
 Informatica 30 (2006) 193–212 193

An Integration Rule Processing Algorithm and Execution
Environment for Distributed Component Integration
Ying Jin
California State University, Sacramento
Department of Computer Science
Sacramento, CA 95819, USA
E-mail: jiny@ecs.csus.edu

Susan D. Urban, Suzanne W. Dietrich and Amy Sundermier
Arizona State University
Department of Computer Science and Engineering
Tempe, AZ 85287-8809, USA
E-mail: s.urban@asu.edu, dietrich@asu.edu

Keywords: active databases, software component integration, rule processing algorithm, transaction, management

Received: July 25, 2005

The Integration Rules (IRules) Project* provides an active, rule-based approach for supporting event-
driven activity in applications involving distributed software component integration. This paper presents
the execution model, transaction model, and integration rule execution algorithm of the IRules
environment. The paper begins with an overview of the IRules language framework to establish the
context for the use of events and rules in the integration process, with Enterprise JavaBeans (EJBs)
serving as a component model. The paper then elaborates on the integration rule processing algorithm
and execution environment. The rule execution model supports traditional active rule coupling modes,
and defines a new immediate asynchronous mode to support concurrent execution of triggered rules and
transactions. The transaction model is based on the flexible transaction model, providing a means to
coordinate global transaction execution with the transactional features of EJB containers. IRules
component wrappers also provide support for the global transaction context as well as the
synchronization of method execution with the nested execution of integration rules. The paper defines
the semantics of coupling modes in terms of cycles and levels of rule execution, presenting the
integration rule processing algorithm for coordinating the execution of events and methods on
components with the nested execution of integration rules in the context of the transaction model. The
details of the algorithm are presented using Unified Modeling Language (UML) activity diagrams,
providing a generic approach that can be used as the foundation for rule processing in other distributed
environments. An investment application is used to illustrate the concepts presented in this paper.
Povzetek: Predstavljen je algoritem za integracijo pravil.

* This research was supported by National Science Foundation under Grant No. IIS-9978217.

1 Introduction
The development of advanced enterprise applications
often requires the integration of distributed software
components and services. Standard component
models and distributed computing tools, such as the
Common Object Request Broker Architecture
(CORBA) [1] and Enterprise JavaBeans (EJBs) [2],
have been developed to facilitate the integration
process in distributed environments. However,
component integration could be a difficult process in
some cases, since application integrators must not only
mediate the semantics of component interactions, but
must also be skilled in low-level knowledge of
middleware programming, event handling, and
transaction management. This difficulty motivates the

need for a more declarative approach to the integration
process.

In response to this need, the Integration Rules
(IRules) Project has developed an active rule-based
approach to distributed component integration, using
integration rules to provide a declarative approach to
event-driven integration activity [3, 4, 5, and 6]. The
IRules project is based on the concept of active
database rules. Active database systems extend
traditional databases by supporting mechanisms to
automatically monitor and react to events that are
taking place either inside or outside of the database
system [7 and 8]. Active database rules, known as
Event-Condition-Action (ECA) rules, are the core of
any active system.

194 Informatica 30 (2006) 193–212 Y. Jin et al.

Similar to an active rule, an integration rule
consists of an event, a condition, and an action. The
event of an integration rule is generated from
distributed sources. The condition is expressed as a
query over distributed components. If the condition
evaluates to true, the action is invoked to execute
methods on components or to invoke application
transactions that capture integration logic. Integration
rules can therefore be used to separate event
processing from the main integration logic of an
application. Furthermore, event handling and rule
processing are managed within the transactional
environment of the IRules system, shielding the low-
level details of event handling and transaction
management from integrators. Integrators can
therefore focus on integration logic rather than low-
level programming details.

The IRules approach to component integration
consists of a language framework described in [4] and
an execution environment for processing rules and
transactions [6] over distributed components. The
execution environment presented in this paper consists
of a rule processing algorithm and transaction
management system, illustrating a rule-based approach
to the integration of components with well-defined
interfaces based on the EJB component model [2]. The
integration of black-box components introduces
several challenges to the development of a rule and
transaction processing framework for integration rules.
First of all, components cannot be modified and they
are typically not aware of their participation in the
integration framework. As a result, components alone
do not provide necessary behavior for participating in
more global rule and transaction processing activities.
Furthermore, the EJB component model has its own
notion of transactional behavior, which is beyond the
control of an external environment such as IRules.
The execution of integration rules within a
transactional context requires suitable control logic at
the global IRules level to overcome the restrictions of
the underlying EJB component model. Furthermore,
active rules can trigger other active rules, thus forming
a nested structure as a result of cascaded rule
execution. Since the nested execution of rules and
their transaction control in a distributed environment
may span across several distributed locations,
distributed rule processing is more challenging than
that of centralized active rule environments.

The IRules execution model presented in this
paper supports the traditional dimensions of active
rule execution, with extensions for use in a distributed
environment. The Integration Rule Processing (IRP)
algorithm controls rule processing in a distributed
environment, fully supporting immediate, deferred,
and decoupling modes of execution. The immediate
asynchronous mode is a new coupling mode defined in
this research to support concurrent execution of
triggering transactions and triggered rules, thus
improving the performance of distributed rule
processing. The IRP algorithm also provides support
for the nested execution of immediate rules. Handling

immediate rules in a distributed environment requires
system control for synchronization between a
triggering transaction and the triggered rules. The
synchronization process requires suspension of the
method execution of the EJB component, allowing the
generation of events before and after the method
execution, with the immediate execution of rules in
response to the events. The IRP algorithm described
in this paper contributes to the use of immediate
coupling modes and nested rule execution within the
IRules framework. These features for the nested
execution of immediate rules in a distributed
environment have not been addressed by previous
research, especially in the context of component
integration.

Our research uses Unified Modeling Language
(UML) activity diagrams [9] to present the logic of the
rule execution algorithm. The algorithm is generic so
that it can be used in other environments for rule
processing, although the specific implementation of
the IRP algorithm within the IRules environment is
supported by the IRules transaction management [6],
wrapper design [10], and synchronization algorithms
[11].

The rest of the paper is organized as follows.
Section 2 surveys related work. Section 3 provides an
overview of the IRules approach with a presentation of
the language framework and system architecture.
Section 4 presents the integration rule coupling modes
as well as the transaction model and the transactional
support found in wrappers for the synchronization of
rule and method execution. Section 5 describes the
rule processing algorithm and provides an example of
rule execution using an investment application. The
paper concludes in Section 6 with a summary and
discussion of future research directions.

2 Related Work
There are several active database research projects that
have influenced the development of the IRules
environment, including relational active databases,
such as POSTGRES [12] and Starburst [12], as well as
object-oriented active databases, such as HiPAC [14],
SAMOS [15], ADOOD RANCH [16], and REACH
[17]. Active rules also exist in a limited form in
commercial database systems as database triggers
[18].

Active rule execution algorithms have been
addressed in centralized environments, such as the
research outlined in the introduction to active database
systems in Widom and Ceri [8], as well as the work of
Fraternali and Tanca [19] and Warshaw [20]. The
algorithm in [8] provides a high level abstract view of
rule processing, repeatedly retrieving a triggered rule,
evaluating the condition, and performing the action if
the condition evaluation is true. Similarly, the
algorithm in [19] presents three phases of active rule
processing. In the triggering phase, the algorithm
builds a set of rules that are triggered. In the
consideration phase, the algorithm first gets rules from

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 195

the set of rules constructed in the triggering phase, and
then evaluates the condition part of each rule. In the
action phase, if the condition evaluation of a rule
returns non-empty bindings, the algorithm will
perform the action of the rule. Compared to [8] and
[19], this paper presents an active rule processing
algorithm that was specifically designed to assist with
component integration in a distributed environment.
The IRules algorithm not only covers the three basic
phases of active rule processing for a set of triggered
rules, but also elaborates on the nested execution of
integration rules for distributed components, which is
a challenging extension to past work on centralized
rule execution algorithms. The IRules algorithm also
describes how to execute a rule according to four
types of coupling modes and how to react to different
types of events in the context of distributed component
integration. Whereas the algorithm in [20] uses state
transition to characterize rule execution according to
different coupling modes, the IRules algorithm uses a
coordinate system to describe the semantics of rule
execution.

In addition to centralized active database systems,
there are several research projects on active, rule-
based distributed systems. In the system described in
[21], ECA rules are used to provide distributed
communication for the components that describe
interfaces in the Object Management Group (OMG)
Interface Definition Language (IDL) [22]. The project
focuses on the specification, detection and
management of composite events.

C2offein [23] is a CORBA-based system with a
comprehensive design of distributed event detection.
The underlying data sources are wrapped to enable
read access in a CORBA environment. If a database
does not support an active mechanism, the wrapper
queries the database at regular intervals to detect
changes in the data. Clients can also call event
detection before any update operation to the database.
Rule processing is supported using a production rule
expert system shell.

