juncus maritimus has a significant presence in the lower part of the mid marsh but it becomes predominant to- wards the upper borders of this zone. Here it forms dense, almost monospecific meadows (Table 9, rels. 1–10), alternating and creating a mosaic with extended stands of Juncus subulatus. Communities of J. maritimus thriving in warm, arid southern Mediterranean areas are traditionally treated as representatives of the associations Puccinellio festuciformis-Juncetum maritimi or Inulo-Juncetum mar- itimi (synonym of the Puccinellio festuciformis-Juncetum maritimi inuletosum crithmoidis), and not of the northe- ren Adriatic Juncetum maritimi (Veronico et al., 2017; Dítě et al., 2019). This view is adopted in the present study. Juncus subulatus forms monospecific stands (Table 9, rels. 11–17) in the upper fringes of the middle marsh, occupying places in a slightly lower elevation than the surrounding adjacent ones, which are flooded for a long time. A different morphotype of this species, with thin- ner and lower in height individuals prevails in vegetation patches in the lower part of the middle marsh. These communities however have a different structure from that of J. subulatus in the upper limits of the same zone. We consider that the constant presence of the species Juncus maritimus, Aeluropus littoralis and Cressa cretica within the patches dominated by J. subulatus in the lower area of the mid marsh (Table 9, rels. 18–24) differentiates a commu- nity resembling the association Aeluropo littoralis-Jucetum subulati (Salazar et al., 2002; Alonso, 2011). It is worth mentioning that in the Mediterranean region J. subula- tus combined with species such as J. maritimus and A. littoralis often replaces communities of genus Salicornia and that in salt marshes morphologic diversification of a species can be observed even at short distances, because halophytes often differentiate genetically, in response to environmental gradient (Willis & Davies, 1960; Pen- nings & Bertness, 2001). Aeluropus littoralis dominates a community discontin- uously distributed in the lower area of the middle marsh. In many sources, it is supported that in the Mediterra- nean region this species is mostly related to the vegeta- tion of the class Juncetea maritimi (Merloni & Piccoli 2007; Tzonev et al., 2008; Cazzin et al., 2009; Fanelli et al., 2015). Constant participation of the species of this class in the structure of Aeluropus littoralis communities (Table 9, rels. 25–35) indicates their close relationship with the particular class. We attribute the Aeluropus lit- toralis vegetation patches in the salt marsh of Schinias to the association Puccinellio festuciformis-Aeluropetum lito- ralis, mentioned from Italy and Albania with a similar structure (Poldini et al., 1999; Sciandrello & Tomaselli, 2014; Fanelli et al., 2015). Based on data collected, a subassociation differentiated by Cressa cretica is distin- guished, which is described here for the first time as the Puccinellio festuciformis-Aeluropetum litoralis cressetosum creticae subass. nov. hoc loco (Table 9, rel. 25–30, holo- 22/1 • 2023, 1–46 11 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) typus: rel. 27; differential taxa: Cressa cretica). According to Jasprica et al. (2015) the communities of Cressa cretica in the Mediterranean region are correlated to the most haline and dry soils of salt marshes. Authors note that the appearance of salty efflorescences is frequent on these soils, as it was also observed in our study area. Cressa cretica occurs in various halophytic habitats throughout Greece, but data concerning vegetation units of this spe- cies are not available thus far. Elytrigia elongata forms scattered patches along the up- per margins of Juncetalia maritimi meadows and, rarely, on wet sandy depressions within the pinewood (Table 9, relevés 36–43). This species is usually found on the outer border of the upper salt marshes and is related to soils with moderate salt concentration that inundate occasion- ally and for short periods (Sciandrello & T omaselli, 2014; Veronico et al., 2017). The community formed by Elytri- gia elongata of the study area could be allocated to the as- sociation Agropyro elongati-Inuletum crithmoidis (Viciani & Lombardi, 2001; Tomaselli & Sciandrello, 2017; Ve- ronico et al., 2017), widespread in Italy. However, due to very limited occurrence of Limbarda crithmoides in the Schinias stands, this vegetation type is significantly differ- entiated from the abovementioned association and is here treated as the community of Elytrigia elongata. Alliance (Agr-Plan) Agropyro-Plantaginion maritimi Hor- vatić 1934 Diagnostic species: Plantago crassifolia (0.68, 82%), Schoenus nigricans (0.65, 64%) Dominant species: Plantago crassifolia, Schoenus nigricans Stands dominated by the species Schoenus nigricans and/or Plantago crassifolia (Table 10, rels. 1–11) develop on more elevated localities of the middle marsh. Schoe- nus nigricans is a common species in Mediterranean wet meadows, but the floristic composition of the communi- ties formed differs depending on soil salinity. Communi- ties occurring in saline habitats (rich in species of Juncetea maritimi) differ floristically from those thriving in mead- ows fed by freshwater (lacking in species of Juncetea maritimi, rich in Molinio-Arrhenatheretea species), and are thereby assigned to different syntaxa. In Schoenus nigricans communities of Mediterranean salt meadows, Plantago crassifolia frequently participates, even as a co- -dominant species (T omaselli et al., 2011; Veronico et al., 2017). The relevés recorded in the present study could be classified to the association Schoeno nigricantis-Plantagi- netum crassifoliae and regarded as transitional between the halophilous vegetation of Salicornietea fruticosae and that of the Juncetea maritimi, which prefers soils with lower salt concentration (Molina et al., 2003; Stančić et al., 2008; Tomaselli et al., 2011). Phragmito-Magnocaricetea Natura 2000 habitat type: 72A0 “Reed thickets” Alliance (Scm) Scirpion maritimi Dahl et Hadac 1941 Diagnostic species: Bolboschoenus maritimus (0.71, 74%) Constant species: Juncus subulatus (52%) Dominant species: Bolboschoenus maritimus, Schoeno- plectus litoralis, Juncus subulatus More competitive but less salt tolerant plant species are widely distributed in the upper marsh, occupying the entire high elevation zone up to the land border of the wetland. The communities they form belong to the alli- ance Scirpion maritimi, which according to Mucina et al. (2016) could be alternatively assigned to Juncetea maritimi class. This is supported by our results, as Juncus subulatus, a typical species of this class, enters the sub-halophilous reed beds of Scirpion maritimi and plays an important role in shaping their structure. A mosaic of stands correspond- ing to the associations Scirpetum littoralis (Table 11, rels. 1–7), Scirpetum maritimi (T able 11, rels. 8–15) and Scirpo compacti-Juncetum subulati (Table 11, rels. 16–23), grows in shallow depressions of the upper marsh that flood only in winter. According to Tomaselli & Sciandrello (2017) Scirpo compacti-Juncetum subulati can withstand short periods of drought, whereas communities of Bolboschoe- nus maritimus and Schoenoplectus littoralis only grow in locations that remain wet through the summer. This is in agreement with the findings of the current study. These and other associations of this alliance, mentioned from the Mediterranean Basin and continental Europe, are all floristically poor and their classification is mainly based on dominant species (Landucci et al., 2020). Alliance (Phc) Phragmition communis Koch 1926 Diagnostic species: Phragmites australis (0.51, 76%) Dominant species: Phragmites australis, T ypha domingensis The study area also hosts the alliance Phragmition com- munis, represented by stands dominated by Phragmites australis or T ypha domingensis. These occur not only in the upper marsh but also in lower elevation localities, where it is possible that local conditions reduce salt concentration in the aquifer. It is well documented that biomass, density and height of reed culms are adversely affected by increas- ing salinity and flooding (Hellings & Gallagher, 1992; Batriu et al., 2015). Although hydrology is considered as the most decisive factor for their dispersal, their ability of clonal growth and aggressive rhizomatous spread encour- age invasion along the whole elevation gradient of the marsh (Sebastián-González et al., 2012). Two variants of the association Phragmitetum communis are distinguished in Schinias.The first is rich in halophytes (Juncus subulatus, J. heldreichianus, J. maritimus) and colonizes temporarily 22/1 • 2023, 1–46 12 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) inundated sites, (T able 12, rels. 1–10). The second is rath- er poorer in species and is characterized by the absence of halophytes and the presence of taxa preferring less saline habitats (Cynanchum acutum, Oenanthe pimpineloides, Ranunculus sardous, Alopecurus myosuroides, Piptatherum miliaceum) on permanently flooded soils or on elevated rarely flooded ridges (Table 12, rels. 11–19). Phragmites australis usually forms mono-dominant or species-poor stands (Landucci et al., 2013; Batriu et al., 2015), but it has been demonstrated that species richness of its stands tends to decrease in permanently flooded soils or in soils that are never flooded, and to increase in areas with pe- riodic water level fluctuation (Lastrucci et al., 2017b). The association Typhetum domingensis occurs fragmentary between the common reed beds (Table 12, rels. 20–26). It seems to prefer slightly saline coastal habitats that peri- odically dry out, although it can develop equally well in freshwater habitats. The presence of this thermophilous vicariant of Typhetum angustifoliae is rather overlooked in the Mediterranean region probably due to morphologic similarities between Typha domingensis and T. angustifolia (Landucci et al., 2013; Sarika et al., 2018). Nerio-Tamaricetea Natura 2000 habitat type: 92D0 “Southern riparian gal- leries and thickets” Alliance (Tad) Tamaricion dalmaticae Jasprica in Jasprica et al. 2016 Diagnostic species: T amarix tetrandra (0.64, 43%) Constant species: Juncus subulatus (79%) Dominant species: Tamarix tetrandra, T. hampeana, T. parviflora, Juncus subulatus V egetation dominated by the dwarf-woody species Ta m - arix parviflora, T. hampeana or T. tetrandra grows frag- mentally throughout the marsh. However, these species exhibit optimum development toward the terrestrial ends of the wetland, where mixed stands create small tamarisk woodlands. Among the stands of these species, those of T. tetrandra were the most prevalent and a sufficient number of relevés were carried out within them. Based on these data, the ascription of T . tetrandra stands to the association level was approached through the original diagnosis of a new (according to what is known so far) vegetation type which is first described in the present study as the Ta m- aricetum tetrandrae ass. nov. hoc loco (T able 13, rel. 9–14, holotypus: rel. 13; characteristic taxa: Tamarix tetrandra, T. hampeana x tetrandra, Juncus subulatus, J. maritimus, J. acutus). To date two alliances of Nerio-T amaricetea class are known from the eastern Mediterranean. Among them, Tamaricion dalmaticae is the only one related to saline or sub-saline environments (Mucina et al., 2016). These communities known form the Balkan Adriatic coasts, probably spread also into Greece (Jasprica, 2016). The presence of halophytes in all the relevés (Table 13, rels. 1–14) analyzed emphasizes their correlation to the aforementioned syntaxon. Furthermore, ruderal species from neighboring disturbed habitats enter these T amarix stands, as they do in T amaricion dalmaticae communities of the eastern Adriatic coasts (Jasprica, 2016). T amarix minoa J.L. Villar, Turland, Juan, Gaskin, M.A. Alonso & M.B. Crespo (found in rel. 10, see Table 13) is recorded for the first time in continental Greece. Up until now, the species was considered endemic to the island of Crete (Flora of Greece Web, 2022; Strid, 2016). It was identi- fied, for our study, by J. Zieliński (Kórnik) and N. Tur- land (Berlin) based on the voucher Zikos 2091, deposited at the ATHU Herbarium. Ruppietea maritimae Natura 2000 habitat type: 1150 “Coastal lagoons” Alliance (Rum) Ruppion maritimae Br.-Bl. ex Westhoff in Bennema et al. 1943 Diagnostic species: Ruppia maritima (1, 100%), Chara sp. (0.76, 60%) Dominant species: Ruppia maritima Almost monophytic stands of Ruppia maritima are in- terspersed throughout the marsh in seasonally flooded openings (Table 13, rels. 15–19). This species, which is common in the littoral wetlands of Greece (Sarika et al., 2015), decomposes during summer after the water level drops, providing an important source of organic matter. It is a species with a rather narrow ecological niche but tolerates a wide range of salinity better than any other submerged angiosperm (Kantrud, 1991). Molinio-Arrhenatheretea EUNIS habitat type: R32-[E32a] “Mediterranean short moist grassland of lowlands” Alliance (Tm) Trifolion maritimi Br.-Bl. ex Br.