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ABSTRACT

Methods are introduced for analysing the shape and orientation of planar fibres from greyscale images of
fibrous systems. The sequence of image processing techniques needed for segmentation of fibres is described.
The identified fibres were interpreted as deformed line segments for which two shape and two orientation
parameters are estimated by the maximum likelihood method. The methods introduced are shown to perform
quite well for simulated systems of deformed line segments with known properties. They were applied to TEM
images of carbon nanotubes embedded in polycarbonate.

Keywords: binarization, carbon nanotubes, deformed line segments, multivariate von Mises distribution, 2D
fibre identification.

INTRODUCTION

Fibrous structures are common in biological

tissues, like the actin network as a supporting structure

in eucaryotic cells, and in industrial materials, like the

network of wood fibres in paper. Less known examples

include networks of fibres such as, for instance,

those formed by electrically conducting fibres, and

needed in applications like reinforcement elements,

smart clothing, electromagnetic shields or armors,

and textile based sensors. Among such fibres the

exceptional mechanical and electrical properties of

carbon nanotubes make them particularly interesting

(Fig. 1). Here they were embedded in a polymer matrix

and melt spun to form electrically conducting fibres

(Pötschke et al., 2005).

The fibrous shape of carbon nanotubes with very

large aspect ratios (length to diameter ratio), even

as high as 1000–10,000, allows already at very

low volume contents the formation of percolated

networks needed for electrical conductivity. Above the

percolation threshold the network provides mechanical

rigidity and connected pathways for conduction

electrons.

The properties of percolating structures of e.g.,

carbon nanotubes are influenced by their aspect

ratio and spatial distribution. In Pegel et al. (2009)

clustering of dispersed nanotubes by secondary

agglomeration was found to enhance the electrical

conductivity of the system. For getting a low

percolation threshold, straight and randomly oriented

nanotubes are expected to be preferred, but a small

degree of orientation in a nanotube system has however

been found to be favourable (Du et al., 2005). Even

though nanotubes are typically considered as rigid

rods, they rather are very flexible, and appear in

networks as curved and wavy, which complicates the

determination of their orientation. Thus, new methods

are needed to properly determine their possible

orientation, and thereby the effect of orientation on

e.g., the conductivity of the system.

To this end we introduce a stochastic model for

the shape and orientation of fibres applied here to

carbon nanotubes. In addition, we strive to produce

a method for analyzing stochastic fibre systems

(Mecke and Stoyan, 1980) in such cases in which the

“rose of directions” as a measure of orientational

anisotropy does not necessarily provide sufficient

means for characterizing the system.

As a stochastic model for individual fibres we

used deformed line segments in a similar manner

as was used in Grenander and Manbeck (1993) for

shape analysis. Further, the collection of fibres was

modelled by a Boolean model (Matheron, 1975). To

begin with, the model system was composed of a

random collection of line segments. For the orientation

of line segments we chose a typical model for circular

data, i.e., a von Mises density (Mardia and Jupp,
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2000) described by two orientation parameters,

strength and direction (see an illustration in Fig. 4).

When deforming the line segments, each segment

was divided into short segments whose orientations

were thereafter ‘shaked’ stochastically such that the

distribution of angles between adjacent short segments

satisfied a multivariate von Mises distribution with two

shape parameters. One parameter described the affinity

of a segment angle to that of the previous segment, and

the other parameter its affinity to the orientation angle

of the original undeformed segment. The resulting

‘composite’ (deformed) segments were then the fibres

of the system and they had stochastically varying shape

and orientation (see an illustration in Fig. 5).

A given (two dimensional) image of a fibrous

system could then be fitted by the corresponding

Boolean model of fibres using the maximum likelihood

method by which the parameters of the fibre model,

two shape parameters and two orientation parameters,

were estimated. This work is an extension to a

previous model for individual fibres introduced in

Kärkkäinen et al. (2009).

