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Abstract. Taking into account all available data on the mass sector, we obtain unitary
rotation matrices that diagonalize the quark matrices by using a specific parametrization of
the Cabibbo-Kobayashi-Maskawa mixing matrix. The form of the resulting mass matrices
is consistent with a democratic scheme with a well-defined, stepwise breaking of the initial
flavour symmetry.

Povzetek. Avtorica izbere parametrizacijo mešalne matrike Cabibba, Kobayashija in Mas-
kawe, poišče zanjo unitarne rotacijske matrike, ki pri tej parametrizaciji diagonalizirajo
masne matrike kvarkov. Izmerjene mase kvarkov zavrti v startni masni matriki, ki sta
skladni z demokratično shemo matrik z dobro definirano in postopno zlomljeno začetno
simetrije.
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6.1 Mass states and flavour states

In this work, we take a very phenomenological approach on the fermion mass
matrices, by assuming that the quark mass matrices can be derived from a (naive)
factorization of the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix V [1],
which appears in the charged current Lagrangian

Lcc = −
g

2
√
2
ϕ̄Lγ

µVϕ ′LWµ + h.c. (6.1)

where ϕ and ϕ ′ are quark fields with charges Q and Q− 1, correspondingly.
From the perspective of weak interactions, Lcc describes an interaction be-

tween left-handed flavour states. From the point of view of all other interactions,
the interaction takes place between mixed physical particle states - where “physi-
cal particles” refer to mass eigenstates of the mass matricesM andM ′ appearing
in the mass Lagrangian

Lmass = f̄Mf+ f̄ ′M ′f ′

where f, f ′ are fermion flavour states of charge 2/3 and -1/3, respectively, with the
corresponing mass matrices denoted as M =M(2/3) and M ′ =M ′(−1/3). Our
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6 Phenomenological Mass Matrices With a Democratic Texture 73

dilemma is in a way how to understand the relation between physical particles
and flavour states.

We imagine that all the flavour states live in the same “weak basis” in flavour
space, while the mass states of the 2/3-sector and the -1/3-sector live in their
separate “mass bases”. We go between the weak basis and the mass bases of the
two charge sectors by rotating with the unitary matrices U and U ′, which are
factors of the CKM-matrix, V = UU ′†.

M→ UMU† = D = diag(mu,mc,mt) (6.2)

M ′ → U ′M ′U ′† = D ′ = diag(md,ms,mb)

Since V 6= 1, the up-sector mass basis is different from the down-sector mass basis,
the CKM matrix thus bridges the two mass bases.

The mass Lagagrangian reads

Lmass = f̄Mf+ f̄ ′M ′f ′ = ψ̄Dψ+ ψ̄ ′D ′ψ ′ (6.3)

where f, f ′ are the flavour states and ψ,ψ ′ are the mass states. We of course know
the diagonal mass matricesD(2/3) andD ′(−1/3), it isM(2/3) andM ′(−1/3) that
we are looking for, in the hope that their form can shed light on (the mechanism
behind) the mysterious, hierarchical fermion mass spectra.

Whereas the quark mass eigenstates are perceived as “physical”, and the
weakly interacting flavour states are percieved as mixings of physical particles, in
the lepton sector the situation is somewhat different, due to the fact that neutrino
mass eigenstates don’t ever appear in interactions - they merely propagate in free
space. In the realm of neutral leptons it is actually the flavour states νe, νµ, ντ
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that we perceive as “physical”, since they are the only neutrinos that we “see”,
as they appear together with the charged leptons. As the charged leptons e, µ, τ
are assumed to be both weak eigenstates and mass eigenstates, the only mixing
matrix that appears in the lepton sector is the Pontecorvo-Maki-Nakagawa-Sakata
mixing matrix Uwhich only operates on neutrino states,νeνµ

ντ

 = U(PMNS)

ν1ν2
ν3


where (ν1, ν2, ν3) are mass eigenstates, and (νe, νµ, ντ) are the weakly interacting
“flavour states”. In the lepton sector, the charged currents are thus interpreted
as charged lepton flavours (e, µ, τ) interacting with the neutrino flavour states
(νe, νµ, ντ).

