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Abstract

Tutte’s 3-flow conjecture asserts that every 4-edge-connected graph has a nowhere-zero
3-flow. In this note we prove that every regular graph of valency at least four admitting a
solvable arc-transitive group of automorphisms admits a nowhere-zero 3-flow.
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1 Introduction
All graphs in this paper are finite and undirected, and all groups considered are finite. Let
Γ = (V (Γ), E(Γ)) be a graph endowed with an orientation. For an integer k ≥ 2, a k-flow
[3] in Γ is an integer-valued function f : E(Γ) → {0,±1,±2, . . . ,±(k − 1)} such that,
for every v ∈ V (Γ), ∑

e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e),

whereE+(v) is the set of edges of Γ with tail v andE−(v) the set of edges of Γ with head v.
A k-flow f in Γ is called a nowhere-zero k-flow if f(e) 6= 0 for every e ∈ E(Γ). Obviously,
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if Γ admits a nowhere-zero k-flow, then Γ admits a nowhere-zero (k+1)-flow. It is also easy
to see that whether a graph admits a nowhere-zero k-flow is independent of its orientation.
The notion of nowhere-zero flows was introduced by Tutte in [20, 21] who proved that a
planar graph admits a nowhere-zero 4-flow if and only if the Four Color Conjecture holds.
The reader is referred to Jaeger [9] and Zhang [25] for surveys on nowhere-zero flows and
to [3, Chapter 21] for an introduction to this area.

In [20, 21] Tutte proposed three celebrated conjectures on integer flows which are still
open in general. One of them is the following well-known 3-flow conjecture (see e.g. [3,
Conjecture 21.16]).

Conjecture 1.1. (Tutte’s 3-flow conjecture) Every 4-edge-connected graph admits a no-
where-zero 3-flow.

This conjecture has been extensively studied in over four decades; see e.g. [6, 7, 10, 11,
12, 19, 23, 24]. Solving a long-standing conjecture by Jaeger [8] (namely the weak 3-flow
conjecture), recently Thomassen [19] proved that every 8-edge-connected graph admits a
nowhere-zero 3-flow. This breakthrough was further improved by Lovász, Thomassen, Wu
and Zhang [12] who proved the following result.

Theorem 1.2. ([12, Theorem 1.7]) Every 6-edge-connected graph admits a nowhere-zero
3-flow.

It is well known [22] that every vertex-transitive graph of valency d ≥ 1 is d-edge-
connected. Thus, when restricted to the class of vertex-transitive graphs, Conjecture 1.1
asserts that every vertex-transitive graph of valency at least four admits a nowhere-zero
3-flow. Due to Theorem 1.2 this is now boiled down to vertex-transitive graphs of valency
5, since every regular graph with even valency admits a nowhere-zero 2-flow. In an at-
tempt to Tutte’s 3-flow conjecture for Cayley graphs, Potočnik, Škoviera and Škerkovski
[16] proved the following result. (It is well known [2] that every Cayley graph is vertex-
transitive, but the converse is not true.)

Theorem 1.3. ([16, Theorem 1.1]) Every Cayley graph of valency at least four on an
abelian group admits a nowhere-zero 3-flow.

This was generalized by Nánásiová and Škoviera [13] to Cayley graphs on nilpotent
groups.

Theorem 1.4. ([13, Theorem 4.3]) Every Cayley graph of valency at least four on a nilpo-
tent group admits a nowhere-zero 3-flow.

It would be nice if one can prove Tutte’s 3-flow conjecture for all vertex-transitive
graphs. As a step towards this, we prove the following result in the present paper.

Theorem 1.5. Every regular graph of valency at least four admitting a solvable arc-
transitive group of automorphisms admits a nowhere-zero 3-flow.

Note that any G-arc-transitive graph is necessarily G-vertex-transitive and G-edge-
transitive. On the other hand, any G-vertex-transitive and G-edge-transitive graph with
odd valency is G-arc-transitive. (This result is due to Tutte, and its combinatorial proof
given in [4, Proposition 1.2] can be easily extended from G = Aut(Γ) to a subgroup G of
Aut(Γ).) Therefore, Theorem 1.5 is equivalent to the following: For any solvable group
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G, every G-vertex-transitive and G-edge-transitive graph with valency at least four admits
a nowhere-zero 3-flow.

In Section 3 we will prove a weaker version (Claim 1) of Theorem 1.5, which together
with Theorem 1.2 implies Theorem 1.5. Note that none of Theorems 1.5 and 1.4 is implied
by the other, because not every Cayley graph is arc-transitive, and on the other hand an
arc-transitive graph is not necessarily a Cayley graph (see e.g. [2, 17]).

