ACTA CARSOLOGICA KRASOSLOVNI ZBORNIK XXII (1993) RAZRED ZA NARAVOSLOVNE VEDE CLASSIS IV.: HISTORIA NATURALIS ZNANSTVENORAZISKOVALNI CENTER SAZU INŠTITUT ZA RAZISKOVANJE KRASA - INSTITUTUM CARSOLOGICUM ACTA CARSOLOGICA KRASOSLOVNI ZBORNIK XXII 1993 PRISPEVEK K ZGODOVINI SPELEOLOŠKIH RAZISKAV ZAHODNE INDIJE - OB 500-LETNICI ODKRITJA AMERIKE THE CONTRIBUTION TO THE HISTORY OF THE SPELEOLOGICAL EXPLORATIONS OF THE WEST INDIES - AT 500-ANNIVERSARY OF THE DISCOVERY OF AMERICA LJUBLJANA 1993 UREDNIŠKI ODBOR JOŽE BOLE, JOŽE ČAR, IVAN GAMS, PETER HABIČ, ANDREJ KRANJC, MARIO PLENIČAR UREDNIK ANDREJ KRANJC Zamenjava - Exchange Biblioteka SAZU Novi trg 5/1, 61001 Ljubljana, p.p.323, Slovenija Tiskano s subvencijo Ministrstva za znanost in tehnologijo Republike Slovenije ter Znanstvenoraziskovahiega centra SAZU. Po mnenju Mmistrstva za kulturo Republike Slovenije št. 415-144/93 mb, z dne 12.1.1993 je publikacija uvrščena med proizvode, za katere se plačuje 5-odstotni davek od prometa proizvodov. VSEBINA - CONTENTS Andrej Kranjc Uvodnik...........................................................................................................................7 CONTRIBUTION TO THE HISTORY OF CAVE STUDIES IN WEST INDIES (TO COMMEMORATE 500 YEARS OF COLUMBUS DISCOVERY OF AMERICA)..........................................................................................................9 Trevor R. Shaw The History of Cave Studies in Trinidad, Jamaica, the Bahamas and some other Caribbean Islands.................................................................................................11 Zgodovina jamskih raziskav na Trinidadu, Jamajki, Bahamih in na nekaterih drugih Karibskih otokih...................................................................................................75 Johanna P. E. C. Darlington Recent work on the caves of Trinidad and Tobago........................................................77 Novejše preučevanje jam na Trinidadu in Tobagu.........................................................86 Alan G. Fincham Jamaican Caves and Cave Exploration..........................................................................89 Jame na Jamajki in njihovo raziskovanje.....................................................................112 Thomas M. lliffe Speleological History of Bermuda...............................................................................113 Zgodovina speleologije na Bermudih..........................................................................135 PRISPEVKA O SLOVENSKEM KRASU...................................................................137 Tadej Slabe Fasete, pomembna sled oblikovanja in razvoja kraških votlin.....................................139 Facets - an Important Trace of Shaping and Development of the Karst Caverns.........172 Metka Petrič Hidrodinamični režim kraškega vodonosnika med solkansko akumulacijo in bruhalnikom Lijakom.........................................................................................179 Hydrodinamic regime of the karst aquifer between the accumulation of the hydro - power station Solkan and the Lijak effluent....................................................199 POROČILA..................................................................................................................201 An Account on Study Exchange with France 1993, Stanka Šebela..............................202 The First International Karstological School "Classical Karst", Janja Kogovšek.........204 An Account of the International Symposium Man on Karst, Andrej Mihevc................205 The International Round-Table "Martel and the Slovene Karst 1893-1993" (Postojna, November 12 - 13, 1993), Andrej Kranjc..........................................207 K.-F. Busch, L. Luckner, K. Tiemer'. Geohydraulik, 3. neubearbeitete Auflage, Metka Petrič........................................................................................208 Zahodna Indija, kot danes imenujemo "Indijo", ki jo je odkril Krištof Kolumb pred 500 leti, so kraški otoki. Na njih je razvit tropski kras in nekatere morfološke oblike krasa, kot je stolpasti kras z "mogoti" na Kubi, depresije "cockpit" na Jamajki, tipični primeri tropskega krasa, ki nastopajo kot "locus typicus " v svetovnem krasoslovju in so dali svoj prispevek tudi k mednarodni krasoslovni terminologiji. V Ameriki je tudi drugod veliko najrazličnejšega krasa: sistem Mammoth Cave je s 531,069 km najdaljši na svetu, v Kanadi so najlepši primeri podledeniškega in periglacialnega krasa, kraški grezi na Floridi povzročajo prave gospodarske katastrofe, "cenotes" (sveta brezna) na Yukatanu so neprecenljive arheološke zakladnice, v Mehiki so orjaška brezna, kraške planote z ogromnimi udornicami v Južni Ameriki so resnični "izgubljeni svetovi". Tudi Slovenci nismo brez stikov z ameriškim krasom: Valvasor, letos mineva 300 let od njegove smrti, omenja v svoji Slavi vojvodine Kranjske (1689) jame v Ameriki, med njimi tudi na otokih Zahodne Indije, brazilski kras je raziskoval naš rojak Peter Slavec, slovenska jamarska odprava je 1978 raziskovala kras na Galapaškem otočju in v Ekvadorju, 1984 pa v Kolumbiji. Zato je uredništvo zbornika Acta carsologica z veseljem sprejelo pobudo našega zunanjega sodelavca dr Trevor ja R. Shawa, da se z vrsto razprav, posvečenih krasu Zahodne Indije, tudi mi s to številko pridružujemo počastitvi Kolumbovega odkritja, proslavitvi 500-letnice priključitve Amerike v krog zahodne civilizacije, obenem pa s tem tudi ponovno pokažemo, da Acta carsologica ni omejena le na Slovenijo, ampak je odprta krasu in krasoslovcem vsega sveta. Urednik West Indies, as is called "India", discovered by Christopher Columbus 500years ago, are karst islands. Tropical karst and some morphological karst features, as is tower karst with mogotes on Cuba, cockpit depressions in Jamaica, typical examples of tropical karst, occur as "locus typicus" in the global karstology and give their contribution to the international karstological terminology. In America there are diverse types of karst developed: the Mammoth Cave Sytem, USA is the world's longest cave (531.069 m), in Canada there are the best examples of underglacial and periglacial karst, karst sinkholes in Florida cause virtual economic catastrophes, cenotes (the saint potholes) in Yucatan are invaluable archaeological treasury, in Mexico there are gigantic potholes, karst plateaus with immense depressions in South America are virtual "lost worlds ". The Slovenes did not remain without contacts with American karst: Valvasor, this year 300th anniversary of his death passes away, mentions in his Die Ehre des Herzogthums Crain (1689) the caves in America, among them one on the islands of the West Indies, the karst in Bresil was explored by our compatriot Peter Slavec, in 1978 the Slovene caving expediton explored the karst of Galapagos and Ecuador and in 1984 in Colombia, a This is why the Editorial Board of Acta carsologica accepted with pleasure the idea of our nonresident member Dr. Trevor R. Shaw to join, with a series of treatises, dedicated to the karst of the West Indies, the celebrations of the Columbus's discovery, the celebration of500-years of incorporation of America to the circle of the western civilization and thus to show again, that Acta carsologica is not limited to Slovenia only but is opened to karst and karstologists of all the world. Editor CONTRIBUTION TO THE HISTORY OF CAVE STUDIES IN WEST INDIES (TO COMMEMORATE 500 YEARS OF COLUMBUS DISCOVERY OF AMERICA) THE HISTORY OF CAVE STUDIES IN TRINIDAD, JAMAICA, THE BAHAMAS AND SOME OTHER CARIBBEAN ISLANDS ZGODOVINA JAMSKIH PIAZISKAV NA TRINIDADU, JAMAJKI, BAHAMIH IN NA NEKATERIH DRUGIH KARIBSKIH OTOKIH TREVOR R. SHAW Izvleček UDK 551.442 (729)(091) 591.542 (729) Shaw, Trevor R.: Zgodovina jamskih raziskav na Trinidadu, Jamajki, Bahamih in na nekaterih drugih Karibskih otokih Prisotnosttolstičnikajezbudilazanimanje zajame na Trinidaduvzačetku 19. stol. V nadaljevanju so preučevali netopirje, višek raziskav je bil povezan s preprečevanjem stekline v 30-tih letih 20. stol. Geološke raziskave so bile drugotnega pomena (Geological Survey Memoir 1860). Tudi potniki so opisovali predvsem jame s tolstičniki, dokler po 1940 niso pričeli s pravimi speleološkimi raziskavami. Potniki in domačini so opisovali jame na Jamajki od 1688 dalje. Zanesljive geološke raziskave so se pričele 1824. Zaradi preučevanja netopirjev je bilo veliko obiskov jam okoli 1860. Jame na Bahamih so bile objavljene 1725 in kasneje so jih preučevali geologi in ljudje, ki so se zanimali za izkoriščanje guana. Jamske slike na Arawaku so bile opisane 1889. Podmorske jame (Blue Holes) so bile objavljene okoli 1840, jame na manjših otokih pa 1749 (Antigua), 1773 (Caicos), 1813 (Barbuda) in 1878 (Grenadini). Najstarejše omembe so na pomorskih kartah, zemljevidih ali v navodilih za pomorščake. Ključne besede: regionalna speleologija, zgodovina speleologije, netopirji, tolstičnik, guano, steklina, hystoplasmosis; Amerika, Zahodna Indija, Jamajka, Trinidad, Bahami. Abstract UDC 551.442 (729)(091) 591.542 (729) Shaw, Trevor R.: The History of Cave Studies in Trinidad, Jamaica, the Bahamas and some other Caribbean Islands Interest in Trinidad caves arose early in the 19th century because of the presence of the the guacharo. Continuing study was supplemented on bats, which culminated in research to control the rabies in 1930s. Geological aspects took second place (Geological Survey Memoir 1860). Travellers' accounts were limited to guacharo caves until speleological explorations commenced in the 1940s. Caves in Jamaica were described, from 1688, by residents and travellers. Geological investigations of generally high quality began in 1824. Bat studies resulted in a number of cave visits about 1860. Caves in the Bahamas were noted in 1725 and studied later geologists and those interested in the exploitation of guano. Arawak petroglyphs were described in 1889. The underwater caves, or Blue Holes, were recorded about 1840. Caves in other small islands were recorded in 1749 (Antigua), 1773 (Caicos), 1813 (Barbuda) and 1878 (The Grenadines). All the earliest references are on charts, maps, or instructions for mariners. Key words: regional speleology, speleological research history, bats, guacharo, guano, rabies, hystoplasmosis; America, West Indies, Jamaica, Trinidad, Bahamas. Naslov - Address Dr. Trevor R. Shaw, O.B.E. Old Rectory Shoscombe Bath BA2 8NB, U.K. CONTENTS PREFACE.......................................................................................................................15 TRINIDAD TO 1950...................................................................................................... 17 Guacharos in the North-Western Islands and Adjacent Coastal Caves........................18 Tourist Visits and Guide-Books...................................................................................22 The Geological Survey Memoir...................................................................................22 The Guacharo Cave of Oropuche.................................................................................24 Guacharo and Other Caves at Aripo............................................................................27 Guacharos at Arima.....................................................................................................28 Bats..............................................................................................................................28 Other Cave Fauna........................................................................................................30 Cave Exploration for its Own Sake..............................................................................31 After 1950....................................................................................................................31 JAMAICA TO 1940 .......................................................................................................35 Travels 1688-1866 .......................................................................................................35 Geologists....................................................................................................................44 De la Beche...............................................................................................................44 The Geological Survey Memoir of 1869...................................................................45 Hill and Danes..........................................................................................................46 Popular and Guide Books............................................................................................46 Prehistoric and Quaternary Remains............................................................................47 Bats and Guano............................................................................................................47 Cave Fish and other Fauna...........................................................................................48 THE BAHAMAS TO 1950 ............................................................................................50 Blue Holes...................................................................................................................52 Caves............................................................................................................................60 ANTIGUA, BARBUDA, CAICOS ISLANDS, CAYMAN ISLANDS AND THE GRENADINES TO 1950 ....................................................................................64 ANTIGUA...................................................................................................................64 BARBUDA..................................................................................................................67 CAICOS ISLANDS.....................................................................................................70 CAYMAN ISLANDS ..................................................................................................71 THE GRENADINES...................................................................................................72 POVZETEK....................................................................................................................75 PREFACE Despite the Caribbean being a single region there has been no common thread in the exploration and study of its caves and karst regions. Worlc in one part generally had little or no influence elsewhere. Indeed the individual islands or groups of islands, although some of them are close together, mostly have quite different histories of investigation. , In part this may have been due to the influence of the colonizing powers - Spain, Great Britain, France, the Netherlands and USA - which caused different languages and customs in the regions they ruled. This does not, however, explain the differences between one island and another. More, it seems, this was dependent on the specific concerns of each one - water supply, guano, edible birds, fossils, floods, picturesque caves, etc. - and on the interests and contacts of individual people living in each island. Since World War II, i.e. after the period covered by this paper, the former links with Europe remained, and easier travel resulted in many study visits and 'expeditions' specially to the karst regions. Some of these were from central European countries which had not previously been involved there, but each with a long tradition of karst study. Research by Panoš and Štelcl (1968) was particularly important, and Czechs, Hungarians, Poles, Romanians and others have all done significant work there. Some caves in the Caribbean islands were described quite early in the 17th century, and in Mexico in the 16th. Caves in the Yucatan peninsular of Mexico had been used by the Mayan Indian people much earlier. Not surprisingly, Valvasor (1689) already knew of several caves in the Caribbean and Central America. Although he never visited the area, his extensive knowledge of the literature world wide enabled him to describe: - a cave, in the island of Hispaniola, in which is a great crashing and roaring. Valvasor named his source as Petrus Martyr, and examination of the fuller description there shows that the cave was almost certainly the Boca del Infiemo (also known as Cueva Fun Fun) on the edge of Bahia de Šamana in the north-eastern part of the island. - a cave with a river in it near San Augustin in the Verapaz region of Guatemala. This is undoubtedly the Cueva de Lanquin. Valvasor's source was evidently the book by Dapper (1673, 305) which he includes in his published list of sources, but Dapper's description in turn is clearly taken from Johannes de Laet (1633). - a cave near 'Kuertlavaka' (probably Cuertlavaca near Oaxaca) in Mexico. Valvasor cites Dapper's book (1673, p.287) but this itself is evidently based on the then unpublished description of 1629 by Antonio Vazquez de Espinosa (1942, 182) Fig. 1. Cave locations in northern and central Trinidad SI. 1. Lega jam na severnem in srednjem Trinidadu 1. Chacachacare Island 2. Huevos Island 3. Monos Island 4. Ance Paua 5. Gasparee Cave in Caspar Grande 6. Point Gourde 7. Diego Martin 8. Las Cue vas 9. Blanchisseuse 10. Caura 11. Lopinot 12. Arima 13. Aripo 14. Oropuche 15. Mount Tamana 1. Chacachacare Island 2. Huevos Island 3. Monos Island 4. Ance Paua 5. Gasparee Cave in Gaspar Grande 6. Point Gourde 7. Diego Martin 8. Las Cue vas 9. Blanchisseuse 10. Caura 11. Lopinot 12. Arima 13. Aripo 14. Oropuche 15. Mount Tamana T. R. Shaw, The History of Cave Studies in Trinidad, Jamaica, the Bahamas and some other Caribbean Islands References D[apper], O., 1673: Die unbekante Neue Welt, oder Beschreibung des Welt-teils Amerika, und des Sud-Landes ... Amsterdam, Jacob von Meurs Laet, J. de, 1633: Novvs orbis seu descriptionis Indiae Occidentalis. Leiden, Elzevir Martyr, P., 1516: De orbo nouo decades. Alcala, Guillelmus, Dec. Ill Lib. VII (there were also many editions in the 17th century) Panoš, V. & Štelcl, O., 1968: Physiographic and geologic control in development of Cuban mogotes. Z. Geomorph., 12, pp. 117-165 Valvasor, J.W., 1689: Die Ehre dess Herzogthums Grain. N Dmberg-Laybach, vol. 1, pp. 142, 487, 490 Vazquez de Espinosa, A., 1942: Compendium and description of the West Indies (trans. C.U. Clark); Smithsonian Miscellaneous Collections, vol. 102 TRINIDAD TO 1950 Abstract: Interest in Trinidad caves arose early in the 19th century because of the presence in them of the cave-dwelling bird, the guacharo. Continuing study of the bird and its haunts was supplemented from the 1890s by work on bats, which later culminated in research to control the rabies epidemic of the 1930s. Geological aspects of the caves tended to take second place despite the Geological Survey Memoir of 1860. Travellers' accounts were usually limited to guacharo caves until cave exploration for its own sake commenced in the 1940s. The principal caves in Trinidad, including most of those investigated during the period covered by this chapter, are in the Jurassic limestone of the Northern Range of hills and in the islands forming its continuation off the north-west comer of Trinidad. There are also a few caves on the coast of the northern part of the island. Those of Mount Tamana in the central range apparently remained unrecorded until the 1940s. The locations of caves referred to are shown in Fig. 1. To describe the history of cave studies in Trinidad either in a strictly chronological sequence or by rigid regional demarcations would be unhelpful. Instead, the main division here is by the subject of investigation, e.g. guacharos, bats, bugs, or exploration per se, with regional sub-division within each. There are exceptions to these arrangement in two places. Because tourist visits developed to see the guacharo caves of the more or less accessible islands, guide-books and tourism are treated unmediately after the main accounts of the birds there. Secondly, the Geological Survey Memoir of 1860, though referring very little to caves, is of such significance that it is considered separately at an early stage in the chapter. The main divisions, therefore, are: - guacharos in the north-western islands and adjacent coastal caves; - tourist visits and guide-books; - the Geological Survey Memoir; - the guacharo cave of Oropuche; - guacharo and other caves at Aripo; - guacharos in the gorge known as Dunstan Cave at Arima; - cave bats; - other cave fauna; - cave exploration for its own sake. Guacharos in the North-Western Islands and Adjacent Coastal