The FRAMBOISE (FRAMework using oBject
OrIented technology for Supplying active
mEchanisms) project [24] is an object-oriented
framework formed by a toolbox to provided active
database functionality, such as event definition, event
detection, and rule execution. The set of architectural
components that separates the active functionality
from the underlying DBMS is called an activity
service. A database event detection connector,
condition evaluation connector, and database action
execution connector regulate the interaction between
the activity service and the underlying DBMS.

In the system described in [25], active rules are
used to glue together existing applications in a
distributed environment. Active rule processing is
implemented through event, condition, and action
services. The condition object of a rule subscribes to
the event object of the rule, while the action object
subscribes to the condition object of the rule. The
system uses the publish/subscribe service

implementation of X2TS [26] as a notification
mechanism between event, condition, and action,
where X2TS is based on the CORBA Notification
Service. X2TS can also provide additional transaction
control mechanisms such as exception handling over
the basic CORBA Transaction Service. In contrast,
the IRules rule manager controls when to evaluate a
condition and execute an action according to coupling
modes, rather than through a publish/subscribe
service.

The above distributed rule projects have all been
based on the use of the CORBA standard. In contrast,
the IRules project requires access to distributed
resources that advertise services using the EJB
component model. The use of distributed rules for the
integration of EJB component technology has not been
addressed by the existing research. The IRules project
is also using Jini connection technology [27] as the
primary means for distributed object computing, rather
than CORBA as in other projects. Furthermore, the
rule processing algorithm of IRules can handle nested
rule execution in a distributed environment. Existing
distributed rule projects have not addressed cascaded
rule execution within distributed transactions.

Using active rules to control the flow between
activities of a workflow system has been adopted by a
number of projects, such as the project described in
[28]. More recent work on workflow uses ECA rules
both inside and outside of activities. The work in [29]
is a centralized workflow management system, where
ECA rules are used for constraint management inside
tasks, as well as for the control of the execution order
of tasks. In [30], the workflow system named
CapBasED-AMS uses ECA rules to specify the
security authorization requirements imposed on a task
as well as the execution sequence. The TriGSflow
system of [31] is introduced as a framework for
workflow management, where ECA rules encapsulate
and realize coordination policies. In the WIDE
(Workflow on Intelligent Distributed Database
Environment) project [32], active rules are used in a
workflow management system for exception handling.
Compared to component integration, the flow
movements from task to task in a workflow
environment are well-defined compared to the
interconnection of software components. A workflow
system has more control over the tasks that are
executed, while access to component services,
especially black-box components, may be more
restrictive.

Active rules are also used in the composition of
web services. The research in [33] proposed the
SELF-SERV (compoSing wEb accessibLe
inFormation & buSiness sERVices) system to
compose services within a peer-to-peer paradigm.
SELF-SERV includes a declarative language based on
state charts and a peer-to-peer service execution
model. A statechart consists of states and transitions.
Transitions are labeled by ECA rules. Compared to
IRules, SELF-SERV is for the composition of web
services, while IRules is for the integration of software

196 Informatica 30 (2006) 193–212 Y. Jin et al.

components. ECA rules are used as the “glue” of the
IRules integration to specify event-driven integration
logic, while state charts are the “glue” for the
composition of SELF-SERV. ECA rules are used in
SELF-SERV for state transition, but the logic of
execution is not controlled by ECA rules. In the IRules
environment, integration logic is composed from the
use of application transactions together with
integration rules that respond to events.

3 The IRules Approach
There are two important aspects of the IRules
environment: the IRules Definition Language (IRDL)
for application specification and the IRules execution
environment for integration rule and transaction
execution. IRDL supports the definition of
components, events, rules, and application transactions
for distributed component integration. The execution
environment consists of the execution model for
integration rules, transaction management for rule
execution, and the rule execution algorithm that
coordinates the execution model with transaction
management. The IRules execution environment is
described in detail in Section 4. This section
overviews the language framework and the
architectural design of the IRules environment.

3.1 The IRules Definition Language
 The IRDL consists of four sub-languages: the
Component Definition Language (CDL) for defining
IRules components, the IRules Scripting Language
(ISL) for describing application transactions, the
Event Definition Language (EDL) for defining events,
and the Integration Rule Language (IRL) for defining
active rules. The IRDL was initially reported in [3, 5]
with refinements of the language presented in [10, 11,
34, 35]. The examples of the language presented in
this section originally appeared in [4, 6] and are
repeated here to make the paper self-contained.

3.1.1 Component Definition Language (CDL)
The CDL establishes an object model for application
integration activity [3, 5, and 10]. The current
implementation of IRules is based on the EJB
component model, assuming that all of the
components of the environment are EJB components.
To support component interconnection with active
rules, IRules adds a semantic layer on top of existing
EJB components. This layer is the IRules wrapper
layer. IRules wrappers are automatically generated
after CDL is compiled. IRules wrappers provide
additional functionality to black-box components,
such as defining externalized relationships between
distributed components, and specifying extents,
derived attributes, and stored attributes for each
component. The IRules wrapper layer also defines the
events generated before and after method calls on
components as well as the events that are internal to

black-box components. The details of IRules
wrappers can be found in [10].

As an example of CDL, Figure 1 defines two
externalized relationships and one event for a pending
order component within an investment application.
The first line of the component definition indicates
that the StockBroker_PendingOrder is an EntityBean
component. The second line of the definition specifies
an extent that can be used to query all pending order
instances, a feature that is useful in the specification of
integration rule conditions (see Section 3.1.4 for an
example). Assuming that StockBroker_Stock,
StockBrocker_Portfolio, and StockBroker_PendingOrder
are implemented as separate distributed components,
the first relationship definition in Figure 1 illustrates
an externalized, bi-directional relationship between
components: a StockBroker_PendingOrder is orderedBy a
StockBroker_Portfolio, while in the inverse direction, a
StockBroker_Portfolio orders a StockBroker_PendingOrder.
The second relationship defines the relationship
between StockBroker_PendingOrder and
StockBroker_Stock: a StockBroker_PendingOrder actsUpon
a StockBroker_Stock while a StockBroker_Stock has
pendingTrades on the StockBroker_PendingOrder. The
CDL also defines an event afterSetAction that is to be
raised after the setAction operation on
StockBroker_PendingOrder. Note that the CDL
definition of StockBroker_PendingOrder does not repeat
any of the method definitions of the original
component definition. CDL is used to enhance the
component definition with IRules functionality.

3.1.2 IRules Scripting Language (ISL)
In the IRules environment, ISL describes well-defined
sequences of processing logic as application
transactions [3, 5]. ISL is based on JACL [36], which
is the Java version of the Tool Command Language
(TCL) [37]. An ISL example in an investment
application is shown in Figure 2. The
clientWantsToSellStock application transaction consists
of two steps: create a pending order component and
print the information of this pending order. The
newInstance command is a JACL extension that
abstracts a sequence of statements into one command,
thus making the script concise and easy to reuse.

Component StockBroker_PendingOrder implements
EntityBean
(extent pendingOrders)
{ relationship StockBroker_Portfolio orderedBy inverse
StockBroker_Portfolio::orders;
 relationship StockBroker_Stock actUpon inverse
StockBroker_Stock::pendingTrades;
 event afterSetAction (pnAction) {method after
setAction(string pnAction)};}

Figure 1: CDL of PendingOrder Component

application transaction clientWantsToSellStock(String pnId,
String portfolioId, String stockId, int numOfShares,float

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 197

desiredPrice, String action, Stock actUpon, Portfolio
orderedBy)
tcl newInstance
{
set pn [newInstance PendingOrder $pnId $portfolioId
$stockId $numOfShares $desiredPrice $action $actUpon
$orderedBy $irulesId];
 printPendingOrderInfo $pn $irulesId;
}

Figure 2: ISL Example for the

clientWantsToSellStock transaction

3.1.3 Event Definition Language (EDL)
There are four different types of IRules events [3, 5,
and 11]: method events, application transaction
events, internal events, and external events. A method
event is generated before or after the execution of a
method on a component. An application transaction
event is generated before or after the execution of an
application transaction. An internal event is an event
generated by a black-box component. An external
event is generated by sources external to the IRules
environment. EDL describes application transaction
events and external events. Method events and internal
events are defined in CDL following EDL syntax.
Figure 1 illustrates the definition of a method event
afterSetAction that is generated after the setAction
operation in the Stock component.