At this point we would like to mention a few related results. Alspach and Zhang (1992)
conjectured that every Cayley graph with valency at least two admits a nowhere-zero 4-
flow. Since every 4-edge-connected graph admits a nowhere-zero 4-flow [8], this conjecture
is reduced to the cubic case. Alspach, Liu and Zhang [1, Theorem 2.2] confirmed this
conjecture for cubic Cayley graphs on solvable groups. This was then improved by Nedela
and Škoviera [14] who proved that any counterexample to the conjecture of Alspach and
Zhang must be a regular cover over a Cayley graph on an almost simple group. (A group
G is almost simple if it satisfies T ≤ G ≤ Aut(T ) for some simple group T .) In [15],
Potočnik proved that every connected cubic graph that admits a solvable vertex-transitive
group of automorphisms is 3-edge-colourable or isomorphic to the Petersen graph. This
is another generalization of the result of Alspach, Liu and Zhang above, because Petersen
graph is not a Cayley graph, and for cubic graphs 3-edge-colourability is equivalent to the
existence of a nowhere-zero 4-flow.

It would be pleasing if one can replace arc-transitivity by vertex-transitivity in Theorem
1.5. As an intermediate step towards this, one may try to prove that every Cayley graph of
valency at least four on a solvable group admits a nowhere-zero 3-flow, thus generalizing
Theorem 1.4 and the above-mentioned result of Alspach, Liu and Zhang simultaneously.

2 Preparations
We follow [3] and [5, 18] respectively for graph- and group-theoretic terminology and
notation. The derived subgroup of a group G is defined as G′ := [G,G], the subgroup of
G generated by all commutators x−1y−1xy, x, y ∈ G. Define G(0) := G,G(1) := G′ and
G(i) := (G(i−1))′ for i ≥ 1. A group G is solvable if there exists an integer n ≥ 0 such
that G(n) = 1; in this case the least integer n with G(n) = 1 is called the derived length
of G. Solvable groups with derived length 1 are precisely nontrivial abelian groups. In
the proof of Theorem 1.5 we will use the fact that any solvable group contains an abelian
normal subgroup with respect to which the quotient group has a smaller derived length.

All definitions in the next three paragraphs are standard and can be found in [2, Part
Three] or [17].

Let G be a group acting on a set Ω. That is, for each (α, g) ∈ Ω×G, there corresponds
an element αg ∈ Ω such that α1 = α and (αg)h = αgh for any α ∈ Ω and g, h ∈ G, where
1 is the identity element of G. We say that G is transitive on Ω if for any α, β ∈ Ω there
exists at least one element g ∈ G such that αg = β, and regular if for any α, β ∈ Ω there
exists exactly one element g ∈ G such that αg = β. The group G is intransitive on Ω if it
is not transitive on Ω. A partition P of Ω is G-invariant if P g := {αg : g ∈ G} ∈ P for
any P ∈ P and g ∈ G, and nontrivial if 1 < |P | < |Ω| for every P ∈ P .

Suppose that Γ is a graph admitting G as a group of automophisms. That is, G acts on
V (Γ) (not necessarily faithfully) such that, for any α, β ∈ V (Γ) and g ∈ G, α and β are
adjacent in Γ if and only if αg and βg are adjacent in Γ. (If K is the kernel of the action
of G on V (Γ), namely, the subgroup of all elements of G that fix every vertex of Γ, then
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G/K is isomorphic to a subgroup of the automorphism group Aut(Γ) of Γ.) We say that
Γ is G-vertex-transitive if G is transitive on V (Γ), and G-edge-transitive if G is transitive
on the set of edges of Γ. If Γ is G-vertex-transitive such that G is also transitive on the set
of arcs of Γ, then Γ is called G-arc-transitive, where an arc is an ordered pair of adjacent
vertices.

Let Γ be a graph and P a partition of V (Γ). The quotient graph of Γ with respect to P ,
denoted by ΓP , is the graph with vertex set P in which P,Q ∈ P are adjacent if and only
if there exists at least one edge of Γ joining a vertex of P and a vertex of Q. For blocks
P,Q ∈ P adjacent in ΓP , denote by Γ[P,Q] the bipartite subgraph of Γ with vertex set
P ∪Q whose edges are those of Γ between P and Q. In the case when all blocks of P are
independent sets of Γ and Γ[P,Q] is a t-regular bipartite graph for each pair of adjacent
P,Q ∈ P , where t ≥ 1 is an integer independent of (P,Q), we say that Γ is a multicover
of ΓP . A multicover with t = 1 is thus a topological cover in the usual sense. In the proof
of Theorem 1.5, we will use the following lemma in the case when k = 3.

Lemma 2.1. Let k ≥ 2 be an integer. If a graph admits a nowhere-zero k-flow, then its
multicovers all admit a nowhere-zero k-flow.

Proof. Using the notation above, let Γ be a multicover of Σ := ΓP . Suppose that Σ
admits a nowhere-zero k-flow f (with respect to some orientation). For each oriented
edge (P,Q) of Σ, orient the edges of the t-regular bipartite graph Γ[P,Q] in such a way
that they all have tails in P and heads in Q, and then assign f(P,Q) to each of them.
Denote this nowhere-zero function on the oriented edges of Γ by g, and denote the oriented
edge of Γ with tail α and head β by (α, β). It can be verified that, for any P ∈ P and
α ∈ P ,

∑
(α,β)∈E+

Γ (α) g(α, β) =
∑

(P,Q)∈E+
Σ (P ) t · f(P,Q) and

∑
(β,α)∈E−

Γ (α) g(β, α) =∑
(Q,P )∈E−

Σ (P ) t · f(Q,P ). Since f is a nowhere-zero k-flow in Σ, for every P ∈ P , we
have ∑

(P,Q)∈E+
Σ (P )

f(P,Q) =
∑

(Q,P )∈E−
Σ (P )

f(Q,P ).