Caves The cave literature of Trinidad is enhanced by the interest taken in the cave-dwelling Guacharo or Oil Bird (Steatomis caripensis), as well as the more usual concerns with guano, bats, other fauna, geology and casual sight-seeing. Indeed the earliest reference to caves in Trinidad is also, not surprisingly, the first account of the guacharo living there. Dr. John Latham (1823, 366-368) writes as follows: [The Trinidad Goatsucker] Inhabits the Island of Trinidad, and adjacent parts, has a plump body, and [is] excessively fat, particularly the abdominal region and rump, I owe the above account to the kindness of I.V. Thompson, Esq. who informed me, that he first became acquainted with this bird at the regimental mess in Trinidad, in 1803, when they were served up without the heads or feet, under the name of Dumpy Ducks, or Diablotins, and said to be considered as one of the greatest delicacies afforded by the Island; but as they did not seem to be much relished by unassimilated palates, and wishing first to know what description of bird it was, at that time did not taste of them; but considered them of the greater interest, as no person could be found capable of furnishing the requisite information; and it was not till 1809 that he again met with them, although annually brought to market, which the little that could be collected of their history will in some measure explain. They inhabit coves* of the Islands forming the Bocases, an entrance into the Gulf of Paria, accessible only at the very lowest ebb tides, and in moderate weather; and as they are never observed on the wing in the day time, most probably, like the rest of the Genus, seek their food in the absence of the sun; here they breed, during the early part of spring, and it is at the time of new and full moon, in April and May, that the people, who are acquainted with these coves*, resort thither; when finding the young ones not sufficiently fledged to be able to fly, they speedily fill their boats; not, however, despising the old ones, many of which are knocked down with sticks, and constitute a portion of their cargo: but as such as happen to be killed, in this horrible affray, amid the screetches of the whole, and the attacks of the old ones, will not, in many instances, keep a sufficient time to reach the market; these are most generally packed on the spot, in barrels, with bay salt, after being plucked, gutted, and divested of their heads and feet: and are sold from about a shilling to as far as eighteen-pence a piece sterling; and it is astonishing with what avidity this noisy cargo is bought up by all classes of the people, the moment it reaches the town wharf; so that a boat load of many hundreds entirely disappears in the course of an hour or after two. We believe that the above species is not already known to ornithologists, unless the * see comment in text below following extract from Monsieur Depens, in his History of South America, may allude to it. He says, 'In the Mountain Turmeriquiri, situated in the interior of the Government of Cumana, there is a cavern called Guacharo: it is immense, and serves as a habitation for millions of nocturnal birds, (a new Species of the Caprimulgus of Linnaeus), whose fat yields the Oil of Guacharo.' In view of this uncertainty of identification, Latham does not venture a Latin name for the bird. The guacharo of Trinidad is in fact the same Steatomis caripensis as occurs in Venezuela. John Latham (b. 1740; d. 1837) was a British ornithologist and Fellow of the Royal Society, who is perhaps best known for his 11-volume A General History of Birds in which this account appears. The word 'coves' he uses for the places where the birds were taken does in fact mean caves. The Oxford English Dictionary shows that the word was in active use with this meaning at least until 1849, and it survives still in the names of a few caves, such as Cleaves Cove in Scotland. Besides, comparison with later descriptions of the guacharo cave in Huevos island in the Bocas make it clear that it is of this that Latham is writing. Although the guacharo may well have been taken from caves as food for centuries before it was first recorded in 1799 by Humboldt and Bonpland (1814) in nearby Venezuela in 1799, consumption in Trinidad was always relatively local. Thus as a delicacy for commerce the guacharo did not approach the swiftlet (Collocalia sp.) of south-east Asia, the widespread trade in which was recorded as early as 1600 or before and which still continues today. It is important to point out that the name Diablotin, or Devil Bird, is also applied in the Caribbean to a totally different species, the Blackcapped Petrel (Pterodroma hasitata) which roosts in small holes in the ground like a martin or a rabbit. Thus it was this petrel which was referred to by Du Tertre (1654) and which gave its name to the highest mountain in Dominica, Mome Diablotin, where it used to occur (Feilden 1890). The distinction was first pointed out by Hautessier (in Bory de Saint-Vincent 1838). Most accounts refer to the presence of guacharos in the island of Huevos. They are also recorded on the nearby mainland coast in a cave Anse Paua. Although bats are present in the caves of Caspar Grande and Chacachacare, guacharos have not been seen there. The next writer to refer to guacharos in Trinidad is more precise in stating where they were found. Hautessier (in Bory de Saint-Vincent 1838) was the first to see the birds in their natural environment there. His account is concerned principally with the birds themselves so only those parts of it relating to the caves where they occur is printed here (in translation): One of the largest and most visited by hunters is on the northern side of Huevos Island ... Without any doubt the caves owe their existence to the dissolving and destructive action of the sea, for all their entrances are at the height at which the waves break. It is because of this that problems arise in hunting out of season, and especially in January, the month of my visit To capture the young Guacharos, the fine weather of April and May is usually chosen, When the sea is as smooth as glass, so as to be able to reach the caves without fear of damaging the boats... Once the dangers of landing are past, there are many others to overcome: much strength is needed to crawl in the very narrow passages, to climb the high rocks, and finally to get into the roof fissures in which the birds nest. But as the collectors hang on in some well-chosen place they seize hundreds of Guacharos of all ages with their bai'e hands and throw them down to the floor of the cave which is soon littered with them. Only the fear of the sea getting up and closing the entrance is capable of stopping the hunters' frenzy of destruction. They fill their boats and take them straight to the markets of Port of Spain where the birds are greatly sought after by gourmets despite the great quantities of unpleasant fat they contain, and their strong smell. A preserved specimen of a guacharo taken by Hautessier, together with a nest and eggs, was presented to the Acad,mie des Sciences in Paris in August 1838. The Huevos cave, 'swarming with guacharos', is referred to by De Verteuil (1858, 293) and the bird is described by L,otaud (1866, 65-69) in his standard work on the birds of Trinidad. L,otaud lived in Trinidad and he was the first to state that the guacharo occurs also in caves inland; the one at Oropuche (see later) was on the family land (Darlington, pers. comm.) and he probably knew of their presence there. The novelist Charles Kingsley (1871, vol. 1, 203-205) set out early in January 1870 to visit the guacharo cave in Huevos but the sea was running so high that the boat was unable to enter. His graphic description of the conditions, however, makes it clear how the birds there avoid human interference for much of the year. Kingsley's boatman was the same Mr. Morrison who is said (Chapman 1894, 60) to have discovered the cave. A rather more professional, and successflil, visit to the Huevos cave was made about 1883 by William Homaday of the National Museimi of Natural History in Washington, D.C. His own account of this is printed in The Standard Natural History (J.S. Kingsley 1885, vol. 4, 386) and provides the earliest description of the cave: Half an hour's pull along the precipitous side of Huevos Island brought us to a tiny bay hemmed in by the same high wall of rock. A turn to the left around some half-sunken rocks and we were at the entrance of the cave, a black, semicircular hole at the base of the cliff, six feet high and twelve wide, into which the swells of the sea dashed every moment. The oarsmen held the boat carefully in position until a big wave came rolling in, when they sent the boat flying forward on its crest. We passed safely over the sunken rocks, and the next roller, which lifted the boat so high that we had to crouch down in order that our heads might escape the roof of the tunnel, brought us to terra firma. Scrambling out upon the pebbly beach we found rising before us a huge dome-like cave. The moment we entered there arose a perfect storm of rasping cries coming fi'om the throats of about two hundred guacharo birds that circled about the top of the cave. The walls of the cave were smooth bare rock, but at one side a huge mass of fallen rock formed a series of ledges from the floor up to a height of thirty feet. Climbing upon this we found numerous nests of the guacharos. The rocks were covered with guano to a depth of several inches. Whenever a smooth spot offered a safe resting place the nests were placed like so many cheeses, while others were built half swallow-like on the slopes. As nearly as we could estimate there were about seventy or eighty nests, nearly all of which we searched for eggs. In different nests we found the number to vary from one up to four, so that we are unable to say what is the usual number laid. A vivid account of the same visit was later published in a popular book by the same author (Homaday 1925, 140-145). The guide was not Mr. Morrison but a David Basanta who lived on Monos Island. Ten years after Homaday's visit, Frank Chapman (1894, 60) entered the Huevos Island cave on 5 May 1893 with its discoverer Mr. Morrison as guide, and estimated the total number of birds present as 200. He collected debris of the birds' food, largely seeds and fruit pips, which were identified by McAtee (1922). Chapman also visited a cave on the main island of Trinidad in the first Boca. It contained apparently not more than fifty birds. There is no beach or floor in this cavern; the water reaches to its innermost parts, and as the walls are precipitous I was unable to explore it for nests. This is the cave in the cliffs about 400 m to seaward of the small bay locally known as L'Ance Paua (Williams 1922, 168). Williams himself entered the cave on 12 May 1918: About halfway back in the cave I climbed out of the boat and found the water about two feet deep, getting shallower to the back of the cave. About a dozen or twenty birds were nesting on ledges high up on the walls but all were out of reach so I cannot say if laying was taking place or not. The cave is not in limestone. Guacharos were still present in 1945 or 1946 (Pawson, c. 1948, 5) but are not there now. It is possible that guacharos may formerly have occurred in a cave in Monos island also. Two specimens obtained between January 30 and February 2 1884 by naturalists from the U.S. Fish Commission steamer 'Albatross' were recorded by Ridgway (1884) as from Monos, though they could have been supplied by Monos inhabitants who exploited the nearby colony in Huevos. The only other mention of a Monos cave being a guacharo site is by Carricker (1931) who reported the birds to be present there in 1930. There is no first-hand account of their being seen there and Snow (1962) does not record the island either as an active or a former location for the birds. Komisarcik (1979) does refer to their presence there but it is evident that his party did not see them. There is however a small inland cave where bats occur (Darlington, pers. comm.). Commercial harvesting of the guacharos on Huevos has long since ceased, though some casual collecting for food continued at least until recently. Tourist Visits and Guide-Books We started one morning for a cave which exists on a neighbouring island. It was beautifully hung with glittering stalactites, which gave it the effect of being supported on white marble arches and columns. In one place these rose direct out of the azure depths, which lay as motionless as a mirror around them. The vaulted roof, fretted, Moorish fashion, was prettily reflected in its bright surface, and looking down into its recesses, the rocky floor could be plainly seen four fathoms below. I undressed for a dip, swimming in and out among the Gothic transepts and aisles. The water was tepid. A more romantic bath can scarcely be imagined, and the Greeks of old would at once have assigned it to the nymphs, or pointed it out as the grotto where Diana took her morning plunge. It was partly lighted from the entrance, and partly by a torch which we had brought with us (Stuart 1891, 86-87). This 1858-1859 account of a tourist visit, evidently to the cave in Caspar Grande or Gasparee Island, clearly owes nothing to scientific investigation and fitly opens a consideration of early cave tourism and the guide-books and services provided for it. 5»spari C»9f 5»spari Fir« Jsteii, Iriniiaci B- W- J. Fig. 2. Gasparee Cave about 1903 or before, on a postcard SI. 2. Razglednica Gasparee Cave okoli 1903 ali prej Collens's Guide to Trinidad (Collens 1888, 225-226) mentions 'some curious limestone caves, containing singular petrifactions and swarming with ... bats, which may be explored at low water' in Caspar Grande. To go beyond Monos 'you must engage a boat. I know of no better guide than Mr. Morrison if you can secure his services. He will pilot you to the celebrated cave at Huevos'. By 1908 there were regular steamer services on four days a week to Caspar Grande, Monos and Chacachacare (Ober 1908, 484-486) but a visit to the cave in Huevos still required a small boat to be hired specially. Houses were available for rent on Monos, Huevos and Chacachacare, though visitors had to take their own provisions with them (Aspinall 1907, 136; Ober 1908, 485). It was about this time that tourist visits to Gasparee Cave on Caspar Grande were promoted. A picture postcard (Fig. 2) was issued in the days when postal regulations allowed only the address to be written on the reverse side (i.e. before about 1903). A series of at least five photographic postcards, by 'HJB', were produced later; one of them has been seen with a postmark of December 30,1921. Other postcards appeared towards 1930. Steps were built in the cave some time before 1936 to improve access and it is said (Pawson c. 1948, 6) that the Trinidad Field Naturalists' Club held some of its meetings in the cave. The attraction ofthe Gasparee Cave featured in the 1936 guide (Digby 1936,182-184), and the same book (181) noted that 'boating excursions can be arranged and picnic parties made up for a visit to the Guacharo Caves at Huevos..., entrance being obtained at low tide'. The Geological Survey Memoir The Geological Survey Memoir on Trinidad (Wall and Sawkins 1860) is treated separately here, partly because of its intrinsic importance and partly because its point of view, unlike that of nearly all the other writers on Trinidad caves, is primarily geological. The preface is dated December 1858 and the field work involved was no doubt spread over several years before that. Only a few pages (27-29) of the whole volume refer to caves, but in every case the information given is the earliest to be published on that cave. First, and most prominent because it is accompanied by the engraving reproduced in Fig. 3, is a cave in the Diego Martin district. It 'has a considerable deposit of the latter substance ['crystallized spar'], and is resorted to by vast numbers of bats'. There are several caves at Diego Martin, but the only one listed by Goodwin and Greenhall (1961, 293) as containing bats is the La Fontaine Cave in Petit Valley, 2 km east of Diego Martin village. It is presumably 'the Diego Martin bat cave' visited in 1934 by Ditmars and Bridges (1935, 81) but it seems to have been destroyed since then (pers. comm. Greenhall to Darlington). The part of the Memoir describing the Oropuche Cave is reprinted later, in the section dealing with that cave. Also, smaller 'cuevas de guacharos' are reported in the heights of Aripo and Arima'. A guacharo cave 'at Acona [or Acono], is not in limestone at all, being produced by the water having eroded a passage through very hard mica slates which arch over the stream'. Williams (1922, 171) 'made a close search of the Acono valley (a branch of the Maracas Valley)' and found, not a roofed cave, but a cave-like gorge 'exactly similar to the Arima Valley locality and apparently quite suitable for the guacharos, but none were present.' The second cave illustrated in the Survey Memoir is labelled as 'Cavity in schist near Blanchisseuse' but is not referred to in the text. Blanchisseuse is on the north coast of Trinidad, and the picture appears to show a small natural bridge or tunnel open to daylight at both ends. Somewhat similar wave-cut caves at Las Cuevas, some 10 km west of Blanchisseuse, had earlier been mentioned by Dauxion Lavaysse (1813, vol. 1, 47). The Guacharo Cave of Oropuche Guacharos in Trinidad having been first recorded, first collected and first studied in the caves of Huevos and Monos islands, the history of those caves has been considered first and followed up until the 1940s. Nevertheless it was as early as 1860 that another major cave site of the guacharo was recorded (Wall and Sawkins 1860, 27-29): Fig. 3. A cave at Diego Martin, probably La Fontaine Cave, from an engraving in the Geological Survey Memoir (Wall & Sawkins 1860) SI. 3. Jama pri Diego Martin, verjetno La Fontaine Cave, na risbi v Geological Survey Memoir (Wall in Sawkins 1860) Perhaps the most remerkable cavern is situated at the base of the hill of Oropuche. This mountain rises to over 2,000 feet, and consists of calcareous rocks, which are extensively fissured. That circumstance facilitates the accumulation of a considerable body of water in the upper part of the cave, whence it flows in a constant and abundant stream, forming the origin of the river Oropuche. At the entrance the dimensions are about 30 feet high by 14 feet wide, and these are preserved for 100 feet; after which the area contracts. The cavern is distinguished as the habitation of the curious nocturnal bird termed guacharo... As has been seen already, the cave was probably the source of L,otaud's statement (1866) that guacharos were to be found in inland caves as well as in those by the sea. A visit to Oropuche cave on 2 March 1895 by F.W. Urich was described in detail in the Journal of the Trinidad Naturalists' Field Club, of which Urich was a prominent member. The Guacharo cave is pierced in the vertical side of the wall of crystalline limestone a hundred feet high, the entrance is about 25 feet in height and about 15 feet broad. Strewn about it are some huge boulders. .The first thing to greet us was the smell of the birds and their deposits. They were of a decided "cockroachy" aroma. There are numerous rocky ledges and cavities in the sides. It is difficult for me to judge the distance I penetrated as progress was very slow but I should say that about 150 yards is not over estimated. In the bottom of the cave is a clear running stream in which we waded, reaching as a rule to above the ankle and sometimes above the knee. The bottom is composed of white quartz pebbles and sand; strewn about the bed are large boulders with jagged ends which make progress very slow. At the sides of the river, out of the current, there is a large accumulation of guano and seeds of, so far as I could judge, several kinds of palms. The roof of the cave slopes downwards and at the further end I could not stand erect, while the water was above my knees. Divesting ourselves of as much clothing as we could without running the risk of getting chilled, we each lighted a pavil and entered the cave. The scene which met our eyes and the noises we heard were of peculiar weirdness. Above our heads about a hundred birds fluttered, wheeled, darted, and screamed. The beating of their wings their shrill and piercing cries and croakings together with the rushing and murmuring of the stream created an impression