Figure 3 shows an application transaction event
definition in EDL. The specification has the syntax
similar to the method event specification in Figure 1.
The key word appTrans identifies that the event is an
application transaction event. The event has an event
name afterSellStockOnNewPO and five parameters. The
event parameters are constructed by the projection of
the parameters of the application transaction by
parameter name.

event afterSellStockOnNewPO(stockId, price, portfolioId,
numOfShares, pn)
{
appTrans after sellStockOnNewPO(String stockId, float
price, String portfolioId, int numOfShares,
stockBroker.PendingOrderComponent.PendingOrder pn);
}

Figure 3: EDL for the afterSellStockOnNewPO
event

3.1.4 Integration Rule Language (IRL)
IRL is a language for defining integration rules [3, 5,
34, and 35]. IRL is based on the traditional ECA rule
format in active database systems. An integration rule
includes an event, a condition, and an action. A
condition includes a Boolean clause and an optional
query over the object model to define a binding
structure for data that satisfies the condition. The

action part consists of an optional from clause and a do
clause. The from clause iterates through the binding
structure passed from the condition. The do clause
executes the action in the format of a method call or
an application transaction.

create rule clientWantsToSellStockRule
event afterClientWantsToSellStock(pnId, portId, stockId,
numOfShares, desPrice, pnaction, actUpon, orderedBy)
condition immediate
 when pnaction = "sell"
 define stockAndPendingOrder as
 select struct (stk: s, newPo: pn)
 from s in stocks, pn in pendingOrders
 where pn.id=pnId and pn.actUpon=s
 and desPrice<=s.price
action immediate
 from sp in stockAndPendingOrder
 do sellStockOnNewPO(stockId, sp.stk.price,
portId, numOfShares, sp.newPo)

Figure 4: IRL Example of the

clientWantsToSellStockRule rule

An example of IRL is shown in Figure 4. In this rule,
the event is signaled after the clientWantsToSellStock
application transaction. The condition checks
whether the pendingOrder intends to sell stock.. If the
rule condition is satisfied, a binding structure is
defined for relevant instances of stock and
pendingOrder. The binding structure definition uses the
extents of the stock and pendingOrder components that
are specified in the CDL and the parameters of the
event to find relevant stocks and pending orders. The
action part iterates through the stockAndPendingOrder
structure and executes the sellStockOnNewPO
application transaction to perform the functionality of
selling stocks.

3.1.5 Putting It All Together
Figure 5 presents an example of how all of the
sublanguages of IRDL work together. CDL defines
wrapped components and the compilation of CDL
generates wrappers. After wrappers are generated
[10], distributed components in different containers
may have externalized relationships. Four types of
events are defined by EDL and CDL. Events can
trigger integration rules defined by IRL. The action
part of the rule can invoke an application transaction
(defined by ISL) or a method on an EJB component.
The execution of an application transaction or a
method can raise application transaction events,
method event, or internal events, which can trigger
additional rules. As a result, integration rules can be
triggered in a nested structure. We will present an
execution scenario of rule nesting in Section 5.3.

3.2 The IRules Architecture
IRules has designed a distributed architecture to
support the IRDL language framework. The

198 Informatica 30 (2006) 193–212 Y. Jin et al.

architecture can be abstracted into three layers, as
shown in Figure 6. The top and middle layers are the
interfaces. The bottom layer is the implementation of
the integration system.

IRules provides interfaces for two types of
integration users: integrators and end users.
Integrators use IRDL to describe integration logic.
The compilation of IRDL results in the population of
metadata and the automatic generation of wrappers.
The interface for end users consists of a list of
application transactions, which have been expressed
by integrators using ISL and compiled by the IRules
compiler. An end user then selects an existing
application transaction to express their integration
request. For example, if a user wants to sell stock, the
user can select the clientWantsToSellStock application
transaction from Figure 2, providing values for each
parameter of the application transaction. The user
request is sent to the application transaction processor
component of the IRules system.

The implementation layer consists of architectural
components for the IRules system. Figure 6 presents
the fundamental components of the architecture. The
Jini distributed computing environment is used as the
backbone of the system, with IRules architectural
components implemented as Jini Services. Upon user

request, the application transaction processor
processes the ISL script. The processing may invoke
wrapped EJB components. The processing of an
application transaction or a method call on an EJB
component can raise events. The event handler pushes
the event to the rule manager, where the rule manager
queries the metadata to retrieve rules triggered by this
event. During rule processing, the rule manager
interfaces with the transaction manager to establish the
transaction context for rule execution. The rule
manager also interfaces with the object manager for
accessing components. The rule manager submits
requests to the query processor for rule condition
evaluation during rule processing.

Through the IRDL language framework and the
architectural design, the IRules integration system
allows application integrators to specify the
integration logic in a declarative fashion, while the
end users can use the defined integration logic to
specify their request. In contrast to the traditional
integration approach, the IRules approach does not
require an integrator’s low-level knowledge of
distributed programming issues. Integrators can focus
on integration logic, rather than the technical details of
rule and transaction processing.

PendingOrder

IRulesPendingOrder

Portfolio

IRulesPortfolio

PendingOrder Container

Portfolio Container

Method event Internal event

Application Transaction
Begin

Operation1
...

Operation k
...

Operation n
End

Application transaction
event

Integration Rule

triggers

triggers

triggers

generate

generate

generate

generate

Execute operation
on EJB

Integration Rule:
create rule ruleName
event eventName(event Parameters)
 [on componentName
 componentVariable]
condition [eaCoupling]
 when conditionSpecification
 [define bindingsName as
 select <>
 from <>
 [where <>]]
action [caCoupling]
 [from <>
 [where <>]]
 do action

External event

Integration Rule

Integration Rule

Execute operation
on EJB

triggers

Externalized relationship

Figure 5 Interaction Between the IRDL Sublanguages

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 199

4 The IRules Execution and
Transaction Model

This section presents the details of the IRules
execution and transaction model. A preliminary
discussion of the IRules transaction model appears in
[6]. The full details of the transaction management
system are presented in this section to establish the
context for presentation of the rule processing
algorithm in Section 5. Section 4.1 defines the
coupling modes of the environment, with specific
emphasis on the synchronous and asynchronous
options of the immediate coupling mode. Section 4.2
elaborates on the transaction model and the manner in
which it interacts with the transactional features of
EJB containers. Section 4.3 discusses the support that
IRules component wrappers provide for the global
transaction context as well as the synchronization of
rule and method execution.

4.1 Integration Rule Coupling Modes
The execution model of an active rule system specifies
how to coordinate a set of rules at runtime. The
execution model is characterized by several features,
such as coupling modes, transition granularity, net-
effect policy, cycle policy, priority, and scheduling
[7]. IRules follows the definition of the execution
model features that are defined in [7]. In this paper,
we address the coupling mode feature, since the use of
coupling modes in a distributed environment is the
primary focus of the IRules execution model.

The coupling modes of an active rule allow rule
definers to specify how to execute the rule at run time.
A coupling mode can be specified between the event
and condition (E-C), between the condition and action
(C-A), or between the event and action (E-A).
Integration rules support four types of coupling
modes: immediate synchronous, immediate
asynchronous, deferred, and decoupled.

Using the E-C coupling mode as an example, the
immediate synchronous E-C coupling mode indicates
that the condition of a rule must be evaluated
immediately after the event is raised. The immediate
asynchronous mode is a new coupling mode that has
been defined as part of this research. In an immediate
asynchronous E-C coupling mode, the condition is
evaluated immediately after the occurrence of an
event, but the triggering transaction that raised the
event will not be suspended. The execution of the
integration rule and the triggering transaction are
therefore concurrent.

Figure 7 illustrates the difference between the
immediate synchronous and immediate asynchronous
modes using a UML activity diagram [9]. In each box
of Figure 7, the pair of synchronization bars (heavy
black bars) represents the logic to fork and join
processes, where the first bar is a fork and the second
bar is a join. In Figure 7a, Op1 is an event that triggers
an immediate synchronous rule, so a subtransaction is
started to process the rule. The triggering transaction
suspends until the rule completes. After the rule joins
the triggering transaction, Op2 and Op3 can be
executed. In contrast, as shown in Figure 7b, Op1 is an

Jini

AppTran
Processor metadata EJB

wrapper Object
Manager

Rule
Manager

Transaction
Manager

Event
Handler

Interface to Integrators
 IRules Definition
Language (IRDL)

Specify integration
logic using IRDL

C
om

pile

Compile

Interface to end users

Parameter Value

Execution Results

Query
Processor

Implementation

Figure 6: IRules Architecture

200 Informatica 30 (2006) 193–212 Y. Jin et al.

event that triggers an immediate asynchronous rule. A
new subtransaction is started to execute the
asynchronous rule, but the triggering transaction does
not suspend. As a result, Op2 and Op3 are concurrently
executed with the asynchronous rules. At the end of
the triggering transaction, the asynchronous rule joins
the triggering transaction. The use of the immediate
asynchronous mode can only be used when the rest the
operations of the triggering transaction do not depend
on the results of the immediate rule.