6.2 Factorizing the weak mixing matrix

The usual procedure in establishing an ansatz for the quark mass matrices is
based on some argument or model. Here we follow a rather phenomenaological
approach, looking for a factorization of the Cabbibo-Kobayashi-Maskawa mixing
matrix, which would give the ’right’ mass matrices. The CKM matrix can of course
be parametrized and factorized in many different ways, and different factoriza-
tions correspond to different rotation matrices U and U ′, and correspondingly to
different mass matricesM andM ′.

We choose what we perceive as the most obvious and “symmetric” factoriza-
tion of the CKM mixing matrix is, following the standard parametrization [2] with
three Euler angles α, β, 2θ,

V =

 cβc2θ sβc2θ s2θe
−iδ

−cβsαs2θe
iδ − sβcα −sβsαs2θe

iδ + cβcα sαc2θ
−cβcαs2θe

iδ + sβsα −sβcαs2θe
iδ − cβsα cαc2θ

 = UU
′† (6.4)

with the diagonalizing rotation matrices for the up- and down-sectors

U =

1 0 0

0 cosα sinα
0 − sinα cosα

e−iγ 1
eiγ

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

W(ρ) =

=

 cθe
−iγ 0 sθe

−iγ

−sαsθe
iγ cα sαcθe

iγ

−cαsθe
iγ −sα cαcθe

iγ

W(ρ) (6.5)

and

U ′ =

cosβ − sinβ 0
sinβ cosβ 0

0 0 1

e−iγ 1
eiγ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

W(ρ) =

=

cβcθe−iγ −sβ −cβsθe
−iγ

sβcθe
−iγ cβ −sβsθe

−iγ

sθe
iγ 0 cθe

iγ

W(ρ) (6.6)
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6 Phenomenological Mass Matrices With a Democratic Texture 75

respectively, whereW(ρ) is a unitary matrix which is chosen is such a way that γ
is the only phase in either of the mass matrices,0 cos ρ ± sin ρ

1 0 0

0 ∓ sin ρ cos ρ

 ,
 cos ρ 0 ± sin ρ

0 1 0

∓ sin ρ 0 cos ρ

 ,
 cos ρ ± sin ρ 0

0 0 1

∓ sin ρ cos ρ 0


Here ρ is unknown, whereas α, β, θ and γ correspond to the parameters in the
standard parametrization, with γ = δ/2, δ = 1.2±0.08 rad, and 2θ = 0.201±0.011◦,
while α = 2.38± 0.06◦ and β = 13.04± 0.05◦. In this factorization scheme, α and
β are rotation angles operating in the up-sector and the down-sector, respectively.

With the rotation matrices U(α, θ, γ, ρ) and U ′(β, θ, γ, ρ), we obtain the the
up- and down-sector mass matrices

M = U†diag(mu,mc,mt)U and M ′ = U ′†diag(md,ms,mb)U
′,

such that

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 =

=W†(ρ)

 Xc2θ + Ys
2
θ Zsθ e

−iγ (X− Y)cθsθ
Zsθ e

iγ Y − 2Z cot 2α −Zcθ e
iγ

(X− Y)cθsθ −Zcθ e
−iγ Xs2θ + Yc

2
θ

W(ρ) (6.7)

where X = mu, Z = (mt −mc) sinα cosα and Y = mc sin2 α+mt cos2 α; and

M ′ =

M ′11 M ′12 M ′13M ′21 M
′
22 M

′
23

M ′31 M
′
32 M

′
33

 =

=W†(ρ)

 X ′s2θ + Y
′c2θ Z ′cθ e

iγ (X ′ − Y ′)cθsθ
Z ′cθ e

−iγ Y ′ + 2Z ′ cot 2β −Z ′sθ e
−iγ

(X ′ − Y ′)cθsθ −Z ′sθ e
iγ X ′c2θ + Y

′s2θ

W(ρ) (6.8)

where X ′ = mb, Z ′ = (ms −md) sinβ cosβ and Y ′ = md cos2 β+ms sin2 β. The
two mass matrices thus have similar textures.