Estimation of these four parameters from the

grey-scale data of the image required various

image processing phases, e.g., segmentation and

identification of individual fibres. In this case the

fibres were carbon nanotubes, and we needed to

know the pixels that belonged to each nanotube,

branching of fibres was not allowed as it is not

physically realistic. Therefore, we developed a method

for connecting segments of intersecting nanotubes

where the resulting structures were physically possible

and visually realistic. The method introduced is similar

to that in Rizvandi et al. (2008), but we also used

the integrated curvature of the fibres and the second

derivative of their orientation to properly describe their

shape near the intersection areas, in addition to the first

derivative already used in Kärkkäinen et al. (2009).

The methods developed were tested against

simulated data, and then real data were analyzed,

which were taken from carbon nanotubes embedded

in a polycarbonate matrix and melt spun to

form electrically conducting fibres in microscale

(Pötschke et al., 2005). Images of this system were

acquired by transmission electron microscopy (TEM)

(Fig. 1). For this, ultrathin cuts of about 60 nm

thickness were prepared from melt spun fibres of

polycarbonate including 2 wt% multiwalled carbon

nanotubes, and for the cutting fibres were embedded

into an epoxy resin. Cutting was done along the axis

of the fibrous material, which was from south-east to

north-west in Fig. 1. TEM thus represents a specific

2D projection of the 3D material.

Fig. 1. A TEM image of a system of 2 wt% carbon

nanotubes embedded in a polycarbonate matrix (the

image is reproduced from Pötschke et al., 2005).

IMAGE PROCESSING

TEM images of carbon nanotube systems must be

transformed into those of abstract network structures

before they could be analyzed by the new segmentation

methods developed here. To this end we needed to

apply a set of image processing methods, and these are

described in this section.

TEM images typically contain imaging noise,

and the carbon nanotubes to be identified appeared

with an inhomogeneous background, see Fig. 1 for

an example. So as to obtain adequate segmentation

results, the image was first bandpass filtered

(Gonzalez and Woods, 2002). Filtering parameters

were chosen so that only details in the size range of

carbon nanotube diameter were preserved. To further

reduce the noise, a median filter was applied as in

Nisslert et al. (2007). This procedure substantially

improved the image quality and allowed us to use

isodata thresholding in the segmentation of the image

into binary form (Ridler and Calvard, 1978).

The binary image was processed by dilation to

increase the connectivity of the isolated structures

(Gonzalez and Woods, 2002). Since individual small

particles do not contribute to the shape of carbon

nanotubes, they were removed from the image. After

this the image was skeletonized (Gonzalez and Woods,

2002).

The pixels in the skeletonized image were

classified into four groups, the background points,
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skeleton end points, skeleton branch-intersection

points and normal skeleton points. This classification

was performed using the following ordered rules: If

the pixel colour was zero, the pixel was classified

as a background pixel. If the 8-neighbourhood of a

nonzero-valued pixel contained exactly one pixel with

a nonzero value, the pixel was classified as a skeleton

end point. If the 8-neighbourhood of a nonzero-valued

pixel contained exactly two pixels with nonzero values,

the pixel was classified as a normal skeleton point.

The remaining nonzero-valued pixels were classified

as skeleton intersection points.

After classification each sequence of pixels formed

by normal and end points represented a nanotube

or part of a nanotube in a bundle of nanotubes.

Intersection points were located in the areas where two

or more nonparallel nanotubes were touching or one

was on top of the other.

We observed that, in the above processing, some

physical intersection areas were divided into two or

more detached intersection areas. This problem was

dealt with such that intersection areas connected with

nanotube segments of lengths less than a predefined

intersection diameter were merged. The merged areas

contained then links to all the remaining segments

in the original areas. The short connecting segments

were also removed from the image. Furthermore,

intersection areas containing no nanotube segments

were as well removed.

At this point the actual segmentation of carbon

nanotubes could be performed as follows. All

intersection areas were processed one by one in

a random order. In each case a weight wi j was

determined for each possible pair i j of nanotube

segments connected to the intersection area. The

segments in the pair with the lowest weight were

connected to form a single fibre and removed from

the intersection. This process was repeated until there

were no possible pairs left, i.e., there were one or none

segments left in the intersection area. Thereafter the

intersection area was considered as segmented and was

discarded from further segmentation.