-Bl. et al. 1952 Diagnostic species: Ranunculus sardous (0.82, 83%), Po- tentilla reptans (0.69, 50%), Carex divisa (0.63, 50%), Anagallis arvensis (0.63, 50%), Carex distans (0.49, 50%), Tragopogon longifolius (0.44, 50%) Dominant species: Carex distans, C. divisa Vegetation dominated by the species Carex distans or Carex divisa forms distinct communities in temporar- ily flooded soils on the outer borders of the upper marsh (along the outer fringes of reed-beds or in openings be- tween the tamarisk thickets) affected by heavy grazing and/or human activities. The communities of C. distans and C. divisa in Mediterranean coastal marshes are mostly ascribed to the Juncion maritimi alliance (Braun-Blanquet et al., 1952; Lavrentiades, 1964; Rivas-Martínez et al., 22/1 • 2023, 1–46 13 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) 2001; Biondi & Bagella, 2005; Sarika, 2012; Dítĕ et al. 2019). However, the lack of Juncetea maritimi species and the presence of Molinio-Arrhenatheretea species in the stands growing in Schinias marsh (T able 14, rels. 1–6) sug- gest their transitional character between the strictly halo- phytic communities of Juncetalia maritimi and the halo- sub-nitrophilous ones of the order Potentillo-Polygonetalia avicularis (Molinio-Arrhenatheretea) (Donker & Stevelink, 1961; Brullo et al., 2020). Based on this, we consider that they are framed into this order most likely as members of the alliance Trifolion maritimi, which is attributed to the EUNIS habitat type “Mediterranean short moist grassland of lowlands” and includes communities dominated either by species of Juncetea maritimi or Molinio-Arrhenatheretea, depending on habitat salinity (Schaminée et al., 2019a; Mercadal, 2021). Dítĕ et al. (2019) describe similar veg- etation stands related to sub-saline soils. They state that due to their physiology, the sedge species C. divisa and C. distans seem to be stronger competitors than Juncetea mar- itimi elements, which do not manage to thrive although conditions are favorable for their growth. Human pressures threatening the coastal dune and wetland vegetation of Schinias National Park The coastal dune and wetland systems of Schinias Na- tional Park are constantly exposed to human-induced disturbances. This affects their functionality and integ- rity. Over the last decades, erosion, drainage, residential development and seaside recreation seem to be the main factors causing habitat degradation/fragmentation, while changes in land use, have been recognized as major driv- ers of biodiversity loss (Mertzanis & Merzanis, 2013; Gaitanis et al., 2015). Erosion, one of the most important factors of biodiver- sity loss in coastal dune habitats (Veronico et al., 2017), is still active in the coastal zone of the Marathon plain (Mertzanis & Merzanis, 2013). A significant retreat of the shoreline has been recorded near the Haradros river estu- ary which coincides with the construction of the Mara- thonas dam in 1929. This is mainly because the reduction of sediment discharge enhances coastal erosion and deg- radation of dune habitats (Mertzanis & Merzanis, 2013; Scapini, 2010; Tomaselli et al., 2011; Veronico et al., 2017). In addition, residential development and intense seaside tourism have altered the morphology of the coastal dunes and it is well documented that such interventions have negative impact both on the growth of herbaceous plants and the regeneration of coastal forests (Stešević et al., 2017). It is also known that any alteration of dune morphology leads to fragmentation of vegetation zonation and frequently causes the replacement or even the disap- pearance of the most common or sensitive plant commu- nities (Fenu et al., 2012). However, spatial arrangements of dune vegetation in Schinias follow a rather sequential order but not the precise natural pattern expected in an undisturbed system as described by Acosta et al. (2007). The psammophitic vegetation throughout the sand beach up to the first pine trees is fragmented and mixed, while regeneration of Pinus halepensis is almost exclusively observed in the openings of the under-storey shrubs. In places suffering intense anthropogenic pressure, such as the easily accessible eastern side of pine forest which re- ceives many visitors, especially during the summer season, both under-storey vegetation and pine regeneration are absent. An inverse relationship is also observed between human presence and under-storey shrub density, which decreases from the western towards the eastern side of the study area and from the interior of the forest towards the beach. The Pinus pinea forest, one of the largest in Greece (Spanou et al., 2007), has been fragmented over the last decades. About half of this forest has been urbanized and its regeneration has been limited due to the felling of tree and soil compaction. Nevertheless, today, the regenera- tion of Pinus pinea in and around the Schinias National Park seems to be recovering as several new seedlings are observed in the older stand, but also in open habitats, expanding the forest towards NW. The distribution of plants in wetlands corresponds to soil properties and water regime. Several studies verify that vegetation can be used as a bioindicator of human disturbances on the balanced feedback of soil-water-plant system (González-Alcaraz et al., 2014). Drainage projects conducted about a hundred years ago in the Maratho- nas plain resulted in the partial drying up of the Schinias marsh (Hadjibiros & Sifakaki, 2009). Part of the dried area was cultivated or built upon, while military infrastructure, long abandoned, was established on the rest of it. Nowa- days, the marsh is fragmented by a network of roads and canals ending at the sea via two artificial ditches that run along both sides of the pine forest. A rowing center con- structed in the core of the wetland for the 2004 Olympic Games significantly disrupts the integrity and function- ing of this sensitive ecosystem. This project has aggravated the conservation status of the shrinking wetland, since a series of interventions such as construction of new canals, roads, parking spaces and sports facilities, profoundly al- tered the landscape and hydrology (Hadjibiros & Sifakaki, 2009; Gaitanis et al., 2015). Under the influence of these intensified and long-lasting anthropogenic interventions, vegetation zonation in many places (eg. near the sea, resi- dences and rowing center) is disturbed or fragmented due 22/1 • 2023, 1–46 14 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) to unsustainable management. For example, the halophyte distribution pattern at the lower Schinias marsh is not reminiscent of that commonly found at the marine edges of coastal Mediterranean marshes, as there is no clear pre- dominance of Salicornietea fruticosae shrubs (Ibañez et al., 2002). Instead, the pattern of development of halophytic succulents of this class is fragmented and mixed with tall rush communities of Juncetetalia maritimi or stands of common reed. This is probably due to the wetland iso- lation from the sea and various anthropogenic interven- tions that disturb the water regime. González-Alcaraz et al. (2014) point out that habitat fragmentation is one of the major threats to wetlands exposed to human pressure. It is generally accepted that alteration or disappearance of vegetation zonation patterns in coastal wetlands is a consequence of their deterioration (Cutini et al., 2010). Relevant research confirms that anything that changes the gradient of physical stress or affects plant species competi- tiveness in marshes, may alter vegetation zonation pat- terns (Bertness & Pennings, 2002). This, then, reflects the environmental quality and the conservation status of the related habitats (Prisco et al., 2015). Although it is certain that many habitats have been lost or qualitatively degraded during the last decades, the degree of biodiversity reduc- tion in the wetland cannot be accurately estimated due to the absence of previous studies. Conclusions The dunes and the salt marsh of Schinias National Park are among the most important coastal ecosystems in the region of Attica and, despite having been severely shrunk and fragmented, still host numerous vegetation types, which enhance their ability to provide crucial ecosystem services. It is widely known that vegetation characteristics (e.g. density, biomass production, canopy architecture, zonation), are directly related to the vital benefits that coastal dunes and wetlands offer to society. Furthermore, rich vegetation development significantly improves funda- mental ecosystem functions such as protecting and stabili- zating the shoreline (erosion control, accretion) and miti- gating the effects of sea level rise. There is also evidence that vegetation establishment ensures the development and survival of coastal dunes and marshes. It is argued that the development of the coastal dunes and salt marshes is directly linked to the coupled balance between vegetation dynamics and geomorphology (rate of sand transport and trapping, sediment accretion), and that this equilibrium can be disturbed if vegetation growth, sediment accretion and sand trapping are hindered or degraded (Ruocco et al., 2014; Sigren et al., 2014, McInnes 2016; Sarika & Zikos 2020, Salimi et al., 2021). Thus, the conservation and proper management of these unique natural landscapes is of paramount importance to their equilibrium and main- tenance, as well as to the protection of local biodiversity. What is more, it could also ensure a critical legacy for future generations, given the regulating role coastal sand dunes and wetlands have on the effects of climate change. Our results are in agreement with those of previous studies carried out in similar systems (Scapini, 2010; Fenu et al., 2012; Ruocco et al., 2014), confirming that coastal dunes and wetlands, despite suffering intense an- thropogenic pressure all over Europe, still host a great va- riety of vegetation and habitat types. In the study area, vegetation development both in the dunes and the wet- land area follows the ecological gradient of the main en- vironmental factors from the coastline inland, generating zonation patterns. Within each zone, plant communities are distributed as mosaics, as a variety of habitats are cre- ated by the micro-relief, temporal and spatial variability of environmental factors (salt spray, sand burial, substrate mobility, drought, high temperature, nutrient deficiency, erosion, water regime, soil properties) and biotic inter- actions. The thirty-five vegetation types identified are typical of Mediterranean coastal ecosystems, four of them are first described in the present study (Mathiolo tricusp- idatae-Anthemidetum tomentosae, Pistacio lentisci-Pinetum halepensis pinetosum pineae, Puccinellio festuciformis- Aeluropetum litoralis cressetosum creticae, Tamaricetum tetrandrae), while three (Ruppietum maritimae, Juniperus macrocarpa and Pinus pinea communities) are considered as priority habitat types within the framework of the Habitats Directive. The majority of EUNIS habitat types recorded in study area (nine of the twelve interpreted in total) are of high conservation value, as they are related to thirteen habitats of Annex I of the Habitats Directive (92/43/EEC). As far as the flora of the study area is con- cerned, it could be considered sufficiently rich, as 218 taxa were recorded in 222 relevés. Among the taxa colo- nizing the dune and marsh habitats of Schinias the species Tamarix minoa has special interest since it is recorded for the first time in continental Greece. Acknowledgments We would like to thank the Schinias-Marathon National Park, Ymittos and Southeast Attica Management Body for issuing the permission for field work and its overall as- sistance. We would also like to thank Prof. Jerzy Zieliński and Dr. Nicholas Turland for the revision of T amarix material collected in the study area. Additional thanks to Isabel Sanders for language editing. Anastasia N. Christopoulou  https://orcid.org/0000-0003- 1603-1402 22/1 • 2023, 1–46 15 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) References Acosta, A., Ercole, S., Stanisci, A. De Patta Pillar, V., & Blasi, C. (2007). Coastal vegetation zonation and dune morphology in some Mediterranean ecosystems. Journal of Coastal Research, 23(6), 1518–1524. Alegro, A., Biljaković, M., Bogdanović, S., & Boršić, I. (2004). Psammo-halophytic vegetation on the largest sand area of the Croatian coast: the island of Mljet, Southern Adriatic. Biologia Bratislava, 59(4), 435–445. Alonso, J.L.B. (2011). Cartografia de los habitáts Corine de Aragón: lista de habitáts de Aragón, version 4.09 (inclueye sintáxones). Monografias de botánica Ibérica, no.7. Jaca (Huesca): Jolube Consultor y Editor Botánico. Anonymous. (2013). Interpretation manual of European Union habitats. EUR 28. Eur. Comm., DG Environ., Brussels. Baeteman, C. (1985). Late Holocene geology of the Marathon Plain (Greece). Journal of Coastal Research, 1, 173–185. Batriu, E., Ninot, J.M., & Pino, J. (2015). Interactions between transplants of Phragmites australis and Juncus acutus in Mediterranean coastal marshes: The modulating role of environmental gradients. Aquatic Botany, 124, 29–38. Bertness, M.D., & Penning, S.C. (2002). Spatial variation in process and pattern in salt-marsh communities in Eastern North America. In: M. P . Weinstein & D.A. Kreeger (Eds.), Concepts and Controversies in Tidal Marsh Ecology, (pp. 39–59). Kluwer Academic Publishers. Biondi, E., & Bagella, S. (2005). Vegetazione e paesaggio vegetale dell’arcipelago di La Maddalena (Sardegna nord-orientale). Fitosociologia, 42(2) suppl. 1, 3– 99. Boorman, L.A. (2003). Saltmarsh Review. An overview of coastal saltmarshes, their dynamic and sensitivity characteristics for conservation and management. JNCC Report, No. 334 Braun-Blanquet, J., Roussine, N., & Nègre, R. (1952). Les Groupe- ments Végétaux de la France Méditerranéenne. CNRS, Paris, 297 pp. Brofas, G., & Karetsos, G. (1992). Simvoli sti dierevnisi tis ikologias tou Scinia-Marathona. Geotechnical Scientific Issues, 3(1), 32–41. Brullo, S., Brullo, C., Cambria, S., & Giusso del Galdo, G. (2020). The vegetation of the Maltese Islands. Geobotany Studies Basics, Methods and Case Studies. Verlag: Springer International Publishing. Cazzin, M. Ghirelli, L., Mion, D., & Scarton, F . (2009). Complemento della Cartografia della vegetazione e degli habitat della Laguna di Venezia: Anni 2005–2007. Lavori-Socetà Veneziana di Scienze Naturali, 34, 81–89. Chytrý, M., Tichý, L., Holt, J., & Botta-Dukát, Z. (2002). Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science, 13, 79–90. Chytrý, M., & Tichý, L. (2003). Diagnostic, constant and dominant species of vegetation classes and alliances of the Czech Republic: a statistical revision. Folia Biologia, 108. Masaryk University, Brno, Czech Republic. Costa, J.M., Neto, C., Martins, M., & Lousã, M. (2011). Annual dune plant communities in the Southwest coast of Europe. Plant Biosystems, 145(1), 91–104. Cutini, M., Agostinelli, E., Acosta, T.R.A., & Molina, J.A. (2010). Coastal salt-marsh zonation in Tyrrhenian central Italy and its relationship with other Mediterranean wetlands. Plant Biosystems, 144(1), 1–11. Dafis, S., Papastergiadou, E., Lazaridou, E., & Tsiafouli, M. (2001). T echnical manual of identification, description and mapping of Greek habitat types. Greek Biotope-Wetland Center (EKBY), Thessaloniki. (In Greek). Davies, C.E., Moss, D., & Hill, M.O. (2004). EUNIS habitat classification revised 2004. European Environment Agency, Copenhagen. Davis, P .H. (Ed.). (1965–1985). Flora of Turkey and the East Aegean islands. Vols. 1–9. Edinburgh Univ. Press, Edinburgh. Day, J.W., Kemp, G.P ., Reed, DJ. Cahoon, D.R., Boumans, R.M., Suhayda, J.M., & Gambrell, R. (2011). Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise. Ecological Engineering, 37, 229–240. Díez-Garretas, B., Asensi, A., & Gavilán, R. (2003). Sabulicolous therophytic communities in the Mediterranean Region: a proposal of phytosociological synthesis. Phytocoenologia, 33, 495–526. Díez-Garretas, B., & Asensi, A. (2014). The coastal plant communities of Juniperus macrocarpa in the Mediterranean region. Plant Biosystems, 3, 429–438. Dimopoulos, P ., Bergmeier, E. & Fischer, P . (2006). Natura 2000 Habitat Types of Greece evaluated in the light of distribution, threat and responsibility. Proceedings of the Royal Irish Academy, 106B(3), 175–187. Dimopoulos, P ., Raus, T., Bergmeier, E., Constantinidis, Th., Kokkini, S., Strid, A., & Tzanoudakis, D. (2013). Vascular plants of Greece: An annotated checklist. Botanischer Garten und Botanisches Museum Berlin-Dahlem & Hellenic Botanical Society, Berlin. Dimopoulos, P ., Raus, T., Bergmeier, E., Constantinidis, Th., Iatrou, G., Kokkini, S., Strid, A., & Tzanoudakis, D. (2016). Vascular plants of Greece: An annotated checklist. Supplement. Willdenowia, 46, 301–347. Dimopoulos, P ., Tsiripidis, I., Xystrakis, F ., Kallimanis, A., & Panitsa, M. (2018). Methodology for monitoring and conservation status assess- ment of the habitat types in Greece. Nat. Ctn. Env. Sust. Dev., Athens. Dítě, Z., Šuvada, R., Eliáš, P ., Píš, V., & Dítě, D. (2019). Salt marsh vegetation on the Croatian coast: plant communities and ecological characteristics. Plant Systematics, 305(10), 899–912. Donker, M., & Stevelink, A. (1961). Einige Wiesenvegetationen (Gaudinieto-Arrhenatheretum; Molinietum mediterraneum; Caricetum divisae) im Vistre-Tal bei Le Cailar. Mededelingen van de Landbouwhogeschool te W ageningen, 61(5), 1–32. Economidou, E. (1975). La végétation halophytique de l’ Attique et sa protection. Colloques Phytosociologiques, 4, 35–41. European Commission Council. (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Communities, 206, 7–50. Fanelli, G, De Sanctis, M., Gjeta, E., Mullaj, A., & Attore, F . (2015). The vegetation of the Buna River protected landscape (Albania). Hacquetia, 14(2), 129–174. 22/1 • 2023, 1–46 16 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Fenu, G., Cogoni, D., Ferrara, C., Pinna, M.S. & Baccheta, G. (2012). Relationships between coastal sand dune properties and plant community distribution: The case of Is Arenas (Sardinia). Plant Biosystems, 146(3), 586–602. Flora of Greece Web: Vascular Plants of Greece—An Annotated Checklist. Available online: http://portal.cybertaxonomy.org/flora- greece/ (last accessed on 15 June 2022). García-Madrid, A.S., Rodríguez-Rojo, M.P ., Cantó, P ., & Molina, J.A. (2016). Diversity and classification of tall humid herb grasslands (Molinio-Holoschoenion) in Western Mediterranean Europe. Applied Vegetation Science, 19(4), 736–749. Gaitanis, A., Kalogeropoulos, K., Detsis, V., & Chalkias, Ch. (2015). Monitoring 60 years of land cover change in the Marathon area, Greece. Land, 4, 337–354. Géhu, J.M., Apostolides, N., Géhu-Franck, J., & Arnold, K. (1989). Premier données sur la végétation littorale des îles de Rodhos et de Karpathos (Grèce). Colloques Phytosociologiques, 19, 545–582. Golub, V.B., Rukhlenko, I.A., & Sokoloff, D.D. (2001). Survey of communities of the class Salicornietea fruticosae. Vegetation of Russia, 2, 87–98. González-Alcaraz, M.N., Jiménez-Cárceles, F .J., Álvarez, Y., &. Álvarez-Rogel, J. (2014). Gradients of soil salinity and moisture, and plant distribution, in a Mediterranean semiarid saline watershed: a model of soil–plant relationships for contributing to the management. Catena, 115, 150–158. Hadjibiros, K., & Sifakaki, P . (2009). Schinias wetland: a National Park or a solar saltwork? Global NEST Journal, 11(1), 32–40. Hellings, S., & Gallagher, J.L. (1992). The effects of salinity and flooding on Phragmites australis. Journal of Applied Ecology, 29, 41–49. Ibañez, C., Curcó, A., Day, J.W., & Prat, N. (2002). Structure and productivity of microtidal Mediterranean coastal marshes. In: M.P . Weinstein & D.A. Kreeger (Eds.), Concepts and Controversies in Tidal Marsh Ecology (pp. 107–136). Kluwer Academic Publishers. Jasprica, N. (2016). T amaricion dalmaticae, a new alliance from the eastern Adriatic. Hacquetia, 15(1), 27–29. Jasprica, N., Milovic, M. & Romic, M. (2015). Phytosociology and ecology of Cressa cretica L. (Convolvulaceae) on the Eastern Adriatic Coast. Hacquetia, 14(2), 265–276. Kantrud, H.A. (1991). Wigeongrass (Ruppia maritima L.): A Literature Review. Fish and Wildlife Research 10. United States Department of the Interior and Wildlife Service, Washington DC. 58 pp. Kent, M., & Coker, P . (1992). Vegetation description and analysis: a practical approach. CRC Press, Boca Raton & Belhaven Press, London. Konstantinidis, P ., Xofis, P ., & Tsiourlis, G. (2012). Syntaxonomy and synecology of thermophilous Mediterranean pines Pinus halepensis Mill. and P. brutia Ten. in Greece. Journal of environmental protection and ecology, 13(3), 1423–1431. Koumpli-Sovantzi, L., & Vallianatou, I. (1994). Floristic notes from aquatic stands of Central Greece (Sterea Ellas). Candollea, 49, 195–207. Landucci, F ., Gigante, D., Venanzoni, R., & Chytry, M. (2013). Wetland vegetation of the class Phragmito-Magno-Caricetea in Central Italy. Phytocoenologia, 43(1–2), 67–100. Landucci, F , Šumberová, K., Tichý, L, Hennekens, S., Aunina, L., Biță-Nicolae, C., Borsukevych, L., Bobrov, A., Čarni, A., De Bie, E., Golub, V., Richard Hrivnák, R., Svitlana Iemelianova, S., Jandt, U., Jansen, F ., Kącki, Z., Lájer, K., Eva Papastergiadou, E., Šilc, U., Sinkevičienė, Z., Stančić, Z., Stepanovič, J., Teteryuk, B., Tzonev, R. Venanzoni, R., Zelnik, I., & Chytrý, M. (2020). Classification of the European marsh vegetation (Phragmito-Magnocaricetea) to the association level. Applied Vegetation Science, 23, 297–316. Lastrucci, L., Cerri, M., Coppi, A., Ferranti, F ., Ferri, V., Foggi, B., Lazzaro, L., Reale, L., Venanzoni, R., Viciani, D., & Gigante, D. (2017b). Understanding common reed die-back: a phytocoenotic approach to explore the decline of palustrine ecosystems. Plant Sociology, 54(2), 15–28. Lastrucci, L., Dell’Olmo, L., Foggi, B., Massi, L., Nuccio, C., Vicenti, C., & Viciani, D. (2017a). Contribution to the knowledge of the vegetation of the Lake Massaciuccoli (northern T uscany, Italy). Plant Sociology, 54(1), 67–87. Lastrucci, L., Landucci, F ., Gonnelli, V. Barocco, R., Foggi, B. & Venanzoni, R. 2012. The vegetation of the Upper and Middle River Tiber (Central Italy). Plant Sociology, 49(2), 29–48. Lavrentiades, G. (1964). The ammophilous vegetation of the Western Peloponnesos coasts. Vegetatio, 12, 223–287. Margoni, S., Syrides, G., Psilovikos, A., T rontsios, G., Steinhauer, G., Vouvalidis, K., & Mouzouri, G. (2002). The evolution of the natural environment in the area of Schinias wetlands, Marathon, from the ancient era to date. Proceedings of 6 th Pan-Hellenic Geographical Conference of the Hellenic Geographical Society, Thessaloniki, 3–6 October 2002. Vol. I. Greece pp.159–166 (in Greek). Marcenò, C., Guarino, R., Loidi, J., Herrera, M., Isermann, M., Knollová, I., Tichý, L., Tzonev, R., Acosta, A.T.R., Patrick, Ú. F ., Iakushenko, D., Janssen, J.A.M., Jiménez-Alfaro, B., Kącki, Z., Keizer-Sedláková, I., Kolomiychuk, V., Rodwell, J.S., Schaminée, J.H.J., Šilc, U., & Chytrý, M. (2018). Classification of European and Mediterranean coastal dune vegetation. Applied Vegetation Science, 21, 533–559. Maroukian, H., Zamani, A., & Pavlopoulos, K. (1993). Coastal retreat in the Plain Of Marathon (east Attica), Greece: cause and effects. Geologica Balcanica, 23, 67–71. McInnes, R.J. (2016). Climate Regulation and Wetlands: Overview. In: C. Finlayson, M. Everard, K. Irvine, R. J. McInnes, B. A. Middleton, A. A. van Dam, N. C. Davidson (Eds.), The Wetland Book. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6172- 8_231-1 Mercadal, G. (2021). Geobotanical characterisation of the Trifolion squamosi nom. corr. alliance (class. Juncetea maritimi) in Catalonia and the Western Mediterranean. Hacquetia, 20(1), 107–117. Merloni, N., & Piccoli, F . (2007). Comunità vegetali rare e minacciate delle stazioni ravennati del Parco del Delta del Po (Regione Emilia- Romagna). In: Conservazione e recupero degli habitat costieri. Analisi e metodologie a confronto. Fitosociologia, 44(1), 67–76. Mertzanis, A., & Mertzanis, K. (2013). Impact of River damming and River diversion projects in a changing environment and in geomorphological evolution of the Greek Coast. British Journal of Environment and Climate Change, 3(2), 127–159. Miller, T.E. (2015). Effects of disturbance on vegetation by sand accretion and erosion across coastal dune habitats on a barrier island. Doi:10.1093/aobpla/plv003. 22/1 • 2023, 1–46 17 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Minissale, P ., & Sciandrello, S. (2015). The sabulicolous therophytic associations in Sicily: new insights through the statistical approach, stressing the continuum versus discrete model of plant communities. Acta Botanica Gallica, 162(1), 55–78. Molina, J.A., Casermeiro, M.A., & Moreno, S. (2003). Vegetation composition and soil salinity in a Spanish Mediterranean coastal ecosystem. Phytocoenologia, 33(2-3), 475–494. Moreno, J., Terrones, A., Juan, A., & Alonso, M.A. (2018). Halophytic plant community patterns in Mediterranean saltmarshes: shedding light on the connection between abiotic factors and the distribution of halophytes. Plant Soil, 430,185–204. Mucina, L., Bültmann, H., Dierßen, K., Theurillat, J.-P ., Raus, Th., Čarni, A., Šumberová, K., Willner, W., Dengler, J., Gavilán García, R., Chytrý, M., Hájek, M., Di Pietro, R., Iakushenko, D., Pallas, J., Daniëls, F .J.A., Bergmeier, E., Santos Guerra, A., Ermakov, N., Valachovič, M., Schaminée, J.H.J., Lysenko, T., Didukh, Y.P ., Pignatti, S., Rodwell, J.S., Capelo, J., Weber, H.E., Solomeshch, A., Dimopoulos, P ., Aguiar, C., Hennekens, S.M., & Tichý, L. (2016). Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 19(suppl. 1), 3–264. Oksanen, J., Blanchet, F .G., Friendly, M., Kindt, R., Legendre, P ., McGlinn, D., Minchin, P .R., O’Hara, R. B., Simpson, G.L., Solymos, P ., Stevens, M.H.H., Szoecs, E., & Wagner, H. (2020). vegan: Community Ecology Package. R package eversion 2.5–7. https:// CRAN.R-project.org/package=vegan Pavlopoulos, K., Karkanas, P ., T riantaphyllou, M., Karymbalis, E., Tsourou, Th., & Palyvos, N. (2006). Paleoenvironmental Evolution of the Coastal Plain of Marathon, Greece, during the Late Holocene: Depositional Environment, Climate, and Sea Level Changes. Journal of Coastal Research, 22(2), 424–438. Pennings, S.C. & Bertness, M. D. (2001). Salt Marsh Communities. In: M.D. Bertness, S.D. Gaines, & M. Hay (Eds.), Marine Community Ecology (pp. 289–316). Sinauer Associates, Sunderland Massachusetts. Pirone, G. (2014). Notes on the vegetation diversity on the Adriatic and Ionian Italian coasts: the dunes and cliffs. Plant Sociology, 51(1), 7–18. Poldini, L., Vidal, M., & Fabiani, M.L. (1999). La vegetazione del litorale sedimentario del Friuli-Venezia Giulia (NE Italia) con riferimenti alla regione Alto-Adriatica. Studia Geobotanica, 17, 3–68. Prisco, I. (2012). Analyses of the Italian coastal dune plant communities within the Nature 2000 Network. PhD Thesis. Università Degli Studi. Roma. Prisco, I., Acosta, A.T.R., & Ercole, S. (2012). An overview of the Italian coastal dune EU Habitats. Annali Di botanica (Roma), 2, 39–48. Prisco, I., Stanisci, A., & Acosta, A.T.R. (2015). Temporal changes in Adriatic coastal dunes: results from a short term vegetation monitoring. Plant Sociology, 52(2), 95–100. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Rivas-Martínez, S., Fernández-González, F ., Loidi, J., Lousã, M., & Penas, A. (2001). Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobotanica, 14, 5–341. Ruocco, M., Bertoni, D., Sarti, G. & Ciccarelli, D. (2014). Mediterranean coastal dune systems: Which abiotic factors have the most influence on plant communities? Estuarine, Coastal and Shelf Science, 149, 213–222. Salazar, C., Torres, J.A., Marchal, F .M., & Cano, E. (2002). La vegetacion edafohigrofila del distrito Guadiciano-Bastetano(Granada- Ja ιn, Espaρa). Lazaroa, 23, 45–64. Salimi, S., Almuktar, S.A.A.A.N., Scholz, M. (2021). Impact of climate change on wetland ecosystems: A critical review of experimental wetlands. Journal of Environmental Management, 286, 12160. https://doi.org/10.1016/j.jenvman.2021.112160 Sarika, M. (2012). Flora and vegetation of some coastal ecosystems of Sterea Ellas and eastern continental Greece. Lazaroa, 33, 65–99. Sarika, M, Bazos, I., Zervou, S., & Christopoulou, A. (2015). Flora and vegetation of the European-network ‘Natura 2000’ habitats of Naxos island (GR 4220014) and of nearby islets Mikres Kyklades (GR 4220013), central Aegean (Greece). Plant Sociology, 52(2), 3–56. Sarika, M.A., Christopoulou, A.N., Zervou, S.D., & Zikos, A.C. (2018). Vegetation units of wetland and terrestrial habitats: the case study of Spercheios River and Maliakos Gulf (Sterea Ellas, Greece), a Natura 2000 site. Hacquetia, 17(1), 189–220. Sarika, M. & Zikos, A. (2020). Coastal salt marshes. Structure and function of plant communities. In: M.N. Grigore (Eds.), Handbook of Halophytes (pp. 1–39). Springer, Cham. https://doi.org/10.1007/978- 3-030-17854-3_7-1 Scapini, F . (2010). Mediterranean coastal areas at risk between conservation and development. In F . Scapini & G. Ciampi, (Eds.), Coastal Water Bodies. Nature and Culture Conflicts in the Mediterranean (pp. 1–20). Springer Dordrecht, Heidelberg, London, New York. Schaminée, J.H.J., Chytrý, M., Hennekens, S.M., Janssen, J.A.M., Jiménez-Alfaro, B., Knollová, I., Mucina, L., Rodwell, J.S., Tichý, L., & data-providers (2014). Vegetation analysis and distribution maps for EUNIS habitats. Eur. Environ. Agency. Alterra, Wageningen. Schaminée, J.H.J., Chytrý, M., Hennekens, S.M., Jiménez-Alfaro, B., Mucina, L., Rodwell, J.S., & data contributors (2013). Review of EUNIS forest habitat