From Y = mc sin2 α+mt cos2 α, Z = (mt−mc) sinα cosα, Y ′ = md cos2 β+
ms sin2 β and Z ′ = (ms −md) sinβ cosβ, we moreover have

mu = X, mc = Y − Z cotα, mt = Y + Z tanα
md = Y ′ − Z ′ tanβ, ms = Y

′ + Z ′ cotβ, mb = X ′
(6.9)

6.3 The matrix W

We choose the matrixW(ρ) as

W(ρ) =

cos ρ − sin ρ 0
0 0 1

sin ρ cos ρ 0

 , (6.10)
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which gives the up-sector mass matrix

M =W†

 Xc2θ + Ys
2
θ Zsθ e

−iγ (X− Y)cθsθ
Zsθ e

iγ Y − 2Z cot 2α −Zcθ e
iγ

(X− Y)cθsθ −Zcθ e
−iγ Xs2θ + Yc

2
θ

W =

=W†

 A Zsθ e
−iγ H

Zsθ e
iγ F −Zcθ e

iγ

H −Zcθ e
−iγ K

W =

=

 Ac2ρ + Ks
2
ρ +H sin 2ρ 1

2
(K−A) sin 2ρ+H cos 2ρ −Ze−iγ sin(ρ− θ)

1
2
(K−A) sin 2ρ+H cos 2ρ As2ρ + Kc

2
ρ −H sin 2ρ −Ze−iγ cos(ρ− θ)

−Zeiγ sin(ρ− θ) −Zeiγ cos(ρ− θ) F

 ,
(6.11)

With

A = Xc2θ + Ys
2
θ, H = (X− Y)cθsθ and K = Xs2θ + Yc

2
θ,

we get

M =

X cos2 µ+ Y sin2 µ (Y − X) sinµ cosµ −Z sinµ e−iγ

(Y − X) sinµ cosµ X sin2 µ+ Y cos2 µ −Z cosµ e−iγ

−Z sinµ eiγ −Z cosµ eiγ F

 (6.12)

where µ = ρ−θ, and as before, X = mu, Z = (mt−mc) sinα cosα, Y = mc sin2 α+
mt cos2 α, and F = Xs2θ + Yc

2
θ = Y − 2Z cot 2α = trace(M) − X− Y.

Now, depending on the value of µ = ρ− θ, we get different matrix textures,
e.g.

µ = ρ− θ 0 or π π/4 π/2

M11 = Xc
2
µ + Ys2µ X (X+ Y)/2 Y

M12 =
1
2
(Y − X)s2µ 0 (Y − X)/2 0

M13 = −Zsµ e
−iγ 0 −Ze−iγ/

√
2 −Ze−iγ

M22 = Xs
2
µ + Yc2µ Y (X+ Y)/2 X

M23 = −Zcµ e
−iγ −Ze−iγ −Ze−iγ/

√
2 0

M33 = F Y − 2Z cot 2α Y − 2Z cot 2α Y − 2Z cot 2α

So for ρ− θ = 0 or π, we get the simple form

M(0, π) =

X 0 0

0 Y −Ze−iγ

0 −Zeiγ F

 , (6.13)

and for ρ− θ = π/2, equally simple

M(π/2) =

 Y 0 −Ze−iγ

0 X 0

−Zeiγ 0 F

 (6.14)
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Applying the same procedure on the down-sector, we get the down-sector mass
matrix

M ′ =W(ρ)†

 X ′s2θ + Y
′c2θ Z ′cθ e

iγ (X ′ − Y ′)cθsθ
Z ′cθ e

−iγ Y ′ + 2Z ′ cot 2β −Z ′sθ e
−iγ

(X ′ − Y ′)cθsθ −Z ′sθ e
iγ X ′c2θ + Y

′s2θ

W(ρ) =

=

X ′ sin2 µ ′ + Y ′ cos2 µ ′ (X ′ − Y ′) sinµ ′ cosµ ′ Z ′ cosµ ′ eiγ

(X ′ − Y ′) sinµ ′ cosµ ′ X ′ cos2 µ ′ + Y ′ sin2 µ ′ −Z ′ sinµ ′ eiγ

Z ′ cosµ ′ e−iγ −Z ′ sinµ ′ e−iγ F ′

 (6.15)

where µ ′ = ρ + θ, and as before, X ′ = mb, Z ′ = (ms − md) sinβ cosβ, Y ′ =
md cos2 β+ms sin2 β, and F ′ = Y ′ + 2Z ′ cot 2β = trace(M ′) − X ′ − Y ′.