For determination of the above weight, segment

directions and shapes near the intersection were

quantified. To this end a predefined number of pixels

was chosen from each fibre segment starting at the

intersection area. Let us mark this set of points for

segment i by {pi1, p
i
2, . . . , p

i
n}. For these points, the

centroid and principal components were determined.

The largest principal component provided a first

approximation for the segment-end direction, ~vi1. This

set of points was then transformed so that the first

principal component became the x-axis, and a parabola

yi(x) = aix2 +bix+ci was fitted to the transformed set
of points. A second approximation for the segment-
end direction was provided by the normalized tangent
vector,~vi2 =~vi2(x), of the parabola at x

i
1 such that

xi1 = argmin
x

(
∥

∥yi(x)− pi1
∥

∥). (1)

See Fig. 2 for an illustration of the relevant parameters
in segment-end orientation.

T

T−1

~vi1

~vi1

T~vi1

T~vi2

~vi2

Fig. 2. Determination of the direction of segment end.

Dots mark the centres of adjacent pixels that form an

end of a fibre segment. On the top, the first principal

component of the set of points is determined and

drawn through its centroid. In the middle, the set of

points is transformed (T ) so that the first principal

component becomes the x-axis. A parabola is fitted to

the transformed points. At the bottom, the set of points

and the parabola are transformed back (T−1).

Note that a parabola could have been fitted also
to the nontransformed set of points as a parametric
curve. The convergence speed and robustness of the
transformation – fit – inverse tranformation sequence
was however superior to that without transformation,
and the former algorithm was thus much better suited
for a completely automatic fitting method.

The shape of segment end was described by the
integrated curvature C of the parabola over an interval
[xi1,x

i
2],

Ci =
∫ xi2

xi1

∂ 2yi(x)

(1+(∂yi(x))2)
3
2

dx

=
∫ xi2

xi1

2ai

(1+(2aix+bi)2)
3
2

dx , (2)

19
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with

xi2 = argmin
x

(∥

∥yi(x)− pin
∥

∥

)

. (3)

The weight for segment pair a,b was then determined

such that

wab = λ1|C
a−Cb|+λ2

~va1 ·~v
b
1

‖~va1‖‖~v
b
1‖

+λ3

~va2 ·~v
b
2

‖~va2‖‖~v
b
2‖

, (4)

in which λ1, λ2 and λ3 are material-specific

parameters, Ca,b are integrated curvatures of the two

intersecting segments and ~v
a,b
1 (~v

a,b
2 ) are first (second)

approximations to the segment-end directions. The

first term on the right hand side of this equation

describes the difference in the mean curvatures of the

two segments, the second and third terms describe the

differences in their directions. The signs of these terms

were chosen so that similar curvatures and different

directions of the segments resulted in a low weight.

This choice favoured the formation of straight fibres.

After identification of the segments connected in

the fibre crossings, we could construct sequences of

unequally spaced points that could be combined so

as to approximate nanotubes in the source image

using a linear interpolation technique. For a resulting

segmented image, see Fig. 10.

The optimal parameters of the above method

(intersection diameter, segment length, λ1, λ2, λ3)

were determined by segmentation of simulated data.

To this end the fibre model described in the next

section was used to create artificial images for

varying fibre coverage, here defined as the percentage

of the total (substrate) area covered by fibres.

Segmentation result was estimated by comparing

segmented simulated data with the corresponding

original data with labelled fibres. The number of

correctly classified pixels was used as the measure

of agreement. Notice that it is possible that the

segmentation splits one fibre into two or more regions.

In those cases it is ambiguous which of the regions is

considered correct. To assure agreement with visual

perception, the largest of the regions was chosen as

the correct one. Optimization of the agreement with

respect to parameters resulted in the optimal parameter

vector (intersection diameter, segment length, λ1, λ2,

λ3) = (1, 6, 1.5, 2.5, 1.2). For this set of parameters,

the fibre-detection efficiency as a function of coverage

is shown in Fig. 3.
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Fig. 3. Detection efficiency as a function of coverage

for simulated data. The coverage in the real carbon

nanotube sample is also indicated.