which cannot be described but which was intensified by the vaulted rocks and repeated by the echoes in the depth of the cavern. Ped, by fixing a pavil at the end of a long rod bent at the end like a shepherd's crook, to which was attached a fish hook, showed me the nests of the birds some 25 feet above our heads. They were mostly in the holes and fissures of the rock, with which the sides of the cave are riddled. Feeling about the nest with the hook we managed to get two young ones, but they were very young and not yet fit for table. Most of the birds were still sitting on nests built of clay of a reddish colour. As we penetrated into the cave the noise increased, but when we got into the lower parts, no more guacharos were seen and we got into the region of the bats, which belonged to Chilonycteris rubiginosa species and were in numbers, treating us to a shrill concert which was answered by the plaintive cries of the guacharos in the distance. After securing a few specimens we retraced our steps and after various tumbles over the boulders emerged into daylight and seated ourselves at the entrance on the banks of the river and rested (Urich 1895). The cave was visited by Urich again, in company with Freeman and Williams (1922, 168-169) on 23 April 1916. The birds were nesting at that time and there were some 30 or 40 nests on ledges from six feet above the river to the highest part of the walls. It was the Oropuche cave that was visited by Theodore Roosevelt (1917), the former President of the United States, also with Urich and also in 1916. Roosevelt was a recognized naturalist of wide interests. He appears in the foreground of a photograph taken outside the cave by Urich and reproduced as Fig. 4. Roosevelt mentions the presence of bats in addition to the birds, and also noticed that seeds from the birds' food were germinating in the guano, though he mistook the growths for ftingi. Another quite detailed description of the cave resulted from a visit in June, probably of 1930, by M.A. Carricker (1931, 190-194). Fig. 4. Theodore Roosevelt (front) and two companions outside the Oropuche cave in 1916 (photo by F.W. Urich, reproduced from Roosevelt 1917) SI. 4. Theodore Roosevelt (v ospredju) in dva tovariša pred Oropuche cave leta 1916 (foto F.W. Urich, reprodukcija iz Roosevelt 1917) T. R. Shaw, The History of Cave Studies in Trinidad, Jamaica, the Bahamas and some other Caribbean Islands Guacharo and Other Caves at Aripo A cave (or caves) at Aripo had been mentioned by Wall and Sawkins (1860, 29) as reputedly occupied by guacharos. Clearly the authors had not been there, so the earliest detailed report must date from 1922 (Williams) or possibly from 1911. D.C. Plummer (1911) was an Agricultural Inspector in Trinidad who published in The World Wide Magazine how a neighbour of his, who remained anonymous, had fallen while trying to descend the entrance shaft of 'the Bottomless Pit' near the entrance of a famous guacharo cave some miles from Arima. His wife had fallen too, but they had landed on sponge-like moss which broke their fall. Eventually they reached another entrance above the coast near Blanchisseuse. The title page of the magazine describes it as 'an illustrated monthly of true narrative' but whatever in this story may be truth is so obscured that it is impossible to identify the cave concerned with certainty. However, Dr. Johanna Darlington (pers. comm.) suggests that it might be based partly on Soho Cave at Aripo. CAVE I. £250' Cove 3 ntorj surfact LEQEMD Course of Covt 1 Cove 2 .../V Cove 3 _/V Sfreoms : Surveyed Unsurveyed -- Track - Aripo Pivt, tJ«w C«>i2 Monjkr LimutopK cliffj and crajs Fig. 5. A previously unpublished plan of Aripo Caves No. 1, 2 and 3, surveyed in 1940 by Gunther and Chenery (reproduced by courtesy of Trintoc) SI. 5. Neobjavljen načrt Aripo Caves No. 1, 2 in 3, meritev 1940, Gunther in Chenery (reproducirano z dovoljenjem Trintoca) C.B. Williams (1922, 169), already cited so often, mentions a guacharo cave at Aripo very briefly. He had not visited it but had heard that it contained the largest guacharo colony in the island; this is certainly not so now. 'It has been visited on several occasions by Mr. E. Andre but so far as I am aware no account of it has ever been published.' Nor is anything known now of Mr. Andre. In 1922 also a Major D.R. Latham, who had been in charge of the Government's survey, penetrated for 610 m in Aripo Cave No. 1 (Gunther 1940). The initials GLA were painted on the wall at this point. The exploration is apparently unpublished and, surprisingly, it has not been possible to trace any information about Major Latham. It was probably in 1929 that M.A. Carricker (1931, 187-189) explored what he called the Shagramal Cave, now known as Aripo Cave No. 1. It is a stream cave containing both guacharos and bats. Nearby, Carricker (189-190) used a rope ladder to descend another cave in the same district, entered by an 18 m shaft - perhaps the original or inspiration of the Wide World cave. Two more caves were also noted, one of them with 6 m shaft near the entrance. In 1937 the naturalist and popular writer Ivan Sanderson (1939, 35-77) was combining his honeymoon with a collecting expedition when he visited Aripo Cave No. 1, where he noted that the guacharo guano was 5 m deep, and also another cave which contained some vampire bats as well as other species. The Aripo Caves No. 1, 2 and 3 were surveyed in 1940 by A.E. Gunther and Dr. E. Chenery. A detailed description, with a location map, was published in The Trinidad Guardian (Gunther 1940) and gave passage lengths of about 853 m, 152 m and 305 m respectively for the three caves. The survey of the caves referred to in the text was not printed with the article but an unpublished copy was traced in the files of the Trinidad and Tobago Oil Company by their archivist, who has provided the copy reproduced here (Fig. 5). A rather more accessible description of Aripo C^ive No. 1, written in 1948, has been publishe by Pawson (1974). Guacharos at Arima The Arima valley was the site of another of the guacharo caves heard of but not seen by Wall and Sawkins (1860, 29). Williams (1922, 170-171) describes the place: ... on searching in company with Mr. Urich on June 2, 1918 we found that it was not a cave but a deep narrow canyon that had been chosen by the birds. The river has cut a deep ravine, forty to fifty feet deep and less than ten feet wide in the soft schist that forms so much of the northern range and in the semi-gloom near the bottom of this, and ten to fifteen feet above the level of the water seven nests were found. This 'cave' is sometimes called Dunstan Cave (e.g. on the modem tourist maps), Asa Wright Cave or Spring Hill Cave. It was visited on 17 April 1926 by Gloria Hollister, in company with Urich, and she described it in a popular article (Hollister 1926). T. R. Shaw, The History of Cave Studies in Trinidad, Jamaica, the Bahamas and some other Caribbean Islands Bats The subject of cave bat research provides a convenient place to introduce the Trinidad Field Naturalists' Club, the president and other members of which studied bats and explored caves and whose journal published their findings. The Club was founded in 1891 and its journal first published in 1892. Already the name of one of its members - F. W. Urich - has appeared often in these pages. The Society, though, like most scientific societies, was more than the sum of its members and its publications. It provided stimulation for work appropriate to its aims and, by meetings and publication, encouraged its progress, Of the members one of the most prominent in cave work and over the longest period was Frederick William Urich (b. 1879, d. 1937) (Fig. 6), whose exploration of the Oropuche ■MHII Fig. 6. F.W. Urich, probably in the 1920s (from Howard 1930) SI. 6. F.W. Urich, verjetao okoli 1920 (iz Howard 1930) Cave has already been noticed. He was appointed a government entomologist in 1909 (Wolcott 1938) and in 1934 he was put in charge of bat studies as a part of the government's anti-rabies programme. From 1926 to 1935 he was Assistant Professor of Zoology at the Imperial College of Tropical Agriculture in Trinidad. Although his publications on cave matters were limited, Urich was repeatedly acknowledged as the catalyst who encouraged and made possible cave visits by others, including specialists from abroad. It was he who accompanied Williams and Freeman at the Oropuche Cave in 1916 and also Theodore Roosevelt in the same year, C.B. Williams at Arima in 1918, Gloria Hollister at Arima in 1926 and R.L. Ditmars and his colleagues in Caura Cave in 1934. A new species of blind cave fish was named after him in 1926. Early in the 1890s, Henry Caracciolo, President of the Society and another entomologist, had many mammal specimens sent to the British Museum (Natural History) and the resulting report by Oldfield Thomas (1893) included three species of bat from caves. These had been collected in 1889 by Sir William Robinson, from the Point Gourde Caves and from a 'Cave in First Boca', which was probably the cave in Monos island. In March and April 1893 Frank M. Chapman of the American Museum of Natural History collected specimens of Noctilio leporinus from the cave in Huevos, to which he was taken by the Mr. Morrison already mentioned. By this time the cave in Monos Island seems to have been deserted by the bats (Allen and Chapman 1893). Caracciolo (1895) had watched these fish-eating bats in Januray 1892 and described how they caught their fish by swooping to the surface of the water with one foot lowered. Specimens were taken in the Gasparee cave in 1934 by Raymond L. Ditmars (1935, 218), Curator of Mammals and Reptiles of New York Zoo. A shot gun was used to obtain them (Ditmars and Bridges 1935,178)! In the same expedition Ditmars and Bridges (1935, 81) went to the Diego Martin bat cave (probably La Fontaine) and also made a more enterprising visit to the 'Jumble Cave' at Caura (Caura No. 1 Cave), ftirther east in the Northern Range, where they saw many bats but none of the vampires they were particularly seeking (Ditmars and Bridges, 1935, 78-103). Urich was with them but, now aged about 64, he did not go far into the cave. It was in the 1930s that search for and research on bats was given impetus by an epidemic of paralytic rabies. The first incidence was in animals in 1925, with the first human case in 1929, and by 193 5 eighty-nine humans had died of the disease which was spread by the vampire Desmodus rufus and other species of bat. Urich was appointed in January 1934 to investigate the relation of bats to the disease and to develop methods for their control. Much cave exploration and bat study resulted and the last human death from rabies was reported in 1937 (De Verteuil and Urich 1935; Goodwin and Greenhall 1961). Such work has continued since. Other Cave Fauna Although cave entomology has played such an important part in Trinidad cave studies since 1950, and though Urich was an entomologist, almost no one was working on invertebrate cave fauna in the period under review. Some occasional collecting took place, however. Urich, together with C.B. Williams (the English entomologist trained in the United States whose cave work has been referred to several times) collected in the Oropuche Cave on 23 April 1916 (Williams 1922,171). A new species of ccvAvpedQ, Pselliophora cavincola, was taken from the cave wall 'far in' (Chamberlin 1918, 168-169). Two new diptera (Edwards 1918) were Trichobius caecus from a bat and Erioptera troglodyta from the cave walls. On March 1942 D.K. McE. Kevan found a new species of gryllid, Aclodes cavicola, in one of the Aripo caves (Chopard 1954). D.J. Billes collected two species of earwig from there in 1941 or 1942 (Kevan 1951). The Oxford zoologist Dr. Peter C.J. Brunet (1921-1991) was in Trinidad in 1945 while serving as a Royal Navy officer. His collecting, in the caves of Aripo, Caura, Lopinot and Oropuche, included Opilionids and Pseudo-scorpions and he made a special study of the sub-order Schozonotidae (Brunet, pers. comm.) A new species of blind catfish was obtained in 1924 by Urich and named Caecorhamdia urichi after him (Norman 1926). The location is given simply as 'a pool in the interior of the Guacharo Cave, Trinidad'. As, however, the pool 'becomes connected with a rivulet running out of the cave' in times of heavy rains, and the species is a fresh water one, the sea caves of the islands are precluded. Oropuche Cave, often referred to as 'the Guacharo Cave' in zoological literature, was well known to Urich and is almost certainly where the fish was found. It still occurs there and is not known anywhere else. Cave Exploration for its Own Sake With the increased number of foreigners working in Trinidad in the 1940s, both for oil companies and for the military, the circumstances that had led to cave exploring being a popular amateur occupation elsewhere in the world became applicable in Trinidad. People of varying backgrounds having no professional need to work in caves, but linked by their enjoyment of exploring the unknown, began to visit the caves and discover new ones. In some cases a professional approach led to surveying, but rarely were the results properly published. Good work done by Gunther (1940) and Chenery at the Aripo Caves has been described earlier. It was in Aripo Cave No. 1 that an American airman, one of an exploring party of six, fell and broke his back on June 23,1943 (Freitag 1943). The rescue involved a medical officer and seven others, all but one of whom subsequently suffered symptoms that are now recognizable as those of the lung infection histoplasmosis (Brown 1988). The most comprehensive cave explorations known to have occurred before 1950 were those of Ken Pawson in 1945 and 1946 when he was in the Royal Air Force. A 61-page typed report was written, mainly in 1948. Of this, 56 pages, including three location maps, deal with Trinidad, the rest being about caves in Barbados. The typescript was never published, apart from the description of Aripo Cave No. 1 (Pawson 1974). The fiill report (Pawson, c. 1948) has been cited from time to time as authority for statements earlier in this chapter. The fiill extent of Pawson's work can be seen by a list of the caves he explored: the main cave and others in Gaspar Grande, Biogowa [?Begorrats] Cave at Diego Martin, Caura No. 1 Cave, three caves in the Lopinot Valley, the Aripo Caves, Oropuche River Cave, and the caves on Mount Tamana in the Central Range (Pawson, c. 1948). After 1950 Although this chapter covers only the period up to 1950, it is right to indicate the main directions in which cave work has developed since then, much of it driven by the need for more information on cave bats, guacharos and other cave fauna. The anti-rabies programme of the 1930s, already mentioned, continued (Goodwin and Greenhall 1961) and led also to extensive work on bat ectoparasites and blood-sucking flies (Jobling 1949). The recognition of the fungus Histoplasma capsulatum as the cause of histoplasmosis resulted in a widespread survey of guacharo and bat habitats, including caves (Ajello et al. 1962a, 1962b). Snow (1962) made a detailed study of the guacharo. The ecology of bat guano was studied by Hill (1981) in the Tamana Caves, and Darlington (1970) worked on the cave-dwelling cockroaches in the same caves. New genera and species were named as a result. In the 1970s the Government sponsored a survey of the Lopinot Caves with a view to developing them for tourism (Aquing 1974). Cave explorers from USA reported on the main Trinidad caves while seeking new ones in 1978 (Komisarcik 1979), Acknowledgements Biographical information has been taken from the Dictionary of National Biography and the Dictionary of American Biography unless otherwise stated. Dr. Johanna Darlington, formerly of the University of the West Indies in Trinidad, drew my attention to several important references and I am particularly grateflil for her helping me to tell which 'Guacharo Cave' was which in the 19th century literature. She also made helpful comments on the manuscript. Chris Howes, FRPS, copied the postcard used as Fig. 2 and has critically read this paper in manuscript. I am also grateful to the late Dr. Peter Brunet for information. References Ajello, L. &D.W. Snow & W.G. Downs & J.C. Moore, 1962a: Occurrence of Histoplasmosis capsulatum on the island of Trinidad, B.W.I. I. Survey of Steatomis caripensis (oil bird) habitats. Am. J. Trop. Med. Hyg., 11, 245-248 Ajello, L. & A.M. Greenhall & J.C. Moore, 1962 b: Occurrence of Histoplasma capsulatum on the island of Trinidad, B.W.I. II. Survey of chiropteran habitats. Am. J. Trop. Med. Hyg., 11,249-254 Allen, J. A. & P.M. Chapman, 1983: On a collection of mammals from the island of Trinidad, with descriptions of new species. Bull. Am. Mus. Nat. Hist., 5, 203-234 Aquing, P., 1974: Survey of Lopinot Caves. National Environment and Conservation Council Research Paper No. 1/74, Government of Trinidad and Tobago, Ministry of Planning Aspinall, A.E., 1907: The pocket guide to the West Indies. London, Stanford Bory de Saint-Vincent, [J.B.G.M.], 1838: Sur I'existence du Guacharo (Steatomis)... I'Sle de la Trinit,. Compte rendu des s,ances de rAcad,mie des Sciences, Paris, 7 (9), 474-478 Brown, D., 1988: Cave-associated histoplasmosis: Trinidad. J. Am. Med. Assoc., 260 (17), 2510 Caracciola, H., 1895: Bats. J. Trinidad Field Nat. Club, 2 (7), 164-170 Carricker, M.A., 1931: The cave birds of Trinidad. Auk, 48, 186-194 Chamberlin, R.V., 1918: The Chilopoda and Diplopoda of the West Indies. Bull. Mus. Comp. Zool. Harvard, 62 (5), 151-262 Chapman, F.M., 1894: On the birds of the island of Trinidad. Bull. Am. Mus. Nat. Hist., 6, 1-86 Chopard, L., 1954: Contribution ... r,tudedesorthopt,roides cavemicoles.Notes Biosp,l., 9, 27-36 Collens, J.H., 1888: A guide to Trinidad. A handbook for the use of tourists and visitors. London, Elliot Stock, 2nd edn. (1st edn. 1886?, not seen) Darlington, J.P.E.C., 1970: Studies on the ecology of the Tamana Caves with special reference to cave-dwelling cockroaches. Ph.D. thesis. University of the West Indies, Trinidad Dauxion Lavaysse, J. J., 1813: Voyage aux Sles de Trinidad, de Tabago, de la Marguerite, et dans diverses parties de V,n,zu,la, dans rAm,rique M,ridionale. Paris, Schoell De Verteuil, E. & F.W. Urich, 1935: The study and control of paralytic rabies transmitted by bats in Trinidad, British West Indies. Trans. R. Soc. Trop. Med.-Hygiene, 24 /4), 317-347 De Verteuil, L.A.A.