Depending on the value of µ ′ = ρ+ θ, we get different matrix textures.

µ ′ = ρ+ θ 0 or π π/4 π/2

M ′11 = X
′s2µ ′ + Y

′c2µ ′ Y ′ (X ′ + Y ′)/2 X ′

M ′12 =
1
2
(X ′ − Y ′)s2µ ′ 0 (X ′ − Y ′)/2 0

M ′13 = Z
′cµ ′ e

iγ Z ′eiγ Z ′eiγ/
√
2 0

M ′22 = X
′c2µ ′ + Y

′s2µ ′ X ′ (X ′ + Y ′)/2 Y ′

M ′23 = −Z ′sµ ′ e
iγ 0 −Z ′eiγ/

√
2 −Z ′eiγ

M ′33 = F
′ Y ′ + 2Z ′ cot 2β Y ′ + 2Z ′ cot 2β Y ′ + 2Z ′ cot 2β

So for µ ′ = ρ+ θ = 0 or π, we get

M ′(0, π) =

 Y ′ 0 Z ′eiγ

0 X ′ 0

Z ′e−iγ 0 F ′

 (6.16)

and for µ ′ = ρ+ θ = π/2, we get

M ′(π/2) =

X ′ 0 0

0 Y ′ −Z ′eiγ

0 −Z ′e−iγ F ′

 (6.17)

6.4 Texture Zero Mass Matrices

The textures (6.13) and (6.14), as well as (6.16) and (6.17), make us wonder if our
scheme implies quark mass matrices of texture zero.

Texture zero matrices can be said to have come about because of the need to
reduce the number of free parameters, since the fermion mass matrices are 3x3
complex matrices, which without any constraints contain 36 real free parameters.
It is however always possible to perform a unitary transformation that renders
an arbitrary mass matrix Hermitian [5], so there is no loss of generality to assume
that the mass matrices be Hermitian, reducing the number of free parameters to 18.
This is still a very big number, which in the end of the 1970-ies prompted Fritzsch
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[4], [6] to introduce “texture zero matrices”, mass matrices where a certain number
of the entries are zero.

Since then, a huge amount of articles have appeared, with analyses of the very
large number of (different types of) texture zero matrices and their phenomenology.
In the course of this work, a number of of texture zero matrices has been ruled out,
singling out a smaller subset of matrices as viable [7]. Among the texture 4 zero
matrices the only matrices that are found to be viable are:A B 0

B∗ D C

0 C∗ 0

 ,
A B C

B∗ D 0

C∗ 0 0

 ,
A 0 B

0 0 C

B∗ C∗ D

 ,
 0 C 0

C∗ A B

0 B∗ D

 ,
 0 0 C

0 A B

C∗ B∗ D

 ,
D C B

C∗ 0 0

B∗ 0 A


while A 0 0

0 C B

0 B∗ D

 and

A 0 B

0 C 0

B∗ 0 D


are among the matrices that are ruled out. In our scheme this precisely corresponds
to the matrices (6.13), (6.14), (6.16) and (6.17), which means that our mass matrices
M and M ′ are not of texture zero. This can be expressed as a constraint on the
values of the angle ρ,

ρ 6= 1

2
Nπ± θ (6.18)

whereN ∈ Z , ruling out the matricesM(1
2
Nπ− θ) andM ′(1

2
Nπ+ θ), so our mass

matrices M and M ′ are not of texture zero. Instead, they display a democratic
texture.

6.5 Democratic mass matrices

Initially, we were looking for mass matrices with a democratic structure [3], where
the assumption is that both the up- and down-sector mass matrices start out from
a form of the typeM0 = kN andM ′0 = k

′N where

N =

1 1 11 1 1

1 1 1


The underlying philosophy is that in the Standard Model, where the fermions
get their masses from the Yukawa couplings by the Higgs mechanism, there is no
reason why there should be a different Yukawa coupling for each fermion. The
couplings to the gauge bosons of the strong, weak and electromagnetic interactions
are identical for all the fermions in a given charge sector, it thus seems like a natural
assumption that they should also have identical Yukawa couplings. The difference
is that the weak interactions take place in a specific flavour space basis, while the
other interactions are flavour independent.