MODELLING THE SHAPE AND

ORIENTATION OF FIBRES

As a stochastic shape and orientation model for
planar fibres we introduced a model of deformed

line segments which we call a von Mises fibre. This
model is a modification of the shape model used in
Grenander and Manbeck (1993).

Let us consider a single line segment that has a
fixed length and makes an angle θ0 ∈ [0,2π) (the
“main angle” in the following) with the horizontal
axis. This segment was first ‘deformed’ such that it
was divided into n short segments of equal length, and
the orientations of these short segments {θi} ∈ [0,2π)
were then ‘shaked’ such that they were distributed by
a multivariate von Mises density in the following way.
Firstly, the density of angle θi for a given previous
angle θi−1 and the main angle θ0, was given by

f (θi|θi−1,θ0,α,β )

∝ exp{α cos(θi−θ0)+β cos(θi−θi−1)} , (5)

where the shape parameters, α and β , describe the
shape of the fibre such that α measures the ‘affinity’ of
θi to θ0 and β its affinity to θi−1. In addition, α,β ≥ 0
with α +β > 0. Using standard rules of trigonometric
functions and algebra, the right hand side of Eq. 5 can
be expressed in the form

exp{α cos(θi−θ0)+β cos(θi−θi−1)}

= exp{(α cosθ0 +β cosθi−1)cosθi

+(α sinθ0 +β sinθi−1)sinθi}.

(6)

Express then (α cosθ0 + β cosθi−1,α sinθ0 +
β sinθi−1) in terms of the polar coordinates
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(κi cosµi,κi sinµi) with

κi = [α2 +β 2 +2αβ cos(θi−1−θ0)]
1
2 (7)

µi = arctan

(

α sinθ0 +β sinθi−1

α cosθ0 +β cosθi−1

)

, (8)

where the branches of the arctan function must be

taken appropriately. With these definitions the right

hand side of Eq. 6 can be expressed as exp[κi cos(θi−
µi)] which is an unscaled density of the von Mises

distribution. Together with Eqs. 5 and 6 this yields

f (θi|θi−1,θ0,α,β )

=
1

2πI0(κi)
exp{α cos(θi−θ0)+β cos(θi−θi−1)}.

(9)

Here the constant I0(κi) is a zero-order modified

Bessel function of the first kind (Mardia and Jupp,

2000). A similar type of density was used in

Hughes et al. (2005).

Due to the Markovian way of shaking the

orientation angles of subsegments, the density of

angles (θ1, . . . ,θn) for a given θ0 can be expressed in

the form

f (θ1, . . . ,θn;θ0,α,β ) =
n

∏
i=1

f (θi|θi−1,θ0,α,β ) . (10)

This density is called a multivariate von Mises

density, and it differs from the one introduced in

Grenander and Manbeck (1993) in which modelling

was done of closed curves. Also, here θ0 is regarded

as a non-observable random variable in contrast with

Kärkkäinen et al. (2009), where it was considered

as an unknown parameter. Further, Breckling (1989)

defined a von Mises process of angles with longer

dependence structure instead of having θ0 in the model

to be estimated.

Consider now a set of von Mises fibres that have

random main angles θ
j
0 . Without loss of generality

we can assume that these θ0s follow a von Mises

distribution with density

f (θ0;κ,τ) =
1

2πI0(κ)
exp{κ cos(θ0− τ)} , (11)

where 0 ≤ θ0 < 2π, 0 ≤ τ < 2π and κ > 0, see

Mardia and Jupp (2000) for this and other possible

distributions. Parameter τ stands for a “preferred

value” of the main angles and κ measures the strength

of concentration of the main angles around τ such

that small values lead to nearly isotropic fibre systems.