[G.], 1858: Trinidad its geography, natural resources, administration, present condition, and prospects. London, Ward and Lock Digby, E.C. (ed.), 1936: Trinidad and Tobago B.W.I.... Port of Spain, Yuille's Printerie (1st edn., 1934, not seen) Ditmars, R.L., 1935: Collecting bats in Trinidad... Bull. New York Zool. Soc., 38 (6), 213-218 Ditmars, R.L. & W. Bridges, 1935: Snake-hunters' holiday ... New York, Appleton-Cen-tury Du Tertre, J.B., 1654: Histoire g,n,rale, des isles de S. Christophe, de la Guadeloupe, de la Martinique, et autres dans rAm,rique. Paris, Langlois Edwards, F.W., 1918: Two new Diptera from Trinidad. Ann. Mag. Nat. Hist. (ser. 9), I (6), 424-425 Feilden, H.W., 1890: The deserted domicile of the Diablotin in Dominica. Trans. Norfolk & Norwich Nat. Soc., 5 (1), 24-39 Freitag, R.W., 1934: Saga of 75 heroes. Prop. ... Magazine of the [U.S.] Trinidad Air Depot, 2 (2), July, 3-5 Goodwin, G.G. & A.M. Greenhall, 1961: A review of the bats of Trinidad and Tobago... . Bull. Am. Mus. Nat. Hist., 122 (3), 187-302 [Gunther, A.E.], 1940: There are thrills in cave exploration. The Aripo Caves. Trinidad Guardian, May 26, 17 Hill, S.B., 1981: Ecology of bat guano in Tamana Cave, Trinidad, W.I. Proc. 8th Int. Congr. Speleol., Bowling Green, Kentucky, July 18 to 24, 1981, 1, 243-246 Hollister, G.E., 1926: The guacharo or oil bird of the Arima Gorge. Zool. Soc. Bull. N.Y., 29 (5), 139-145, 160-161 Homaday, W.T., 1925: A wild-animal round-up ... New York, Scribner Howard, L.O., 1930: A history of applied entomology (somewhat anecdotal). Smithsonian Misc. Coll, 84 Humboldt, F.H.A. & A. Bonpland, 1814: Voyage de Humboldt et Bonpland. ler partie. Relation historique. Paris, Schoell, 1, 419, 420 Jobling, B., 1949: Host-parasite relationship between the American Streblidae and the bats, with a new key to the American genera and a record of the Streblidae from Trinidad, British West Indies (Diptera). Parasitology, 39, 315-329 Kevan, D.K.McE., 1951: Records ofTrinidad earwigs (Dermaptora). Ann. Mag. Nat. Hist (ser. 12), 3, 249-257 Kingsley, C., 1871'. At last[,] a Christmas in the West Indies. London, Macmillan Kingsley, J.S. (ed.), 1885: The standard natural history. Boston, Cassino Komisarcik, K. (ed.), 1979: Caves ofTrinidad issue. Bloomington, Indiana Grotto Newsletter, 14 (2), 20-39 (reprinted in Speleo Digest [for] 1979, pub. [1981], 196-203) Latham, J., 1823: A general history of birds. Winchester, for the author, vol. 7 L,otaud, A., 1866: Oiseaux de I'Sle de la Trinidad, (Antilles). Port d'Espagne, Chronicle Publishing Office McAt2e, W.L., 1922: Notes on the food of the guacharo ( Steatomis caripensis). Auk, 29, 108-109 Norman, J.R., 1926: A new blind catfish from Trinidad, with a list of the blind cave-fishes. Ann. Mag. Nat. Hist. (ser. 9), 18 (106), 324-331 Ober, F.A., 1908: A guide to the West Indies and Bermudas. London, Fisher Unwin (also New York, Dodd, Mead) Pawson, K. [c. 1948]: Explorations in the caves and potholes ofTrinidad, W.I. 1945-1946 (with brief notes on the Barbados caves). Unpublished, MS. Present location not known; copy held by the National Speleological Society library Pawson, K., 1974: Caving in Trinidad and Barbados. Canadian Caver, 6 (1), 21-27 Plummer, D.C., 1911: What happened in the 'Bottomless Pit'. ... Wide World Mag., 28 (164), 136-140 Ridgway, R., 1884: On a collection of birds made by Messrs. J.E. Benedict and W. Nye, of the United States Fish Commission steamer 'Albatross'. Proc. U.S. Natn. Mus., 7, 172-180 Roosevelt, T., 1917: A naturalists' tropical laboratory. Scribners Mag., 61(1), 46-64 Sanderson, I.T., 1939: Caribbean treasure. New York, Viking Snow, D.W., 1962: The natural history of the oilbird, Steatomis caripensis, in Trinidad, West Indies. Part 2. Population, breeding ecology and food. Zoologica, 47,199-221 Stuart, v., 1891: Adventure amidst the equatorial forests and rivers of South America; also in the West Indies and the wilds of Florida... London, Murray Thomas, O., 1893: A preliminary list of the mammals of Trinidad. J. Trinidad Field Nat. Club, 1 (7), 158-168 Urich, F. W., 1895: A visit to the guacharo cave of Oropuche. J. Trinidad Field Nat. Club, 2 (9), 231-234 Wall, G.P. & J.G. Sawkins, 1860: Report on the geology of Trinidad. London, Her Majesty's Stationery Office. [Memoirs of the Geological Survey. Part I of the West Indian Survey] Williams, C.B., 1922: Notes on the food and habits of some Trinidad birds. Bull. Dep. Agric. Trinidad and Tobago, 20 (2, 3 & 4), 123-185 Wolcott, G.N., 1938: Frederick William Urich 1870-1937. J. Econ. Ent., 31 (2), 326 JAMAICA TO 1940 Abstract: Caves in Jamaica were described, from 1688, by residents and travellers who were interested in anything unusual and were in effect cave tourists. Geological investigations of generally high quality began in 1824. Bat studies resulted in a number of cave visits about 1860. Awareness of caves in Jamaica followed a very different pattern to that in Trinidad. Firstly, caves and rivers flowing underground were noticed earlier, in descriptions of the island from the late 17th century onwards. Partly, no doubt, this is due to the fact that there are more of them in a larger island; partly because they are more prominent as so much of Jamaica is karst; partly, too, because several of the sinking rivers and caves are relatively accessible to people going about their normal business. Another factor affecting the notice taken of karst phenomena was the presence, in an island of considerable size and economic importance, of a high proportion of professional people - in government, as local residents, and as visitors. Some of these were geologists, attracted by the need to resolve the geology of an important island. Secondly, there were no guacharos present, with all the attraction they presented to zoologists, collectors, curious visitors, and the catering industry. Nor, in Jamaica, has much research on bats been reported. A study of the karst literature of Jamaica falls conveniently into the sections adopted in this chapter: a) travels, 1688-1866 b) geologists (i)De laBeche, 1824; (ii)The Geological Survey Memoir of 1869; (iii) Hill and Danes, 1899-1914; c) popular and guide books 1877-1908; d) prehistoric and quaternary remains; e) bats and guano; f) cave fish and other fauna. The locations of the caves referred to are shown in Fig. 7. Fig. 7. Cave locations, etc. in Jamaica (adapted from the map in Peck, 1976) SI. 7. Lege jam itd. na Jamajki (prirejeno po karti v Peck, 1976) 1. Cousins Cove Cave No. 2 2. cave at Montego Bay 3. Cockpit Country 4. Hector's River Sink 5. Oxford Cave 6. Wallingford Caves 7. Peru Cave 8. Runaway Bay Caves 9. Swansea Cave 10. Riverhead Cave 11. junction of Rio Cobre and Rio Doro 1, Cousins Cove Cave No, 2 2, jama pri Montego Bayu 3, Cockpit Country 4, Hector's River Sink 5, Oxford Cave 6, Wallingford Caves 7, Peru Cave 8, Runaway Bay Caves 9, Swansea Cave 10, Riverhead Cave 11, sotočje Rio Cobre in Rio Doro 12, Portland Cave 12, Portland Cave Dallas Castle Cave (off the map to the east, c, Dallas Castle Cave (izven karte na vzhod, 7 km E, of Kingston) približno 7 km E of Kingstona) Three-fingered Jack's Cave (off the map to the Three-fingered Jack's Cave (izven karte na east, C, 10 km E, of Kingston) vzhod, približno 10 km E of Kingstona) VOYAGE To the Iflinds Madera, Barbados, Nieves, S. Chrißophers JAMAICA, WITH THE Natural Hiftory o F T h E Herbs and Trees, Four-footed BeaHs,fißes, Birds, Infeäs, Reptiles, &c. Of the laft of thofe IS L A N D S; To which is prefix'd An INTRODUCTION, Wherein is an Account of the hbabitarits,Air,Waters,Di/eafes,Trade,Scc of that Placc, with fome Relations concerning the Neighbouring Continent, and Ifiands of Jmtrica. ILLUSTRATED WITH The Figures of the Things defcrib'd, which have not been heretofore engraved; 3ln large Coppct-i^lates! «s big aet^t Htfe. By HANS SLO ANE, M.D. Fellow of the College of Thyficians and Secretary of the Rqyal-Societjy. In Two Volumes. Vol. I. M.iii) jhill run to M J fro, and KjiomleJgf ß>all he increajed. Dan.xii.4. ITo^N B 0 N: Printed by B. W. foi tlie Author, 17C7. Fig. 8. The title page of Sloane's book of 1707 SI. 8. Naslovna stran v Sloanovi knjigi iz 1707 Travels 1688-1866 The classic first record of sinking streams in Jamaica was written by Hans Sloane (b. 1660; d. 1753) who spent fifteen months in Jamaica from December 1687 as physician to the Governor, the Duke of Albemarle. Sloane was later President of the Royal Society and his vast collection of books, manuscripts and natural history specimens went to found the Brifish Museum. Sloane's book on his West Indian travels (Sloane 1707, 1725) (Fig. 8) is concerned mainly with plants and animals, but caves and underground rivers are referred to in the opening pages (vol. 1, ix-xii): Rivers here in the Mountains rise above and go under ground again in a great many places, as Rio d'Oro falls under, and rises above ground above Sixteen Miles Walk, three or four times, and so it is in man\ others. Fig. 9. Edward Long (1734-1813), engraved by W. Sharp after a painting by J. Opie (reproduced by courtesy of the trustees pf the British Museum) 81. 9. Edward Long (1734-1813), gravura W. Sharpa po sliki J. Opie (reproducirano z dovoljenjem pooblaščencev British Museum) The Rio Doro flows from the north-east towards Bog Walk where it joins the Rio Cobre. Although the Rio Doro flows through some limestone country, and under a well-known natural bridge about 10 km from the junction, it does not constantly sink underground. It does sink in its lower reach, however, and it also twists and turns a lot, frequently in deep gullies, and this might lead to an impression of sinking and rising. Unspecified caves are mentioned by Sloane in connection with saltpetre: What Saltpetre is to be had here, is from the Earth dug out of Caves where Indians were buried, or where Bats, and their Dung, are in great quantities. This I am certain of, because the Duke of Albemarle carried several people to Jamaica on purpose to try to make Saltpetre, having had a Patent for that Design. He describes also the formation of tufa by the lime-bearing surface streams and refers to stalactites as the underground equivalent: Spring water is reckon'd preferable to other kinds: there are fine, large Springs here, many of them as well as Rivers, petrify their own Channels, by which they sometimes stop their own Courses, by a Sediment and Cement uniting the Gravel and Sand in their bottoms. When this petrifying water falls drop by drop, it makes the Stalactites. Several caves have their bottoms and tops united by this Stone, so that they appear Pillars. There is no indication which caves he had seen these in. The most probable sites are those described later in the 18th century (though not Runaway Bay Caves, in view of Long's remarks on their discovery). The next account of underground rivers, towards the middle of the 18th century, is by Charles Leslie of whom nothing is known except that he visited the island. He writes (Leslie 1740, 18-19): ... some [rivers] run for many Miles under Ground, particularly the Rio Cobre, in St. Thomas's in the Vale [ which runs underground for nine miles] and the Rio Pedro in the same Precinct [which] runs about two Miles thro' a Mountain; it falls in with a mighty Noise, and rushes forth with no less. The Negroes, when they go a Fishing, stop the Inlet of the Water, and enter with Ease in the Cavity on the other Side, where they fish a little way with good Success. More important, more lengthy, and more subterranean are the remarks of Edward Long (b, 1734; d. 1813) (Fig. 9). His father had lived in Jamaica and he himself went there from England in 1757 as a lawyer, and became a judge there. Ill health caused his return to England in 1769 and he spent the rest of his life writing, including his three-volume History of Jamaica (Long 1774), which contains descriptions of three caves. The first of these is Riverhead Cave, in which the Rio Pedro rises: The cavern at River-head in the North-West part of the vale extends near a quarter of a mile under a mountain, or perhaps more, it being impossible to explore the whole length, on account of the river Cobre, which occupies the inmost part of it, and, running for a considerable way, suddenly shoots through a hole in the rock on one side, and continues its current under ground for a considerable distance from the cave. That this river draws its origin from some large stream in the naountains, far beyond the cave, seems evident, by its rising or falling in exact proportion as the rains are heavy or otherwise in the mountains. After very heavy rains, the river is so swelled, that, unable to vent itself at the hole, the superfluous water disembogues through the mouth of the cavern. An ingenious man attempted, a few years since, by fixing a flood-gate across the hole, to force the current of the river into a regular channel by the mouth of the cavern, and conduct it from thence to turn water-mills on the neighbouring estates. The undertaking had all the appearance of being practicable, but was laid aside after the death of the projector (Long 1774, vol. 2, 57). The remains of a stone-built dam are still present about 400 m inside the cave. The stream is believed to come from the Worthy Park Sinks, more than a kilometre away, or perhaps from even further (Fincham 1977, 3, 124). The whereabouts of the next cave is no longer known: In a rocky hill, on the Northern side of Old Woman's Savannah, is a cavern which runs a great depth under the earth. Upon examination, a few years since, it was found to contain a great many human bones, which were probably either Indians, or the relics of some of the wild or rebellious Negroes, who formerly infested this part of the country, and made it their place of concealment (Long 1774, vol. 2, 65). After describing various tufa deposits and cascades in surface streams, Long (1774, vol. 2,95-100) gives a detailed account of what is now known as Rimaway Bay Caves, near Dry Harbour where Coltmibus landed. This description is prmted here in its entirety, being the earliest detailed one of a visit to any Jamaican cave: The grotto in this parish, near Dry Harbour, and about fourteen miles West from St. Anne's Bay, is situated at the foot of a rocky hill, under which it runs for a considerable way, and then branches into several adits, some of which penetrate so far, that no person has yet ventured to discover their ending. The front is extremely Gothic in its appearance. It is the perpendicular face of a rock, having two arched entrances about twenty feet asunder, which look as if they had anciently been door-ways, but sunk by time or accident to within two or three feet of their lintels. In the centre of the rock, between these portals, is a natural niche, about four feet in height, and as many from the ground, which might well be supposed intended for the reception of a madona, especially as at the foot of it is a small excavation, or bason, projected a little beyond the face of the rock; which seems a very proper reservoir for holy water. Excited by the accounts I had heard of this celebrated curiosity, I made one among a party to visit it. After providing ourselves with several bundles of candlewood, split in small pieces, we crept on our hands and knees under the larger of the two apertures in the front of the rock, and immediately found ourselves in a circular vestibule, of about eighteen feet diameter, and fourteen in height. The cieling [sic!] (an irregular concave), as well as the sides, was covered with stalactic and sparry matter, interspersed with innumerable glistening particles, which, reflecting the Kght of our torches from their polished surface, exhibited the most rich and splendid appearance imaginable. This roof seemed to be supported by several columns of the same matter, concreted by length of time; whole chaptrels, and the angular arches above, appeared in the true Gothic taste. The pillars surrounded the vestibule; the open spaces between them led into avenues which diverged away into different parts of this subterraneous labyrinth. On one side we observed a rock, which by the continual dripping of water upon it from the cieling, was covered with an incrustation, and bore a very striking resemblance of some venerable old hermit, sitting in profound meditation, wrapped in a flowing robe, his arms folded, and a beard descending to his waist. The head appeared bald, and the forehead wrinkled with age. Nothing was wanted to complete the figure, except the addition of features, which we immediately supplied, in the theatric manner, with a piece of charcoal. The graceful, easy folds and plaits of the drapery, and the wavy flow of the beard, were remarkably well expressed. Roubilliac, the rival of nature, could not have executed them in a more finished and masterly style. After we had sufficiently contemplated this reverend personage, we pursued our route through one of the largest adits. We found the passage every where of good height, in general from twelve to fifteen feet; but so totally excluded from day-light, that the gloom, together with the hollow sound of our trampling, and dismal echo of our voices, recalled to our minds the well-imagined description of Aeneas's descent into the infernal regions... That the comparison might have appeared more just, I ought to have premised, that the grotto is surrounded with a thick wood, and that at a small distance before the entrance is a large lagoon of stagnant water... The soil beneath our feet we perceived was deep, soft and yielding, and had a faint, cadaverous smell. Upon examination, we imagined it to be a congeries of bat's dung, accumulating perhaps for ages past; and were further confirmed in this opinion by the multitude of these creatures, which, upon the disturbances of our torch-light, and the unusual noise of so many visitors, flitted in numerous swarms over our heads. It is probable this soil is strongly impregnated with nitre; but we had not time to search for it. After walking a considerable way, we observed many new adits branching from the sides. Our guide informed us they led several miles under ground; and that one half of them had never been explored by any human being. Soon after, we came all on a sudden to a little precipice, of about four or five feet; and some of the party would have hurt themselves very severely, if it had not been for the soft stratum of bat's dung which lay below ready to receive them. Our guide, and two or three of the foremost, disappeared in an instant, having tumbled one over the other; but soon recovered from their surprize, when they found themselves unhurt. The rest, who followed at some little distance, being put on their guard, descended with somewhat less rapidity. We continued our walk without further interruption, till we hailed the day-light again, in an open area environed on all sides with steep rocks covered with trees. This area, as nearly as we could conjecture, lies about a quarter of a mile from the entrance of the grotto. We remarked several adits leading from different parts of this little court; but our guide was acquainted with one of them only, into which we walked, and came into a magnificent apartment, or rotunda, of about twenty-five feet diameter, and about eighteen to the dome, or vaulted cieling; from the centre of which descended a strait tap-root of some tree above, about the size of a cable, and pretty uniform in shape from top to bottom. This had made its way through a cleft in the rock, and penetrated downward quite into the floor of the apartment. On one side was a small chasm, opening like the door-way of a closet into a narrow passage; which our guide endeavoured to dissuade us from entering, on account of a deep well, which he informed us lay a few paces within. However, we ventured in a little way with great caution, and found his account very true. The passage grew more and more contracted, till we met with a thin, upright ledge of rock, rising like a parapet-wall, almost breast-high, which seemed to decline gradually lower as we advanced. We therefore thought it prudent to halt, and soon discovered the ledge of rock separated us from a vast cavernous hollow or well. Having no line, we could not sound the depth of the water, nor how far it lay beneath us; but, by the fall of some stones we threw in, we judged the distance to the water about thirty or forty feet. The stones in their fall produced a most horrid, hoarse noise, as loud as hell's porter uttered from his triple jaws, primis in forcibus orci. Our guide informed us it was unfathomable, and communicated with the sea. The latter is probable, as the entrance of the grotto is very near the coast. We returned across the area by the way that we came, only peeping into a few of the other avenues as we proceeded, which we found very little different. They had the like rude cielings incrusted with stalactites, here and there interspersed with the radical fibres of trees and plants, and their walks strewed with various seeds and fruits, particularly the bread-nut in great abundance; and even some reptiles, all curiously covered over with incrustations, but still preserving their original shapes. The structure and furniture of these various cloysters and apartments, at the same time that they excite the utmost curiosity, baffle all description. In some we saw, or fancied we saw, sparkling icicles, and beautifully-variegated foliage, gemmy canopies, festoons, thrones, rostrums, busts, skulls, pillars, pilasters, basons, and a thousand other semblances of such objects as struck our different imaginations. Most of the arches and columns seemed to be composed internally of a greyish, sonorous marble, and were extravagantly wild and curious. Some are perfect, and sustain the massy superstructure; others half formed; and some in their very infeint state. Several of the apartments are cellular; others, spacious and airy, having here and there an eyelet-hole to the world above. These aerial communications are of signal service; for, although not in general large enough to admit much light, yet they introduce sufficient fresh air to expel noxious vapors, and afford a convenient respiration, except in those parts which are most recluse. The exterior summit of the cave is a greyish rock, honey-combed all over, full of crannies, and thick-set with various species of trees, whose roots having penetrated wheresoever they could find an opening, they flourish without any visible soil, an appearance which is extremely common in this island. We were anxious to investigate further: but, upon examining our stock of torch-wood, we found scarcely