The deferred E-C coupling mode postpones rule
condition evaluation to the end of the top-level
transaction of execution (i.e., the outermost
transaction within which the event was raised), based
on the use of the deferred coupling mode as defined in
[378]. The decoupled mode is only available for E-A
and C-A coupling. Using the decoupled C-A coupling
mode as an example, the decoupled action of a rule is
executed immediately in a new top-level transaction,
concurrent with the transaction that triggered the rule.

In addition to coupling modes, an integration rule
can be triggered before an event happens or after an
event happens. This feature is specified as before and
after modifiers in the definition of a rule. Rule
execution before an event is reasonable only when an
event generator can trap the occurrence of the
operation associated with the event.

4.2 Transaction Model of the IRules
Environment

In an active system, the execution model relies heavily
on the notion of transactions. For example, coupling
modes are used to specify the transactional
relationships between different parts of an active rule.
Rules are also required to execute within appropriate
transaction contexts for correct processing logic.

A fundamental issue with respect to transaction
processing within IRules is the selection of a
transaction model that is appropriate for the nested
execution of rules over EJB components. In the nested
transaction model [39], a subtransaction cannot release
its results until its parent transaction commits. In
contrast, the flexible transaction model [40] has a
compensating mechanism that allows early commit of
subtransactions. The flexible model avoids
unnecessary blocking of subtransactions. The
compensating mechanism ensures atomicity of a
transaction when allowing unilateral commit of
subtransactions. Although the flexible transaction
model avoids unnecessary waiting time, the flexible
transaction model can be more time-consuming than
the nested transaction model when compensating work
is required in the case of transaction failure.

The underlying component model also constrains
the selection of a suitable transaction model. In
transaction control for traditional databases, the
release of locks and the update of permanent storage
can be fully controlled by the transaction manager of
the database. It is not possible to control black-box
EJB components in such a manner. Each entity bean
has an underlying relation in a relational database, and
each instance of the bean corresponds to a tuple in that
relation. Entity beans must be accessed with a
container-managed transaction. That is, the
transaction for method invocation of an entity bean is
totally controlled by the EJB container.

As a more detailed explanation, each container
uses ejbload() to refresh an entity bean's state from the
database and ejbstore() to save the entity bean's state in
the database. Before a method defined in the EJB
remote interface is invoked from outside of the EJB
component, the container will call ejbload(). After the
method finishes execution, the container will call

0

O p 1

E x e c u te
s y n c h ro n o u s ru le
t r ig g e re d b y O p 1

O p 1

O p 2

O p 3

E x e c u te
a s y n c h ro n o u s ru le
t r ig g e r e d b y O p 1

O p 2

O p 3 0

a . E x e c u t io n o f Im m e d ia te
S y n c h ro n o u s R u le s

b . E x e c u t io n o f Im m e d ia te
A s y n c h ro n o u s R u le s

Figure 7: Synchronous vs. Asynchronous Rule Processing

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 201

ejbstore(). If the IRules transaction manager attempts to
use the Two Phase Commit (2PC) protocol [41], the
permanent storage can only be updated when all
subtransactions are ready to commit. However, with
no notion of the parent-child hierarchy of the outer
transaction semantics for 2PC, the container is
independently determining when to retrieve and
update the database. In contrast, the flexible
transaction model is more suitable for integration rules
since it allows unilateral commit of subtransactions.
This research has developed techniques for the use of
the flexible transaction model to support the nested
execution of integration rules. In the scope of this
research, we assume a failure semantics where
individual rules might abort without affecting the
triggering transaction. The design of the
compensating mechanism of the IRules system is a
research issue that is currently under investigation.

In the IRules environment, transaction entities are
execution objects that encapsulate the transactional
control for rules and application transactions. All
transaction classes inherit from an abstract class
IRulesTransaction. The superclass IRulesTransaction
encapsulates the generic logic of transaction
execution. There are four sub-classes of
IRulesTransaction: ISLTransaction,
TopLevelTransactionForEvent,
TopLevelTransactionForMethod, and NestedTransaction.
These four sub-classes are responsible for capturing
the execution-time behavior of transaction processing
under different circumstances within the IRules
system. ISLTransaction implements the transactional
behavior of an application transaction. The
TopLevelTransactionForEvent is used to offer
transactional context to handle responses to internal
and external events. The TopLevelTransactionForMethod
applies to the specific case of a decoupled coupling
mode when the action of the rule invokes a method of
an EJB component. The NestedTransaction class
encapsulates the execution of a subtransaction created
as the context of a nested rule. Since the processing of
rules is wrapped by transactions, rule nesting behavior
can be controlled by the execution of parent and child
transactions. For example, suppose rule Rx triggers
immediate synchronous rule Ry, and the transaction
contexts of Rx and Ry are Tx and Ty, respectively.
Since we want to let Rx suspend until Ry finishes
(according to the immediate synchronous E-C
coupling mode), we control this behavior by
suspending Tx until Ty commits.

4.3 Transactional Support for Wrappers
and Rule/Method Synchronization

In the immediate synchronous coupling mode, the
triggering transaction suspends while the triggered
rule executes as a subtransaction, so this coupling
mode results in rule nesting of rules. In this research,
the suspension of transactions in a distributed
environment is supported by the design of the IRules
wrapper.

Figure 8 shows the structure of an IRules wrapper.
A black-box bean may have a specific method, such as
m1(param1,param2). IRules builds a property bean for
each black-box bean to store external relationships
between distributed components, as well as extents,
derived attributes, and stored attributes for each
component. A property bean has methods to provide
the above functionality. A detail description of the
property wrapper can be found in [10].

There is a proxy bean in the IRules wrapper
structure that interfaces with clients. A proxy bean is
responsible for generating method events, passing
transaction contexts, and handling the suspension of
current execution. A proxy bean has the same
methods as the black-box bean, as well as a
corresponding method for every method provided by
the property bean and the black-box bean. For
example, as shown in Figure 8, the proxy bean has a
method m1(param1,param2) that is the same as the black-
box bean. So any client that is unaware of the IRules
system can still use the black-box API to access the
purchased component. The proxy bean also has the
m1(param1,param2,transactionId) method, which has the
same name as the corresponding method in the black-
box bean. In addition to the method parameters of the
black-box bean, every method in the proxy bean has a
parameter named transactionId. The transactionId
parameter is used to pass transaction contexts during
execution time in the IRules system. Similarly, the
proxy bean has the m2(para1,transactionId) method
responding to m2(para1) of the property bean to pass
transaction contexts. When there is method invocation
from clients to a proxy bean, the proxy bean will
delegate the invocation to the corresponding method
of the property bean or the black-box bean.

Property Bean
m2(para1)

Black-Box Bean
m1(param1,param2)

Proxy Bean
m1(param1,param2)
m1(param1,param2,transactionId)
m2(para1,transactionId)

Figure 8: IRrules Wrapper Structure for EJB
Components

A proxy bean has a three-step logic for event
generation. The first step is to generate before method
events, if any such events exist. When there is a
method call to the proxy bean, the proxy bean will
contact the metadata manager to determine whether
this method call can generate a before method event.
If it can, the proxy bean generates a method event
through the Java Message Service (JMS) [42]. Then
the proxy bean will try to read a semaphore object
from the synchronization space in JavaSpaces [43].
JavaSpaces is a Jini Service that supports the storage
and retrieval of objects in a distributed environment.

202 Informatica 30 (2006) 193–212 Y. Jin et al.

The blocking call mechanism of JavaSpaces is used to
synchronize the execution of a transaction and its
triggered immediate rules, releasing the suspension of
the transaction upon the completion of the rule
processing. Initially, the semaphore object does not
exist. Since the read operation to JavaSpaces is
blocking, the current transaction suspends at the proxy
bean. During this suspension period, the event is
propagated to the rule manager and the rule manager
begins to process any rules triggered by the event.
After processing rules triggered by a before method
event, the rule manager will put the semaphore object
into the synchronization space. Once the semaphore
object is in the synchronization space, the proxy bean
can successfully read the object to release the
suspension of the wrapper.

The second step of the logic of the proxy bean is
to call the property layer or the black-box bean to
execute the method call. The third step is to generate
after method events so that rules triggered after the
execution of the method can be executed. The logic of
generating an after event and the suspension for
immediate synchronous rules is the same as in the first
step. A more detailed description of the
synchronization algorithm appears in [10].