A matrix of the form M = kN moreover has the mass spectrum (0, 0, 3k),
reflecting the phenomenology of the fermion mass spectra with one very big, and
two much smaller mass values. In the weak basis M = kN is however totally



i
i

“proc17” — 2017/12/11 — 19:44 — page 79 — #93 i
i

i
i

i
i

6 Phenomenological Mass Matrices With a Democratic Texture 79

flavour symmetric, which means that the (weak) flavours fi are indistinguishible
(“absolute democracy”).

In the assumed initial stage, since the up-sector mass matrix and the down
sector mass matrix are identical except for the dimensional coefficients k and k ′,
the mixing matrix is equal to unity, so there is no CP-violation. In order to obtain
the final mass spectra with the three hierarchical non-zero values, the initial flavour
symmetry displayed by the matricesM0 andM ′0 must be broken, in such a way
that the mixing matrix becomes the observed CKM matrix (with a CP-violating
phase).

An “ansatz” within the democratic scenario then consists of a specific choice
of a flavour symmetry breaking scheme. And it is precisely what we are looking
for: a credible flavour symmetry breaking scheme that gives the observed mass
spectra.

Our initial assumption is that the rotation matrices (6.5), (6.6) which diagonal-
ize the up-sector and down-sector mass matrices, are given by the factorization
of the Cabibbi-Koabayashi-Maskawa matrix (6.4), with well-known angles. The
only “steering-parameter parameter” is then ρ, in the sense that different values
of ρ correspond to mass matrices of different form.

6.5.1 A democratic substructure

We now reparametrize the mass matrices (6.12) and (6.15),

M =

 Xc2µ + Ys2µ (Y − X)sµcµ −Zsµ e
−iγ

(Y − X)sµcµ Xs2µ + Yc2µ −Zcµ e
−iγ

−Zsµ e
iγ −Zcµ e

iγ F


and

M ′ =

 X ′s2µ ′ + Y
′c2µ ′ (X ′ − Y ′)sµ ′cµ ′ Z

′cµ ′ e
iγ

(X ′ − Y ′)sµ ′cµ ′ X
′c2µ ′ + Y

′s2µ ′ −Z ′sµ ′ e
iγ

Z ′cµ ′ e
−iγ −Z ′sµ ′ e

−iγ F ′

 ,
in a way that reveals their “democratic substructure”:

M =

P R
Seiγ

1 1 11 1 1

1 1 1

P R
Se−iγ

+

X X
Q

 (6.19)

and

M ′ =

P ′ R ′
S ′e−iγ

1 1 11 1 1

1 1 1

P ′ R ′
S ′eiγ

+

X ′ X ′
Q ′

 (6.20)

where

P =
√
|Y − X| sin(ρ− θ), R =

√
|Y − X| cos(ρ− θ), S = −Z√

|Y−X|
, Q = F− S2,

and
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P ′ =
√
|Y ′ − X ′| cos(ρ+ θ), R ′ = −

√
|Y ′ − X ′| sin(ρ+ θ), S ′ = Z ′√

|Y ′−X ′|
, Q ′ =

F ′ − S ′2.

These matrices can in their turn be rewritten as

M = B

sinµ
cosµ

Geiγ

1 1 11 1 1

1 1 1

sinµ
cosµ

Ge−iγ

+

X X
Q

 (6.21)

where

µ = ρ− θ, B = Y − X, G = −Z/(Y − X), Q = F− BG2.

Likewise,

M ′ = B ′

cosµ ′

− sinµ ′

G ′e−iγ

1 1 11 1 1

1 1 1

cosµ ′

− sinµ ′

G ′eiγ

+

X ′ X ′
Q ′


(6.22)

where

µ ′ = ρ+ θ, B ′ = Y ′ − X ′, G ′ = Z ′/(Y ′ − X ′), Q ′ = F ′ − B ′G ′2.