sufficient left for conducting us back to the entrance, and we were obliged to use dispatch in regaining it, for fear of rambling into some one of the numerous passages opening to the right and left, where, puzzled with mazes and perplexed with errors, we might have rambled on without the probability of ever finding our way out again: and in such a distressful event we could not reasonably have expected any human assistance. The famous Cretan labyrinth did not, I am persuaded, contain half the turns and windings which branch through every part of this infernal wilderness; and which even Theseus, with the help of his clue, would have found difficult to unravel. Whoever may have the curiosity to examine these meanders with more attention, and to discover their extent and termination, ought to furnish himself with the implements necessary for striking fire, a portable mariner's compass, a proper quantity of wax tapers, and some provision for the stomach. Thus equipped, he may pervade them without fear of being lost, if he walks with due circumspection: the impression of his feet on the soft mould, which is thick-strewed in these passages, might enable him to re-trace his own tract almost without the assistance of a compass; though to avoid the possibility of being bewildered, it will be advisable to carry one. There are the most remarkable curiosities as yet discovered in this parish; but it may probably contain others, the grotto not having been found out, or at least generally known, till within these few years. We are uncertain whether it was known to the Spaniards; but it is supposed that run-away Negroes were not unacquainted with so convenient a hiding-place. A curious little book, whose author is not known, appeared a few years later, in 1790, and contains a short account of the same cave, apparently by then the most visited cave: There is a very curious cave on the North side of the island, which I have been visiting with my friend Philanthropos, - the chambers are very lofty and spacious, but the passages are so intricate, that none have yet ventured to explore the extent of the grotto. - Trusting to our guides we wandered from chamber to chamber, till the decrease of our wooden torches, warned us to return in time to the Sun. The ground we walked upon was uneven, and our feet sunk half over our shoes into a kind of soft black dust like soot: we met vast numbers of bats. In some of the apartments there were small clefts that admitted day-light and after proceeding a considerable way, we got out into a curious large area, in which there were trees growing. Entering by another cell on the opposite side of the area, we were told by our guides to walk with caution, as we were approaching a deep well - at which we shortly arrived, and throwing down a large stone, heard it strike repeatedly against the sides, till at last it dashed into the water, after taking near a minute in its descent. As we returned we passed thro' one apartment, where we were struck with a number of extraordinary figures; some in the shape of tombs, others of various bodies and faces, but one image was so nearly perfect, that we could scarcely resolve upon its being a lusus naturae [sport of nature]. - It was the figure of an old man with a long beard, cloathed in a robe sitting on a stone, and reclining his head upon his hand, his elbow resting on his knee: - the folds of his robe fell over his feet, and above his head was (if I may so express myself) a large concave sheet of the rock, under which he sat as under a canopy - his posture was that of pensive melancoly, which furnished Philanthropos with the subject of the following ode (Anon. 1790, vol. 2, 126-129). The author's friend 'Philanthropos' was Robert Charles Dallas (b. 1754; d. 1824) and his poem, of 15 verses, is called 'The Grotto: or melancholy. An ode'. Its author is known because the poem was reprinted in the Miscellaneous Writings of Dallas (1797, 59-66). He was bom in Kingston but left the island as quite a yoimg man, as the climate affected his wife's health. Fincham(1977, iv), who quotes one verse of the poem, states that he was still in Jamaica in 1778 so the date of the cave visit that inspired it, and his anonymous friend's description, may have been as early as that. A few years later Dr. Thomas Coke (1808,352) described the same cave but his account is merely adapted from Long's book, without acknowledgement, the parts that are not shortened being almost word for word copies of Long's text. In its turn, Coke's description was quoted by the Baptist missionary James M. Phillippo (1843, 43-44). The naturalist Philip Gosse lived in Jamaica from 1844 to 1846 and visited two caves, neither of which can now be identified. They are 'Hallow-well' near Grand Vale, Westmorland, and 'a singular little grotto close by the road side' at Mount Carey, St.James (Gosse 1851,'l98-199, 253-254). A remarkable exploration was made in 1895 when the Governor of Jamaica and a Mr Davis were lowered to the bottom of Hutchinson's Hole, a shaft now known to be 98 m deep (Fincham 1977, 85). Sir Hemy Blake (b. 1840; d. 1918) was 55 years old at the time. The cave gets its name from a tradition that the highwayman Lewis Hutchinson used to throw his victims' bodies down the shaft. Sir Henry's descent, on 19 or 20 July 1895, is described in some detail in one of the Jamaica's main newspapers (Anon. 1895). Telegraphing yesterday morning our correspondent says: Yesterday His Excellency the Governor and Lady Blake drove to the historical 'Hutchinson's Hole' on the property of Edinburgh Castle in the Pedro district[.] Preparations had previously been made by Mr. Davis, Superintendent of Public Works, for a descent into the hole into which he first went, after which His Excellency descended and remained for some time. No bones or other relics of Hutchinson's reported victims were found. The bottom of the cave opens into a rather large hall and appears to have been flooded at some not very remote period; this might possibly account for the absence of such relics. The depth of the hole as ascertained by actual measurement is 256 feet and not 6 or 8 hundred as previously supposed. Geologists De la Beche Like several of the people already mentioned, Thomas Henry De la Beche (b. 1796; d. 1855) had some family connection with Jamaica, and it was to see the family estate that he visited the island in 1824. For most of his life, however, he was concerned with British geology, initiating the Geologiocal Survey of Great Britain and becoming its director. Two main papers resulted from his Jamaica visit. The second of these is the more wide-ranging but the first (De la Beche 1825) includes a description of his visit to Portland Cave No. 1 which he called the 'most celebrated' one at that time. 'Portland Cave has been visited by hundreds of persons, most of whom have written their names on almost every accessible portion of it'. Imbued with the then fashionable writings of Buckland (1823) on the presence of mammal bones in cave earth beneath a stalagmite layer, he comments 'I did not observe any bones beneath it [the 'crust of stalagmite'], and am now sorry that proper search was not made, as the depth of the silty clay has not been ascertained, and as it might contain bones.' Indeed it might; in 1920 H.E. Anthony found bones there (Koopman & Williams 1951,2) but his excavation has not been published. Although the other paper (De la Beche 1827) is 52 pages long, it aims to cover the geology of the whole island so the underground rivers, while noted, are not given prominence. Indeed it is surprising to find a quite lengthy footnote describing the Swansea Cave: The entrance to this cavern is highly picturesque, and is concealed from a distant observer by dense tropical vegetation. The first part of the cave varies in height, and is, in some places, lofty; this portion is covered with grotesque stalactites and stalagmites, and some of the columns are very beautiful. It terminates in a small open space surrounded by cliffs, where some negroes cultivate plantains and cocos. The lenght of the first cavern is about 76 paces allowing for all inequalities. After crossing the small open space above mentioned, (probably only a portion of the cave that has fallen in,) we entered a cavern forming a winding chamber, about 89 paces in length, the sides, roof, and floor of which are covered with stalactites and stalagmites. We then crept through a low communication about three paces long, and entered another chamber about 34 paces in length, containing grotesque stalactites and stalagmites. We then came to a small space, through which we crept upon our hands and knees, for about the distance of two paces; and this opened into a lofty cavern 54 paces in length, where bats were clustered in considerable numbers on a portion of the roof This chamber was separated from another by a small division. The space now entered was tolerably lofty and about 21 paces long: at the end, the roof had fallen in, and admitted the light of day; and the rubbish formed a rough ascent and descent, occupying about 60 paces of the cavern's length. We then entered a chamber 14 paces long, which is succeeded by a low passage, where we could not stand upright, 21 paces in length. After passing this low place, we found ourselves in a chamber 14 paces long, and we then entered a low place where the bed of limestone that formed the roof gradually approached the clay floor and prevented further progress. Near this cavern is another, from which the people on Swansea estate obtain their supply of water, which remains at a greater or less depth in it according to the seasons. Sometimes, when heavy rains have fallen in certain parts of the neighbourhood, with which it must have communication, it rushes out of the cavern with great noise and impetuosity into a gully, but is soon swallowed up among the sink-holes (De la Beche 1827, 185-186). The cave referred to in the final paragraph is now called Sand Hole Gulley Cave. The Geological Survey Memoir of 1869 The Gelogical Survey Memoir on Jamaica (Sawkins 1869) has 340 pages devoted to an island about 70% of which is limestone, so it cannot be expected that this section can give an adequate r,sum, of all there is in it relating to caves. It is not the intention to trace the development of geological interpretation of Jamaica karst from De la Beche, through Sawkins, Hill and Danes. To do so would require a lengthy chapter to itself. The purpose here and in the next few paragraphs is to note the existence of such work and to show how it led to a greater knowledge of the caves themselves. Most of the book consists of reports on individual regions, parish by parish, by five separate authors, some of them writing as early as 1863. There is thus a vast amoimt of detailed information, not only on the rocks but on the hydrology of the island, mentioning caves primarily in this connection. The value of the volume is in its comprehensiveness, including as it does the more remote areas. Thus the Cockpit Country is described for the first time in some detail (216-219,242-243). By providing information on individual places, it allows the hydrology to be seen as a whole. The dolines or 'cockpits' of the Cockpit Country, as well as 'light-holes', are attributed to collapse (242-243). The Geological Sur- vey Memoir made the karst of Jamaica known world-wide and was cited by Cviji- (1893, 244) and Martel (1894, 548; 1896, 40). Hill and Danes Thirty years after the publication of the Geological Survvey Memoir a lengthy reassessement of the geology of Jamaica was produced by Hill (1899). There is little of descriptive interest on the karst, but the cockpits are explained as being products of solution, not of collapse (25-27). Danes (1914 and earlier) was aware of Hill's views and he also favoured solution for the formation of cockpits. His principal contribution to the study of karst was that he was able to add his observations of tropical karst in Jamaica and Java to the European investigations which had hitherto been the basis for karst theories. Sweeting (1972) has pointed out that it was mainly because of Danes's work that Grund (1914) was able to put forward his scheme of evolution of karst areas, in which the doline karst of temperate regions evolved towards the type of tropical karst seen in Jamaica. Popular and Guide Books In a country where the caves had been as well researched and reported as they had in Jamaica, one would not expect the popular books to contain new information. Nor do they, but they are significant in that they show how the public would learn about the caves and to what extent they were regarded as tourist attractions. It will be seen that they were given much less prominence than those in, say, Trinidad. Considered first, as the earliest, is a series of a large size photographic reproductions of scenes in the island by Dr. V.P. Parkhurst (1887), photographer and publisher, with a short accompanying text. Not popular in the sense of a large-scale production, it was nevertheless aimed at the lay public, not the scientist. It would have been a magnificent production had it been completed, measuring 35,5 cm by 27,5 cm, but the author died when only five parts had been issued. The very high quality photographs included ones of the river sinking at Luidas Vale and the rising at Riverhead Cave. The guide-book by Bacon and Aaron (1890) mentions the main Hector's River Sink. Both Gardner (1893) and Stark (1898) refer in identical terms to Three-Fingered Jack's Cave on the Cane River and the latter book goes on to describe Runaway Bay Cave and the Cockpit Country. Ober (1908) has no more than 16 lines on caves but he does say that 'Peru Cave ... is noted for its fine stalagmites', the first written intimation that the public might go there, though names on its walls indicate that it had been visited for a long time already (Fincham 1977, 3). Prehistoric and Quaternary Remains Rock carvings made by aboriginal Indians in or near cave entrances are known at several sites, suggesting that some caves were sacred and perhaps used for burial. In 1895 the small Dallas Castle Cave was discovered by removing the boulders that blocked the entrance and at least 24 human skeletons were found there, together with the remains of a canoe and of food animals (Duerden 1895). In 1919 and 1920 H.E. Anthony investigated 18 caves, finding and collecting bones in 10 of them. He himself published only a popular article (Anthony 1920a) and one note on new genera of rodents from a cave at Wallingford (Anthony 1920b). The fossil bats he collected were subsequently studied by Koopman and Williams (1951) and the fossil monkeys by Williams and Koopman (1952). Anthony's work at Wallingford has been reviewed recently by McFarlane and Gledhill (1986). With these exceptions, his work in Jamaica remains unreported (A.P. Currant, pers. comm.). Bats and Guano Cave bats, among others, were studied from 1858 to 1860 by W. Osbum who died suddenly while working on them, leaving extensive manuscript notes. From these a paper was prepared for publication by the Secretary of the Zoological Society of London (Osbum 1865). The caves he visited included Mahogany Hall Cave and Sportsman's Hall Cave in 1858; and, in 1859, Oxford Cave (an 'immense cave, whose winding galleries carmot be less than a mile in length'), a 'magnificent' cave in Portland Ridge, Runaway Bay Caves, two caves on the Harmony Hall estate in Trelawny parish, and a 'picturesque little cave' close to the town of Montego Bay, perhaps Sewell Cave. The Portland Cave referred to may be the same one (No. 1) that De la Beche saw, or it may be the more 'magnificent' and longer cave (No. 2) which is more difficult to explore but nevertheless contains dates from the mid 18th century. The locations of Mahogany Hall Cave and Sportsman's Hall Cave are not known exactly, but they are not far from Oxford Cave and Balaclava (S.J. Walker, pers. comm.). In Mahogany Hall Cave 'The floor of the cave was sfrewn here and there with the kernels of bread-nut (Brosimum), which had sometimes germinated into young blanched trees on the thick deposit of dung'. Bat guano was used locally as a fertilizer in the 19th century and analyses of 35 samples were published by Cousins (1903) when export to U.S.A. was being considered. The largest deposits occurred in what is now known as Cousms Cove Cave No. 2 (Fincham 1977, 214-215) and it was from there that at least some of his samples were obtained. Cave Fish and other Fauna Eigenmann (1909, 188) wrote that blind fishes related to the Stygicola and Lucifiiga species found by Poey in Cuban caves in 1856 'are said to occur in Jamaica'. This statement may derive from a newspaper report (Anon. 1909) that an English researcher had found blind fish in Wallingford Cave (now known as Wallingford Sink). Other fauna seem to have attracted little attention in the period under review. Chopard (1923) describes a Uraroviella, a new genus of gryllid, from specimens taken by Major A. C. Clarke in a cave in Trelawny parish, 'nearly a mile from daylight', in September 1921. Acknowledgements Biographical information has been taken from the Dictionary of National Biography and from the Bibliotheca Jamaicensis of Cundall (1895). Dr. Alan Fincham, formerly of the University of the West Indies in Jamaica, and Chris Howes read the manuscript of this chapter and made several helpful suggestions which I have adopted. I am also grateful to A.P. Currant of the Natural History Museum in London and S.J. Walker of St. George's College, Kingston, Jamaica, for information. References Anon., 1790; A short journey in the West Indies... London, for the author, 2 vols. Anon., 1895: The Governor. The Daily Gleaner, 22 July, [2], col. 8 Anon., 1909: Geologic tourists. Jamaica Times, 11 (16), Febr. 20, 1, col. 4 Anthony, H.E., 1920a: A zoologist in Jamaica. Nat. Hist., 20 (2), 156-168 Anthony, H.E., 1920b: New mammals from Jamaica. Bull. Am. Mus. Nat. Hist., 42, 469-475 Bacon, E.M. & E.M. Aaron, 1890: The new Jamaica ... New York, Walbridge Buckland, W, 1823: Reliquiae diluvianae; or, observations on the organic remains contained in caves, fissures, and diluvial gravel... London, Murray Chopard, L., 1923: Description d'un Gryllide cavemicole de la Jama., Fig. 15 - The cave now known as Bat's Cave, on the map surveyed in 1746-48 by Robert Baker. The inlet of the sea at bottom left is English Harbour, with Indian Creek to the right. In the scale at the top each small division, 5 mm on the original map, represents one tenth of a mile, (reproduced by courtesy of the trustees of the British Library) SI. 15. Jama, znana kot Bat's Cave, karta, ki jo je izmeril Robert Baker 1746-48. Zaliv v spodnjem levem kotu je English Harbour, Indian Creek na desni. Po merilu na vrhu vsak delček predstavlja 5 mm na osnovni karti kar je desetina milje (reproducirano z dovoljenjem pooblaščencev British Library) He says also of such petrifactions that 'in many other parts of the island they are met with, detached in forms infinitely varied'. Where they came from is not stated. Some thirty years later a Mrs Lanaghan (1844, vol. 1, 281-282) provided a detailed description of the cave. She walked to it from the naval dockyard at English Harbour. After leaving the Ridge, we turned down a slight declivity, by the victualling offices, on our way to Bat's Cave, and the Savannah. Scrambling, as best we could, over a huge bed of prickly pear, (one of the cactus family), we Aoligua Miive Manure, pRiCsa Moobsats.— Resulta 'eioepiionnl Bat's Cave Manure — IS «ICH IJN — Nitrogen, Potash & P Jbi o s p h a t o s. and i« therefore llie b«»t mmiDr« (»r SUGAR Ga NE io ali ki»»» ol growtb. Pine», Oranges, Iiinies, Bjinanas &c,&c are improved by using BAT'S CAVE CJUANO. 