classification. Eur. Environ. Agency. Alterra, Wageningen. Schaminée, J.H.J., Chytrý, M., Hennekens, S.M., Janssen, J.A.M., Knollová, I., Rodwell, J.S., Tichý, L. (2019a). Updated crosswalk of the revised EUNIS Habitat Classification with the European vegetation classification and indicator species for the EUNIS grassland, shrubland and forest types. European Environmental Agency. Alterra, Wageningen, NL. Schaminée, J.H.J., Chytrý, M., Hennekens, S.M., Janssen, J.A.M., Jiroušek, M., Knollová, I., Marcenò, C., Peterka, T., Rodwell, J.S., Tichý, L., & data-providers (2019b). Updated crosswalk of the revised EUNIS Habitat Classification with the European vegetation classification and the European Red List Habitats for EUNIS coastal habitats and wetlands. European Environmental Agency. Alterra, Wageningen, NL. Schaminée, J.H.J., Chytrý, M., Hennekens, S.M., Janssen, J.A.M., Knollová, I., Lososová, Z., Marcenò, C., Tichý, L., & data-providers (2020). Updated crosswalks, formal query routines and indicator species of the revised EUNIS Habitat Classification with the European Vegetation Classification for vegetated man-made habitats and aligning of crosswalks between European Red List habitats and Annex I habitats with crosswalks between EUNIS habitats and Annex I habitats. European Environmental Agency. Alterra, Wageningen, NL. 22/1 • 2023, 1–46 18 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Sciandrello, S., & Tomaselli, V. (2014). Coastal salt-marshes plant communities of the Salicornietea fruticosae class in Apulia (Italy). Biologia, 69(1), 53–69. Sebastián-González, E., Molina, J.A., & Paracuellos, M. (2012). Distribution patterns of a marsh vegetation metacommunity in relation to habitat configuration. Aquatic Biology, 16, 277–285. Shepard, C.C., Crain, C.M., & Beck, M.W. (2011). The protective role of coastal marshes: A systematic review and neta-analysis. Plos One, 6(11), e27374. doi: 10.1371/journal pone.0027374. Šilc, U., Mullaj, A., Alegro, A., Ibraliu, A., Stevanović, Z. D., Luković, M. & Stešević, D. (2016). Sand dune vegetation along the eastern Adriatic coast. Phytocoenologia, 46(4), 339–355. Sigren, J.M., Figlus, J., & Armitage, A.R. (2014). Coastal sand dunes and dune vegetation: Restoration, erosion, and storm protection. Shore & Beach, 82(4), 6–12. Silvestri, S., & Marani, M. (2004). Salt-marsh vegetation and morphology, modeling and remote sensing observations. In: S. Fagherazzi, M. Marani & L. Blau, (Eds.), The Ecogeomorphology of Tidal Marshes, Coastal Estuarine Studies (pp. 5–26). Washington: American Geophysical Union, Coastal and Estuarine Monograph Series. Silvestri, S., Defina, A., & Marani, M. (2005). Tidal regime, salinity and salt marsh plant zonation. Estuarine Coastal and Shelf Science, 62, 119–130. Spanou, S., Tiniakou, A., Nikolaidis, V., & Georgiadis, Th. (2007). Comparative study of protected areas in Greece: The case study of three littoral Pinus pinea (stone pine) forests. Fresenius Environmental Bulletin, 16(11a), 1335–1344. Stančić, Z., Brigic, A., Liber, Z. Rusak, G., Franjic, J., & Skvorc, Z. (2008). Adriatic plant taxa and communities of Croatia and their threat status. Acta Botanica Gallica, 155(2), 179–199. Stešević, D., Küzmič, F ., Milanović, D., Stanišić-Vujačić, M., Šilc, U. (2019). Coastal sand dune vegetation of Velika plaža (Montenegro). Acta Botanica Croatica, 79(1), 43–54. Stešević, D., Luković, M., Caković, D., Ružić, N, Bubanja, N., & Šilc U. (2017). Distribution of alien species along sand dune plant communities zonation. Periodicum Biologorum, 119(4), 239–249. Strid, A. (2016). Atlas of the Aegean Flora. Part 1: Text and Plates. Berlin: Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin. 700 pp., 48 colour plates. Sýkora, K.V., Wageningen, D., Babalonas, D., & Papastergiadou, E., (2003). Strandline and sand-dune vegetation of coasts of Greece and of some other Aegean countries. Phytocoenologia, 33(2-3), 409–446. Theurillat, J. P ., Willner, W., Fernández‐González, F ., Bültmann, H., Čarni, A., Gigante, D., Mucina, L., & Weber, H. (2021). International code of phytosociological nomenclature. Applied vegetation science, 24(1), e12491. Tomaselli, V., Di Pietro, R., & Sciandrello, S. (2011). Plant communities structure and composition in three coastal wetlands in southern Apulia (Italy). Biologia, 66, 1027–1043 Tomaselli, V., & Sciandrello, S. (2017). Contribution to the knowledge of the coastal vegetation of the SICIT9110005 “Zone Umide della Capitanata” (Apulia, Italy). Plant Biosystems, 151, 673–694. Tsiripidis, I., Xystrakis, F ., Kallimanis, A., Panitsa, M., & Dimopoulos, P . (2018). A bottom–up approach for the conservation status assessment of structure and functions of habitat types. Rendiconti Lincei, 29(2), 267–282. T utin, T.G., & al. (Eds.). 1964–1993. Flora Europaea. Cambridge Univ. Press, Cambridge. Tichý, L., & Chytrý, M. (2006). Statistical determination of diagnostic species for site groups of unequal size. Journal of Vegetation Science, 17, 809–818. Tsiourlis, G., Konstantinidis, P ., & Xofis, P . (2009). Syntaxonomy and synecology of Quercus coccifera Mediterranean shrublands in Greece. Journal of Plant Biology, 52, 433–447. Tzonev, R., Lysenko, T., Gussev, C., & Zhelev, P . (2008). The halophytic vegetation in South-East Bulgaria and along the Black Sea Coast. Hacquetia, 7(2), 92–121. Van der Maarel, E. (1979). T ransformation of cover-abundance values in phytosociology and its effects in community similarity. Vegetatio, 39(2), 97–114. Veronico, G., Sciandrello, S. Medagli, P ., & Tomaselli, V. (2017). Vegetation survey and plant landscape mapping of the SCIIT 9140002 “Litorale Brindisimo” (Puglia, Southern Italy). Plant Sociology 54(1), 89–106. Viciani, D., Foggi, B., & Ferretti, G. (2012). The Mediterranean salt steppes (order Limonietalia Br.-Bl. & O. Bolòs 1958) in T uscany (Central Italy). Acta Botanica Gallica, 159(1), 85–96. Viciani, D. & Lombardi, L. (2001). La vegetazione del padule di Orti-Bottagone (Piombino, Toscana Meridionale) e la sua importanza botanica al fini conservazionistici. Parlatorea, 5, 101–118. Westhoff, V., & van der Maarel, E. 1980. The Braun-Blanquet approach. In: R. H. Whittaker (Ed.), (pp. 287–399). Classification of plant communities. W Junk, The Hague. Willis, A.J., & Davies, E.W. (1960). Juncus subulatus Forsk. in the British Isles. Watsonia, 4, 211–217. 22/1 • 2023, 1–46 19 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Vegetation units number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Vegetation units abbreviation Ep Am Mn Hel-Cent Asp-Jun Pis-Pin Pp Cer-Pis Mol-Hol Ely-Dit Sal Arth Lim Jm Agr-Plan Scm Phc Tad Rum Tm Euphorbion peplidis Cakile maritima 100 25 9 20 . . . . . . . . . . . . . . . . Euphorbia peplus 20 . . . . . . . . . . . . . . . . . . . Salsola kali 100 . . . . . . . . . . . . . . . . . . . Xanthium orientale subsp. italicum 20 13 . . . . . . . . . . . . . . . . . . Ammophilion Bromus rubens subsp. rubens . 63 18 20 . . . . . . . . . . . . . . . . Hedypnois rhagadioloides 40 88 32 20 . . . . . . . . . . . . . . . . Medicago marina 20 63 . . . . . . . . . . . . . . . . . . Pancratium maritimum . 13 . . . . . . . . . . . . . . . . . . Sporobolus pungens 20 25 5 20 . . . . . . . . . . . . . . . . Maresion nanae Anchusa undulata subsp. hybrida . . 14 . . . . . . . . . . . . . . . . . Brassica tournefortii . . 32 20 . . . . . . . . . . . . . . . . Cerastium brachypetalum subsp. roemeri . . 18 . . . . . . . . . . . . . . . . . Hordeum murinum subsp. leporinum . . 36 . 33 6 . . . . . . . . . . 4 7 . 17 Hypochoeris achyrophorus . . 27 . . . . . . . . . . . . . . . . 17 Medicago littoralis 40 . 68 . . 6 . . . . . . . . . . . . . . Parapholis incurva . . 27 . . . . . . . . . . . . . . . . . Petrorhagia dubia . . 14 . . . . . . . . . . . . . . . . . Plantago bellardii . . 23 . . . . . . . . . . . . . . . . . Plantago lagopus . . 36 . . . . . . . . . . . . . . . . . Plantago weldenii . . 18 . . . . . . . . . . . . . . . . . Rumex bucephalophorus . . 32 . . . . . . . . . . . . . . . . . Silene colorata . . 45 . 33 12 . 20 . . . . . . . . . . . . Sisymbrium irio . . 14 . . . . . . . . . . . . . . . . . Table 1. Synoptic table of the percentage occurrence frequency of the diagnostic species in the alliances or orders classified. Diagnostic species (with the phi value > 0.30 and fre- quency ≥ 40% ) are marked by shading. Highly diagnostic species (with phi > 0.40) are dark shaded. Values with frame but without shading indicate additional diagnostic species with phi > 0.30 and frequency ≤ 40%. A thorough presentation of this table is given in Tables 3–14. Abbreviations of the vegetation units (alliances and orders) are explained in the text and in Figure 2. Tabela 1: Sinoptična tabela s frekvenco pojavljanja diagnostičnih vrst v odstotkih za posamezno zvezo ali red. Diagnostične vrste (z fi vrednostjo večjo od 0,30 in frekvenco večjo ali enako 40%) so označene zasenčeno. Močno diagnostične vrste (fi večji od 0,40) so temno zasenčene. Vrednosti v okvirčkih brez zasenčenosti nakazujejo dodatne diagnostične vrste s fi vrednostjo manjšo od 0,30 in frekvenco manjšo od 40%. Natančen prikaz te table je v tabelah 3–14. Oznake vegetacijskih enot (zvez in redov) so pojasnjene v tekstu in Sliki 2. 22/1 • 2023, 1–46 20 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Vegetation units number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Vegetation units abbreviation Ep Am Mn Hel-Cent Asp-Jun Pis-Pin Pp Cer-Pis Mol-Hol Ely-Dit Sal Arth Lim Jm Agr-Plan Scm Phc Tad Rum Tm Trifolium scabrum . . 27 . . 6 . . . . . . . . . . . . . . Valantia hispida . . 14 . . . . . . . . . . . . . . . . . Helichryso barrelieri-Centaureion spinosae Centaurea spinosa . . . 100 . . . . . . . . . . . . . . . . Cyperus capitatus . . . 60 . . . . . . . . . . . . . . . . Erigeron sumatrensis . . . 20 . . . . . . . . . . . . . . . . Heliotropium europaeum . . . 20 . . . . . . . . . . . . . . . . Malcolmia flexuosa . 13 9 40 . . . . . . . . . . . . . . . . Verbascum pinnatifidum . . . 20 . . . . . . . . . . . . . . . . Asparago orientalis-Juniperion macrocarpae Bromus rigidus . . 27 . 100 6 . . . . . . . . . . . 7 . . Cutandia maritima 20 . 14 . 33 . . . . . . . . . . . . . . . Reichardia picroides . 13 . . 33 12 20 . . . . . . . . . 4 . . . Pistacio lentisci-Pinion halepensis Asparagus acutifolius . . . . . 71 20 40 . . . . . . . . . . . . Carthamus lanatus . . . . . 12 . . . . . . . . . . . . . . Cistus creticus . . . . . 29 . 20 . . . . . . . . . . . . Cistus monspeliensis . . . . . 24 . 20 . . . . . . . . . . . . Cynosurus echinatus . . . . . 24 . . . . . . . . . . . . . . Myrtus communis . . . . . 12 . . . . . . . . . . . . . . Pinus halepensis . . . . 33 100 . 20 . . . . . . . . . . . . Scaligeria napiformis . . . . . 18 . . . . . . . . . . . . . . Trifolium angustifolium . . . . . 29 . . . . . . . . . . . 7 . . Vulpia fasciculata . . 14 . . 24 . . . . . . . . . . . . . . Pinion pineae Arisarum vulgare . . . . . . 20 . . . . . . . . . . . . . Brachypodium distachyon . . 9 . . . 20 . . . . . . . . . . . . . Ephedra foeminea . . . . . . 20 . . . . . . . . . . . . . Leontodon tuberosus . . . . . . 40 . . . . . . . . . . . . 17 Oxalis pes-caprae . . . . . . 20 . . . . . . . . . . . . . Ceratonio-Pistacion lentisci Aetheorhiza bulbosa . . 5 . . . . 20 . . . . . . . . . 7 . . Molinio-Holoschoenion Bromus hordeaceus . . . . . . . . 40 . . . . . . . . . . . 22/1 • 2023, 1–46 21 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Vegetation units number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Vegetation units abbreviation Ep Am Mn Hel-Cent Asp-Jun Pis-Pin Pp Cer-Pis Mol-Hol Ely-Dit Sal Arth Lim Jm Agr-Plan Scm Phc Tad Rum Tm Ditrichia viscosa . . . . . . . . 40 . . . . . . . 4 7 . . Sinapis arvensis . . . . . 6 . . 40 . . . . . . . . . . . Elytrigio repentis-Dittrichietalia viscosae Elytrigia obtusiflora . . . . . . . . . 100 . . . . . . . . . . Juncus acutus . . . . . . . . . 50 . 13 . 9 9 . 20 29 . . Arthrocnemion glauci Juncus subulatus . . . . . . . . . . 50 88 . 47 . 52 24 79 . . Limonietalia Elytrigia elongata subsp. elongata . . . . . . . . . . . . 100 19 . . 8 14 . . Limonium compactum . . . . . . . . . . 17 . 100 7 . . . 7 . . Psilurus incurvus . . . . . . . . . . . . 100 5 . . . . . . Juncion maritimi Aeluropus littoralis . . . . . . . . . . 17 . 50 58 36 4 20 14 . . Cressa cretica . . . . . . . . . . . . . 30 . . . . . . Juncus maritimus . . . . . . . . . 50 . . . 51 27 . 28 14 . . Scirpion maritimi Bolboschoenus maritimus . . . . . . . . . . . . . 2 . 74 8 . . . Schoenoplectus litoralis . . . . . . . . . . . . . . . 39 12 . . . Phragmition communis Juncus gerardii . . . . . . . . . . . . . . . . 12 . . . Phragmites australis . . . . . . . . . . . 25 . 5 18 . 76 36 . 17 Typha domingensis . . . . . . . . . . . . . . . 9 28 . . . Tamaricion dalmaticae Bromus madritensis subsp. haussknechtii . . . . . . . . . . . . . . . . . 14 . . Galium aparine . . . . . . . . . . . . . . . . . 14 . . Stellaria media . . . . . . . . . . . . . . . . . 14 . . T amarix hampeana . . . . . . . . . . . . . . . . . 36 . . T amarix hampeana x tetrandra . . . . . . . . . . . . . . . . . 29 . . T amarix parviflora . . . . . . . . . . . . . . . . . 36 . . T amarix tetrandra . . . . . . . . . . . . . . . . . 43 . . Ruppion maritimae Chara sp. . . . . . . . . . . . . . . . . . . 60 . Ruppia maritima . . . . . . . . . . . . . . . . . . 100 . Trifolion maritimi 22/1 • 2023, 1–46 22 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Vegetation units number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Vegetation units abbreviation Ep Am Mn Hel-Cent Asp-Jun Pis-Pin Pp Cer-Pis Mol-Hol Ely-Dit Sal Arth Lim Jm Agr-Plan Scm Phc Tad Rum Tm Anacamptis palustris . . . . . . . . . . . . . . . . . . . 17 Anagalis arvensis . . . . . . . . . . . . . . . . . 7 . 50 Bellis annua . . . . . . . . . . . . . . . . . . . 17 Bromus scoparius . . . . . . . . . . . . . . . . . . . 17 Carex distans . . . . . . . . . . . . . . . . 20 . . 50 Carex divisa . . . . . . . . . . . . . . . . 4 . . 50 Festuca arundinacea subsp. interrupta . . . . . . . . . . . . . . . . 4 . . 17 Galium debile . . . . . . . . . . . . . . . . . . . 33 Geranium dissectum . . . . . . . . . . . . . . . . . 14 . 33 Hordeum geniculatum . . . . . . . . . . . . . . . . . . . 17 Medicago orbicularis . . . . . . . . . . . . . . . . . . . 