5 Integration Rule Processing
Algorithm

The rule processing algorithm is the logical circuit
through which integration rules are processed. The
algorithm instructs the rule manager in the processing
of rules at execution time, depending on the
transactional framework described in Section 4 for
interaction with EJB components and coordination of
rule execution with method execution. In Section 5.1,
we specify the behavior of integration rule coupling
modes in the context of cycles and levels of rule
execution. In Section 5.2, we present the logic of the
rule processing algorithm. A specific example of rule
execution in the IRules environment is presented in
Section 5.3. A brief summary of a performance
analysis of the IRules environment appears in Section
5.4.

5.1 Specification of Coupling Mode
Behavior

The Integration Rule Processing (IRP) algorithm is
based on the algorithm of the ADOOD RANCH
project [38], using cycles to control the nested
execution of active rules. This research has re-
designed the rule execution algorithm for a distributed
environment, fully supporting the IRules coupling
modes and transaction processing model.

Within the IRules environment, integration rules
are processed according to coupling modes. A rule
with an immediate E-C mode (either immediate
synchronous mode or immediate asynchronous mode)
is scheduled to execute as soon as it is triggered, while
a rule with a deferred E-C mode is added to the

deferred rule list that will be scheduled to execute at
the commit time of the top-level transaction. A
decoupled rule is executed immediately in a new top-
level transaction, while the transaction of the
triggering event execution resumes.

As shown in Figure 9, rule execution occurs in a
coordinate system in two dimensions: the Cycle
dimension and Level dimension. Cycle represents the
logic of deferred rule processing, while Level
represents the logic of nested rule execution. In Figure
9, dashed arrows represent immediate rule triggering
in Levels, while solid arrows represent deferred rule
scheduling in Cycles.

Illustration

Immediate rule triggering

D
ef

er
re

d
ru

le
 tr

ig
ge

rin
g

0 1

0

...

...

1

LEVEL

C
YC

LE

Triggers immediate rules
Schedules deferred rules

Top-
Level

Transaction

Figure 9: Cycles and Levels of Rule Execution

Each top-level transaction and its subtransactions are
represented as a coordinate system, formed as a
Cartesian product of Cycle and Level. A top-level
transaction tk, as the root of a transaction, is executed
at Cyclek

0 and Levelk
0 in coordinate system Gk. If an

event in (Cyclek
0, Levelk

j) triggers an immediate rule,
the rule will be executed in the same cycle but in
Levelj+1 as a new subtransaction. As an example, if an
event e1 in (Cyclek

0, Levelk
0) triggers immediate rules

r1, r2, and r3, then r1, r2, and r3 execute at (Cyclek
0,

Levelk
1). Within the same level, rules r1, r2, r3 can

execute sequentially or concurrently. The algorithm
for determining sequential or concurrent rule
execution is presented in [44].

If an operation of a top-level transaction (Cyclek
0,

Levelk
0) triggers a deferred rule, the rule will be

scheduled to execute at the end of the top-level
transaction in (Cyclek

1, Levelk
0). In general, if an event

in Cyclek
i triggers a deferred rule, the rule will be

executed in Cyclek
i+1. If there is more than one

deferred rule at the end of the transaction, the rules are
executed in sequence. If an event in Levelk

j triggers a
deferred rule, the rule will always be executed in
Levelk

0 of the next cycle.
When an event in any (Cyclek

i, Levelk
j) of a

coordinate system Gk triggers a rule that contains a

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 203

decoupled action, the decoupled action is executed as
a new top-level transaction at (Cyclen

0, Leveln
0) of a

new coordinate system Gn, where Gn and Gk are two
distinct coordinate systems for rule execution.

Additional execution procedures apply for the
execution of immediate asynchronous rules. If an
event in (Cyclek

i, Levelk
j) triggers a rule with an

immediate asynchronous E-C mode, the rule will be
executed in Levelk

j+1 without suspending the execution
of the operations in Levelk

j. A synchronization point
that requires the commit of asynchronous rule
execution exists at this point. The synchronization
point is after the last operation of Levelk

j and before
the commitment of a transaction in Levelk

j, which is
called the end-Proc stage. This point allows the
maximum time interval for the execution of the
asynchronous rules without delaying the processing of
the triggering transaction. In the end-Proc state of
Levelk

j within Cyclek
i, all of the immediate

asynchronous rules that executed at (Cyclek
i, Levelk

j+1)
are required to commit for the triggering transaction to
continue. At the end of a top-level transaction, after
all of the asynchronous rules commit, deferred rules
can be processed.

The above presentation of IRP describes rule
execution in a two dimensional coordinate system,
focusing on the logic of rule execution. At run time,
rules are executed in a distributed environment, which
is related to a third dimension – Location of the
objects accessed by a rule. An event is generated from
one location, while the data accessed by a triggered
rule can exist in multiple locations. The value of the
Location depends on which software components are
involved in the condition and action part of the rule.
The IRP algorithm instructs the rule manager to
invoke the IRules object manager to locate the
position of a component. In a more complicated case,
the objects accessed by a rule can require the use of
multiple locations for evaluating the condition and
performing the action of the rule.

5.2 Execution Logic of the IRP
Algorithm

The IRP algorithm is the core of the rule manager. IRP
instructs and regulates the execution behavior of the
rule manager for the processing of application
transactions and integration rules. In this section, the
logic of the IRP algorithm is presented using Unified
Modelling Language (UML) activity diagrams [9].

When a user makes a request to the rule manager
to process an application transaction, the rule manager
will start an application transaction processor to
process the request. The processing logic is illustrated
in Figure 10 for the PROCESS TOP-LEVEL
TRANSACTION module. There are two sub-component
modules of the processing: EXECUTE AN APPLICATION
TRANSACTION and PROCESS DEFERRED RULES,
which are detailed in Figures 11 and 13, respectively.
As shown in Figure 10, after EXECUTE AN

APPLICATION TRANSACTION, the execution arrives at
the pre-commit state, which is the time for deferred
rule processing. Then PROCESS DEFERRED RULES is
executed and the transaction commits.

The EXECUTE AN APPLICATION TRANSACTION
module is presented in Figure 11. Before execution of
the application transaction, the algorithm checks for
the existence of a before application transaction event.
If a before event is raised, rules triggered by the before
event are processed. Next, the algorithm will execute
the application transaction. Since an application
transaction consists of a set of operations, the
algorithm calls the EXECUTE OPERATIONS module to
execute all the operations of the application
transaction. After all operations of the application
transaction have been executed, the algorithm checks
for an after application transaction event. If an after
event exists, rules triggered by the event are executed
according to different coupling modes. The EXECUTE
AN APPLICATION TRANSACTION module uses the same
algorithm as the EXECUTE OPERATIONS module
(Figure 12) with respect to rule processing according
to different coupling modes. The following paragraph
provides an explanation of rule processing for
different coupling modes in the context of the
EXECUTE OPERATIONS module.

MODULE: PROCESS TOP-LEVEL TRANSACTION

Arrive
pre-commit

state

Commit
transaction

Transaction
begin

EXECUTE AN APPLICATION
TRANSACTION

PROCESS DEFERRED RULES

Figure 10: Process Top-Level Transaction

In Figure 12, the EXECUTE OPERATIONS module
presents the logic of executing a sequence of
operations for a transaction by iterating through all
operations. Before execution of any operation, the
algorithm will check for the existence of a before
method event. If a before event has been raised, all
rules triggered by this event will be obtained. The
current transaction is suspended until the completion

204 Informatica 30 (2006) 193–212 Y. Jin et al.

of all triggered rules. The “*[For each rule]” notation
indicates that the PROCESS A RULE module will be
started for each rule. The PROCESS A RULE module is
illustrated in Figure 14. These rules can be executed
sequentially or concurrently.

MODULE: EXECUTE AN APPLICATION TRANSACTION

[Raise before
event]

Get rules triggered
by the event

*[For each rule]

[No before
event]

[No rule]

Get rules triggered
by the event

[Raise after event]

[No after
event]

Add to defer rule list of its
top-Level transaction

*[For each rule]

[Decoupled] [Deferred]
[Immediate]

[Syn] [Asyn]

[No rule]

Join Asyn rules

PROCESS A RULE

PROCESS TOP-LEVEL
TRANSACTION PROCESS A RULE

PROCESS A RULE

EXECUTE
OPERATIONS

Figure 11: Execute An Application Transaction

Recall that only immediate synchronous rules are
allowed for before events, so those rules will be
processed immediately. After the rules with a before
modifier are processed, the operation is executed as
shown in Figure 12. The algorithm in Figure 12
checks for method events raised after the execution of
the operation. Rules triggered by the after method
event are obtained. If a rule is decoupled, a new top-
level transaction is started that follows the logic of the
EXECUTE TOP-LEVEL TRANSACTION module. If a rule
is deferred, the rule is added to the deferred list of its
top-level transaction. If the rule is immediate, the rule
will be started immediately as a subtransaction by
invoking the PROCESS A RULE module. In the case of
an immediate synchronous rule, the current transaction
cannot continue until the subtransaction joins the
current transaction. In contrast, the current transaction
can continue execution in parallel with the execution
of its immediate asynchronous rules. At the end-proc
state, the current transaction will suspend until all
immediate asynchronous rules finish execution and
join the current transaction.