'uriher particulars from Leonard Head, Joliu'*, Aiiligu« Fig. 16-An advertisement for guano from Bat's Cave, which appeared in The Antigua Observer from 19 August 1897 until 17 March 1898. Height of original 10 cm. SI. 16. Oglas za guano iz Bat's Cave, objavljan v The Antigua Observer 19 augusta 1897 do 17 marca 1898. Višina originala je 10 cm. gained an opening in the copse, and stood before the mouth of the cave. Two large trees, which grew on each side, extended their gnarled roots (from which the earth had been washed) across the opening, forming natural steps, by which we descended, and stood within the cave. Huge masses of the rock which forms the cavern have fallen in, and in great measure blocked it up, so that it now only presents an arena of about 50 feet in circumference, although in time past it was of considerable extent. From the main cavern, two passages branch off in opposite directions. They are perfectly dark, the only means of exploring them being by the use of flambeaux; but to what length they extend has never been discovered. Mr. M. Lane, a late resident of English Harbour, (now of Canada,) has made several attempts to that purpose, all of which proved fruitless; the greatest distance he ever proceeded was to the extent of two sea-lines [i. e. sounding lines], about 120 yards. The only known occupants are bats, which breed there in immense numbers, and often attain the size of a common pigeon. A dark unhealthy vapour is emitted from these openings, proceeding, no doubt, from the carbonic acid gas they contain. This vapour soon extinguishes the light of a torch, which is one reason this cavern has never been further explored. [It is supposed that these passages extend to the sea-shore, a distance of about a quarter of a mile.] A streak of dank green runs down one side of the cave, which was pointed out to me as indicating the existence of copper; but upon examining a portion of the rock I brought away with me, I found that the colour was occasioned only by a vegetable substance adhering to the stones. In former times. Bat's Cave was a great place of concealment for the tribes of erratic Caribs, when visiting Antigua on their predatory excursions; and tradition still points it out as the scene of a barbarous carousal among that wild and savage race, in one of their attacks upon this island. At the end of the century an attempt was made to sell bat guano from the cave as a fertilizer. An advertisement (Fig. 16) in The Antigua Observer of 19 August 1897 was accompanied by an article (Anon. 1897) encouraging planters to use this inexpensive local fertilizer instead of chemical ones from abroad which were said to be less effective. An analysis by the Government Analyst gave 12,3% of phosphates in the guano. The advertisement appeared weekly for exactly seven months, until 17 March 1898, but whether its cessation indicated failure is not knovm. A location map is provided by Gumee (1961), together with a modem cave plan which agrees quite closely with the description of nearly 120 years earlier. The cave is in a small patch of dark Seaforth Limestone resting on the igneous rocks which form most of the southern part of the island (Reed 1949, 259). BARBUDA Two caves are marked on the 1814 Admiralty Chart of this island, the result of a survey made in the previous year by Captain Deckar. Both are in The Highlands (see Figs. 17 and 18), the more northerly one being named as Darby's Cave. A third cave in The Highlands is shown on an undated manuscript chart which appears to be of slightly later date (C 284 in the archives of the Hydrographer of the Royal Navy at Taunton, England). Darby's Cave is a flat-bottomed doline about 100 m long (Wagenaar Hummelinck 1979, 170-171) and the unnamed caves may well be the ones now known as Dark Cave and Bryant's Cave, both of which contain pools of water. It would be these, or others like them, that Ober (1908, 350) referred to as the 'rude cisterns' from which the inhabitants collected their water when he was there between 1876 and 1880. Ober also states that 'there are several caves, one of which is large enough to serve as a shelter for a band of lawless men, and was probably used by the wreckers when they plied here their nefarious calling'. This is likely to be Bat Hole, a cave some 25 m long and about 10 m above sea level at Gunshop Cliff on the east coast (Brasier and Donahue 1985). 0 I— 8km Fig. 17 - Barbuda SI. 17. Barbuda 1. Bat Hole 2. The Highlands 3. Darby's Cave 4. other cave in 1813 survey 5. cave in later 19th century map 1. Bat Hole 2. The Highlands 3. Darby's Cave 4. druge jame na načrtu iz 1813 5. jame na kasnejši karti iz 19. stoletja cr '"■v""'' Isi.ji.vn ir \ A fc ■ • ' ' 4 . * ■ * i ' t' BARBUDA h . f Fig. 18 - The original 1813 survey of Barbuda by Captain Deckar, Royal Navy, showing Darby's Cave and one other cave, (reproduced by courtesy of the Hydrographie Office, Royal Navy) SI. 18. Originalni načrt Barbude iz 1813 avtorja Captain Deckar, Royal Navy, prikazuje Darby's Cave in še eno jamo (reproducirano z dovoljenjem Hydrographie Office, Royal Navy) CAICOS ISLANDS Limestone caves exist in many of the Caicos Islands. Although the one best known to visitors today (Conch Bar Cave) is in Grand, or Middle, Caicos, it was those in the western and eastern islands that were noticed in earlier times. Their location is not known, so no map is provided. First in date is the statement by J. N. Bellin (1773, 57), referring to the west coast of West Caicos: There are some caves, and good anchorage occurs opposite these pools and caves a quarter of a league [1 km] from Pointe de Nord Ouest. Bellin's map confirms that the Pointe de Nord Ouest is indeed in the northwest comer of the island but it does not mark the caves. They are likely to be sea caves, either raised or still at sea level. Even less precise is the remark of Daniel McKinnen (1804, 133): In a cave some sculls, I was informed, had been recently taken up, which on being touched, immediately mouldered to dust. He does not say in which island the cave is, but it might be the one that Sharpies later described as containing aboriginal drawings. S. P. Sharpies (1884) visited the guano caves of South Caicos about 1882 and his report is still cited in the standard publication on guano (Hutchinson, 1950). He writes: The main object of our visit, was not to see the Grand Turk, but an island to the west of it which is called Cape Comet, on the charts, but which is known locally as Breezy Point. This island lies about twenty miles to the west of the Grand Turk. The guano caves, which it was our special object to visit, are situated at the western end of the island on a beautiful bay, which is large enough to afford anchorage for vessels drawing nine or ten feet of water. The caves are in a low range of hills which form the principal elevation on the island. These hills are never veiy high: the principal one being about 150 feet in height, and is called by the negroes "Filamingo Hill", otherwise Flamingo, from a pond at its base where this bird is frequently seen. The hills in which the main deposits of guano have been found do not exceed fifty feet in height. These hills have been most thoroughly honey-combed by the action of the waves at a date that must be comparatively remote, since many of the caves are now half a mile or more inland. ... That they are true erosion caves, formed by the waves and not like the caves in our limestone stone valleys formed by under ground streams, is shown by their general character, and their great resemblance to the caves that are now being formed wherever the sea has access to a limestone bluff.... In one of the largest of the caves the water still ebbs and flows, although it is at least a quarter of a mile from the shore. The caves are remarkable for the almost entire absence of stalactites and stalagmites although they may occasionally be seen. This is accounted for by the compactness of the roof and its thinness, for it rarely exceeds a few feet in thickness. Access to these caves as a general rule is obtained through openings in the roof, where the thin roof has broken away. Many of these openings are not over a foot in diameter, and seem in many instances to have been caused by the growth of roots through crevices of the rocks. At the largest entrance, where we made our first descent the opening is about ten feet across and is partially blocked up by the rocks from the roof; The opening in the first cave led into a large, roughly circular chamber which in former times had evidently been a place of considerable resort, as the walls were blackened in many places by smoke and the fireplaces and ashes were plainly to be seen. On the walls of this chamber are a number of rude drawings, which in most cases are evident attempts to imitate the human figure. In one of the branches of this cave the first explorers found two bowls and a chair. They were evidently of aboriginal manufacture, being similar to those described by the early visitors to this region as in use by the inhabitants, and they must have been in the cave upwards of three hundred years, since it is about that time since the Spaniards took the Indians to the happy hunting grounds and depopulated the islands. The cave contained what Sharpies regarded as fossil guano, without smell and almost free of recognizable remains: The entrance to the second cave that we visited was in a hillside. At this place we descended over broken rocks to the water level where we found distinct evidence of the ebb and flow of the tide, though the cave is at least half a mile from the shore. We entered a boat and were rowed into the cave for about a hundred yards, through a channel from fifteen to twenty feet wide. By burning magnesium wire from time to time we could get some idea of the size of the cave and could see passages opening off from it on either side. Near the end the cave made an abrupt turn and opened into a large vaulted chamber, about forty feet in height, and fifty feet in diameter; at the apex of the vault there was an opening which admitted the light, so that it was well illuminated. The entire floor of the chamber was covered to the depth of twenty-five feet above water level with guano. It was estimated that there were at least one thousand tons in this one heap.... The enormous extent of these caves may be imagined from the fact that it is estimated that there is at least three hundred thousand tons of guano in them. CAYMAN ISLANDS Caves exist in all three of the Cayman Islands - Grand Cayman, Little Cayman and Cayman Brae. No mention of them has been traced before 1900 and even those in the first half of the 20th century are vague as to location. These references are reprinted here and are followed by discussion of the probable cave locations. There are a few caves [in Cayman Brae], but not large, and though stalactites and stalagmites are to be found they show to no advantage (Rutty, 1907, 67). All around the [Cayman] islands are vast fishing-grounds, and natural caves of great extent extend from the land under the sea. These were once the abodes of pirates and buccaneers... (Ober 1908, 195). The flat plateau [of Cayman Brae] is a waterless karst country in a rather advanced stage of development. Its rough rocky surface is corroded into fingerlike pinnacles and is cut up everywhere by hollows, cracks, and fissures. Sink-holes abound, some of them having the form of deep circular or elliptical well-like pits with vertical sides. Many caves must be hidden in the mass of the plateau, and I saw one on the surface which contained a fine assemblage of stalactites and columns. Although the plateau supports a dense growth of forest or 'bush', it is almost bereft of soil, as the insoluble residue of dissolved limestone and the decomposed vegetable matter are rapidly washed away into the fissures and sink-holes; (Mattley 1926, 359-360) H. W. Rutty was a magistrate and Collector of Customs resident in the Cayman Islands so he had probably seen some of the caves. Although Frederick Ober had spent several years further south in the Caribbean, he was writing this part of his guide without personal knowledge. Dr Charles Mattley, on the other hand, devoted four days to geological field work in Cayman Brae in January 1924. Rutty's sentence is about Cayman Brae, on which the 1979 1:50 000 Ordnance Survey map marks seven caves. Both Rutty and Mattley refer to stalactites and they may well have visited the same caves. Local knowledge of which caves are the most prominent or easy of access, or which show signs of much visiting, might suggest where these two authors had been. Ober's pirate caves under the sea are unlikely to exist as such but there may be some real caves to which the undersea extension has been attributed (like cave routes supposed to be taken by hairless dogs in other lands). Ober does not indicate which island the caves are in but Aspinall (1954, 296) says 'Among the natural curiosities at Boddentown are a cave which extends for some hundreds of yards under the sea...' Boddentown is on the south coast of Grand Cayman but too far (6 km) from Bats Cave for the two caves to be conftised. Both Ober and Aspinall may have heard the undersea story of the same cave. THE GRENADINES Caves not in limestone are rare in the Caribbean, and even less common is any mention of them before 1900. One such cave, a fissure cave, occurs in Battowia Island, one of the most northerly of the Grenadines and lying 16 km south of St. Vincent (Fig. 19). Frederick Ober (b. 1849; d. 1913) was collecting birds in the Lesser Antilles for the Smithsonian Institution from 1876 to 1878 and it was probably in February of 1878 that he visited Battowia. His own account (Ober 1880, 220-222, 224), shorn of details of the party's breakfast and journey, is as follows: In the eastern cliffs was the cave which some of the Indians had occupied, and which we desired to explore. ... After a light lunch, we scattered down the cliffs in search of the cave. A whoop from one of our attendants drew us half-way down the precipice, where we were introduced to a deep fissure-like hole in the rock, hidden by trees. Crawling carefully over the loose rock, three hundred feet above the surf beating at the base of the cliff, we entered the cave and prepared to explore it. A glance showed that it was not large nor deep, and we soon found that it led in only a hundred feet before the crevice grew so narrow that it could not be followed; but we were satisfied that it led down to the sea as we could distinctly hear the booming of the waves. Along each side of the cavern were hollows, evidently artificial, begrimed with smoke, as though they had been used as fireplaces. We found no living things but bats and tarantulas; the former flew about in great numbers. While my companions were engaged in the farther end of the cave, I groped among the loose fragments of stone near the mouth, where, one of the men told me, an Indian chair had been found some fifteen years before. Carefiilly displacing the stone chippings, I at last found what seemed to be an image of stone; but scraping with a knife revealed that it was of wood. It was a tortoise, four inches long and two and one-half broad, curiously carved. Two holes, a quarter of an inch in diameter, are bored through back and breast; the back, upper part of the head, and the throat, are covered with incised figures, and the eyes carefully carved hollows, as if for the reception of some foreign substance.There is little doubt that this image once belonged to an Indian living many years 0 8 km Battowia 'ing from the massive pendant of six or seven feet in length, to the slender incipient fragile tube, which crumbled at the slightest touch. It was a scene not to be readily forgotten, when we launched a little boat into the miner's first and narrow opening, through which the sun shone strongly, and reflecting its light from the face of the water upwards and with power to the sparry fretted ceiling of the vault, illuminated it in a way which can only be appreciated by those who have been eye witnesses of such effects. This cave was shortly afterwards destroyed, as interfering with the safety of the works. BERMUDA'S CAVES TODAY In the intervening centuries since the above quoted cave descriptions were composed, profound alterations have modified most of the island's caves to their detriment (Iliffe, 1979). Only two caves - Crystal and Leamington - in addition to the Devil's Hole, are still commercially shown to tourists. The staff quarters of the Grotto Bay Hotel was constructed directly over the largest chamber in Admiral's Cave. The stump of the famous stalagmite, bearing the drill holes used by Wyville Thomson to obtain a slice from the stump in 1873, is still clearly visible within the cave. However, several of the once clear sea level pools have turned murky and anoxic, possibly due to sewage pollution from the overlying hotel staff quarters. The stalagmite itself was on display for many years in front of the mathematics classroom at the University of Edinburgh, but was destroyed when the building housing it was demolished (W.J. Baird, pers. comm.). The Joyces Dock Caves are now also part of the Grotto Bay Hotel. The saltwater pool in Cathedra] Cave is now used as an indoor swimming pool by the hotel's guests. Island Cave, now called Prospero's Cave, has been converted into a subterranean bar and discotheque. A large stalagmite in undeveloped Sibley's Cave had been cut from its base and was found packed with styrofoam pieces in a oil drum in a failed attempt to transport it out of the cave. The pool in Bluebell Cave noted for its reflected sunbeams was destroyed by filling of the floor of the cave in an abortive effort at constructing an underground dance floor. The Walsingham Caves have been preserved in a privatelyowned nature preserve, the Walsingham Trust. The concrete walkways and steps constructed through this area have disappeared into the undergrowth, though Tom Moore's ancient calabash is still to be fotmd in an isolated woodland glen. The Blue Grotto was recently operated as a commercial dolphin show, while dolphin food was stored in Castle Grotto. Wonderland Cave was purchased by the owners of Crystal Cave and has not been shown to tourists since before World War II (Forney, 1973). Fortunately, an entrance gate has protected many of the delicate formations within this cave. Within the last decade, pools in Leamington and many other caves in the vicinity of the Government Quarry have become anoxic and polluted, probably due to extensive dumping of garbage and other organic wastes into a large cave pool in the quarry (lliffe, Jickells & Brewer, 1984). Peniston's Cave, believed to have been situated at or near this quarry, has probably been buried or destroyed. Bassett's Cave, located on the grounds of the U.S. Naval Air Station Annex, is being used as a natural cesspit by the base for disposal of raw sewage and waste fuel oil. Sea level pools within the cave are covered by a half a meter or more oil, rising and falling with the tides. Nearby Tucker's Island Cave was destroyed during World War II era construction of the Naval Base. Paynter's Vale or Church Cave, on the grounds of the Castle Harbour Hotel, is little visited. A few rotten planks on the bottom of the cave pool may be the remains of the boat Thomson used to explore the cave. Tucker's Town Cave is situated on a small tract of land between affluent private estates in Tucker's Town. The wooden steps that once led down into the cave have long since disappeared and a large platform covering a portion of the pool has collapsed into the water. ACKNOWLEDGEMENTS Appreciation is extended to Drs. David Wingate, Wolfgang Sterrer, Trevor Shaw, W.J. Baird, and William Halliday for providing information and assistance. Dr. Colin Chaplin copied a print of the Admiral's Cave stalagmite supplied by Dr. Baird, who is shown in the photo. Special thanks is extended to the landowners of Bermuda who generously provided access to the caves and assistance with their exploration. LITERATURE CITED Anonymous, 1872. Catalogue of the articles exhibited at the Bermuda Industrial & Loan Exhibition. -, 1906. Souvenir of Joyces Dock Caves, Bermuda. Bermuda: Colonist Press, 9 p. Addams, C.G., 1990. Carvings. Sea Frontiers, December, p. 40-45. Bretz, J.H., 1960a. Origin of Bermuda caves. National Speleological Society Bulletin, 22:19-22. -, 1960b. Bermuda: A partially drowned, late mature Pleistocene karst. Geological Society of America Bulletin, 71:1729-1754. Bushell, J. J., 1926. Bushell's Bermuda handbook. Bermuda, xliv + 118 p. Davis, W.M., 1930. Origin of limestone caverns. Bulletin of the Geological Society of America, 41:47-628. Forney, G.G., 1973. Bermuda's caves and their history. Journal of Spelean History, 6:89-103. Harshberger, J.W., 1914. Algal stalactites in Bermuda. Torreya, 14:195-197. Hayward, W.B., 1910. Bermuda past and present. New York: Dodd, Mead & Co., Heilprin, A., 1889. The Bermuda Islands. Philadelphia: Academy of Natural Sciences, 231 p. Hovey, H.C., 1896. Celebrated American caverns. Cincinnati, Robert Clark, 228 p. Iliffe, T.M., 1979. Bermuda's caves: A non-renewable resource. Environmental Conservation, 6:181-186. -, T.D. Jickells and M.S. Brewer, 1984. Organic pollution of an inland marine cave from Bermuda. Marine Environmental Research, 12:173-189. Jones, J.M,, 