Combining the models, Eqs. 10 and 11, the density of

angles of a single von Mises fibre is given by

f (θ1, . . . ,θn,θ0;α,β ,κ,τ)

= f (θ0;κ,τ)
n

∏
i=1

f (θi|θi−1,θ0,α,β ) . (12)

Regarding θ0 as an unobserved random variable, we

will focus in the following on the density which results

from averaging over this angle,

f (θ1, . . . ,θn;α,β ,κ,τ)

=
∫ 2π

0
f (θ0;κ,τ)

n

∏
i=1

f (θi|θi−1,θ0,α,β )dθ0 , (13)

in which the integration will be performed numerically.

In order to estimate the parameters of a set of m

von Mises fibres described above, we introduce the

following notations: Let θ
j
0 be the main angle of the

jth von Mises fibre and θ j = (θ j
1 , . . . ,θ

j
n j) the angles

of its segments, where n j is the number of these

segments. Combining Eqs. 9, 11 and 13, the density

of the observable angles (θ 1, . . . ,θm) of all of the von
Mises fibres is given by

f (θ 1, . . . ,θm;α,β ,κ,τ)

=
m

∏
j=1

f (θ j
1 , . . . ,θ

j
n j
;α,β ,κ,τ)

=
m

∏
j=1

∫ 2π

0
f (θ j

0 ;κ,τ)
n j

∏
i=1

f (θ j
i |θ

j
i−1,θ

j
0 ,α,β )dθ

j
0 .

(14)

In practice, we can consider any image data of

fibrous systems as a realization of a random collection

of fibres, which can be modelled using a Boolean

model (Matheron, 1975) of deformed line segments

as described above. The positions of the original line

segments (von Mises fibres) derive from a stationary

Poisson point process with an intensity given by the

mean number of points in unit area. This means that

the number of fibres can be considered as a random

variable. The von Mises fibres may also have a random

number of segments of equal length, with the density

of Eq. 12 for their angles.

ESTIMATION OF PARAMETERS

We estimated the shape (α , β ) and orientation

(κ , τ) parameters (generating θ0) from a measured

greyscale image by fitting the density of the observable
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angles by Eq. 14. This estimation required an effective
use of the image processing procedures described
above for obtaining the needed outlines of single
fibres. Furthermore, determination of the division into
segments of each outlined fibre of varying length
had to be performed. A similar type of approach has
been introduced in Grenander and Manbeck (1993) for
modelling the shape of potatoes.

After image processing, we had a collection of
pixel coordinates for the outlines of m fibres ( j =
1, . . . ,m). Using these coordinates, we divided the
outline of each fibre into segments as follows. For a

chosen end point z
j
1 of fibre j, pixel points z

j
2, . . . ,z

j
n j+1,

were searched such that the distance between points z
j
i

and z
j
i+1 along the fibre was (almost) constant (l) for

all i. We thus obtained n j segments. Then the angles θ
j
i

of the segments were determined from the orientations

of the lines connecting the end points z
j
i and z

j
i+1 of

the segments (i = 1, . . . ,n j). For the segment length
we chose l = 5 pixels so as to be able to apply
the continuous density of angles in [0,2π) introduced
above.

For the estimation of the parameters, we used the
maximum likelihood method. The observable angles
of the von Mises fibres follow the combined density of
Eq. 14. Further, the log-likelihood of the density Eq. 14
is given by

l(α,β ,κ,τ)

=
m

∑
j=1

log[ f (θ j
1 , . . . ,θ

j
n j
;α,β ,κ,τ)]

= log[
m

∏
j=1

∫ 2π

0
f (θ j

0 ;κ,τ)

×
n j

∏
i=1

f (θ j
i |θ

j
i−1,θ

j
0 ,α,β )dθ

j
0 ] ,

(15)

containing thus only four parameters that must be
estimated. This is a clear advantage over the estimation
of likelihood applied in Kärkkäinen et al. (2009). The
actual estimation was based on using the R-function
optim (R Development Core Team, 2008).

ANALYSIS OF SIMULATED DATA

We can also use the von Mises fibre model to
produce simulated data with known properties, which
can be used to evaluate the performance of the analysis
methods developed.