17 Oenanthe silaifolia . . . . . . . . . . . . . 7 . . 16 . . 33 Potentilla reptans . . . . . . . . . . . . . . . . . . . 50 Ranunculus sardous . . . . . . . . . . . . . . . . 8 . . 83 Tragopogon longifolius . . . . . . . . . . . . . . . . 20 14 . 50 Trifolium nigrescens . . . . . . . . . . . . . . . . . . . 17 Diagnostic species for more than one vegetation units Allium staticiforme 40 75 14 . . 6 . . . . . . . . . . . . . . Elytrigia juncea 60 100 . 80 33 6 . . . . . . . . . . . . . . Eryngium maritimum 40 50 . . . . . . . . . . . . . . . . . . Matthiola tricuspidata 80 75 64 . 100 6 . 20 . . . . . . . . . . . . Pseudorlaya pumila 40 63 5 20 . . . . . . . . . . . . . . . . Anthemis tomentosa 60 88 86 40 67 12 . 20 . . . . . . . . . . . . Erodium laciniatum 20 63 50 40 . . . . . . . . . . . . . . . . Lagurus ovatus . 100 77 60 33 53 40 40 . . . . . . . . 12 7 . 17 Anthyllis hermaniae . . . . 33 12 20 40 . . . . . . . . . . . . Juniperus macrocarpa . . . . 100 24 40 . . . . . . . . . . . . . Phagnalon graecum . . . . 33 6 . . . 25 . . . . . . . . . . Piptatherum miliaceum . . 5 . 67 82 60 80 40 . . . . 2 . 4 8 21 . . Pistacia lentiscus . . . . 67 94 80 100 . . . . . . . . . . . . Prasium majus . . . . 100 82 40 40 . . . . . . . . . . . . Carlina corymbosa . . . . . 29 40 . . . . . . . . . . . . . Juniperus phoenicea . . . . . 47 . 60 . . . . . . . . . . . . Pinus pinea . . . . . 59 100 20 40 . . . . . . . . . . . 22/1 • 2023, 1–46 23 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Vegetation units number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Vegetation units abbreviation Ep Am Mn Hel-Cent Asp-Jun Pis-Pin Pp Cer-Pis Mol-Hol Ely-Dit Sal Arth Lim Jm Agr-Plan Scm Phc Tad Rum Tm Quercus coccifera . . . . . 59 20 40 . . . . . . . . . . . . Rhamnus alaternus . . . . 33 88 40 60 . . . . . . . . . . . . Smilax aspera . . . . 33 59 60 100 . . . . . . . . . . . . Clematis chirrosa . . . . . . 40 20 . . . . . . . . . . . . Helichrysum stoechas subsp. barrelieri . . . . 33 29 60 40 . . . . . . . . . . . . Scirpoides holoschoenus . . . . . . . 40 100 . . . . . . . . . . . Halimione portulacoides . . . . . . . . . 25 . 25 . . . . . . . . Puccinellia festuciformis . . . . . . . . . . 33 . 50 2 9 . . 14 . . Sarcocornia perennis . . . . . . . . . . 100 38 . . . . . 14 . . Arthrocnemum macrostachyum . . . . . . . . . . . 100 100 12 9 4 8 . . . Plantago crassifolia . . . . . . . . . 25 . . 50 . 82 . 12 7 . . Schoenus nigricans . . . . . . . . . . . . 100 2 64 . . . . . Other species Aira elegantissima . . . . . . . . . . . . . . . . 4 . . . Alopecurus myosuroides . . . . . . . . . . . . . . . . 8 . . 17 Althaea officinalis . . . . . . . . . . . . . . . . 4 . . . Arenaria leptoclados . . 9 . . . . . . . . . . . . . . . . . Arum sp. . . . . . . . . . . . . . . . . . 7 . . Asparagus aphyllus . . . . . 6 . . . . . . . . . . . . . . Asphodelus ramosus subsp. ramosus . . . . . 6 . . . . . . . . . . . . . . Aster squamatus . . . . . . . . . . . 13 . . . . . 7 . . Atriplex sp. . . . . . . . . . . . . . . . . . 7 . . Avena barbata . . . . . . . . . . . . . . . . 16 7 . . Biscutella didyma . . 5 . . . . . . . . . . . . . . . . . Bituminaria bituminosa . . . . . . . . . . . . . . . . . 7 . . Briza maxima . . . . . 6 . . . . . . . . . . . . . . Bromus alopecurus . . 14 . . . . . . . . . . . . . 4 . . . Bromus diandrus . . 5 . . . . . . . . . . . . . . . . . Bromus sterilis . . 5 . . . . . . . . . . . . . 4 . . . Capparis spinosa . . . . . . . . . . . . . . . . 4 . . . Cardopatium corymbosum . . . . . . . . . . . . . 2 . . . . . . Catapodium marinum . . 5 . . . . . . . . . . . . . . . . . Centaurium spicatum . . . . . . . . . . . . . 9 . . . . . . Chenopodium murale . . 5 . . . . . . . . . . . . . . . . . 22/1 • 2023, 1–46 24 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Vegetation units number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Vegetation units abbreviation Ep Am Mn Hel-Cent Asp-Jun Pis-Pin Pp Cer-Pis Mol-Hol Ely-Dit Sal Arth Lim Jm Agr-Plan Scm Phc Tad Rum Tm Cichorium intibus . . . . . . . . . . . . . . . 4 4 . . . Cirsium vulgare . . . . . . . . . . . . . . . . . 7 . . Cynanchum acutum 20 . . . . . 20 . . . . . . . . . 20 7 . . Cynodon dactylon . . . . . . . . . . . . . 12 27 . 8 . . . Daucus carota . . . . . . . 20 . . . . . . . . 12 14 . . Dyshania ambrosioides . . . . . . . . . . . . . . . . 4 . . . Echium arenarium 20 13 18 . . . . . . . . . . . . . . . . . Elytrigia scirpea . . . . . . . . . . . . . 2 . 4 12 . . . Eruca vesicaria . . . . . . . . . . . . . . . . 4 . . . Foeniculum vulgare . . . . . . . . . . . . . 2 . . 4 . . . Geranium molle . . 9 . . . . . . . . . . . . . . . . . Helianthemum salicifolium . . 9 . . . . . . . . . . . . . . . . . Helminthotheca echioides . . . . . . . . . . . . . . . 4 8 . . . Hordeum vulgare subsp. spontaneum . . . . . . . . . . . . . . . . . 7 . . Isolepis cernua . . . . . . . . . . . . . . . 4 4 . . . Juncus heldreichianus . . . . . . . . . . . . . 2 18 . 16 7 . . Lagoecia cuminoides . . . . . . . . . . . . . . . . . 7 . . Lepidium draba . . . . . . . . . . . . . . . . 4 . . . Limbarda crithmoides . . . . . . . . . 25 . 25 . 5 9 . . . . . Limonium narbonense . . . . . . . . . . . . . . . . 4 . . . Limonium virgatum . . . . . . . . . . . . . . 9 . . . . . Linum bienne . . 9 . . 24 . 20 . . . . . . 9 . . . . 17 Lolium rigidum subsp. lepturoides . . 5 . . . . . . . . . . . . . . . . . Lotus halophilous . . 5 . . . . . . . . . . . . . . . . . Lotus peregrinus 20 13 5 . . 18 . . . . . . . . . . . . . . Medicago sativa subsp. falcata . . . . . . . . . . . . . . . . . 7 . . Melilotus indicus . . 5 . . . . . . . . . . . . . 8 . . 17 Notobasis syriaca . . . . . . . . . . . . . . . . . 7 . . Oenanthe pimpinelloides . . . . . . . . . . . . . 5 . . 20 7 . 33 Ononis diffusa . . . . . 6 . . . . . . . . . . . . . . Parentucellia latifolia . . 5 . . . . . . . . . . . . . . . . . Plantago altissima . . . . . . . . . . . . . . . . 4 . . . Plantago indica . . 14 20 . . . . . . . . . . . . . . . . Poa trivialis . . . . . . . . . . . . . . . . . 7 . . 22/1 • 2023, 1–46 25 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Vegetation units number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Vegetation units abbreviation Ep Am Mn Hel-Cent Asp-Jun Pis-Pin Pp Cer-Pis Mol-Hol Ely-Dit Sal Arth Lim Jm Agr-Plan Scm Phc Tad Rum Tm Polycarpon tetraphyllum . . 5 . . . . . . . . . . . . . . . . . Polypogon maritimus . . . . . . . . . . . . . . . . . 7 . . Polypogon monspeliensis . . . . . . . . . . . . . 5 . . 4 7 . . Polypogon viridis . . . . . . . . . . . . . 9 . . 8 . . . Rumex pulcher . . . . . . . . . . . . . . . . 8 . . . Salsola soda . . . . . . . . . . . . . 5 . . . . . . Scorzonera crocifolia . . . . . . . . . . . . . 5 . . 12 . . . Silene gallica . . 9 . . . . . . . . . . . . . . . . . Silene sartorii . 13 9 . . . . . . . . . . . . . . . . . Silybum marianum . . . . . . . . . . . . . . . . . 7 . . Sisymbrium officinale . . 9 . . . . . . . . . . . . . . . . . Sisymbrium orientale . . 5 . . . . . . . . . . . . . . . . . Solanum dulcamara . . . . . . . . . . . . . . . . 4 . . . Sonchus oleraceus . 25 . . . 6 . . . . . . . . . . 4 14 . . Suaeda vera . . . . . . . . . . . . . 5 . . . . . . T amarix hampeana x parviflora . . . . . . . . . . . . . . . . . 7 . . T amarix minoa . . . . . . . . . . . . . . . . . 7 . . T eucrium scordium subsp. scordioides . . . . . . . . . . . . . 7 . . 24 . . 17 Thymbra capitata . . . . . 6 . . . . . . . . . . . . . . Torilis nodosa . . . . . . . . . . . . . . . . . 7 . . Trifolium campestre . . . . . 6 . . . . . . . . . . . . . . Trifolium fragiferum . . 5 . . . . . . . . . . . . . . . . . Trifolium grandiflorum . . . . . 6 . . . . . . . . . . . . . . Trifolium infamia-ponertii . . 9 . . . . . . . . . . . . . . . . . Trifolium spumosum . . 5 . . . . . . . . . . . . . . . . . Trigonella balansae . . 5 . . . . . . . . . . . . . . . . . Tripolium pannonicum subsp. pannonicum . . . . . . . . . . . 13 . 2 . . . . . . Urtica pilulifera . . . . . . . . . . . . . . . . . 7 . . Valerianella turgida . . 9 . . . . . . . . . . . . . . . . . Vicia sativa . . . . . . . . . . . . . . . . . 7 . . 22/1 • 2023, 1–46 26 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) EUNIS Annex NI CAKILETEA MARITIMAE Tx. et Preising in Tx. ex Br.-Bl. et Tx. 1952 Thero-Atriplicetalia Pignatti 1953 Euphorbion peplidis Tx. ex Oberd. 1952 N12 Annual vegetation of drift lines (1210) Salsolo kali-Cakiletum maritimae Costa et Mansanet 1981 corr. Rivas-Martinez, Costa et Loidi 1992 AMMOPHILETEA Br.-Bl. et Tx. ex Westhoff et al. 1946 Ammophiletalia Br.-Bl. et Tx. ex Westhoff et al. 1946 Ammophilion Br.-Bl. 1921 N14 Embryonic shifting dunes (2110) Eryngio-Sporoboletum virginici Géhu et Uslu 1989 Cypero mucronati-Agropyretum juncei (Kühnholtz-Lordat 1923) Br.-Bl. 1933 HELIANTHEMETEA GUTTATI Rivas Goday et Rivas-Mart. 1963 Vulpietalia Pignatti 1953 Maresion nanae Géhu et al. 1987 N16 Malcolmietalia dune grasslands (2230) Mathiolo tricuspidatae-Anthemidetum tomentosae ass. nova Medicagini littoralis-Anthemidetum tomentosae Géhu et al. 1989 Silene colorata community Plantago bellardii community HELICHRYSO-CRUCIANELETEA MARITIMAE Géhu et al. in Sissingh 1974 Crucianelletalia maritimae Sissingh 1974 Helichryso barrelieri-Centaureion spinosae Mucina et Dimopoulos in Mucina et al. 2016 N1B Cisto-Lavenduletalia dune sclerophyllous scrubs (2260) Centaurea spinosa community QUERCETEA ILICIS Br.-Bl. ex A. Bolòs et O. de Bolòs in A. Bolòs y Vayreda 1950 Pinetalia halepensis Biondi, Blasi, Galdenzi, Pesaresi et Vagge in Biondi et al. 2014 Pistacio lentisci-Pinion halepensis Biondi, et al. in Biondi et al. 2014 N1G Mediterranean pine forests with endemic Mesogean pines (9540) Pistacio lentisci-Pinetum halepensis De Marco, Veri & Caneva 1984 Pistacio lentisci-Pinetum halepensis pinetosum pineae subass. nova Pinion pineae Feinbrun 1959 N1G Wooded dunes with Pinus pinea and/or Pinus pinaster (2270*) Pinus pinea community Pistacio lentisci-Rhamnetalia alaterni Rivas-Mart. 1975 Table 2: A crosswalk between syntaxa and various habitat typologies. EUNIS: EUNIS Habitat Classification (Davies et al., 2004; Schaminée et al., 2019); Annex: Habitat types of Annex I of the Council Directive 92/43/EEC; NI: Habitat types of national interest. Tabela 2: Prevod med sintaksoni in različnimi habitatnimi tipologijami. EUNIS: Eunis habitatna klasifikacija (Davies et al., 2004; Schaminée et al., 2019); Annex: habitatni tipi s Priloge 1 Habitatne direktive 92/43/EEC; NI: habitatni tipi nacionalnega pomena. 22/1 • 2023, 1–46 27 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) EUNIS Annex NI Asparago orientalis-Juniperion macrocarpae (Díez Garretas et Asensi 2014) Mucina in Mucina et al. 2016 N1B Coastal dunes with Juniperus spp. (2250*) Juniperus macrocaprpa community Ceratonio-Pistacion lentisci Zohary et Orshan 1959 N1B Olea and Ceratonia forests (9320) Querco cocciferae-Pistacietun lentisci Tsiourlis, Konstantinidis, Xofis 2009 MOLINIO-ARRHENATHERETEA Tx. 1937 Holoschoenetalia Br.-Bl. ex Tchou 1948 Molinio-Holoschoenion Br.-Bl. ex Tchou 1948 N1J Humid dune slacks (2190) Scirpoides holoschoenus community Potentillo-Polygonetalia avicularis Tx. 1947 Trifolion maritimi Br.-Bl. ex Br.-Bl. et al. 1952 R32- [E32a] Carex distans community Carex divisa community SALICORNIETEA FRUTICOSAE Br.-Bl. et Tx. ex A. Bolòs y Vayreda et O. de Bolòs in A. Bolòs y Vayreda 1950 Salicornietalia fruticosae Br.-Bl. 1933 Salicornion fruticosae Br.-Bl. 1933 A2.5 Mediterranean and thermo-Atlantic halophilous scrubs (Sarcocornetea fruticosi) (1420) Puccinellio festuciformis-Sarcocornietum perennis (Br.-Bl. 1931) Géhu 1976 Arthrocnemion glauci Rivas-Mart. et Costa M. 1984 A2.5 Mediterranean and thermo-Atlantic halophilous scrubs (Sarcocornetea fruticosi) (1420) Junco subulati-Arthrocnemetum glauci Brullo & Furnari 1976 Limonietalia Br.-Bl. et O. de Bolòs 1958 Limonium compactum community JUNCETEA MARITIMI Br.-Bl. in Br.-Bl. et al. 1952 Juncetalia maritimi Br.-Bl. ex Horvatić 1934 Juncion maritimi Br.-Bl. ex Horvatić 1934 A2.5 Mediterranean salt meadows (Juncetalia maritimi) (1410) Puccinellio festuciformis-Juncetum maritimi (Pignatti 1953) Géhu in Géhu et al. 1984 Juncetum subulati Caniglia et al. 1984 Aeluropo littoralis-Juncetum subulati Cirujano 1981 Puccinellio festuciformis-Aeluropetum litoralis (Corb. 1968) Géhu et Costa 1984 in Géhu et al. 1984 Puccinellio festuciformis-Aeluropetum litoralis cressetosum creticae subass. nova 22/1 • 2023, 1–46 28 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) EUNIS Annex NI Elytrigia elongata community Agropyro-Plantaginion maritimi Horvatić 1934 A2.5 Mediterranean salt meadows (Juncetalia maritimi) (1410) Schoeno nigricantis-Plantaginetum crassifoliae Br.-Bl. In Br.-Bl., Roussine & Nègre PHRAGMITO-MAGNOCARICETEA Klika in Klika et Novák 1941 Phragmitetalia W. Koch 1926 Phragmition communis Koch 1926 Q54 Reed thickets (72A0**) Phragmitetum communis Schmale 1939 Bolboschoenetalia maritimi Hejny in Holub et al. 1967 Scirpion maritimi Dahl et Hadac 1941 Q54 Reed thickets (72A0**) Scirpetum maritimi van Langendonck 1931 Scirpetum litoralis Pignatti 1953 Scirpo compacti-Juncetum subulati Géhu, Biondi,Géhu-Franck et Costa 1992 NERIO-TAMARICETEA Br.-Bl. etO. de Bolos 1958 T amaricetalia africanae Br.-Bl. et O. de Bolo 1958 Tamaricion dalmaticae Jasprica in Jasprica et al. 2016 S93- [F93] Southern riparian galleries and thickets (Nerio- Tamaricetea and Securinegion tinctoriae) (92D0) T amarix parviflora community T amarix hampeana community T amaricetum tetrandrae ass. nov. hoc loco RUPPIETEA MARITIMAE J. Tx. ex Den Hartog et Segal 1964 Ruppietalia J. Tx. ex Den Hartog et Segal 1964 nom. conserv. propos. Ruppion maritimae Br.-Bl. ex Westhoff in Bennema et al. 1943 A5.5 Coastal lagoons (1150*) Ruppietum maritimae Iversen 1934 ARTEMISIETEA VULGARIS Lohmeyer et al. in Tx. Ex von Rochow1951 Elytrigio repentis-Dittrichietalia viscosae Mucina ined. E5.1 Elytrigia obtusiflora community 22/1 • 2023, 1–46 29 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Relevé № 1 2 3 4 5 6 7 8 9 10 11 12 13 Abbreviations of vegetation units (alliances and orders) Ep Ep Ep Ep Ep Am Am Am Am Am Am Am Am Plot size (m 2 ) 16 16 15 16 16 16 16 16 16 16 16 15 15 Total cover (%) 4 5 5 4 5 60 40 60 60 40 40 30 70 Latitude 38° 08.587’ 38° 08.590’ 38° 08.423’ 38° 08.400’ 38° 08.374’ 38° 08.500’ 38° 08.431’ 38° 08.364’ 38° 08.500’ 38° 08.590’ 38° 08.483’ 38° 08.437’ 38° 08.379’ Longitude 24° 02.641’ 24° 02.650’ 24° 01.792’ 24° 01.725’ 24° 01.638’ 24° 02.051’ 24° 01.820’ 24° 01.614’ 24° 02.051’ 24° 02.647’ 24° 01.966’ 24° 01.826’ 24° 01.646’ Species № 4 10 8 3 14 9 10 12 16 8 9 10 5 Cakile maritima 1 1 1 1 r . . . . + . r . Salsola kali 1 + + + r . . . . . . . . Sporobolus pungens r . . . . 