1859. The naturalist in Bermuda. London: Reeves & Turner, xii + 200 p. Lefroy, J.H., 1877. Memorials of the discovery and early settlement of the Bermudas or Somers Island, 1511-1687, v. 2. London: Longmans, Green, xix + 760 p. Lloyd, S.H., 1835. Sketches of Bermuda. London: James Cochrane and Co., 258 p. Home, D., 1866. Notice of a large calcareous stalagmite brought from the island of Bermuda in the year 1819, and now in the College of Edinburgh. Royal Society of Edinburgh Proceedings, 5:423-428. Nelson, R. J., 1840. On the geology of the Bermudas. Geological Society of London Transactions, ser. 2, 5:103-123. Parne, A.B., 1911. The boy cave-finder of Bermuda. St. Nicholas Magazme, 38:447-451. Rider, R, 1928. Rider's Bermuda. New York: MacMillan, xxxvi + 247 p. Sayles,R.W., 1931. Bermuda during the Ice age. American Academy of Arts and Sciences Proceedings, 66:381-467. Shufeldt, R.W., 1916. The bird-caves of the Bermudas and their former inhabitants. Ibis, ser. 10,4:623-635. Swinnerton, A.C., 1929. The caves of Bermuda. Geological Magazine, 66:79-84. -, 1932. Origm of limestone caves. Bulletin of the Geological Society of America, 43:663-694. Thomson, C.W., 1878. The voyage of the "Challenger"; The Atlantic, v. 1. New York: Harper, xxix + 424 p. Verrill, A.E., 1907. The Bermuda Islands, Part IV: Geology and Paleontology. Transactions of the Connecticut Academy of Arts and Sciences, 12:45-348. -, 1908. The caverns of Bermuda. Tropical and Sub Tropical America, 1(3):107-111. Williams, W.F., 1848. Account of the Bermudas. London: Newby, 346 p. Wingate, D.B., 1960. Cahow, living legend of Bermuda. Canadian Audobon, 22(5): 145-149. Zuill, W., 1946. Bermuda journey: A leisurely guidebook. New York: Coward-McCann, 426 p. ZGODOVINA SPELEOLOGIJE NA BERMUDIH Povzetek Bermudi leže v Atlantiku na 320N in 650W, 1000 km oddaljeni od ameriške obale. Nastali so kot podmorski vulkan pred okoli 100 milijoni let. Kopno, vsega skupaj okoli 50 km^ sestavljajo pleistocenski in recentni eolski apnenci, do 100 m debeli. Vse jame so v teh apnencih, predvsem v starejših, bolj konsolidiranih. Posebno pozornost raziskovalcev in krasoslovcev so vzbujale jame, zalite z morsko vodo ("blue holes") in kapniki pod morsko gladino (Williams, Swinnerton, Davis, Bretz). Jame so bile omenjane v literaturi od odkritja otokov dalje (Shakespearov "Vihar", Smith 1623, Jones 1859, Lefroy 1877). Tekom zgodovine je bilo devet jam urejenih za turistični obisk, od tega sta danes še dve. Kapnike in sigo so lomili po številnih jamah in jih uporabljali za surovino. Jetniki in kaznjenci so iz njih delali vse mogoče, od šahovskih figur do nakita. Admiral Mihie je zbirko kapnikov podaril univerzi v Edinburghu, med njimi 3,4 m visok in 3,5 tone težak stalagmit. Zanj je D. M. Home (1864) izračunal (po sigi, odloženi na odlomljenem mestu) starost preko 600.000 let. Danes so jame močno spremenjene in degradirane zaradi gradenj (nekaj jih je vključenih v hotelski kompleks, ena služi hotelu kot pokrit bazen), zaradi odpadnih voda, ki so napeljane v jamske lagune, jame zasipajo z odpadnim gradivom, neka jama služi za predstave delfinov, v sosednji pa je vskladiščena hrana za te delfine. Zaradi odlaganja odpadkov v jame, tudi odpadnih olj, je gladina vode v nekaterih jamah prekrita s preko pol metra debelo plastjo olja, ki se dviga in pada skupaj s plimovanjem. PRISPEVKA O SLOVENSKEM KRASU FASETE, POMEMBNA SLED OBLIKOVANJA IN RAZVOJA KRAŠKIH VOTLIN FACETS - AN IMPORTANT TRACE OF SHAPING AND DEVELOPMENT OF THE KARST CAVERNS TADEJ SLABE Izvleček UDK 551.441 (497.12) Slabe, Tadej: Fasete, pomembna sled oblikovanja in razvoja kraških votlin Fasete so ena najbolj poznanih jamskih skalnih oblik. Nastajajo zaradi vrtinčenja vodnega toka ob hrapavi površini topljive kamnine. Po zbranih vzorcih s terena sem ugotavljal, da je oblika mreže faset in njihova velikost predvsem posledica hidravličnih razmer v različno oblikovanih in velikih rovih. Na nastanek in oblikovanje faset pomembno vpliva tudi sestava in pretrtost kamnine, ki jo obliva vodni tok. Pri razlagi oblikovanja faset sem si pomagal z laboratorijskimi poskusi z mavcem. Ključne besede: speleomorfogeneza, kraška votlina, jamska skalna oblika, faseta, Slovenija, Dinarski kras Abstract UDC 551.441 (497.12) Slabe, Tadej: Facets - an Important Trace of Shaping and Development of the Karst Caverns Current markings are one of the most significant rock forms. Their origin is controlled by swirling water flow against the rough surface of the soluble rock. On collected samples I stated that the current markings net shape and their size depend on hydraulic conditions in the channels of the various shape and size. The composition and structure of the rock overflown by water are one of the important factors influencing to the origin and shape of current markings. The explanation of facets formation was backed up by the laboratory experiments in plaster. Key words: speleomorphogenesis karst cavern, rocky cave feature, facet, Slovenia, Dinaric Karst Naslov - Address dr. Tadej Slabe, dipl. geogr., znanstveni sodelavec Inštitut za raziskovanje krasa ZRC SAZU Karst Research Institut 66230 Postojna, Titov trg 2 Slovenija VSEBINA UVOD..........................................................................................................................143 VIRI O FASETAH.......................................................................................................143 OBLIKA IN VELIKOST FASET TER NJIHOVA POVEZANOST V MREŽO........145 VPLIV KAMNINE NA RAZVOJ FASET..................................................................153 POVRŠINA FASET.....................................................................................................157 LABORATORIJSKO OBLIKOVANJE FASET NA MAVCU....................................158 NASTANEK IN RAZVOJ FASET..............................................................................162 NEKAJ PRIMEROV ZNAČILNEGA OBLIKOVANJA FASET................................165 REBRA IN NJIHOV NASTANEK..............................................................................168 SKLEP.........................................................................................................................169 LITERATURA.............................................................................................................170 SUMMARY: FACETS - AN IMPORTANT TRACE OF SHAPING AND DEVELOPMENT OF THE KARST CAVERNS........................................................172 UVOD Faseta (Slovenska kraška terminologija 1973, 6; an: scallops (Curl 1966; Allen 1972); nem: Fliesfacette; fr: vague d'erosion (De Joly 1933 - navaja Maire 1980, 31; Renault 1968)) je nekaj 10 ali 100 milimetrov dolga ovalna vdolbinica na skalnem obodu votlin, skozi katere se pretakajo ali so se pretakali vodni tokovi. Globlja in strmejša je na pritočni strani, na odtočni strani, kjer je podaljšana, pa se polagoma izklinja. Ločimo več različnih tipov manjših faset. Velike fasete so podobne plitkim kotlicam. Rebra (an.: flutes (Curl 1966)) so podolgovate zajedice pravilne oblike, ki so nanizane prečno na smer vodnega toka. Za obe obliki je značilno, da sta povezani v mrežo. Te oblike, ki so nastale zaradi vrtinčenja vodnega toka ob hrapavi površini skale, nam pomagajo pri določevanju načina in smeri pretakanja vode skozi rove. O proučevanju in določanju povezanosti dolžine faset in hitrosti vodnega toka, kijih vrezuje, je že poročalo več avtorjev. Sklenil sem več pozornosti posvetiti primerjavi njihovih oblikovnih značilnosti in povezanosti v mrežo ter proučevanju dejavnikov in procesov njihovega nastanka in oblikovanja. Natančneje sem opredelil tudi vpliv kamnine na vrtinčenje. Pri tem so mi koristile predvsem obsežne raziskave na terenu ter laboratorijsko oblikovanje faset na mavcu, pri katerih mi je pomagal J. Hajna. VIRI O FASETAH Shaw(1992,148,155,165)vzgodovinispeleologije omenja avtorje, ki so prvi opozorili na fasete. Maire (1980, 31) navaja, daje prvi razpoznal fasete R. de Joly leta 1933. Bretz (1942,731), ki je skalne oblike, nastale zaradi raztapljanja kamnine, razdelil na freatične in vadozne, poudarja pri nastanku faset odločilni pomen korozije. Opisal je primere faset, iz katerih so štrleli silikatni delci. Fasete opisuje tudi v delu (Bretz 1956), kjer je prvi vrednotil skalne oblike kot speleogenetsko sled. O proučevanju in določanju povezanosti dolžine faset in hitrosti vodnega toka, ki jih vrezuje, so poročali Rudnicki (1960, 17), Curl (1966, 1974), Goodchild in Ford (1971), Allen (1972), Lauritzen (1983) ter Lismonde in Lagmani (1987). Rudnicki (1960) je prvi skušal razložiti nastanek faset in njihove značilnosti s poskusi na mavcu. Ugotovil je (1960,29), da hitrejši vodni tok vrezuje manjše fasete. Pravi (1960, 30), da je oblika mreže faset zrela, če so fasete povezane v nize, ki so prečni na smer vodnega toka. Sam sem ugotavljal, da so takšni nizi značilni za ožine v rovih, stenske zajede in odtočne strani skalnih blokov v strugi. Curl (1966,1974) sije nastanek faset pomagal razlagati z analizo hidravličnih značilnosti v rovih, z merjenjem toka med elektrodami na modelu in s poskusi na mavcu. Postavil je temelje za povezavo hitrosti vodnega toka in velikosti faset. Ugotavlja, da sta oblika in velikost posledica poprečne hitrosti vodnega toka v kanalu, dimenzije kanala, gostote in viskoznosti vode ter diflizivnosti ionov, če je raztapljanje enakomerno in kamnina homogena. Poudarja pa tudi pomen različnih lastnosti, zlasti razpokanosti kamnine, ki povzročajo nepravilnosti pri nastajanju faset. Nepravilnosti na površju kamnine povzročajo namreč nastanek zatišnih leg v vodnem toku in ker so fasete povezane v mrežo, se po toku navzdol poznajo tudi vplivi predhodnih oblik. Dodaja vpliv erozije. Predstavi tudi rebra. Renault (1968,563) je nastanek majhnih faset razlagal s pospeškom vodnega toka, ki ga usmerijo prodniki. 50 milimetrov dolg prodnik povzroči cirkulacijo vode s hitrostjo 20 milimetrov na sekundo, kar ustreza nastanku fasete, dolge 10 - 20 milimetrov. To trditev zanika že dejstvo, da fasete nastajajo tudi v rovih, kjer prodnikov ni, oziroma prodniki pogosto celo zgladijo stene rovov. Goodchild in Ford (1971) sta s poskusi na mavcu poizkušala določiti hidravlične vzroke za različne velikosti faset. Z opazovanjem na terenu sta predpostavila velik pomen kamnine pri njihovem oblikovanju. Prevladujoč proces oblikovanja faset je tudi po njunem mnenju korozija. Tudi Allen (1972), ki Curlu očita preveliko teoretičnost razglabljanj, si je pomagal s poskusi na mavcu. Mavec v 3 m dolgem kanalu je oblival s tokom s hitrostjo 28 do 90 cm na sekundo in debelino 1,5 do 15 cm. Allen (1972,7) poudarja, da fasete nastanejo le, če so nehomogenosti v kamnini dovolj velike, da se oblikujejo samostojni vrtinci ob steni. Nehomogenosti v kamnini vplivajo na razporeditev faset, že posamezna nehomogenost pa povzroči nastanek faseti podobne oblike. Lauritzen (1983) je meril hidravlične razmere v rovu, velikost faset ter hitrost njihovega nastanka. Trudgill (1985,75) posebej izpostavlja, da je za nastanek in razporeditev faset odločilna litološka nehomogenost: razlike v topljivosti posameznih delcev kamnine povzročajo lokalne turbulence in mešanje vode poveča lokalno korozijsko stopnjo. Lismonde in Lagmani (1987) sta Curlove študije hidravličnih razmer v pravilno oblikovanih rovih skušala dopolniti s poudarkom na raznovrstnosti rovov. Ford (1988,46) meni, da fasete nastanejo z ločitvijo nasičene mejne plasti v subkritičnem režimu toka, kar omogoči agresivnemu toku raztapljanje in sublimacijo produktov neposredno, brez vmesne difuzije skozi ionski ovoj. Leto kasneje z Williamsom dodajata (1989, 305), da so prekinitve mejne plasti bolj pogoste, čim hitrejši je vodni tok. Fasete, ki jih vodni tok vrezuje v stene Križne jame, omenjata Badiura (1909, 31) in Michler (1934, 99). Poimenovala sta jih vdolbinice podobne školjkam. Gams je fasete omenil v študiji o Logarčku (1963, 51). Leta 1974 je v delu Kras (101, 102, 160), kjer je strnil pregled skalnih oblik, predstavil tudi fasete. Skalne oblike so omenjene v Jamarskem priročniku. Habe (1970, 26, 33) razlaga razvoj Predjame tudi z erozijskimi kotlicami in fasetami, Beloglavke pa (Habe 1976, 197,200) s stopničastimi erozijskimi poličkami in erozijskimi kotlicami. Prvi sistematični pregled skalnih oblik, tudi faset, je predstavljen v Slovenski kraški terminologiji (1973). Gospodarič je pri proučevanju speleogenetskega pomena naplavin v Križni jami (1974, 332, 333,348) skalne oblike poimenoval mikrooblike ter s fotografijo predstavil fasetirano čer. Leta 1985 je Gospodarič (1985, 22) opisal fasetirane erozijske zajede v Trhlovci. Oblike, ki so produkt odnašanja kamnine, je Šušteršič (1985) imenoval speleogene. Sam sem opisal majhne fasete, kijih vrezuje občasni hitri vodni tok v Križni jami (Slabe 1989, 203). OBLIKA IN VELIKOST FASET TER NJIHOVA POVEZANOST V MREŽO V izbranih slovenskih jamah sem dokumentiral 75 mrež faset, 53 pa jih je bilo primernih za nadaljnje proučevanje. Starejše mreže faset, ki so bile preoblikovane pod drobnozmato naplavino ali zaradi kondenzne korozije, imajo premalo ostro ohranjene oblikovne značilnosti, zato je njihovo merjenje onemogočeno. 8i Si A V •g \ S3 d / V Š2 d Š4 Š5 SI. 1. Zaprta in odprta faseta: d= dolžina š= širina g= globina k= stični kot odtočnih robov Fig. 1. Closed and open facet: d = length š = width g = depth k = contact angle of outflow edges Obliko posamezne fasete sem razdelil v številčne skupine, kar bi skupaj z velikostjo fasete omogočilo statistično računalniško primerjavo. Izkazalo se je, da računalniška primerjava ni bila potrebna, saj je bil vzorec razmeroma majhen in podobne številčne vrednosti sem dokaj enostavno razvrstil v skupine. Faseti sem določil (si. 1) dolžino, širino leve in desne polovice na začetku, na prvi četrtini, polovici, tretji četrtini in na koncu, ter mesto in vrednost največje globine. Izmeril sem tudi polmer pritočnega, večinoma polkrožnega roba fasete ter sklepni kot zaprtih faset. Na ta način sem dobil poprečno obliko in velikost faset v posameznih mrežah. Poprečne oblike bolj ali manj odstopajo od vsakokratne oblike na skah. To je posledica različne kamnine, na kateri so fasete in njihove povezanosti v mrežo. Izkazalo seje, da v mrežah prevladujeta dve obliki faset: fasete, ki se na odtočni strani zaprejo s širšim ali ožjim kotom (si. 1) in fasete, ki so na odtočni strani odprte (si. 1), posamezne se v zadnji tretjini deloma zaprejo. Ti obliki sta povezani v isti mreži ali pa v njej prevladujeta. Zaprte in odprte fasete iste mreže se praviloma uvrščajo v isto skupino. Zaradi izrazite razlike v obliki sem zaprte in odprte fasete razčlenjeval ločeno. Za primerjavo faset po obliki sem moral izločiti njihove velikosti. Zato sem izračunal za poprečne oblike faset v mreži razmerja med dolžino fasete in omenjenimi širinami. Podobne številčne podatke sem razvrstil v 3 skupine in vmesni podskupini (si. 2). d/š 3. 2- 1 - 'X • KX X X •i: •»»t .f". —T- 20 3. Skupina * 2, skupina 1.skupina 40 SI.2. Značilne skupine faset d/š= razmerje med dolžino in širino fasete d= dolžina fasete Fig.2. Characteristical groups of the facets d/š = rate between the lenghth and the width d = facet's length V prvo skupino sodijo fasete, katerihi razmerje med dolžino in širino je manjše ali enako 1,1. Zaprte fasete lahko razdelimo na tiste, ki so enako široke na prvi četrtini in tretji četrtini ter najširše na polovici, in fasete, ki se zožujejo po polovici. V posameznih primerih (strma stena, 45o, Ponora v Odolini, strop Ponorne jame Lokve in strop v Kompoljski jami) v mreži prevladujejo odprte fasete. Fasete v 1. skupini so večinoma majhne, saj so dolge od 4,7 mm do 40 mm, globoke so od 2 do 10 mm. Izjema sta dva primera, ki sta dolga 66 in 92 mm. Fasete so povezane v nize, ki so razvrščeni prečno na smer vodnega toka (si. 3). Odtočna robova zaprtih faset se praviloma stikata pod kotom, kije večji od 90o (do 120o), premer pritočnega polkrožnega roba pa je glede na velikost faset velik. Bočni robovi faset so mnogokrat le slabo izraženi in mreža spominja na rebra. Prečni nizi sledijo tudi lokalnim smerem vodnega toka: v Novokrajski jami se združujejo proti odprtini sifona, v Pivki jami se usmerjajo proti robu kamnitega bloka, na katerem so nastale, v Ponoru v Odolini so nizi v žlebu polkrožno poviti. Najmanjše fasete, ki so nastale zaradi pretakanja odprtega vodnega toka, dolge so od 4,7 do 23 mm, so na strmih tleh (30o nagiba) in v strmih (75o) žlebovih. Podobne, le nekoliko večje, so v izrazitejših ožinah rovov, ki so občasno zaliti. Fasete prekrivajo cel obod ožine. Premeri ozkih delov rovov merijo od 1 do 2,5 m, pritočnih in odtočnih delov pa do 5 m. V večji stropni depresiji v Ponorni jami Lokve so na odtočni strani fasete na skorajda navpični steni. V mreži pa prevladujejo odprte fasete. Nekoliko večje fasete (33-90 mm) so v manj izrazitih ožjih delih rovov. SI.3. Fasete na steni ožine pri Blatnem jezeru v Beško Ocizeljski jami (merilo=15cm) Fig.3. Facets on the wall at the narrowness at Blatno jezero in Beka Ocizla (scale = 15 cm) Podobnih oblik, torej dokaj široke, so fasete v podskupini 1-2. Fasete imajo velike polmere pritočnih, polkrožnih robov, odtočna robova pa se stikata pod kotom 100-130o. So večje kot v prvi skupini, dolge so od 40-110 mm. V dveh primerih (stena Logaške jame, stena rova v Brlogu na Rimskem) prevladujejo zaprte fasete. Fasete so še razvrščene v ' prečne nize, ki pa niso tako izraziti kot v prvi skupini. Deloma je že nakazana diagonalna razporejenost faset, kije značilna za mreže faset druge skupine. Manjše fasete (tla in spodnji del stene v Markovem spodmolu) te podskupine so nastale v odprtem vodnem toku in sicer na tleh ali na spodnjih delih sten. Druge (stena v Blatnem rovu Zelških jam, stena Logaške jame, stena Brloga na Rimskem, stena v osrednjem rovu Trhlovce) pa so nastale v občasno zalitih rovih. Pogoje njihoveganastankaje težje določiti, saj so starejšega porekla. V Zelških jamah so široke fasete na steni in kažejo lokalni tok vode navzgor, je pa v njihovih pritočnih delih odloženo nekaj ilovice, ki jih je korozijsko razširila. Na nasprotni strani rova so fasete v stenski zajedi usmerjene navzdol. Fasete na stenah Trhlovce, Logaške jame in v Brlogu na Rimskem so v podolgovatih, polkrožnih stenskih zajedah, ki so široke 0,5 m. V drugo skupino sem uvrstil fasete z razmerjem med dolžino in širino od 1,1 do 2. Tudi te so zaprte in odprte. Zaprte fasete so večinoma najširše na polovici, nekatere so še enako široke na tretji četrtini, druge pa se ožijo že po prvi polovici. Odprte so dokaj enako široke od prve četrine naprej, nekatere pa se v zadnji četrtini nekoliko zožijo. Takšne so zlasti največje fasete. Polmer polkrožnih pritočnih robov zaprtih faset je nekoliko manjši kot pri odprtih. Zaprte fasete se zaključujejo s kotom 80-90o. V to skupino sodijo tudi največje fasete, je pa razlika med najdaljšo in najkrajšo precejšna: od 24 do 375 mm. Večinoma so dolge od 60 do 150 mm in globoke od 20 do 60 mm. V mrežah, kijih sestavljajo manjše fasete, so še deloma poudarjeni prečni nizi. Prevladujejo mreže, za katere je značilna povezanost stranskih robov, ki omejujejo odtočne dele faset, v diagonalne nize (si. 4). Fasete druge skupine so nastale večinoma v zalitih rovih. Fasete so lahko po vsem obodu ali le na tleh in stenah, na stropu pa so kotlice. Lahko so tudi na skalnih blokih, ki prekrivajo strugo (Osapska jama. Krožni rov v Črni jami), vendar so te nekoliko širše, v mreži pa prevladujejo odprte fasete. V to skupino sodijo tudi fasete, ki so nastale na strmih, navzdol (45o) ali navzgor (50o) nagnjenih odsekih tal, te so nekoliko podaljšane, in na strmih previsnih stenah, kot je to primer v ožini Lipiške jame. Skoznjo seje pretakal vodni tok navzgor. Premeri rovov s fasetami takšnih oblik so večji kot tistih, v katerih so fasete 1. skupine. Manjši merijo 1 meter, segajo pa do 10 m (Kozinski rov v Lipiški jami). V tretjo skupino sodijo fasete z razmerjem med dolžino in širinami večjim od 2. Tudi te lahko razdelimo na zaprte in odprte, prevladujejo pa odprte. Radij pritočnih polkrožnih robov je ožji kot v prejšnih skupinah, stični kot odtočnih robov pri zaprtih fasetah je 75-90o. Fasete so razmeroma majhne, dolge so od 1 do 5 cm. Poseben primer so zelo ozke fasete, dolge 1-3 cm. Nastanek na skalnih blokih določa obliko in velikost mreže (si. 5). Mreža je podobna onim v prvi ali drugi skupini, pogosto se začenja na stiku z gladko površino skale. Fasete nastajajo na skalnih blokih v večjih strugah, ki so široke 5-10 m, in po katerih se pretaka odprti vodni tok. Površina blokov je 1-2 m nad dnom struge. Nastajajo