When producing simulated data, we applied the
Boolean model of von Mises fibres as follows. First, a

realization of the Boolean model of line segments was
produced by numerical simulation. Each line segment
had a fixed length of 85 pixels, and the main angles
θ0 of these segments followed the von Mises density
Eq. 11 with (τ,κ) = (2.2,10). The locations of the end
points (one end) of the line segments, i.e., the starting
points of von Mises fibres, were uniformly distributed
in the sampling window of size 1024× 1024 pixels
with an edge length of 85 pixels. 309 starting points
and related line segments were created in that window,
and they are shown in Fig. 4.

Fig. 4. Simulated line segments with a preferred

main angle that indicated orientation of fibres in the

north-west direction (orientation parameters (τ,κ) =
(2.2,10)). The starting points of the von Mises fibres

are denoted by circles. The square is the sampling

window of a size of 1024×1024 pixels.

Then von Mises fibres were created from the
above line segments. Each line segment was divided
into 17 segments of a length of 5 pixels. The angles
{θ1, . . . ,θ17} of these segments were generated from
the multivariate von Mises density Eq. 10 utilizing the
von Mises densities of Eq. 9. Here we used the shape
parameters α = 0.5 and β = 7.0. For an illustration of
the resulting set of von Mises fibres see Fig. 5. Since
in practice we most often deal with binary or greyscale
images, we transformed the contents of the sampling
window into a binary image of 1024×1024 pixels (not
shown).

Assessment of the performance (log-likelihood) of
the analysis methods could directly be based on the

simulated angles ({θ
j
i }, i = 1, . . . ,17, j = 1, . . . ,309)
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of von Mises fibres in the whole area of Fig. 5.

Using the log-likelihood of Eq. 15, we thus obtained

for the estimated parameters (standard errors were

calculated using the inverse of an information matrix

in a standard way): α̂ = 0.57 (0.07), β̂ = 7.11 (0.14),
κ̂ = 8.60 (0.54) and τ̂ = 2.22 (0.03). It is evident that
the parameter values determined through the analysis

tools developed are fairly close to their input values.

Fig. 5. A simulated set of von Mises fibres starting

from the line segments of Fig. 4 such that (α,β ) =
(0.5,7.0).

We then considered a binarized version of the

simulated set of von Mises fibres. Using the image

processing techniques descibed above, fibres of the

binary image were segmented from the background,

and the outlines of single fibres were determined. The

starting point of a fibre was chosen such that

~p · (~x−~xc) (16)

was maximized with ~p the known production direction

of the material, i.e., the average direction of fibres; ~xc
is the centroid of fibre pixels and~x the chosen starting

point of the fibre, which can be at either end of the

pixel sequence. As described in the previous section,

division into segments was performed starting from the

chosen starting point. As the result, we obtained 261

single fibres with a starting point inside the sampling

window of Fig. 5. The identified fibres are shown

in Fig. 7, and Fig. 6 illustrates how well individual

fibres of the image were identified in one of the most

challenging locations in the image.

Fig. 6. Part of a binary image of simulated

fibres corresponding to the upper-middle part of

Fig. 5 (top-left) and the corresponding image of

identified fibres coloured with random colors (top-

right). The same region coloured according to true

fibre paths (bottom-left) and the identified fibres with

the following markers (bottom-right): circles depict

correctly identified fibre intersections, rectangles

depict incorrectly identified intersections, black circles

depict correctly identified starting points of fibres and

black triangles depict incorrectly identified starting

points of fibres.

Fig. 7. The single fibres together with their starting

points identified from a binary version of an image of

simulated von Mises fibres. The fibres are divided into

segments of a length of 5 pixels.
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From the determined segments of the fibres (Fig.