4 3 . . . . . . Elytrigia juncea . 1 + . + 1 3 4 4 3 3 1 2b Medicago marina . . . . 1 . . 1 r 2b 3 4 Characteristics of Helianthemetea guttati Anthemis tomentosa . r r . + 2a + + + 1 1 2a . Matthiola tricuspidata r . 1 + r + + r + . + + . Hedypnois rhagadioloides . r . . r 1 1 + 1 1 1 1 . Lagurus ovatus . . . . . + + + + r + + + Erodium laciniatum . r . . . + 1 r 1 + . . . Pseudorlaya pumila . r . . 1 . 2m + r . . 1 2m Medicago littoralis . . r . r . . . . . . . . Characteristics of Stipo- rachynietea distachyae Bromus rubens subsp. rubens . . . . . r . 1 2m . . + 2m Echium arenarium . + . . . . . . . . r . . Lotus peregrinus . 1 . . . . . . + . . . . Cutandia maritima . . r . . . . . . . . . . Malcolmia flexuosa . . . . . r . . . . . . . Characteristics of Ammophiletea Eryngium maritimum . . r . r . r + + + . . . Pancratium maritimum . . . . . . . + . . . . . Companions Allium staticiforme . + . . r . + r 1 r r + . Xanthium strumarium . . . . r . . . r . . . . Sonchus oleraceus . . . . . . . . r . r . . Reichardia picroides . . . . . . . . + . . . . Other taxa Euphorbia peplus . . . . + . . . . . . . . Cynanchum acutum . . . . r . . . . . . . . Silene sartorii . . . . . . . . r . . . . Table 3 (Tabela 3): Salsolo kali-Cakiletum maritimae (rels. 1–5), Eryngio-Sporoboletum virginici (rels. 6–7), Cypero mucronati- Agropyretum juncei (rels. 8–13). 22/1 • 2023, 1–46 30 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Table 4 (Tabela 4): Mathiolo tricuspidatae-Anthemidetum tomentosae (rels.1–10), Medicagini littoralis-Anthemidetum tomentosae (rels. 11–14), Silene colorata comm. (rels. 15–18), Plantago bellardii comm. (rels. 19–22). Relevé № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Abbreviations of vegetation units (alliances and orders) Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Plot size (m 2 ) 16 16 15 16 15 16 15 16 16 15 16 16 15 16 10 5 10 10 10 15 10 5 Total cover (%) 40 70 70 80 60 75 70 40 60 60 70 40 20 40 85 60 70 70 80 80 80 80 Latitude 38° 08.599’ 38° 08.605’ 38° 08.317’ 38° 08.594’ 38° 08.607’ 38° 08.579’ 38° 08.575’ 38° 08.573’ 38° 08.562’ 38° 08.579’ 38° 08.626’ 38° 08.966’ 38° 08.626’ 38° 08.479’ 38° 08.576’ 38° 08.598’ 38° 08.613’ 38° 08.588’ 38° 08.470’ 38° 08.478’ 38° 08.475’ 38° 08.637’ Longitude 24° 02.587’ 24° 02.595’ 24° 01.463’ 24° 02.560’ 24° 02.685’ 24° 02.303’ 24° 02.278’ 24° 02.223’ 24° 02.197’ 24° 02.356’ 24° 02.842’ 24° 02.676’ 24° 02.842’ 24° 01.789’ 24° 02.196’ 24° 02.340’ 24° 02.459’ 24° 02.358’ 24° 01.778’ 24° 01.766’ 24° 01.756’ 24° 02.357’ Species № 8 10 8 12 16 13 10 4 14 7 13 11 11 6 12 15 11 11 10 12 12 12 Anthemis tomentosa 4 3 3 4 3 3 3 3 3 1 2a 2a 1 1 2a 1 1 . + . r . Medicago littoralis . 1 . . 1 1 1 1 r . 3 3 2a 3 1 + 1 . . 1 . 1 Silene colorata . . . . . . . . . . 1 . . 2m 4 2b 2b 3 2m 1 1 1 Plantago bellardii . . . . . . . . . . . . . . . . + . 5 5 5 3 Characteristics of Helianthemetea guttati Matthiola tricuspidata 2a 2a 2a 1 + 2a 2m 2m 2m 2b 1 2a . . . + . + . . . . Erodium laciniatum . . . . . . r . r . . r 1 1 2a + 1 + r . . + Lagurus ovatus 1 2a 1 2m + . + . 1 r . 1 . . + + 1 1 + + + 2m Rumex bucephalophorus . . . + + + . . r . . . + . . . + r . . . . Hedypnois rhagadioloides . + . + + . r . . . 2a 2a + . . . . . . . . . Pseudorlaya pumila . . + . . . . . . . . . . . . . . . . . . . Anchusa undulata subsp.hybrida . . . . . . . . . . . . r . . . . . r r . . Vulpia fasciculata . . . . . . . . . . . . . . . . . . r r + . Helianthemum salicifolium . . . . . . . . . . . . . . . . . . . . + 1 Characteristics of Saginetea maritimae Plantago lagopus . . . . . r + . . r + 2a . . + r . r . . . . Parapholis incurva 2b 2b . + + . . . . . + 1 . . . . . . . . . . Plantago weldenii + . . . 1 r . . . . + . . . . . . . . . . . Catapodium marinum . . . . 1 . . . . . . . . . . . . . . . . . Characteristics of Stipo-Trachynietea distachyae Echium arenarium + + . . r . . . + . . . . . . . . . . . . . Malcolmia flexuosa . + + . . . . . . . . . . . . . . . . . . . Cerastium brachypetalum subsp. roemeri . . . . . . . . . . r . . . + 2m . . . . r . Valantia hispida . . . 1 . . . . . . . . r . . . r . . . . . Cutandia maritima . 2a . . r . . . . . r . . . . . . . . . . . Trifolium spumosum . . . . . r . . . . . . . . . . . . . . . . Silene gallica . . . . . . 1 . . . r . . . . . . . . . . . Anisantha rubens subsp. rubens . . . . . . . . . . . + . . . . . . + + + . Lotus peregrinus . . . . . . . . . . . + . . . . . . . . . . Arenaria leptoclados . . . . . . . . . . . . . . . . . . 2m 1 . . Petrorhagia dubia . . . . . . . . . . . . . . . . . . . r r . Trachynia distachya . . . . . . . . . . . . . . . . . . . r + . 22/1 • 2023, 1–46 31 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Relevé № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Companions Hordeum murinum subsp. leporinum . . . r . + + . . 1 . 2b . . + + . 2a . . . . Bromus rigidus . + 2a . . . . . + + . . . . . . 2b + . . . . Brassica tournefortii . . . + r r + . + . r . . . . . . + . . . . Hypochoeris achyrophorus . . . . 2a . . . r . . . . . r r + . . . . + Sisymbrium irio . . . . . r . . r . . . . . . . . r . . . . Bromus alopecurus . . . . . . . . + + . . . . . + . . . . . . Plantago indica . . . . . . . . . . . . 1 + . . + . . . . . Allium staticiforme . . . . r . . . . . . . + + . . . . . . . . Sisymbrium officinale . . . . . . . . . . . . . . + + . . . . . . Valerianella turgida . . . . . . . . . . . . . . r + . . . . . . Cakile maritima + . + . . . . . . . . . . . . . . . . . . . Silene sartorii 1 . + . . . . . . . . . . . . . . . . . . . Ttifolium scabrum . . . + r . . . . . . . . . . . . . + 2a 1 1 Trifolium imfamia-ponertii . . . . . . . . . . . . . . . . . . . . + . Bromus diandrus . . . . . . . . + . . . . . . . . . . . . . Linum bienne . . . . . . . . . . . . . . r . . . . + . . Sisymbrium orientale . . . . . . . . . . . . . . . + . . . . . . Geranium molle . . . . . . . . . . . . . . . + . + . . . . Other taxa Trigonella balansae . . . . r . . . . . . . . . . . . . . . . . Aetheorhiza bulbosa . . . + . . . . . . . . . . . . . . . . . . Lolium rigidum subsp. lepturoides . . . r . . . . . . . . . . . . . . . . . . Polycarpon tetraphyllum . . . . . 2m . . . . . . . . . . . . . . . . Piptatherum miliaceum . . . . . + . . . . . . . . . . . . . . . . Chenopodium murale . . . . . 1 . . . . . . . . . . . . . . . . Bromus sterilis . . . . . . . . + . . . . . . . . . . . . . Sporobolus pungens . . . . . . . + . . . . . . . . . . . . . . Melilotus indicus . . . . . . . . . . 1 . . . . . . . . . . . Trifolium imfamia-ponertii . . . . . . . . . . . . r . . . . . . . . . Lotus halophilous . . . . . . . . . . . . 1 . . . . . . . . . Parentucellia latifolia . . . . . . . . . . . . . . . . . . . . . r Trifolium fragiferum . . . . . . . . . . . . . . . . . . . . . 1 Biscutella didyma . . . . . . . . . . . . . . . . . . . . . r Petroraghia dubia . . . . . . . . . . . . . . . . . . . . . + 22/1 • 2023, 1–46 32 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Relevé № 1 2 3 4 5 Abbreviations of vegetation units (alliances and orders) Hel-Cent Hel-Cent Hel-Cent Hel-Cent Hel-Cent Plot size (m 2 ) 16 16 15 16 16 Total cover (%) 80 100 80 70 70 Latitude 38° 08.306’ 38° 08.400’ 38° 08.321’ 38° 08.309’ 38° 08.241’ Longitude 24° 01.457’ 24° 01.688’ 24° 01.496’ 24° 01.467’ 24° 01.103’ Species № 8 3 5 10 5 Centaurea spinosa 5 5 5 4 4 Characteristics of Helichryso-Crucianelletea maritimae Verbascum pinnatifidum . . . . + Characteristics of Ammophiletea Elytrigia juncea + + 1 2a . Cyperus capitatus + . r + . Sporobolus pungens + . . . . Characteristics of Helianthemetea guttati Anthemis tomentosa r . . + . Lagurus ovatus + + . + . Erodium laciniatum + . . . . Hedypnois rhagadioloides . . . + . Pseudorlaya pumila . . + . . Characteristics of Stipo-Trachynietea distachyae Anisantha rubens subsp. rubens . . . + . Malcolmia flexuosa . . + + . Brassica tournefortii . . . . + Other taxa Plantago indica + . . . . Cakile maritima . . . r . Erodium sp. . . . 1 . Erigeron sumatrensis . . . . 1 Heliotropium europaeum . . . . + Table 5 (Tabela 5): Centaurea spinosa comm. (rels. 1–5). 22/1 • 2023, 1–46 33 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Relevé № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Abbreviations of vegetation units (alliances and orders) Asp- Jun Asp- Jun Asp- Jun Pis- Pin Pis- Pin Pis- Pin Pis- Pin Pis- Pin Pis- Pin Pis- Pin Pis- Pin Pis- Pin Pis- Pin Pis- Pin Pis- Pin Pis- Pin Pis- Pin Pis- Pin Pis- Pin Pis- Pin Pp Pp Pp Pp Pp Plot size (m 2 ) 16 16 16 250 200 200 200 250 200 200 200 200 250 250 200 250 200 200 220 250 16 16 16 16 16 T ree layer cover (%) 40 40 40 40 25 40 10 30 30 40 50 50 70 50 45 50 70 60 50 25 55 50 40 Shrub layer cover (%) 100 100 100 100 100 100 100 100 90 100 100 100 100 100 70 100 15 70 70 70 80 100 50 10 10 Latitude 38° 08.433’ 38° 08.507’ 38° 08.424’ 38° 08.505’ 38° 08.709’ 38° 08.495’ 38° 08.500’ 38° 08.607’ 38° 08.515’ 38° 08.444’ 38° 08.470’ 38° 08.487’ 38° 08.457’ 38° 08.534’ 38° 08.536’ 38° 08.488’ 38° 08.579’ 38° 08.528’ 38° 08.545’ 38° 08.565’ 38° 08.311’ 38° 08.351’ 38° 08.317’ 38° 08.259’ 38° 08.256’ Longitude 24° 01.808’ 24° 02.059’ 24° 01.783’ 24° 01.706’ 24° 02.374’ 24° 01.622’ 24° 01.605’ 24° 02.250’ 24° 02.010’ 24° 01.685’ 24° 01.826’ 24° 01.852’ 24° 01.620’ 24° 01.755’ 24° 01.867’ 24° 01.796’ 24° 02.137’ 24° 02.020’ 24° 01.975’ 24° 01.948’ 24° 01.238’ 24° 01.520’ 24° 01.258’ 24° 01.113’ 24° 01.096’ Species № 12 13 5 11 7 11 7 8 18 9 9 9 13 15 21 10 16 13 15 17 11 8 10 6 6 Juniperus macrocarpa 3 4 5 . . . . . . . . . . . . . . . . . . . . . . Pinus halepensis 2b . . 3 4 3 2b 3 2a 3 2a 2b 3 3 3 3 3 2b 3 3 . . . . . Pinus pinea . . . . . . . . . . 2b 2b 2a 2a 2b 2b 2a 3 3 2b 3 2b 3 3 4 Characteristics of Quercetea ilicis Pistacia lentiscus 3 2b . . 5 4 5 5 5 5 5 5 4 4 4 5 2a 4 4 4 4 5 4 + . Rhamnus alaternus 1 . . 2b + 1 2a + 1 1 1 2a 2b 2a 2a 2a r . + . + 2a . . . Smilax aspera + . . 2a . . 1 + 2a . 2m 2a 2a 2a + . . + . . + 1 + . . Prasium majus 2a 1 1 . + 2a . 1 + + 1 . 1 2a + 1 + + + + + . 1 . . Quercus coccifera . . . 2a + 2a . + . . . . 2a 3 r 1 + . . + 2a . . . . Juniperus phoenicea . . . . 2a + . + . . . 1 2a r + 1 . . . . . . . . . Piptatherum miliaceum + 1 . 1 1 1 + 1 + 1 1 . 1 . 1 . 1 1 1 1 + + 1 . . Asparagus acutifolius . . . + . r + . . 1 + + + . + + r + . + . . + . . Juniperus macrocarpa . . . . . . . . . . . 1 1 + . . + . . . . . . 1 1 Myrtus communis . . . 2a . . . . . . . . . 2b . . . . . . . . . . . Clematis chirrosa . . . . . . . . . . . . . . . . . . . . + . 1 . . Asparagus aphyllus . . . . . . . . . . . . . . r . . . . . . . . . . Arisarum vulgare . . . . . . . . . . . . . . . . . . . . . . + . . Characteristics of Ononido-Rosmarinetea Helichrysum stoechas subsp. barrelieri r . . + . + . . . . + . . 1 . . . r . . . 1 . 1 r Cistus creticus . . . . . + + . . . . . r r . r . . . . . . . . . Carlina corymbosa . . . + . + . . . + . + + . . . . . . . . . + . r Table 6 (Tabela 6): Juniperus macrocarpa comm. (rels. 1–3), Pistacio lentisci-Pinetum halepensis (rels. 4–20), Pinus pinea comm. (rels. 21–25). 22/1 • 2023, 1–46 34 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Relevé № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cistus monspeliensis . . . r . . 1 . . r . . . r . . . . . . . . . . . Anthyllis hermaniae . 2a . + . . . . . . . . . . . . . + . . . 1 . . . Corydothymus capitatus . . . . . . . . r . . . . . . . . . . . . . . . . Characteristics of Helianthemetea guttati Lagurus ovatus . + . . . . . . 1 r . . . r 2m r 2m 2m 1 1 + . . . + Mathiola tricuspidata r + r . . . . . 2a . . . . . . . . . . . . . . . . Anthemis tomentosa r + . . . . . . 1 . . . . . . . . + . . . . . . . Reichardia picroides . + . . . . . . . . . . . . . . . . 1 + . + . . . Silene colorata . + . . . . . . . . . . . . . . r . r . . . . . . Medicago littoralis . . . . . . . . r . . . . . . . . . . . . . . . . Vulpia fasciculata . . . . . . . . + . . . . . . . 2a . + + . . . . . Companions Trifolium angustifolium . . . . . . . . . . . . . r r . r r . + . . . . . Bromus rigidus + + + . . . . . + . . . . . . . . . . . . . . . . Linum bienne . . . . . . . . . . . . . . + . + . + 2m . . . . . Cynosurus echinatus . . . . . . . . . . . . . . r . 2m . 1 2m . . . . . Lotus peregrinus . . . . . . . . . . . . . . r . . . r r . . . . . Scaligeria napiformis . . . . . . . . . . . . . . + . . . + + . . . . . Elytrigia juncea r . . . . . . . + . . . . . . . . . . . . . . . . Phagnalon graecum . r . . . . . . . . . . . . . . + . . . . . . . . Hordeum murinum subsp. leporinum . . + . . . . . + . . . . . . . . . . . . . . . . Cardamus lanatus . . . . . . . . . . . . . . r . . . . + . . . . . Other taxa Cutandia maritima . + . . . . . . . . . . . . . . . . . . . . . . . Sonchus oleraceus . . . . . . . . r . . . . . . . . . . . . . . . . Sinapis arvensis . . . . . . . . r . . . . . . . . . . . . . . . . Asphodelus ramosus subsp. ramosus . . . . . . . . r . . . . . . . . . . . . . . . . Brachypodium distachyon . . . . . . . . . . . . . . . . . . . . 1 . . . . Ephedra phoeminea . . . . . . . . . . . . . . . . . . . . + . . . . Oxalis pes-caprae . . . . . . . . . . . . . . . . . . . . . . 1 . . Leontodon tuberosus . . . . . . . . . . . . . . . . . . . . . . . + + Cynanchum acutum . . . . . . . . . . . . . . . . . . . . . . . + . Allium staticiforme . . . . . . . . . . . . . . . . . r . . . . . . . Ononis diffusa . . . . . . . . . . . . . . . . . . + . . . . . . Briza maxima . . . . . . . . . . . . . . . . . . . + . . . . . Trifolium scabrum . . . . . . . . . . . . . . + . . . . . . . . . . Trifolium campestre . . . . . . . . . . . . . . + . . . . . . . . . . Trifolium grandiflorum . . . . . . . . . . . . . . + . . . . . . . . . . 