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 205

The PROCESS DEFERRED RULES module is
presented in Figure 13. Recall from Section 5.1 that
deferred rules are executed in cycles. For each cycle,
deferred rules are executed in sequence as described in
the PROCESS A RULE module of Figure 14. A
subtransaction will be created as the child of the
triggering transaction. For an EA rule, the action is
executed immediately. The execution of an action
occurs in the EXECUTE ACTION module. For an ECA
rule, the condition is evaluated first. If the C-A
coupling mode is immediate synchronous, the action
will be executed immediately. In the case of a
decoupled C-A mode, a new top-level transaction is
started immediately.

Recall that before calling the PROCESS A RULE
module, the rule was already scheduled according to
the E-C coupling mode for an ECA rule and the E-A
coupling mode for an EA rule. So in the PROCESS A
RULE module, the condition of an ECA rule and the
action of an EA rule are always executed immediately.

Figure 15 illustrates the logic of the EXECUTE ACTION
module. The execution of an action invokes the
EXECUTE OPERATIONS module when the action is in
the format of a method call. If the action is in the
format of an application transaction, the algorithm will
call the EXECUTE AN APPLICATION TRANSACTION
module.

[No operation]

[More operations]

MODULE: EXECUTE OPERATIONS

[Raise before
event]

Get rules triggered
by the event

*[For each rule]

[No before
event]

Execute the
operation

[No rule]

Get rules triggered
by the event

[Raise after event]

[No after
event]

Add to defer rule list of its
top-Level transaction

*[For each rule]

[Decoupled] [Deferred]
[Immediate]

[Syn] [Asyn]

[No rule]

Join Asyn rules

PROCESS A RULE

PROCESS TOP-LEVEL
TRANSACTION PROCESS A RULE

PROCESS A RULE

Arrive
end_Proc

state

Figure 12: Execute Operations

206 Informatica 30 (2006) 193–212 Y. Jin et al.

[No more
Cycle]

[Next Cycle]

Get deferred rule list
from current Cycle

Get a rule from this
cycle

[List not empty]

[List empty]

MODULE: PROCESS DEFERRED RULES

PROCESS A RULE

Figure 13: Process Deferred Rules

The algorithm has so far illustrated the rule processing
logic for user requests as a top-level transaction.
Recall that the other architectural component that can
cause the rule manager to start top-level transaction
processing is the event handler. For any internal or
external event pushed by the event handler, the rule
manager will handle the event according to the logic
in Figure 16. The rule manager gets rules triggered by
the event, and then processes each rule according to
different coupling modes. Recall that no rule with a
before modifier can be raised by an internal or an
external event, because it is impossible for an active
system to control when an internal or an external event
occurs. Similar to the processing of a top-level
application transaction, once the processing arrives at
the end-proc stage, asynchronous rules must join the
triggering transaction. After the pre-commit state, all
deferred rules are processed.

Transaction begin

[EA rule]

[ECA rule]

Evaluate condition

MODULE: PROCESS A RULE

[C-A decoupled]

[C-A immediate
synchronous]

Commit transaction

EXECUTE ACTION

EXECUTE ACTION

PROCESS TOP-LEVEL
TRANSACTION

[true]

[false]

Figure 14: Process A Rule

MODULE: EXECUTE ACTION

EXECUTE OPERATIONS EXECUTE AN APPLICATION
TRANSACTION

[Method] [Application transaction]

Figure 15: Execute Action

5.3 Execution Scenario of an Investment
Application

To illustrate the rule processing algorithm, this section
presents an execution scenario for selling stocks using
the investment example presented in Section 3. A
preliminary version of the scenario from Figures 17-
19 appears in [6] without the notion of cycles and
levels.

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 207

MODULE: HANDLE INTERNAL/EXTERNAL EVENT

Transaction begin

Get rules triggered by the
event

Arrive
end-proc

state
Join asyn rules

Arrive
pre-commit

state

Commit transaction

PROCESS DEFERRED RULES

Add to defer rule list of its
top-Level transaction

*[For each rule]

[Decoupled] [Deferred]
[Immediate]

[Syn]
[Asyn]

PROCESS TOP-LEVEL
TRANSACTION PROCESS A RULE

PROCESS A RULE

Figure 16: Handle internal/external event

As shown in Figure 17, the application transaction
clientWantsToSellStock is the request from a user to
perform the function of placing an order to sell a
stock. The transaction creates an order to sell a stock
at a desired price, and then prints a report. An event is
generated after this application transaction, triggering
the integration rule clientWantsToSellStockRule in
Figure 18. The integration rule examines the desired
prices for the stock to be sold and compares it with the
current price, selling the stock if the condition is
satisfied. The action part of the rule executes the
sellStockOnNewPO application transaction in Figure 17,
which raises two events. The first event
(afterSellStock) is generated after the stock is sold but
before the end of the transaction, allowing rules to be
triggered in reaction to each sell operation. In
particular, the scenario has an active rule
stockBuyOnUpdateCash that allows a portfolio to
exercise pending purchases when sufficient funds are
available in the user’s account. The
afterSellStockOnNewPO event is signaled after the
action of sellStockOnNewPO is complete to trigger a

rule billingToAccountOnSell. This rule sends billing
information to the user. Both of the
stockBuyOnUpdateCash and billingToAccountOnSell rules
are shown in Figure 18.

application transaction clientWantsToSellStock(String pnId,
String portfolioId, String stockId, int numOfShares,float
desiredPrice, String action, Stock actUpon, Portfolio
orderedBy)
tcl newInstance
{
set pn [newInstance PendingOrder $pnId $portfolioId
$stockId $numOfShares $desiredPrice $action $actUpon
$orderedBy $irulesId];
printPendingOrderInfo $pn $irulesId;
}

application transaction sellStockOnNewPO(String stockId,
float price, String portfolioId, int numOfShares,
StockBroker.PendingOrderComponent.PendingOrder pn)
tcl printSellInfo
{
set session [newInstance PortfolioSessionBean $irulesId];
$session sellStock $stockId $price $portfolioId
$numOfShares $irulesId;
$pn setStatus "executed" $irulesId;
printSellInfo $pn $irulesId;
}

Figure 17: Examples of Application Transactions

for the Investment Scenario

Figure 19 illustrates the execution scenario that occurs
as a result of the IRP algorithm. Figure 19 uses a
notation that is based on UML activity diagrams.
There are four transactions represented by four
different swimlanes [45], one for each transaction
context of the application transactions and rules. We
use notation such as T1, e1, R11, as the abbreviated
names of transactions, events, and rules, respectively.

When a user invokes the clientWantsToSellStock
application transaction, the transaction manager
creates a top-level transaction (T1) to process the
application transaction. The top-level transaction T1
executes at (Cycle1

0, Level1
0) in coordinate system G1.

The clientWantsToSellStock application transaction
generates an event named afterClientWantsToSellStock
(e1). The event e1 triggers the rule
clientWantsToSellStockRule (R11) presented in the
second column of Figure 19. Because the E-C
coupling mode of R11 is immediate synchronous, the
condition of R11 is evaluated immediately. T1
suspends until R11 completes. The execution of
immediate rule R11 is within the context of
subtransaction T11. Because R11 is an immediate rule
triggered by an event at (Cycle1

0, Level1
0) , the rule is

executed at (Cycle1
0, Level1

1).

create rule clientWantsToSellStockRule
event afterClientWantsToSellStock(pnId,

 portId, stockId, numOfShares,

208 Informatica 30 (2006) 193–212 Y. Jin et al.

 desPrice, pnaction, actUpon,
orderedBy)

condition immediate
 when pnaction = "sell"
 define stockAndPendingOrder as
 select struct (stk: s, newPo: pn)
 from s in stocks, pn in pendingOrders
 where pn.id=pnId and pn.actUpon=s

and desPrice<=s.price
action immediate
 from sp in stockAndPendingOrder
 do sellStockOnNewPO(stockId,
 sp.stk.price, portId, numOfShares,
 sp.newPo)

create rule stockBuyOnUpdateCash
event afterSellStock(stockId, price, portfolioId,

numOfShares)
condition asynchronous
 define portfolioOnUpdate as
 select p
 from p in portfolios
 where p.portfolioId=portfolioId and p.cash >

p.buyThreshold
action decoupled
 from p in portfolioOnUpdate
 do buyStockOnUpdateCash(p)

create rule billingToAccountOnSell
event afterSellStockOnNewPO(stockId, price,

portfolioId, numOfShares, pn)
action deferred
 from p in portfolios
 where p.portfolioId= portfolioId

do setAccountBillingOnSell(stockId, price,
portfolioId, numOfShares, p.accountId)

Figure 18: Examples of Integration Rules for the

Investment Scenario

The condition of R11 is evaluated in the second
column. If the condition evaluation returns a non-null
structure containing stocks and pending orders, then
the action of R11 is performed using the structure as
input bindings. Because of the immediate synchronous
C-A coupling mode, the action is executed
immediately. The action part of R11 is wrapped in a
subtransaction named sellStockOnNewPO (T11a), which
has four operations. The second operation sellStock is a
method that generates a method event afterSellStock
(e2). The event e2 triggers the rule
stockBuyOnUpdateCash (R111) in the third column.
Since the E-C coupling mode of R111 is immediate
asynchronous, the condition of R111 is evaluated
immediately. Moreover, the condition evaluation of
R111 is concurrent with the execution of the triggering
transaction T11a. Because R111 is an immediate rule
triggered by an event at (Cycle1

0, Level1
1), R111 is

executed at (Cycle1
0, Level1

2).