7) the angles {θ
j
i } were determined so as to be

able to estimate the parameters. Maximizing the log-

likelihood of Eq. 15, we found for their estimates with

standard errors: α̂ = 0.42 (0.10), β̂ = 8.49 (0.21), κ̂ =
3.98 (0.42) and τ̂ = 2.24 (0.04). In comparison with

the previous (ideal) case, the estimated values are less

accurate. This was also expected as now the image was

first binarized and then the single fibres together with

their starting points were identified. Further, division

into segments of the fibres using their outlines is

expected to have had a small effect. To this end we

made a small simulation study where 2 % of the fibres

in Fig. 5 had wrong starting points. We found, as an

example, the estimates α̂ = 0.57, β̂ = 7.15, κ̂ = 4.73

and τ̂ = 2.21, from which we can see that κ is sensitive

to the selection of starting points. In order to assess

the decrease of κ , we further simulated line segments

and von Mises fibres using the estimated values α̂ =

0.42, β̂ = 8.49, κ̂ = 3.98 and τ̂ = 2.24 as the parameter

values. It is evident that orientation is weaker in Figs.

8 and 9 than in Figs. 4 and 5.

Fig. 8. Simulation result using the parameter values

(τ,κ) = (2.24,3.98) estimated from the binarized

image. The starting points of the von Mises fibres are

denoted by circles. The square is the sampling window

of 1024×1024 pixels.

Fig. 9. A simulated set of von Mises fibres starting

from the line segments of Fig. 8 such that (α,β ) =
(0.42,8.49).

ANALYSIS OF REAL DATA

In this analysis we used the TEM image of a

system of carbon nanotubes shown in Fig. 1. The

image processing techniques decribed above were

applied to segmentation of single fibres in this image,

and segmentation results are illustrated in Fig. 10.

Then we proceeded to determine the corresponding

von Mises model of the identified fibres. The starting

point of a single fibre was chosen such that the

~p of Eq. 16 described the production direction of

the material evident in the image: from south-east

to north-west. Having determined the starting points,

the segments of the fibres and their angles {θ
j
i }

were determined as described above. The resulting

identification of 644 von Mises fibres is shown in Fig.

11. Having now the angles {θ
j
i }, the shape (α,β ) and

orientation (κ,τ) parameters could be estimated with

standard errors by maximization the log-likelihood

of Eq. 15, with the result α̂ = 0, β̂ = 5.10 (0.15),
κ̂ = 2.33 (0.17) and τ̂ = 2.28 (0.04). Using these

values, we simulated line segments and von Mises

fibres shown in Figs. 12 and 13. As the lengths of line

segments, we used the mean length of the identified

fibres, which was about 30 pixels. Further, each von

Mises fibre had 6 short segments of a length of 5 pixels.

Orientation seems to be weaker in the simulated data.
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Fig. 10. Part of Fig. 1 (left) and the corresponding

image in which identified fibres appear with random

colouring.

Fig. 11. The single fibres together with their starting

points identified from the TEM (greyscale) image of

carbon nanotubes shown in Fig. 1.

Fig. 12. Simulated line segments using the parameter

values (τ,κ) = (2.28,2.33) estimated from the real

data. The starting points of the von Mises fibres are

denoted by circles. The square is the sampling window

of 1024×1024 pixels.

Fig. 13. A simulated set of von Mises fibres starting

from the line segments of Fig. 12 such that (α,β ) =
(0,5.10).

DISCUSSION

New and improved methods were introduced for
analysis of the shape and orientation of fibres from
greyscale images of fibrous systems. Systems of von
Mises fibres were generated numerically to estimate
the performance of the methods developed, and as a
special example a TEM image of a system of carbon
nanotubes was analyzed.

Image processing techniques were introduced
for handling noisy greyscale images so that they
could be properly binarized, and individual fibres
could be segmented from them. In segmentation the
challenge was to handle fibre intersections, and to this
end a rotationally invariant method was introduced.
The accuracy obtained in segmentation using these
techniques compared well with the present state of
the art, see e.g., Rizvandi et al. (2008). Note that
the segmentation algorithm introduced does not try
to guess fibre paths through intersection areas. It is
evident that also these new methods work best for low
density systems, and that the easiest way to improve
the result of segmentation is to increase the image
resolution and to decrease the inhomogeneity of the
background.

To analyze the shape and orientation of the
segmented fibres, they were interpreted as von Mises
fibres. Thereafter their shape and orientation could be
estimated based on the maximum likelihood method.
The fibre model introduced is an application of the
model of deformed line segments. It included two
orientation and two shape parameters which were
estimated. This estimation was much faster than that
in Kärkkäinen et al. (2009), in which a somewhat
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similar approach was introduced, but the number of
parameters was there very large.