22/1 • 2023, 1–46 35 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Relevé № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Abbreviations of vegetation units (alliances and orders) Cer_Pis Cer_Pis Cer_Pis Cer_Pis Cer_Pis Mol-Hol Mol-Hol Mol-Hol Mol-Hol Mol-Hol Ely-Dit Ely-Dit Ely-Dit Ely-Dit Plot size (m 2 ) 200 200 200 200 200 16 16 16 16 16 16 16 16 16 Shrub layer cover (%) 100 100 100 100 100 70 75 75 80 100 80 100 100 100 Latitude 38° 08.523’ 38° 08.365’ 38° 08.518’ 38° 08.375’ 38° 08.492’ 38° 08.750’ 38° 08.743’ 38° 08.744’ 38° 08.251’ 38° 08.329’ 38° 08.644’ 38° 08.646’ 38° 08.737’ 38° 08.741’ Longitude 24° 01.598’ 24° 01.573’ 24° 02.048’ 24° 01.583’ 24° 01.552’ 24° 02.461’ 24° 02.451’ 24° 02.439’ 24° 01.109’ 24° 01.143’ 24° 02.250’ 24° 02.25’ 24° 02.321’ 24° 02.337’ Species № 6 4 12 10 13 5 5 3 1 1 3 4 2 4 Pistacia lentiscus 5 5 5 5 3 . . . . . . . . . Scirpoides holoschoenus . . 1 1 . 4 4 4 4 4 . . . . Elytrigia obtusiflora . . . . . . . . . . 5 5 5 5 Characteristics of Quercetea ilicis Smilax aspera 1 2a 2a 2a 1 . . . . . . . . . Rhamnus alaternus 1 . . + 2a . . . . . . . . . Prasium majus . . . + 1 . . . . . . . . . Quercus coccifera 1 . . . 4 . . . . . . . . . Juniperus phoenicea . . 1 1 + . . . . . . . . . Asparagus acutifolius . . + . + . . . . . . . . . Pinus halepensis . . + . . . . . . . . . . . Pinus pinea . . . . r r r . . . . . . . Characteristics of Ononido-Rosmarinetea Helichrysum stoechas subsp. barrelieri . r . + . . . . . . . . . . Anthyllis hermaniae . . + + . . . . . . . . . . Cistus creticus + . . . . . . . . . . . . . Cistus monspeliensis . . . . + . . . . . . . . . Characteristics of Helianthemetea guttati Lagurus ovatus . . r + . . . . . . . . . . Mathiola tricuspidata . r . . . . . . . . . . . . Table 7 (Tabela 7): Querco cocciferae-Pistacietun lentisci (rels. 1–5), Scirpoides holoschoenus comm. (rels. 6–10), Elytrigia obtusiflora comm. (rels. 11– 14). 22/1 • 2023, 1–46 36 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Relevé № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Anthemis tomentosa . . r . . . . . . . . . . . Silene colorata . . + . . . . . . . . . . . Linum bienne . . . . + . . . . . . . . . Characteristics of Juncetea maritimi Juncus acutus . . . . . . . . . . + + . . Juncus maritimus . . . . . . . . . . . . + + Limbarda crithmoides . . . . . . . . . . . 2a . . Plantago crassifolia . . . . . . . . . . . . . 1 Companions Piptatherum miliaceum + . + 1 1 + . + . . . . . . Sinapis arvensis . . . . . r r . . . . . . . Dittrichia viscosa . . . . . r r . . . . . . . Bromus hordeaceus . . . . . . + + . . . . . . Other species Daucus carota . . . . r . . . . . . . . . Clematis chirrosa . . . . + . . . . . . . . . Sonchus oleraceus . . . . . . . . . . . . . . Aetheorhiza bulbosa . . + . . . . . . . . . . . Hordeum murinum . . . . . . . . . . . . . . Elytrigia juncea . . . . . . . . . . . . . . Phagnalon graecum . . . . . . . . . . r . . . Halimiome portulacoides . . . . . . . . . . . 1 . . Limonium sp. . . . . . . . . . . . . . + 22/1 • 2023, 1–46 37 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Table 8 (Tabela 8): Puccinellio festuciformis-Sarcocornietum perennis (rels. 1–6), Arthrocnemo-Juncetum subulati (rels. 7–14), Limonium compactum comm. (rels. 15–16). Relevé № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Abbreviations of vegetation units (alliances and orders) Sal Sal Sal Sal Sal Sal Arth Arth Arth Arth Arth Arth Arth Arth Lim Lim Plot size (m 2 ) 16 16 16 16 16 16 16 16 16 16 16 16 15 16 16 15 Total cover (%) 100 100 80 100 100 70 100 100 100 100 100 100 100 100 70 70 Longitude 38° 08.750’ 38° 08.747’ 38° 08.729’ 38° 08.699’ 38° 09.760’ 38° 08.999’ 38° 08.600’ 38° 08.637’ 38° 09.645’ 38° 08.739’ 38° 08.619’ 38° 08.770’ 38° 09.188’ 38° 08.723’ 38° 09.063’ 38° 09.052’ Latitude 24° 02.223’ 24° 02.247’ 24° 02.267’ 24° 02.235’ 24° 01.702’ 24° 02.669’ 24° 03.133’ 24° 03.161’ 24° 01.658’ 24° 02.250’ 24° 03.110’ 24° 02.298’ 24° 01.818’ 24° 02.269’ 24° 01.856’ 24° 01.846’ Species № 2 2 1 1 5 2 4 5 3 3 4 4 2 2 7 6 Sarcocornia perrenis 5 5 5 5 5 4 . . . . . . . . . . Arthrocnemum macrostachyum . . . . . . 5 5 5 5 5 5 5 5 + r Limonium compactum . . . . r . . . . . . . . . 4 3 Characteristics of Juncetea maritimi Aeluropus littoralis . . . . 1 . . . . . . . . . + . Juncus maritimus . . . . . . . . . . . . . . . . Juncus subulatus 2m 2a . . 1 . 1 1 1 2a + + + . . . Puccinellia festuciformis . . . . r + . . . . . . . . + . Limbarda crithmoides . . . . . . + + . . . . . . . . Juncus acutus . . . . . . . . . . . + . . . . Elytrigia elongata . . . . . . . . . . . . . . 2a + Scoenus nigricans . . . . . . . . . . . . . . + r Plantago crassifolia . . . . . . . . . . . . . . . 2b Tripolium pannonicum subsp. pannonicum . . . . . . . + . . . . . . . . Characteristics of Salicornietea fruticosae Halimione portulacoides . . . . . . 1 . . . 2a . . . . . Sarcocornia perrenis . . . . . . . . . 1 . + . 1 . . Other taxa Phragmites australis . . . . . . . + . . r . . . . . Aster squamatus . . . . . . . . 1 . . . . . . . Psilurus incurvus . . . . . . . . . . . . . . + 1 22/1 • 2023, 1–46 38 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Table 9 (Tabela 9): Puccinellio festuciformis-Juncetum maritimi (rels. 1–10), Juncetum subulati (rels. 11–17), Aeluropo littoralis- Jucetum subulati (rels. 18–24), Puccinellio festuciformis-Aeluropetum litoralis (rels. 25–35), Elytrigia elongata comm. (rels. 36–43). Relevé № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 Abbreviations of vegetation units (alliances and orders) Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Plot size (m 2 ) 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 15 25 15 15 16 15 15 16 16 15 16 16 16 16 16 16 16 16 16 Total cover (%) 100 80 90 100 100 80 70 100 100 100 100 100 100 100 100 100 90 80 60 40 60 30 20 30 20 30 20 15 30 60 70 100 60 50 50 100 80 90 100 100 100 100 100 Longitude 38° 09.111’ 38° 09.081’ 38° 09.092’ 38° 08.894’ 38° 08.665’ 38° 08.946’ 38° 08.905’ 38° 08.919’ 38° 08.908’ 38° 08.634’ 38° 09.601’ 38° 09.728’ 38° 09.722’ 38° 09.600’ 38° 08.616’ 38° 09.602’ 38° 09.655’ 38° 09.451’ 38° 08.968’ 38° 08.971’ 38° 08.963’ 38° 08.972’ 38° 08.909’ 38° 08.907’ 38° 08.968’ 38° 08.990’ 38° 08.967’ 38° 08.951’ 38° 08.955’ 38° 08.980’ 38° 09.447’ 38° 09.434’ 38° 09.069’ 38° 09.446’ 38° 09.057’ 38° 08.615’ 38° 09.105’ 38° 09.087’ 38° 09.757’ 38° 09.738’ 38° 09.740’ 38° 09.658’ 38° 09.104’ Latitude 24° 00.545’ 24° 00.567’ 24°0 0.555’ 24° 01.808’ 24° 03.176’ 24° 02.554’ 24° 02.488’ 24° 02.398’ 24° 01.830’ 24° 03.159’ 24° 01.738’ 24° 01.677’ 24° 01.680’ 24° 01.684’ 24° 03.145’ 24° 01.896’ 24° 01.716’ 24° 01.777’ 24° 02.526’ 24° 02.554’ 24° 02.569’ 24° 02.479’ 24° 02.471’ 24° 02.412’ 24° 02.575’ 24° 02.382’ 24° 02.618’ 24° 02.408’ 24° 02.412’ 24° 02.572’ 24° 01.763’ 24° 01.775’ 24° 01.867’ 24° 01.763’ 24° 01.862’ 24° 02.477’ 24° 00.561’ 24° 00.579’ 24° 01.594’ 24° 01.602’ 24° 01.628’ 24° 01.578’ 24° 00.539’ Species № 8 3 5 1 2 4 4 2 1 3 1 4 1 1 1 3 3 3 5 5 5 5 4 3 3 4 3 3 3 5 3 3 4 1 3 2 7 6 4 3 3 3 4 Juncus maritimus 4 4 5 5 5 5 4 5 5 5 . . . . . . . . 2a 1 1 1 1 2a . + + + + 1 . . . . . . . . . . . 2a . Juncus subulatus . . . . . . . . . . 5 5 5 5 5 5 4 4 4 3 3 2b 2a 2a 2a + . . . + 2a + . . . . . + . . . . . Aeluropus littoralis 1 . . . . 2a 2a 2a . . . . . . . + + 2m 1 1 + 1 2a . 2a 1 2a 1 r 4 4 5 4 3 3 . 2m 1 . . . . . Elytrigia elongata subsp. elongata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4 5 5 5 5 5 Characteristics of Therosalicornietea Cressa cretica . . . . . . 1 . . . . . . . . . . . + + + + 1 3 2a 3 2a 2b 3 + . . . . . . . . . . . . . Salsola soda . . . . . . . . . . . r . . . 2m . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics of Juncetea maritimi Juncus acutus . 2m 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . 2a . . Elytrigia scirpea 2a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tipolium pannonicum . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schoenus nigricans . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Limbarda crithmoides . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + Puccinellia festuciformis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2b . . . . . . . . . . . . Centaurium spicatum . . . . . . . . . . . . . . . . . . 2a 2a 2b 2m . . . . . . . . . . . . . . . . . . . . . Juncus heldreichianus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + Companions Arthrocnemum macrostachyum . . . . + . . . . 2a . + . . . . + . . . . . . . . . . . . + . . . . . . . . . . . . . Limonium compactum . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . 1 . r . . . . . . . . Cynodon dactylon . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 2a 3 . . Polypogon viridis + . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + r . . . . . Oenanthe silaifolia r . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . Scorzonera crocifolia 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . Psilurus incurvus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2b . + . . . . . . . . Polypogon monspeliensis . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . 2m . . . . . . . . . . . T eucrium scordium subsp. scordioides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 r . . . . . Oenanthe pimpineloides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r + . . . . . Suaeda vera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r r . . . Other taxa Phragmites australis 2m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T eucrium scordium subsp. scordioides 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bolboschoenus maritimus . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Piptatherum miliaceum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . Foeniculum vulgare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . Cardopatium corymbosum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . Phragmites australis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 22/1 • 2023, 1–46 39 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Relevé № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 Abbreviations of vegetation units (alliances and orders) Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Jm Plot size (m 2 ) 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 15 25 15 15 16 15 15 16 16 15 16 16 16 16 16 16 16 16 16 Total cover (%) 100 80 90 100 100 80 70 100 100 100 100 100 100 100 100 100 90 80 60 40 60 30 20 30 20 30 20 15 30 60 70 100 60 50 50 100 80 90 100 100 100 100 100 Longitude 38° 09.111’ 38° 09.081’ 38° 09.092’ 38° 08.894’ 38° 08.665’ 38° 08.946’ 38° 08.905’ 38° 08.919’ 38° 08.908’ 38° 08.634’ 38° 09.601’ 38° 09.728’ 38° 09.722’ 38° 09.600’ 38° 08.616’ 38° 09.602’ 38° 09.655’ 38° 09.451’ 38° 08.968’ 38° 08.971’ 38° 08.963’ 38° 08.972’ 38° 08.909’ 38° 08.907’ 38° 08.968’ 38° 08.990’ 38° 08.967’ 38° 08.951’ 38° 08.955’ 38° 08.980’ 38° 09.447’ 38° 09.434’ 38° 09.069’ 38° 09.446’ 38° 09.057’ 38° 08.615’ 38° 09.105’ 38° 09.087’ 38° 09.757’ 38° 09.738’ 38° 09.740’ 38° 09.658’ 38° 09.104’ Latitude 24° 00.545’ 24° 00.567’ 24°0 0.555’ 24° 01.808’ 24° 03.176’ 24° 02.554’ 24° 02.488’ 24° 02.398’ 24° 01.830’ 24° 03.159’ 24° 01.738’ 24° 01.677’ 24° 01.680’ 24° 01.684’ 24° 03.145’ 24° 01.896’ 24° 01.716’ 24° 01.777’ 24° 02.526’ 24° 02.554’ 24° 02.569’ 24° 02.479’ 24° 02.471’ 24° 02.412’ 24° 02.575’ 24° 02.382’ 24° 02.618’ 24° 02.408’ 24° 02.412’ 24° 02.572’ 24° 01.763’ 24° 01.775’ 24° 01.867’ 24° 01.763’ 24° 01.862’ 24° 02.477’ 24° 00.561’ 24° 00.579’ 24° 01.594’ 24° 01.602’ 24° 01.628’ 24° 01.578’ 24° 00.539’ Species № 8 3 5 1 2 4 4 2 1 3 1 4 1 1 1 3 3 3 5 5 5 5 4 3 3 4 3 3 3 5 3 3 4 1 3 2 7 6 4 3 3 3 4 Juncus maritimus 4 4 5 5 5 5 4 5 5 5 . . . . . . . . 2a 1 1 1 1 2a . + + + + 1 . . . . . . . . . . . 2a . Juncus subulatus . . . . . . . . . . 5 5 5 5 5 5 4 4 4 3 3 2b 2a 2a 2a + . . . + 2a + . . . . . + . . . . . Aeluropus littoralis 1 . . . . 2a 2a 2a . . . . . . . + + 2m 1 1 + 1 2a . 2a 1 2a 1 r 4 4 5 4 3 3 . 2m 1 . . . . . Elytrigia elongata subsp. elongata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4 5 5 5 5 5 Characteristics of Therosalicornietea Cressa cretica . . . . . . 1 . . . . . . . . . . . + + + + 1 3 2a 3 2a 2b 3 + . . . . . . . . . . . . . Salsola soda . . . . . . . . . . . r . . . 2m . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics of Juncetea maritimi Juncus acutus . 2m 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . 2a . . Elytrigia scirpea 2a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tipolium pannonicum . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schoenus nigricans . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Limbarda crithmoides . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + Puccinellia festuciformis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2b . . . . . . . . . . . . Centaurium spicatum . . . . . . . . . . . . . . . . . . 2a 2a 2b 2m . . . . . . . . . . . . . . . . . . . . . Juncus heldreichianus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + Companions Arthrocnemum macrostachyum . . . . + . . . . 2a . + . . . . + . . . . . . . . . . . . + . . . . . . . . . . . . . Limonium compactum . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . 1 . r . . . . . . . . Cynodon dactylon . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 2a 3 . . Polypogon viridis + . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + r . . . . . Oenanthe silaifolia r . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . Scorzonera crocifolia 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . Psilurus incurvus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2b . + . . . . . . . . Polypogon monspeliensis . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . 2m . . . . . . . . . . . T eucrium scordium subsp. scordioides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 r . . . . . Oenanthe pimpineloides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r + . . . . . Suaeda vera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r r . . . Other taxa Phragmites australis 2m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T eucrium scordium subsp. scordioides 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bolboschoenus maritimus . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Piptatherum miliaceum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . Foeniculum vulgare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . Cardopatium corymbosum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . Phragmites australis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 22/1 • 2023, 1–46 40 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Relevé № 1 2 3 4 5 6 7 8 9 10 11 Abbreviations of vegetation units (alliances and orders) Agr-Plan Agr-Plan Agr-Plan Agr-Plan Agr-Plan Agr-Plan Agr-Plan Agr-Plan Agr-Plan Agr-Plan Agr-Plan Plot size (m 2 ) 16 16 16 15 16 16 16 16 15 15 15 Total cover (%) 100 100 90 90 100 100 100 90 100 80 100 Latitude 38° 08.913’ 38° 08.921’ 38° 08.633’ 38° 08.987’ 38° 08.931’ 38° 08.948’ 38° 09.419’ 38° 08.986’ 38° 09.758’ 38° 09.758’ 38° 09.749’ Longitude 24° 02.512’ 24° 02.537’ 24° 03.147’ 24° 02.601’ 24° 02.581’ 24° 02.617’ 24° 01.731’ 24° 02.599’ 24° 01.695’ 24° 01.695’ 24° 01.666’ Species № 6 2 7 2 4 4 3 1 2 2 3 Schoenus nigricans 5 5 4 4 5 5 + . . . . Plantago crassifolia . . 3 2a 1 + 5 5 4 5 5 Characteristics of Juncetea maritimi Aeluropus littoralis 1 . 2b . + 1 . . . . . Juncus heldreichianus + . + . . . . . . . . Juncus maritimus 2a . . . 1 2a . . . . . Limbarda crithmoides r . . . . . . . . . . Juncus acutus . . 1 . . . . . . . . Puccinellia festuciformis . . . . . . . . . . r Companions Cynodon dactylon . . . . . . . . 2b 1 + Phragmites australis r + . . . . . . . . . Other taxa Linum bienne . . + . . . . . . . . Arthrocnemum macrostachyum . . . . . . r . . . . Limonium virgatum . . + . . . . . . . . Table 10 (Table 10): Schoeno nigricantis-Plantaginetum crassifoliae (rels. 1–11). 22/1 • 2023, 1–46 41 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Relevé № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Abbreviations of vegetation units (alliances and orders) Scm Scm Scm Scm Scm Scm Scm Scm Scm Scm Scm Scm Scm Scm Scm Scm Scm Scm Scm Scm Scm Scm Scm Plot size (m 2 ) 16 16 16 16 16 16 16 16 15 16 16 16 16 16 16 16 16 16 16 15 16 16 16 Total cover (%) 80 100 90 100 90 80 80 75 100 90 80 80 90 80 90 80 90 70 100 100 100 100 100 Latitude 38° 09.403’ 38° 08.609’ 38° 09.029’ 38° 09.300’ 38° 09.614’ 38° 09.648’ 38° 09.653’ 38° 09.640’ 38° 09.523’ 38° 09.497’ 38° 09.584’ 38° 9.602’ 38° 9.467’ 38° 09.578’ 38° 09.540’ 38° 09.305’ 38° 09.603’ 38° 09.505’ 38° 09.646’ 38° 09.542’ 38° 09.529’ 38° 09.497’ 38° 09.438’ Longitude 24° 01.775’ 24° 03.139’ 24° 02.331’ 24° 01.713’ 24° 01.694’ 24° 01.758’ 24° 01.828’ 24° 01.662’ 24° 01.635’ 24° 01.623’ 24° 01.688’ 24° 1.803’ 24° 1.808’ 24° 01.705’ 24° 01.740’ 24° 01.745’ 24° 01.730’ 24° 01.743’ 24° 01.685’ 24° 01.636’ 24° 01.614’ 24° 01.639’ 24° 01.749’ Species № 1 1 1 1 1 3 3 2 3 1 1 1 1 4 2 2 6 2 2 3 2 2 2 Schoenoplectus litoralis 4 5 5 5 5 5 4 2a 2a . . . . . . . . . . . . . . Bolboschoenus maritimus . . . . . . + 4 4 5 5 5 5 4 5 5 4 4 3 4 3 4 3 Juncus subulatus . . . . . + + . 1 . . . . . r 2a 2α 2m 4 3 4 3 4 Companions Typha domingensis . . . . . . . . . . . . . . . . + . . + . . . Other taxa Elytrigia scirpea . . . . . + . . . . . . . . . . . . . . . . . Aeluropus littoralis . . . . . . . . . . . . . r . . . . . . . . . Scirpus cernuus . . . . . . . . . . . . . 2m . . . . . . . . . Arthrocnemum macrostachyum . . . . . . . . . . . . . + . . . . . . . . . Cichorium intibus . . . . . . . . . . . . . . . . + . . . . . . Helminthotheca echioides . . . . . . . . . . . . . . . . 1 . . . . . . Piptatherum miliaceum . . . . . . . . . . . . . . . . + . . . . . . Table 11 (Tabela 11): Scirpetum littoralis (rels. 1–7), Scirpetum maritimi (rels. 8-16), Scirpo compacti-Juncetum subulati (rels. 17–23). 22/1 • 2023, 1–46 42 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Table 12 (Table 12): Phragmitetum communis (rels. 1–19), Typhetum domingensis (rels. 20–26). Relevé № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Abbreviations of vegetation units (alliances and orders) Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Phc Plot size (m 2 ) 16 16 16 6 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 Total cover (%) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90 100 100 100 100 90 Latitude 38° 08.796’ 38° 08.830’ 38° 08.752’ 38° 08.819’ 38° 09.106’ 38° 09.085’ 38° 09.096’ 38° 09.143’ 38° 09.217’ 38° 09.168’ 38° 08.650’ 38° 09.128’ 38° 09.101’ 38° 08.757’ 38° 08.902’ 38° 09.178’ 38° 09.370’ 38° 08.922’ 38° 08.941’ 38° 08.611’ 38° 08.918’ 38° 08.913’ 38° 09.349’ 38° 09.534’ 38° 09.638’ Longitude 24° 01.870’ 24° 01.833’ 24° 01.891’ 24° 01.855’ 24° 00.548’ 24° 00.547’ 24° 00.577’ 24° 00.514’ 24° 00.485’ 24° 00.503’ 24° 00.693’ 24° 00.537’ 24° 00.585’ 24° 00.646’ 24° 00.581’ 24° 00.488’ 24° 00.321’ 24° 02.552’ 24° 02.618’ 24° 03.162’ 24° 02.542’ 24° 01.817’ 24° 01.657’ 24° 01.572’ 24° 01.930’ Species № 11 9 10 5 8 11 9 8 7 6 8 7 7 5 7 8 9 1 2 3 2 2 2 1 2 Phragmites australis 5 5 4 5 5 5 4 5 4 5 5 5 5 5 5 5 4 5 5 . . . . . . Typha domingensis . . . . . . . . . . . . . + . . . . . 4 5 5 5 5 5 Characteristics of Juncetea maritimi Juncus subulatus 2a r 2m 2m . . . . . . . . . . . . . . . . . 2b 2a . . Juncus acutus . . r + r 1 . + . . . . . . . . . . . . . . . . . Juncuc heldreichianus . . . . 2b 2m 2b . 1 . . . . . . . . . . . . . . . . Juncus maritimus . . + . . . . 2m 2m 2m + . . . . . . . + . 1 . . . . Aeluropus littoralis . + + . . 1 . 1 1 . . . . . . . . . . . . . . . . Plantago crassifolia 1 r . . . . . . . . . . . . . . + . . . . . . . . Elytrigia scirpea + r . . . . . r . . . . . . . . . . . . . . . . . Juncus gerardii . . . . . 1 2m . . + . . . . . . . . . . . . . . . Elytrigia elongata subsp. elongata . . . . . + 1 . . . . . . . . . . . . . . . . . . Characteristics of Phragmito-Magnocaricetea T eucrium scordium subsp. scordioides . . . . . . 1 1 1 r . + + . . . . . . . . . . . . Bolboschoenus maritimus . . . . r . . . . . + . . . . . . . . . . . . . . Schoenoplectus litoralis . . . . . . . . . . . . . . . . . . . 2a . . + . + . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics of Molinio-Arrhenatheretea Carex distans 1 . r . 1 r + . . . . . . . . . . . . . . . . . . Oenanthe silaifolia . . 1 . . . + r . + . . . . . . . . . . . . . . . Oenanthe pimpineloides r . . 1 . + . . . . . 2a 1 . . . . . . . . . . . . Ranunculus sardous . . . . . . . . . . . r + . . . . . . . . . . . . Companions Tragopogon longifolius + . r . . . + . . . . r 1 . . . . . . . . . . . . Cynanchum acutum . . . . . . . . . . . + + 2b . 1 2b . . . . . . . . 22/1 • 2023, 1–46 43 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Relevé № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Avena barbata . . . . + . . . . . 1 . . . r . 1 . . . . . . . . Scorzonera crocifolia . . . . . + . + . r . . . . . . . . . . . . . . . Lagurus ovatus . r . . r + . . . . . . . . . . . . . . . . . . . Melilotus indicus r . . . r . . . . . . . . . . . . . . . . . . . . Daucus carota . . . . . . . . . . + . . . + + . . . . . . . . . Alopecurus myosuroides . . . . . . . . . . . 1 1 . . . . . . . . . . . . Piptatherum miliaceum . . . . . . . . . . . . . . . 2m 2a . . . . . . . . Arthrocnemum macrostachyum . 2m . . . . . . . . . . . . . . . . . 2a . . . . . Cynodon dactylon . . + . . . . . 2a . . . . . . . . . . . . . . . . Polypogon viridis . . . 2m . . . . + . . . . . . . . . . . . . . . . Helminthotheca echioides . . . . . . . . . . 1 . . . r . . . . . . . . . . Rumex pulcher . . . . . . . . . . . . . r r . . . . . . . . . . Other taxa Scirpus cernuus + . . . . . . . . . . . . . . . . . . . . . . . . Sonchus oleraceus 1 . . . . . . . . . . . . . . . . . . . . . . . . Polypogon monspeliensis 2a . . . . . . . . . . . . . . . . . . . . . . . . Aira elegantissima . r . . . . . . . . . . . . . . . . . . . . . . . Limonium narbonense . r . . . . . . . . . . . . . . . . . . . . . . . Carex divisa . . + . . . . . . . . . . . . . . . . . . . . . . Hordeum marinum . . . . . 2m . . . . . . . . . . . . . . . . . . . Festuca arundinacea subsp. interrupta . . . . . . 1 . . . . . . . . . . . . . . . . . . Ditrichia viscosa . . . . . . . . . . r . . . . . . . . . . . . . . Cichorium intibus . . . . . . . . . . + . . . . . . . . . . . . . . Solanum dulcamara . . . . . . . . . . . . . 1 . . . . . . . . . . . Reichardia picroides . . . . . . . . . . . . . . r . . . . . . . . . . Plantago altissima . . . . . . . . . . . . . . + . . . . . . . . . . Capparis spinosa . . . . . . . . . . . . . . . r . . . . . . . . . Althaea officinalis . . . . . . . . . . . . . . . + . . . . . . . . . Dyshania ambrosioides . . . . . . . . . . . . . . . + . . . . . . . . . Foeniculum vulgare . . . . . . . . . . . . . . . r . . . . . . . . . Bromus sterilis . . . . . . . . . . . . . . . . 2m . . . . . . . . Bromus alopecurus . . . . . . . . . . . . . . . . 1 . . . . . . . . Eruca vesicaria . . . . . . . . . . . . . . . . + . . . . . . . . Lepidium draba . . . . . . . . . . . . . . . . r . . . . . . . . 22/1 • 2023, 1–46 44 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Table 13 (Tabela 13): T amarix parviflora comm. (rels. 1–3), T amarix hampeana comm. (rels. 4–8), T amaricetum tetrandrae (rels. 9–14), Ruppietum maritimae (rels. 15–19). Relevé № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Abbreviations of vegetation units (alliances and orders) Tad Tad Tad Tad Tad Tad Tad Tad Tad Tad Tad Tad Tad Tad Rum Rum Rum Rum Rum Plot size (m 2 ) 50 50 50 50 50 50 50 50 50 50 50 50 50 50 4 4 4 4 4 Total cover (%) 90 100 100 80 80 100 80 90 80 80 80 100 100 100 100 100 100 100 100 Latitude 38° 09.700’ 38° 09.260’ 38° 09.653’ 38° 09.670’ 38° 09.130’ 38° 08.631’ 38° 09.445’ 38° 09.738’ 38° 09.754’ 38° 08.905’ 38° 09.702’ 38° 08.815’ 38° 08.614’ 38° 08.620’ 38° 08.772’ 38° 09.028’ 38° 08.604’ 38° 08.747’ 38° 09.303’ Longitude 24° 01.619’ 24° 01.781’ 24° 01.632’ 24° 01.577’ 24° 01.548’ 24° 02.458’ 24° 01.782’ 24° 01.712’ 24° 01.703’ 24° 01.826’ 24° 01.651’ 24° 01.860’ 24° 00.334’ 24° 00.355’ 24° 02.287’ 24° 02.355’ 24° 03.139’ 24° 02.247’ 24° 01.718’ Species № 4 6 9 3 5 13 2 7 6 5 7 5 15 11 1 1 2 2 2 T amarix parviflora 5 5 5 3 2 . . . . . . . . . . . . . . T amarix hampeana . . . 4 5 4 5 5 . . . . . . . . . . . T amarix tetrandra . . . . . . . . 5 5 5 5 4 4 . . . . . Ruppia maritima . . . . . . . . . . . . . . 5 5 5 5 5 Characteristics of Nerio-Tamaricetea T amarix hampeana x tetrandra . . . . . . . 1 . . . 1 2a 2a . . . . . T amarix hampeana x parviflora . . . . 1 . . . . . . . . . . . . . . T amarix cf. minoa . . . . . . . . . 1 . . . . . . . . . Characteristics of Juncetea maritimi Juncus subulatus 3 2b . 2b 1 2b 3 3 2a 2m 3 . 2a . . . . . . Elytrigia elongata . . 1 . . . . . 1 . . . . . . . . . . Juncus acutus + . . . . . . . . . + . 1 1 . . . . . Aeluropus littoralis . . . . . . . 1 + . . . . . . . . . . Juncus maritimus . . . . . 2b . . . . . . + . . . . . . Puccinelia festuciformis . . . . . . . + . . + . . . . . . . . Plantago crassifolia . . . . . . . . . + . . . . . . . . . Juncus heldreichianus . . . . . . . . . . . + . . . . . . . Characteristics of Artemisietea vulgaris Daucus carota . . . . . + . . . . . . + . . . . . . Piptatherum miliaceum . . . . . . . . . . . 1 1 2b . . . . . Urtica pilulifera . . . . . . . . . . . 3 . . . . . . . Ditrichia viscosa . . . . . . . . . . . . 1 . . . . . . Cirsium vulgare . . . . . . . . . . . . + . . . . . . 22/1 • 2023, 1–46 45 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Relevé № 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Notobasis syriaca . . . . . . . . . . . . . + . . . . . Silybum marianum . . . . . . . . . . . . . + . . . . . Companions Phragmites australis . . . . 3 1 . . . . 1 . 1 1 . . . . . Chara sp. . . . . . . . . . . . . . . . . 1 1 + Galium aparine . . 1 . . + . . . . . . . . . . . . . Geranium dissectum . . + . . . . . . . . . . r . . . . . Sonchus oleraceus . . . . . + . . . . . . 1 . . . . . . Sarcocornia perennis . . . . . . . 2b . . 1 . . . . . . . . Stellaria media . + + . . . . . . . . . . . . . . . . Arum sp. . . r . . . . . . . . . . . . . . . . Medicago sativa subsp. falcata . + . . . . . . . . . . . . . . . . . Bromus madritensis subsp. haussknechtii . 1 2m . . . . . . . . . . . . . . . . Tragopogon longifolius . + . . . . . . . r . . . . . . . . . Other taxa Bromus intermedius . . . . . . . . . . . . . . . . . . . Lagoecia cuminoides . . 1 . . . . . . . . . . . . . . . . Anagalis arvensis . . r . . . . . . . . . . . . . . . . Bromus rigidus . . . . . + . . . . . . . . . . . . . Trifolium angustifolium . . . . . + . . . . . . . . . . . . . Aetheorhiza bulbosa . . . . . 1 . . . . . . . . . . . . . Polypogon maritimus . . . . . 2m . . . . . . . . . . . . . Lagurus ovatus . . . . . + . . . . . . . . . . . . . Hordeum murinum subsp. leporinum . . . . . + . . . . . . . . . . . . . Polypogon monspeliensis . . . . . . . r . . . . . . . . . . . Limonium compactum . . . . . . . . . . r . . . . . . . . Oenanthe pimpinelloides 1 . . . . . . . . . . . . . . . . . . Atriplex sp. . . . . . . . . 1 . . . . . . . . . . Aster squamatus . . . . . . . . + . . . . . . . . . . Avena barbata . . . . . . . . . . . . 1 . . . . . . Torilis nodosa . . . . . . . . . . . . 2m . . . . . . Cynanchum acutum . . . . . . . . . . . . 1 . . . . . . Bituminaria bituminosa . . . . . . . . . . . . 1 . . . . . . Hordeum vulgare subsp. spontaneum . . . . . . . . . . . . . + . . . . . Poa trivialis . . . . . . . . . . . . . r . . . . . Vicia sativa . . . . . . . . . . . . . 1 . . . . . 22/1 • 2023, 1–46 46 Sarika et al. Coastal vegetation of Schinias (NE Attica, Greece) Relevé № 1 2 3 4 5 6 Abbreviations of vegetation units (alliances and orders) Tm Tm Tm Tm Tm Tm Plot size (m 2 ) 16 16 16 15 16 15 Total cover (%) 100 90 80 80 80 80 Latitude 38° 09.107’ 38° 09.102’ 38° 09.105’ 38° 09.670’ 38° 09.669’ 38° 09.698’ Longitude 24° 00.538’ 24° 00.546’ 24° 00.540’ 24° 01.577’ 24° 01.625’ 24° 01.628’ Species № 6 5 14 5 9 5 Carex distans 4 4 2a . . . Carex divisa . . . 4 4 4 Characteristics of Molinio-Arrhenatheretea Ranunculus sardous 2m r 1 1 r . Potentilla reptans + + 1 . . . Galium debile 1 . + . . . Oenanthe pimpinelloides . 2a 1 . . . Oenanthe silaifolia . . . 1 r . Anacamptis palustris . . r . . . Companions Tragopogon longifolius r . + + . . Anagallis arvensis . . + . + r Geranium dissectum . . . 1 r . Other taxa T eucrium scordium subsp. scordioides + . . . . . Phragmites australis . + . . . . Hordeum hystrix . . 1 . . . Alopecurus myosuroides . . 2m . . . Lagurus ovatus . . 1 . . . Melilotus indicus . . + . . . Festuca arundinacea subsp. interrupta . . + . . . Trifolium nigrescens . . + . . . Linum bienne . . . . r . Bellis annua . . . . r . Hordeum murinum subsp. leporinum . . . . + . Hypochoeris achyrophorus . . . . + . Leontodon tuberosus . . . . . 1 Medicago orbicularis . . . . . r Bromus scoparius . . . . . r Table 14 (Tabela 14): Carex distans comm. (rels. 1–3), Carec divisa comm. (rels. 4–6).