So without any assumptions about an initial democratic texture, we get a mass
matrix structure that can be interpreted as originating from a democratic mass
matrix, where the flavour symmetry has subsequently been broken in a very
specific manner.

6.6 Flavour symmetry breaking mechanisms

The goal of our investigation is to get some hint about the form that the quark
mass matrices take in the weak basis - and the hint we get from the matrices (6.21)
and (6.22) is that the mass matrices come about from a kind of democratic scenario
where the initial flavour symmetry is broken in a stepwise fashion.

Flavour symmetries relate the different flavours fj, and in the democratic
scenario, where the initial form of the mass matrices is taken to be

M0 = kN = k

1 1 11 1 1

1 1 1

 , (6.23)

the mass Lagrangian reads

Lmass = kf̄Nf =
3∑

i=1,j=1

k f̄ifj

This means that in the democratic scheme, all the flavours fj are initially indistin-
guishible, with the same Yukawa coupling for all the flavours: a totally flavour
symmetric situation.
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Following the hint given by our approach, we now postulate that the mass
matrices originate from a democratic form (6.23), and that the initial overall flavour
symmetries have subsequently undergone a stepwise breaking. To show how this
works, we start with a generic matrixM0, and take the first symmetry breaking
step to be

M0 = kN→M1 =

E E
J

1 1 11 1 1

1 1 1

E E
J

 (6.24)

Here the mass spectrum is basically unchanged even though the flavour symmetry
is partially broken, with the mass Lagrangian

Lmass = kf̄M1f = E
2χ̄χ+ EJ(χ̄f3 + f̄3χ) + J

2f̄3f3

where χ = f1+ f2; thus the flavour symmetry f1 ⇔ f2 is still unbroken. In the next
step, we lift the remaining flavour symmetry by rotating the two equal terms,

(E, E)→ (L sinη, L cosη),

which gives

M1 = kN→M2 = L
2

sinη
cosη

T

1 1 11 1 1

1 1 1

sinη
cosη

T

 , (6.25)

where L2 is the only dimensional parameter, and T = J/L. In order to account
for CP-violation, we moreover introduce a phase γ, in a way that reflects that
CP-violation is connected to the presence of three families (with only two families
there is no CP-violation):

M2 →M3 = L
2

sinη
cosη

Teiγ

1 1 11 1 1

1 1 1

sinη
cosη

Te−iγ

 , (6.26)

where the CP-breaking phase is connected to the third family, as it should. We
know nothing about the values of L, η, T , but by the assumption that the trace of
the mass matrix is constant through all the flavour symmetry breaking steps, we
get

L2 + T2 = 3k

But the matrix M3 still has determinant zero, and a mass spectrum with two
vanishing and one non-zero mass value. We therefore add an extra term to M3,
which like in (6.21) and (6.22), is of diagonal form. This gives us the final mass
matrix

M3 →M4 = L
2

sinη
cosη

Teiγ

1 1 11 1 1

1 1 1

sinη
cosη

Te−iγ

+Λ (6.27)

where Λ is a diagonal matrix.
Our scheme thus reads:
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• We start with the democratic matrix M0 = kN, k = Trace(M)/3, with total
flavour symmetry f1 ⇔ f2 ⇔ f3 in the weak basis.

• Assumption: the trace of the matrixM is constant throughout every flavour
symmetry breaking step.

• First flavour breaking step (6.24):M0 →M1. The flavour symmetry f1 ⇔ f2
still remains, and there is still only one non-zero mass value, but f3 is singled
out.

• Next flavour breaking step (6.25): M1 → M2, lifting the flavour symmetry
f1 ⇔ f2.

• Introducing a CP-violating phase (6.26):M2 →M3.
• Last step (6.27): adding a diagonal matrix to M3, M3 → M4 = M3 + Λ,

whereby we get the three observed non-zero mass values.

6.7 Conclusion

Without introducing any new assumptions, by just factorizing the “standard
parametrization” of the CKM weak mixing matrix in a specific way, we obtain
mass matrices with a specific type of democratic texture and a well-defined scheme
for breaking the initial flavour symmetry. Our approach thus hints at a democratic
scenario, which comes from the formalism without any other assumptions than a
very natural and straightforward way of factorizing the weak mixing matrix.
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