Therefore, for every α ∈ V (Γ), we have∑
(α,β)∈E+

Γ (α)

g(α, β) =
∑

(β,α)∈E−
Γ (α)

g(β, α)

and so g is a nowhere-zero k-flow in Γ. �

If Γ is aG-vertex-transitive graph, then for any normal subgroupN ofG, the setPN :=
{αN : α ∈ V (Γ)} of N -orbits on V (Γ) is a G-invariant partition of V (Γ), called a G-
normal partition of V (Γ) [17], where αN := {αg : g ∈ N}. Denote the corresponding
quotient graph by ΓN := ΓPN

. The quotient group G/N induces an action on PN defined
by (αN )Ng = (αg)N . The following observations can be easily proved (see e.g. [17]).

Lemma 2.2. ([17]) Let Γ be a connected G-vertex-transitive graph, and N a normal sub-
group of G that is intransitive on V (Γ). Then the following hold:

(a) ΓN is G/N -vertex-transitive under the induced action of G/N on PN ;

(b) for P,Q ∈ PN adjacent in ΓN , Γ[P,Q] is a regular subgraph of Γ;

(c) if in addition Γ is G-arc-transitive, then ΓN is G/N -arc-transitive and Γ is a multi-
cover of ΓN .
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3 Proof of Theorem 1.5
By Theorem 1.2, in order to prove Theorem 1.5 it suffices to prove that, for any finite
solvable group G, every G-arc-transitive graph of valency five admits a nowhere-zero 3-
flow. We will prove the following seemingly stronger but equivalent result:

Claim 1. For any solvable group G, every G-arc-transitive graph with valency at least
four and not divisible by three admits a nowhere-zero 3-flow.

We will prove this by induction on the derived length of the solvable group G, using
Theorem 1.3 as the base case. We will use the following fact [2, Lemma 16.3]: a graph is
isomorphic to a Cayley graph if and only if its automorphism group contains a subgroup
that is regular on the vertex set. Denote by val(Γ) the valency of a regular graph Γ.

Without loss of generality we may assume that the solvable group G is faithful on the
vertex set of the graph under consideration for otherwise we can replace G by its quotient
group (which is also solvable) by the kernel ofG on the vertex set. Under this assumptionG
is isomorphic to a subgroup of the automorphism group of the graph. We may also assume
that the graph under consideration is connected (for otherwise we consider its components).
We make induction on the derived length n(G) of G.

Suppose that n(G) = 1 and Γ is a G-arc-transitive graph with val(Γ) ≥ 4. Then G is
abelian and so is regular on V (Γ). (A transitive abelian group must be regular.) Since G is
isomorphic to a subgroup of Aut(Γ), it follows that Γ is isomorphic to a Cayley graph on
G. Thus, by Theorem 1.3, Γ admits a nowhere-zero 3-flow.

Assume that, for some integer n ≥ 1, the result (in Claim 1) holds for any solvable
group of derived length at most n. Let G be a solvable group with derived length n(G) =
n+ 1. Let Γ be a connected G-arc-transitive graph such that val(Γ) ≥ 4 and val(Γ) is not
divisible by 3. If val(Γ) is even, then Γ admits a nowhere-zero 2-flow and hence a nowhere-
zero 3-flow. So we assume that val(Γ) ≥ 5 is odd. Since 3 does not divide val(Γ) by our
assumption, every prime factor of val(Γ) is no less than 5. Since G is solvable, it contains
an abelian normal subgroup N such that the quotient group G/N has derived length at
most n(G)− 1 = n. Note that G/N is solvable (as any quotient group of a solvable group
is solvable) andN 6= 1 (for otherwiseG/N ∼= G would have derived length n(G)). IfN is
transitive on V (Γ), then it is regular on V (Γ) as N is abelian. In this case Γ is isomorphic
to a Cayley graph on N and so admits a nowhere-zero 3-flow by Theorem 1.3.

In what follows we assume that N is intransitive on V (Γ). By Lemma 2.2, ΓN is
a connected G/N -arc-transitive graph, and Γ is a multicover of ΓN . Thus val(ΓN ) is
a divisor of val(Γ) and so is not divisible by 3. If val(ΓN ) = 1, then Γ is a regular
bipartite graph of valency at least two and so admits a nowhere-zero 3-flow [3]. Assume
that val(ΓN ) > 1. Then val(ΓN ) ≥ 5 and every prime factor of val(ΓN ) is no less than 5.
Thus, since G/N is solvable of derived length at most n, by the induction hypothesis, ΓN
admits a nowhere-zero 3-flow. Since Γ is a multicover of ΓN , by Lemma 2.1, Γ admits a
nowhere-zero 3-flow. This completes the proof of Claim 1 and hence the proof of Theorem
1.5.
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