The performance of the shape and orientation
analysis methods developed could be evaluated using
simulated systems on von Mises fibres with known
parameters. In the ideal case, when the angles
of the simulated segments were directly used, the
estimated and input values of the shape and orientation
parameters were in good agreement. When various
image processing techniques were used before the
analysis, the results of estimation were less accurate
very much as expected. When analyzing binary or
greyscale images, identification of fibres and their
starting points, and division into segments of fibres
using their outlines, all affect the results. The most
sensitive parameter to defects in the analysis appeared
to be the one that describes the strength of orientation,
while the orientation direction appeared to be rather
insensitive to such factors. Both shape parameters
behaved in a rather similar manner, and their values
could be estimated with a 15-20 percent accuracy even
after image processing was applied.

Using simulation studies, we showed that the
selection of starting points is critical for the estimation
of orientation strength. In practical applications, it will
be important to utilize all possible prior information
of the system as an input so as to reduce the size of
the estimation problem. In the application to carbon
nanotube systems considered here, the overall process
direction, deduced very easily from the image, made
the selection of the starting points of the fibres a
much easier and more accurately performed task than
otherwise would have been possible.

In the future work, a fibre model less sensitive to
the selection of starting points will be sought for.
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Pötschke P (2009). A stochastic shape model for fibres

with an application to carbon nanotubes. In: Capasso V

et al., eds. Proc 10th Eur Congr Stereol Image Anal.

Bologna: Esculapio.

Mardia KV, Jupp PE (2000). Directional statistics.

Chichester: Wiley.

Matheron G (1975). Random sets and integral geometry.

New York: Wiley.

Mecke J, Stoyan D (1980). Formulas for stationary

planar fibre processes I – General theory. Math

Operationsforsch Stat Ser Stat 11:267–79.

Nisslert R, Kvanström M, Lorén N, Nydén M, Rudemo

M (2007). Identification of the three-dimensional gel

microstructure from transmission electron micrographs.

J Microsc 225:10–21.
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Pötschke P, Brünig H, Janke A, Fischer D, and Jehnichen

D (2005). Orientation of multiwalled carbon nanotubes

in composites with polycarbonate by melt spinning.

Polymer 46:10355–63.

Ridler TW, Calvard S (1978). Picture thresholding using

an iterative selection method. IEEE T Syst Man Cyb

8:630–2.

R Development Core Team (2008). R: A language and

environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. http://www.

R-project.org/.

Rizvandi NB, Pizurica A, Philips W (2008). Automatic

individual detection and separation of multiple

overlapped nematode worms using skeleton analysis.

In: Campilho A, Kamel M, eds. Proc 5th Int Conf Image

Anal Recogn. Lect Not Comput Sci 5112:817–26.

26

http://dx.doi.org/10.1103/PhysRevB.72.121404
http://dx.doi.org/10.2307/1390696
http://www1.maths.leeds.ac.uk/Statistics/workshop/lasr2005/Proceedings/hughes.pdf
http://www1.maths.leeds.ac.uk/Statistics/workshop/lasr2005/Proceedings/hughes.pdf
http://www1.maths.leeds.ac.uk/Statistics/workshop/lasr2005/Proceedings/hughes.pdf
http://dx.doi.org/10.1080/02331888008801539
http://dx.doi.org/10.1111/j.1365-2818.2007.01711.x
http://dx.doi.org/10.1016/j.polymer.2009.02.030
http://dx.doi.org/10.1016/j.polymer.2005.07.106
http://dx.doi.org/10.1109/TSMC.1978.4310039
http://www.R-project.org/
http://www.R-project.org/
http://dx.doi.org/10.1007/978-3-540-69812-8_81

	Introduction
	Image processing
	Modelling the shape and orientation of fibres
	Estimation of parameters
	Analysis of simulated data
	Analysis of real data
	Discussion
	Acknowledgements