If the condition evaluation of R111 returns a non-null
set of portfolios, the action of R111 will be performed
upon the set. Due to the decoupled C-A coupling
mode, the action of R111 becomes a new top-level
transaction named buyStockOnUpdateCash (T2) since
the action is an application transaction. Since the C-A
coupling mode is decoupled, the action part of R111
will be executed in a different coordinate execution
system G2 at (Cycle2

0, Level2
0).

Once T2 is started in the fourth column, T111 resumes
and commits. As shown in the second column, when
the set status and printInfo operations of T11a finish
executing, T11a is at the end of execution. At this time
T11a waits until all the triggered asynchronous rules
join. In this example, T111 joins T11.

As shown in the second column, the completion of
sellStockOnNewPO generates an event (e3) that triggers
an EA Rule named billingToAccountOnSell (R112).
Because the E-A coupling mode of R112 is deferred,
R112 is scheduled to the end of the top-level
transaction (T1). Subtransaction T11 finishes execution
and commits. Because R112 is a deferred rule
triggered by an event at Cycle1

0, R112 will be executed
at (Cycle1

1, Level1
0).

In the first column, the commit of T11 releases the
suspension of T1. Just before T1 commits, deferred
rule R112 is processed. After R112 finishes executing,
T1 commits.

5.4 Performance Analysis of the IRules
Environment

The IRules system is a Java implementation that uses
the BEA Weblogic Server [46] to provide EJB
components. The Jini distributed computing
environment is used as the backbone of the system,
with IRules architectural components implemented as
Jini Services. Java Message Service (JMS) [42]
provides asynchronous event notification for
communication between the event-signaling
components and the event-handling components.
JavaSpaces [43] is used for the storage of metadata.
The blocking call mechanism of JavaSpaces is also
used in the synchronization space to synchronize the
execution of a transaction and its triggered immediate
rules, releasing the suspension of the transaction upon
the completion of the rule processing [11].

We have evaluated the performance of the IRules
environment using the OBJECTIVE benchmark [47]
as the basis for the evaluation. The OBJECTIVE
Benchmark was originally designed to identify
bottlenecks and to evaluate the functionality of an
active object-oriented database. The OBJECTIVE
benchmark was adjusted and extended as part of this
research to apply the benchmark to a distributed
component integration environment. The full details of
the performance analysis and how the benchmark was
adapted to the IRules environment is beyond the scope

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 209

of this paper and can be found in [44, 48]. The
evaluation was conducted within the IRules
environment and has not been applied to any industrial
environment.

As a brief summary of the performance evaluation
process, the system was implemented and evaluated
using four Windows NT 4.0 computers. The metadata
and object manager illustrated in Figure 6 were co-
located on one physical machine, while in two
different Java virtual machines. The rule manager,
event handler, and the Weblogic EJB server, also
illustrated in Figure 6, were each physically located on

one machines. The evaluation was conducted using
four parameters of configuration: 1) the number of
events, 2) the number of rules, 3) the number of
application transactions, and 4) the number of
component instances. The primary focus of the
evaluation was on four different aspects of the
execution environment: 1) three phases of active
behavior (event detection, rule retrieval, and rule
execution), 2) performance of different coupling
modes, 3) performance of the rule processor under a
heavy event load, and 4) the time for event detection

New
PendingOrder

R11::
Evaluate Condition

new SessionBean

sellStock

set Status

printInfo

R111:: Action
T11a: sellStockOnNewPO

R111::
Action

buystockOn
UpdateCash

E-C ImmediateSynchronous

R111::
Evaluate Condition

Schedule
deferred rule R112

(billingToAccountOnSell)
to the end of T1

e3:afterSellStockOnNewPo
E-C deferred

e2: afterSellStockE-C ImmediateAsynchronous

C-A Decoupled

PrintInfo

Process deferred
rule R112

T1: (Top-Level) T11: (Sub of T1) T111: (Sub of T11) T2: (Top-Level)

C-A
Immediate Synchronous

Join Asyn Rules

e 1:afterClientWantsToSellStock

Cycle1
0

Cycle1
1

Level10 Level12 Level20

Cycle2
0

Level11

G1 G2

Cycle2
1

Figure 19: Execution Scenario of the Investment Application

210 Informatica 30 (2006) 193–212 Y. Jin et al.

for the different types of IRules events. The primary
results of the evaluation indicate that:
1) The decoupled and immediate asynchronous

modes provide the best performance since they
allow concurrent execution. The deferred mode is
the slowest due to the need to schedule rules for
execution at the end of the top-level transaction.

2) Execution time is somewhat affected by a large
number of rules and transactions due to the larger
amount of metadata that must be searched during
rule and transaction retrieval.

3) A heavy event load can cause the rule processor
to be interrupted to queue events, thus slowing
down the performance of the rule processor, but
the performance eventually levels off to a
consistent execution speed regardless of the event
arrival load.

4) Access to EJB components is the primary point of
slow performance, affecting the time for method
execution as well as the time for method event
generation. A future improvement of the IRules
system should involve re-design of the wrapper
structure to reduce the EJB component layers,
thus reducing the time associated with method
invocation.

6 Summary and Future Directions
This paper has presented the integration rule
processing algorithm of the IRules environment, with
supporting descriptions of the rule execution model
and transaction model. The IRP algorithm illustrates
an approach for active rule processing in the context
of distributed component integration, where events are
used to trigger rules that invoke application
transactions and methods on components. The IRP
algorithm is presented in a form that can be reused in
other environments for a rule-based approach to
integration logic, defining the manner in which
immediate coupling modes can be used together with
nested rule execution in a distributed environment.
The IRules integration system allows application
integrators to specify the integration logic in a
declarative fashion, which does not require an
integrator’s low-level knowledge of programming and
transaction management. Integrators can focus on
mediating the interaction between components, rather
than the technical details of event handling and
transaction processing.

It has been a challenging effort to develop a
distributed rule and transaction processing
environment such as IRules, since it involves the
combination of issues such as component autonomy,
rule distribution, cascaded rule triggering, and
distributed synchronization. The implementation of
the execution environment presented in the paper has
been completed. One future direction is to expand the
environment to support multiple component models.
The transaction model also needs further investigation
to address failure in the execution process, especially
when global transactions execute over different

component models with heterogeneous transaction
processing semantics. These future research
directions will be explored in the context of Grid
services for virtual organizations, where a Grid service
provides a service-oriented view of a component [49,
50] and the Grid environment forms the foundation of
the underlying architecture.

References
[1] Object Management Group: The Common Object

Request Broker, Architecture and Specification.
(1999) John Wiley Publishing.

[2] Enterprise Java Beans Specification (2000) Sun
Microsystems, version 2.0.

[3] S. D. Urban, S. W. Dietrich, Y. Na, Y. Jin, and A.
Sundermier (2001) The IRules Project: Using
Active Rules for the Integration of Distributed
Software Components, Proc. of the 9th IFIP 2.6
Working Conf. on Database Semantics: Semantic
Issues in E-Commerce System, Hong Kong,
April 2001, pp. 265-286.

[4] S. D. Urban, S. W. Dietrich, Y. Jin, S.
Kambhampati, and Y. Na (2002) Distributed
Software Component Integration: A Framework
for a Rule-Based Approach, Handbook of
Electronic Commerce in Business and Society,
Watson, R., Lowery, P. and Cherrington, J. Ed.

[5] S. W. Dietrich, S. D. Urban, A. Sundermier, Y.
Na, Y. Jin, and S. Kambhampati (2001) A
Language and Framework for Supporting an
Active Approach to Component-Based Software
Integration, Informatica, Vol. 25, No. 4, pp. 443-
454.

[6] Y. Jin, S. D. Urban, S. W. Dietrich, and A.
Sundermier (2002) An Execution and Transaction
Model for Active, Rule-Based Component
Integration Middleware, Proceedings of the
Engineering and Deployment of Cooperative
System, Beijing, China, pp. 403-417.

[7] N. W. Paton, O. Diaz (1999) Active Database
Systems, ACM Computing Surveys, Vol. 31, No.
1, pp. 3-27.

[8] J. Widom and S. Ceri (Eds.) (1996) Active
Database Systems: Triggers and Rules for
Advanced Database Processing. Morgan
Kaufmann Publisher.

[9] Unified Modeling Language (UML)
Specification, version 2.0.
http://www.uml.org/#UML2.0

[10] R. Patil (2003) A Framework Supporting an
Active Approach to Component-Based Software
Integration, M.S. Thesis, Arizona State
University, Department of Computer Science and
Engineering.

[11] S. Urban, S. Kambhampati, S. Dietrich, Y. Jin,
and A. Sundermier (2004) An Event Processing
System for Rule-Based Component Integration,
Proceedings of the International Conference on
Enterprise Information Systems, Porto, Portugal,
pp. 312-319.

AN INTEGRATION RULE PROCESSING ... Informatica 30 (2006) 193–212 211

[12] M. Stonebraker, E. N. Hanson, and S.
Potamianos (1998) The POSTGRES Rule
Manager, IEEE Transactions on Software
Engineering, Vol. 14, No. 7, pp. 897-907.

[13] J. Widom (1992) The Starburst Rule System:
Language Design, Implementation and
Application, IEEE Data Engineering Bulletin,
December, pp. 15-18.

[14] U. Dayal, B. Blaustein, A. Buchmann, and S.
Chakravarthy (1998) The HiPAC Project:
Combining Active Databases and Timing
Constraints, ACM SIGMOD Record, Vol. 17,
No. 1, pp. 51-70.

[15] S. Gatziu, K. R. Dittrich (1992) SAMOS: An
Active Objective-Oriented Database System,
Data Engineering bulletin, pp. 23-26.

[16] S. W. Dietrich, S. D. Urban, J. V. Harrison and
A. Karadimce (1992) A DOOD RANCH at ASU:
Integrating Active, Deductive and Object-
Oriented Databases, IEEE Data Engineering
Bulletin: Special Issue on Active Database
Systems, Vol. 15, No. 1-4, pp. 40-43.

[17] H. Branding, A. P. Buchmann, T. Kudrass, and J.
Zimmermann (1993) Rules in an Open System:
The REACH Rule System, Rules in Database
Systems, pp. 111-126.

[18] P. Gulutzan and T. Pelzer (1999) SQL-99
Complete Really, Miller Freeman Publishing.

[19] P. Fraternali and L. Tanca (1995) A Structured
Approach for the Definition of the Semantics of
Active Databases, ACM Transactions on
Database Systems, Vol. 20, No. 4.

[20] L. B. Warshaw (2001) Facilitating Hard Active
Database Applications, Ph.D. Dissertation, The
University of Texas at Austin, Department of
Computer Science.

[21] S. Chakravarthy, and R. Le (1998) ECA Rule
Support for Distributed Heterogeneous
Environments, International Conference on Data
Engineering, pp. 601.

[22] Object Management Group (OMG) Interface
Definition Language (IDL), International
Organization for Standardization (ISO)
International Standard, number 14750.
http://www.omg.org/gettingstarted/omg_idl.htm

[23] A. Koschel, and P. C. Lockemann (1998)
Distributed Events in Active Database Systems -
Letting the Genie out of the Bottle, Journal of
Data and Knowledge Engineering, Vol. 25, pp.
11-28

[24] H. Fritschi, S. Gatziu, K. and R. Dittrich (1998)
FRAMBOISE – an Approach to Framework-
Based Active Database Management System
Construction, Proceedings of the 7th ACM
International Conference on Information and
Knowledge management, pp. 364-370.

[25] M. Cilia, C. Bornhovd, and A. Buchmann (2001)
Moving Active Functionality from Centralized to
Open Distributed Heterogeneous Environments,
Proceedings of 9th International Conference on

Cooperative Information Systems (CoopIS’01),
Trento, Italy, pp. 195-210.

[26] C. Liebig, M. Malva, A. Buchmann (2000)
Integrating Notfications and Transactions:
Concepts and X2TS Prototype, Proceedings of
the 2nd International Workshop on Engineering
Distributed Objects, University of California,
Davis, USA, pp.194-214.

[27] W. K. Edwards (2000) Core Jini, Prentice-Hall
PTR, Second Edition.

[28] C. Bussler, and S. Jablonski (1994) Implementing
Agent Coordination For Workflow Management
Systems Using Active Database Systems, The
International Workshop On Active Database
Systems, Houston TX, pp. 53-59.

[29] F. Casati, S.Ceri, B. Pernici, and G. Pozzi (1996)
Deriving Active Rules for Workflow Enactment,
DEXA, Switzerland, pp. 94-115.

[30] K. Karlapalem and P. C. K. Hung (1998) Security
Enforcement in Activity Management Systems,
Workflow Management Systems and
Interoperability, Ed. Dogac, etc., Springer-Verlag
publisher, pp. 165-193.

[31] G. Kappel, and W. Retschitzegger (1998) The
TriGS Active Object-Oriented Database System -
An Overview," SIGMOD Record, 27(3), pp.36-
41.

[32] Workflow on Intelligent Distributed database
Environment. http://dis.sema.es/projects/WIDE/

[33] B. Benatallah, M. Dumas, Q. Sheng, and H. Ngu
(2002) Declarative Composition and Peer-to-Peer
Provisioning of Dynamic Web Services,
Proceedings of the 18th International. Conference
on Data Engineering, San Jose, CA, pp. 297-308.

[34] R. Peri (2002) Compilation of the Integration
Rule Language, M.C.S. Report, Arizona State
University, Department of Computer Science and
Engineering.

[35] K. Marimuthu (2003) An Object-Oriented Query
Processor Based on an Extended Monoid
Algebra, M.S. Thesis, Arizona State University,
Department of Computer Science and
Engineering.

[36] M. DeJong, C. Laird, “TCL+Java = A Match
Made for Scripting,”
http://www.sunworld.com/sunworldonline/swol-
11-jacl.html.

[37] J. Ousterhout (1994) TCL and the TK Toolkit,
Addison-Wesley Publishing.

[38] T. Abdellatif (1999) An Architecture for Active
Database Systems Supporting Static and
Dynamic Analysis of Active Rules Through
Evolving Database States, Ph.D. Dissertation,
Arizona State University, Department of
Computer Science and Engineering.

[39] J. Gray and A. Reuter (1994) Transaction
Processing: Concepts and Techniques. Morgan
Kaufmann Publishers.

[40] S. Jajodia and L. Kerschberg (1997) Advanced
Transaction Models and Architectures, Kluwer
Academic Publishers.

212 Informatica 30 (2006) 193–212 Y. Jin et al.

[41] M. T. Ozsu and P. Valduriez (1999) Principles of
Distributed Database Systems, Prentice Hall
Publishing.

[42] JMS 2002. Java Messaging Service. Version 1.1.
http://java.sun.com/products/jms/docs.html

[43] E. Freeman, S. Hupfer, K. Arnold (1999)
JavaSpace: Principles, Patterns, and Practice,
Addison-Wesley Publisher.

[44] Y. Jin (2004) An Architecture and Execution
Model for Component Integration Rules, Ph.D.
Dissertation, Arizona State University,
Department of Computer Science and
Engineering.

[45] G. Booch, J. Rumbaugh, I. Jacobson (1999) The
Unified Modeling Language User Guide.
Addison-Wesley Publisher.

[46] BEA Systems Weblogic Server (2003).
http://www.bea.com

[47] U. Cetintemel (1995) OBJECTIVE: A
Benchmark for Object-Oriented Active Database
Systems, M.S. Thesis, Bikent University, Turkey.

[48] Y. Jin, S. D. Urban, D. W. Dietrich (2005)
Extending the OBJECTIVE Benchmark for
Evaluation of Active Rules in a Distributed
Component Integration Environment, submitted
for journal publication, 2005.

[49] S. D. Urban, V. Kumar, and S. W. Dietrich
(2005) A Prototype for Integration of Web
Services into the IRules Approach to Component
Integration, Proceedings of the International
Conference on Enterprise Information Systems,
Miami, FL., pp.3-10.

[50] H. Ma, S. D. Urban, Y. Xiao, and S. W. Dietrich
(2005) GridPML: A Process Modeling Language
and History Capture Systems for Grid Service
Composition, Proceedings of the International
Conference on e-Business Engineering, Beijing,
China.