torej ob višjih vodah. V Hankejevem kanalu v Škocjanskih jamah je na zgornji, vodoravni ploskvi bloka fasetiran odtočni rob, četudi je nekoliko nižji. Zlasti izrazite so fasete, kjer se blok odsekano zaključi. Ob robu bloka so fasete povezane v prečne nize. Na dotočnih delih SI.4. Fasete na stropu Markovega spodmola Fig.4. Facets on the ceiling of Markov spodmo) blokov pa so širše fasete dokaj neizrazitih oblik, razvrščene so v delnih prečnih nizih in med njimi skorajda ni stranskih robov. V podskupino 2-3 se uvrščajo fasete z razmerjem med dolžino in širino okoli 2, vendar so večje kot fasete v tretji skupini. Dolge so večinoma od 5 do 15 cm, a med ožjimi fasetami, ki prevladujejo, so tudi širše. Ta tip faset je značilen za rove, v katerih se pretaka odprti vodni tok, ki rove v precejšni meri zapolnjuje. Plast vode je torej dokaj debela. Fasete so na tleh ali na steni. So večinoma odprte in značilne za izpostavljena konveksna dna rovov (glavni rov v Križni jami, del izbočenih tal v Markovem spodmolu), ali za izpostavljene dele sten pred razširitvami rovov (stena 2-3 m nad tlemi v Markovem spodmolu. Vzhodni rov v Predjami: rob korita). Posebej lahko izdvojimo še en tip manjših faset. To so majhne, le nekaj cm dolge fasete, ki so globoke do 0,5 cm. So večinoma krožnih obrisov in smer vodnega toka je iz njih le slabo razvidna. So posamične ali povezane v mrežo in so na stiku z gladko površino skale, ali pa so med njimi manjše površine gladke skale. Takšne fasete so pod večjimi padajočimi tokovi, ali pa na pritočni, pokončni strani blokov v strugi (si. 6). SI.5. Fasete na skalnem bloku v strugi Škocjanskih jam (merilo=]5 cm) Fig.5. Facets on rocky boulder in the riverbed in Škocjanske jame (scale = 15 cm) V izbranih jamah sem imel možnost videti le stare velike fasete, zato je bila večina slabše ohranjena. Premer največjih faset meri 1-1,5 min so globoke od 0,3 do 0,5 m (si. 7). Velike fasete imajo oblike plitkih polkrogel. Njihova mrežaje težko razberljiva. Kot robovi so lahko ostali tudi večji stenski noži in roglji. Nekoliko manjše fasete imajo premer od 0,5 do 0,75 m, globoke pa so od 0,1 do 0,2 m. Tudi te so plitke polkrogle ali pa imajo elipsaste prečne prereze. Najbolj izrazite elipsaste fasete so nastale zaradi vodnega toka, ki se je pretakal od spodaj navzgor. Njihova povezanost v mrežo je bolj izrazita in iz nekaterih primerov je moč sklepati na smer vodnega toka. Velike fasete so nastale v zalitih rovih in najdemo jih lahko na stenah in na stropu. SI. 6. Fasete na pritočnem delu skalnega bloka v Podpeški jami (merilo je 15 cm) Fig.6. The facets on the inflow part of rocky boulder in Podpeška jama (scale = 15 cm) SI.7. Velike fasete v Pivškem rokavu Planinske jame (merilo= 15 cm) Fig.7. Big facets in Pivka branch of Planinska jama (scale = 15 cm) VPLIV KAMNINE NA RAZVOJ FASET Večina faset je oblikovana na različnih apnencih, redkeje jih najdemo na dolomitu, konglomeratu, breči, sigi in peščenjaku. Na nastanek in obliko faset vpliva tudi razpokanost kamnine. Na homogenih apnencih z enako velikimi in topnimi delci so nastale dokaj enotne mreže faset. Bolj heterogene mreže nastajajo na nehomogeni, različno sestavljeni kamnini. Takšne so tudi v Markovem spodmolu na delu stene, ki jo tvorijo večji intraklasti (si. 8). Robovi faset so nazobčani, na posameznih odsekih pa jih ni. Na bližnji, bolj homogeni kamnini, so nastale fasete z ostrimi in ravnimi robovi. V Velikem Hublju, kjer je na posameznih odsekih apnenec prekristaliziran, površje skale paje hrapavo, saj iznjega štrlijo 1-3 cm veliki sparitni kristali, faset ni. V površino so zajedajo le posamezne majhne vdolbinice. Na okolnem, bolj homogenem apnencu so fasete ali paje površina erozijsko zglajena. Podobnemu primeru smo priča tudi v Biološkem rovu v Babji jami. Na občasno poplavljenem delu stene v Pivki jami so fasete dolge okoli 3 cm, kjer pa štrlijo 1,5 cm iz površine rudisti, faset ni (si. 9). Tudi v Predjami v Ponomi jami Lokve štrlijo iz stene rudisti. Prek njih je vrezana mreža faset, ki so večje, saj so dolge 8 cm. Mreža je neenotna. Na paleogenskem apnencu pa fosili le malo vplivajo na obliko manjših faset (si. 3). Nehomogenost kamnine vpliva tudi na odstopanje smeri posameznih faset od lokalne SI.8. Fasete na intraklastnem apnencu v Markovem spodmolu Fig.8. Facets on the intraclastic limestone in Markov spodmol mM SI.9. Fasete na apnencu z rudisti v Pivki jami (merilo= 15 cm) Fig.9. Facets on tlie limestone with Rudists in Pivka jama (scale = 15 cm) smeri vodnega toka in na njihovo različno velikost. Takšno odstopanje je značilno zlasti za mreže večjih faset, ko ob strlečih delih kamnine nastanejo "cvetovi" (si. 4). V njih se voda razliva na različne strani in smeri posameznih faset odstopajo tudi za 60o. Fasete so usmerjene proti robovom stenskih nožev, odlomnih površin in skalnih blokov, ter temu tudi oblikovno prilagojene. Na dolomitu so fasete redke, če pa že nastanejo, so praviloma neizrazitih oblik. Na tleh korita v Stinkotovem rovu v Turkovi jami so na dolomitu 5-7 cm dolge vdolbinice, ki so nekoliko poglobljene na pritočni strani. V Križni jami in v Velikem Hublju iz dolomita štrlijo manjši in večji skupki kristalov sparitnega veziva. Faset ni, so pa v površino dolomita, ki štrli iz sten, zajedene posamezne majhne vdolbinice. V Jami v Peklu na Kočevskem so nastale majhne mreže faset le na posameznih odsekih biosparitnega dolomita, ni pa jih na zdrobljenem mikrosparitnem dolomitu brez kalcitnih žilic. V Smoganici so v strugi, katere obod tvori karbonatni konglomerat, fasete le na kosih apnenca, ki so večji od 20 cm. Fasete, ki so dolge 5 cm, so dokaj nepravilnih oblik. Vezivo, v katerem so manjši kosi apnenca in peščenjaka, paje grobo hrapavo. V razčlenjenih konicah štrli iz skalne površine. Podobno je oblikovana breča v Bazinovi jamipri Podlaških topolih. Na bližnjem delu oboda, ki je apnenčast, so fasete. Faset ni na intraformacijski breči v Podstrešju Male Boke. Brečo sestavljajo manjši deli kamnine (1-3 cm premera), vmes paje Sl.lO.Fasete na peščenjaku v Smoganici (merilo= 15 cm) Fig. 10. Facets on the sandstone in Smoganbica (scale = 15 cm) trdno sparitno vezivo, ki štrli iz sten. Med sparitnim vezivom so nastale oglate vdolbinice, podolgovate ob razpokah. V bližnjem rovu z apnenčastim obodom, kjer se ob visokih vodah ustvarijo enaki hidrološki pogoji, nastajajo fasete, ki so dolge 2-3 cm. V Lepih jamah Postojnske jame štrlijo do 2 cm iz stene podolgovate leče roženca, katerih površina je nazobčana z ravnimi ali le malo zaobljenimi ploskvami. Okoli leč pa je lepo razvita mreža majhnih faset. Fasete na sigi so podobne fasetam na apnencu. V Katakombah v Mali Boki so nastale fasete na prepereli sigi. Robovi faset so zaobljeni in deloma spominjajo na sipine v strugi Blatnega rova v Križni jami, ki ga prekriva pesek. Na mehkih, sipkih materialih nastanejo fasete 1. skupine. V Smoganici so nastale fasete na kremenovem peščenjaku s kalcitnim vezivom (si. 10). Fasete so dokaj dolge (7 cm) in ozke (3 cm). Uvrstimo jih lahko v tretjo skupino, kar odgovarja občasnemu plitkemu toku in homogeni zrnati kamnini. Ob drobnih razpokah so fasete (si. 11) lahko podaljšane (Slabe, 1989, 203), povezane v nize, gosta drobna razpokanost pa povzroča večje razlike v smereh faset in njihovi velikosti. Ob razpokah so robovi faset pogosto nazobčani. Razmerja med največjimi in najmanjšimi fasetami v mrežah, ki nastanejo na razpokanih kamninah, pa dosegajo tudi 3. SI. 11 .Fasete na pretrtem apnencu Podstrešja v Mali Boki (meri]o=]5 cm) Fig. 11. Facets on crushed limestone of Podstrešje in Mala Boka (scale = 15 cm) Na izraziteje, gosto pretiti in zdrobljeni kamnini faset ni. So le na morebitnih vmesnih, večjih in nerazpokanih površinah. Stene rovov so zato razčlenjene v konice, ob izrazitejših razpokah pa v stenske nože. Drugače pa vplivajo na oblikovanje faset razpoke, ki so zapolnjene s kalcitnim vezivom. Vezivo je pogosto nekoliko odpornejše od okolišne kamnine in nekaj mm štrli iznad ostale površine. Vpliva na manjše fasete (Križna jama), na večjih se pogosto ne pozna (Ponikve v Jezerini). Kjer pa kalcitne žilice prepredajo kamnino vzporedno s površino stene, na kateri so fasete, je njihov vpliv neznaten. Če kalcitno vezivo premalo trdno povezuje kamnino, ta v vodnem toku ni obstojna. Od nje se krušijo manjši kosi kamnine. V Finkovi jami je močno prekristaliziran apnenec sestavljen iz večjih sparitnih kristalov. Zato na stenah ni majhnih faset, ki bi jih vrezal vodni tok, ki doseže hitrost 1 m/s. Majhne površine dolomita, ki se kroji in ga obliva hiter vodni tok v Pucovem breznu, so gladke. Površina se členi v stopničke. POVRŠINA FASET Pogosto se po površini faset sklepa na proces njihovega oblikovanja. V primerjavi s površino drugih skalnih oblik je površina faset, zlasti manjših, dokaj gladka. Drobna hrapavost je sestavljena iz štrlečih delcev ali pa vdolbinic, žlebičkov, skratka konkavno zajedenih oblik. V prvem primeru so to večji sparitni kristali, kalcitne žilice, fosili in intraklasti v mikritni osnovi. V drugem pa so vdolbinice vezane na hitreje topljive dele ali pa na drobne razpoke. Iz štrlečih delcev lahko ugotovimo tudi smeri toka v faseti. Na pritočni strani se površina kalcitnih žilic postopoma izklinja, na odtočni strani pa Je strma, odsekana ob plasti kalcita. Površine majhnih faset, tudi če so nastale na nekoliko nehomogeni kamnini, so bolj gladke od večjih. Gladke so tudi površine majhnih faset na paleogenskem apnencu. V Ocizeljski jami (si. 3) se alveoline, numuliti in orbitoline na površini faset ne odražajo. Večjim fasetam v Ponomi jami Lokve v Predjami dajo hrapavost radisti, ki štrlijo iz površine, majhne fasete pa na takšni kamnini v Pivki jami (si. 9) niso mogle nastati. Fosili v kamnini so torej različno odporni proti vodnemu toku. Površina faset na peščenjaku je drobno hrapava, kar je posledica sestave kamnine. Očitno je, da so skalne površine, ki jih gladijo hitrejši vodni tokovi, izpostavljene različnim procesom. Zato sem se odločil za njihovo razpoznavanje s pomočjo elektronskega vrstičnega mikroskopa. Za vzorce smo izdelali tudi zbruske kamnine. Tako lahko primerjamo sestavo kamnine in njeno izpostavljeno površino. Manjše fasete (si. 12), ki so nastale na biomikritnem apnencu v Križni jami (Slabe 1989,206) in na biomikrosparitnem apnencu v Škocjanskih jamah, so zelo gladke. Na njih se odražajo le večje nehomogenosti ali pa SI. 12.Površina fasete v strugi Škocjanskih jam Fig. 12. The surface of the facet in the riverbed in Škocjanske jame prepredenost s kalcitnimi žilicami. Zglajena površina manjših faset je posledica prevladujočega korozijskega delovanja vodnega toka, katerega vrtinčasto jedro se povsem približa stem m odnaša tudi počasneje topne delce kamnine, ki štrlijo iz nje. Značilno je da so fasete v zatišnih legah, odmaknjene od vlečenega vodnega tovora, torej na odtočni strani grbin, zgornjih ploskev skalnih blokov, ali pa višje na steni. Erozijsko zglajena povrsma skale je pod vrstičnim mikroskopom drobno hrapava, kar je posledica trenja s trdnimi delci kamnine, kijih prenaša vodni tok. LABORATORIJSKO OBLIKOVANJE FASET NA MAVCU Po nerazpokanem in dokaj homogenem, vpolkrožen žleb odlitem mavcu ki se c^a je v vodi raztopilo 1,4 gna liter, seje pretakal vodni tok s hitrostjo 1 m/s. Debelina vodne plasti je bila le 1 cm. V nizkem toku seje voda razporedila v ozke in nekaj cm dolge skoraj vzporedne tokovnice. Nastale so fasete (si. 13), ki so dolge 5 mm, široke 2,5 mm in globoke 2 mm. Podobne so tistim v tretji skupini. So večinoma odprte. Ob ovirah, ob nekoliko J ^ ' ^ ■ V f iei J, SI. 13 .Fasete na mavčnem žlebu - nehomogen mavec Fig. 13. Facets on plaster groove - inhomogeneous plaster večjih zrnih, je voda najprej izdolbla vdolbinice in zma nato odnesla. V dveh urah so iz vdolbinic nastale fasete. Po štirih urah se nj ihova oblika ni več izrazito spreminj ala. Podoben poskus sem ponovil z vodnim tokom, ki je imel hitrost 0,2 m/s. Tudi v tem primeru so nastale podolgovate, a nekoliko večje fasete. Večji osmerokotni mavčni blok z ravnimi stranskimi in zgornjo ploskvijo ter s premerom 1,2 m smo potopili v umetno strugo, ki vodi do hidroelektrarne pred Planinsko jamo. Površina bloka je bila 1,5 m pod gladino vode, ki se je pretakala s hitrostjo 1,4 in 0,9 metra na sekundo. V obeh primerih so na bloku nastale fasete (si. 14). Fasete so se izoblikovale že po dveh urah in njihova velikost ter oblika se nato nista več spreminjali. V prvem primeru so dolge do 1 cm, v drugem pa do 1,5 cm. Fasete so ozke (do 0,5 cm) in razmeroma dolge (3. skupina). Posamezne fasete so široko odprte, če pa so ena ob drugi, povezane v mrežo, so zaprte. Značilna je razporejenost in usmerjenost faset na površinah, ki so vodnemu toku izpostavljene pod različnimi koti. Na sredini pritočne stranske ploskve, kije bila pravokotna na smer vodnega toka, so nastale vdolbinice, na obrobnih delih ploskve pa fasete, ki so usmerjene k robovom. Podobno je oblikovan tudi blok v strugi Podpeške jame. Na ploskvi (si. 15), kije bila vodnemu toku izpostavljena pod kotom 45o, so fasete po vsej površini. Na začetku so fasete vzporedne s tokom, na drugi polovici so usmerjene k robovom. Na SI.14.Fasete na mavčnem bloku - homogen mavec Fig. 14. Facets on plaster block - homogeneous plaster SI. 1 S.Fasete na stranski ploskvi mavčnega bloka Fig. 15. Facets on the lateral side of the plaster block ploskvi, kije bila vzporedna s smerjo vodnega toka, so tudi fasete usmerjene v smeri toka. Na zadnji strani bloka, ki je bila prečno na smer toka, a v zatišju, so nastale le majhne vdolbinice. Na zgornji ploskvi mavca so na začetku fasete vzporedne z vodnim tokom, na odtočni strani pa so usmerjene k robovom bloka. Tako so razporejene tudi fasete na skalnih blokih v jamskih strugah, preko katerih se pretakajo odprti vodni tokovi in so tik pod vodno gladino (struga v Škocjanskih jamah). Enako velik mavčni blok (si. 16), kije bil sestavljen iz plasti, katerim smo primešali različno velike netopne ali počasneje topne delce peska, smo izpostavili vodnemu toku, ki je imel hitrost meter na sekundo. Spodnjo plast mavca so sestavljali delci, ki so bili manjši od 0,1 mm. V drugi plasti smo delcem, velikim 0,1 do 0,25 mm, dodali 20% delcev s premerom 0,5 mm. V tretjo plast mavca, ki so ga sestavljah delci, veliki 0,1 do 0,25 mm, smo primešali 10% netopnih delcev, ki so bih veliki 1,25 do 2,5 mm. Četrti plasti mavca smo dodali 10% netopnega peska z delci s 5 do 10 mm premera. Razporejenost faset na bloku je bila podobna zgoraj opisanemu primeru, različna kamnina pa značilno oblikovana. Na najbolj homogenem mavcu so nastale lepe mreže majhnih faset. Na mavcu, ki so mu bili primešani večji netopni delci, so okoli njih nastale nekoliko večje vdolbinice. Te so bile na površinah z redkejšimi ovirami povezane v slabše razločno mrežo faset. Velikost vdolbinic je bila posledica velikosti ovire v kamnini in je dosegla 2 do 3 krat večji premer kot fasete. Sl.lö.Fasete na plastovitem mavčnem bloku Fig. 16. Facets on bedded plaster block Torej na velikost faset vpliva tudi sestava kamnine? Na delih mavca, kjer so večje ovire najbolj gosto razporejene, o mreži faset ne moremo govoriti, čeprav je površina mavca ob ovirah luknjičasta. Ob posameznih ovirah so nastale vdolbinice, ki so imele oblike široko odprtih faset. Velikost faset na mavcu je nekoliko manjša od tistih, ki pri enakih pogojih nastanejo na apnencu. Predvidevam, da so fasete na hitreje topni kamnini manjše. Fasete, ki so nastale na homogenem mavcu, so pravilnih oblik in njihova površina je gladka. Tiste, ki pa so na mavcu z zrni peska, so bolj raznolikih oblik in hrapave. Fasete so nastale z raztapljanjem mavca, le večje, netopne delce, je odnašala voda. Tudi ostri robovi mavca, ki se ohranijo v hitrem vodnem toku, dokazujejo, da se fasete na njem oblikuje s korozijo. NASTANEK IN RAZVOJ FASET Pri nastanku in oblikovanju faset so odločilni kamnina, hitrost in pritisk vodnega toka z določeno viskoznostjo in agresivnostjo vode, in velikost rova ter oblika oboda. Omenjeni dejavniki se prepletajo v različnih razmerjih, vendar so osnove oblikovanja značikiih mrež faset določene predvsem s hidravličnimi razmerami. Kamnina odloča o nastanku faset oziroma o obliki posameznih faset v mreži in vpliva na njihovo velikost. Pri visokih Reynoldsovih številih je trenje odvisno od hrapavosti oboda cevi in skorajda neodvisno od viskoznosti tekočine, pri majhnih Re pa je odvisno od viskoznosti in le malo od hrapavosti (Reynolds 1974, 5). Ta značilnost oblivanja sten z vodnim tokom se, kot kaže, odraža tudi pri oblikovanju majhnih oziroma velikih faset. Premer vrtincev v vodnem toku je predvsem posledica njegove hitrosti. Na velikost vrtincev vpliva tudi sestava kamnine. Ob večjih ovirah so vrtinci večji (si. 16). Če pa so ovire, ki so enako velike ali večje od faset, gosto druga ob drugi, prepletanje vrtincev lahko privede do prevelike kaotičnosti v smereh strujnic in značilna mreža faset ne nastane. Za nastanek mreže faset mora biti velikost vrtincev večja od velikosti sestavnih delcev kamnine. Tudi na razporeditev manjših faset, poleg hidravličnih razmer in geometrije prostora, vplivajo predvsem nehomogenosti v kamnini. To seje lepo pokazalo pri poskusu z mavcem. Pri oblikovanju manjših faset gre torej za prekinitve mejne laminame plasti vode zaradi neenakomerno topljive zrnate sestave kamnine, kar ugotavljata tudi Ford in Williams (1989, 305). Na mavcu je ob oviri voda najprej izdolbla vdolbinice. Ovire, nekoliko večje drobce mavca, je nato odnesla. Hkrati so nastale vdolbinice in nato fasete tudi na bolj topnih delih mavca ter ob manjših razpokah. Fasete, ki so nastale ob redkih ovirah in niso povezane v mrežo, ali pa če so odprte, so nastale ob robu odsekanih skalnih površin. Posamezna faseta je torej odprta. Tudi Allen (1972) j e ugotavlj al, da lahko posamezna nehomogenost v kamnini povzroči nastanek fasete. Če je kamnina homogena, jo enakomerno prekrijejo vrtinci in razvije se mreža faset. Na homogenem pesku nastanejo "valovi" (Hsü 1989, 108), ki so podobni enakomerni mreži zaprtih faset. Enakomerno nehomogenost omogoča zrnata sestava karbonatnih kamnin. V mreži prevladujejo zaprte fasete, ki so različnih oblik, največ pa jih ima polkrožne pritočne dele in trikotne iztočne. Je nastanek faset mogoč le ob znatnem stanjšanju ali prekinitvi mejne plasti, ko je njen vpliv na korozijo in erozijo zanemarljiv? V agresivni vodi bi lahko že približevanje vrtincev, kijih povzroča trenje ob mejni plasti, povzročilo hitrejše raztapljanje kamnine zaradi lokalno tanjšega difuzijskega sloja. Tako bi lahko nastale večje fasete, ki so posledica počasnega vodnega toka in pri katerih kamnina ne vpliva veliko na njihovo oblikovanje. Medtem ko večji delci kamnine lahko hitremu toku preprečijo oblikovanje faset, pa v počasnejšem vplivajo predvsem na oblikovanje mreže. Ob večjih nehomogenostih pogosto nastanejo "cvetovi". V njih se voda razliva na več strani. V Ponomi jami Lokve rudisti, ki štrlijo iz površine, ne vplivajo na obliko srednje velikih faset, medtem ko manjše fasete na podobni kamnini v Pivki jami ne morejo nastati. Z dobrim poznavanjem hidravličnih značilnosti vrtinčastega toka in sestave kamnine lahko torej določimo razmerje, pri katerem lahko nastanejo fasete oziroma določimo vpliv sestave kamnine na njihovo velikost. Fasete lahko nastanejo le na posameznih odsekih oboda, ki so dovolj veliki za razvoj mreže vrtincev in ki z manjšimi koti odstopajo od smeri vodnega toka. Voda v vrtincih kroži pravokotno na površino, ki jo obliva, kar nam potrdi tudi odtočni podaljšani in plitvejši del fasete. Največja ovira tokovnicam v vrtincu je stena fasete, kije nabolj pravokotna na vodni tok. Korozija in erozija sta na tej površini najbolj učinkoviti in fasete se zato "selijo" po toku navzdol. Seljenje pa omejuje kamnina, še zlasti razpoke, na katere se pogosto vežejo manjše fasete. Pri velikih fasetah, ki imajo premere večje od 50 cm, pa smeri vodnega toka ni več mogoče razbrati, saj vrtinci, ki so jih vrezali, nimajo več izrazitih iztočnih repov. Z naraščanjem hitrosti vodnega toka se manjša premer vrtincev in tako dolžina faset. Najmanjše fasete, ki sem jih našel v izbranih jamah, so bile dolge 0,4 cm in najdaljše 40 cm. Izjema so velike fasete. Nastale so torej z vodnim tokom, ki seje pretakal s hitrostjo od 6 do 0,05 metra na sekundo, če računamo po formuli Lismonda in Lagmanija (1987, 38): UL/v= 22000 v poenostavljeni različici, ali v popolnejši obliki: UL/v= 20700 (l+0,266(ln(D/2L)-l,5)), ki se uveljavi le za rove pravilnih krožnih prerezov. U je hitrost toka, L je poprečna dolžina faset. Tovrstni izračuni hitrosti vodnega toka so se dokaj ujemali s tistimi, ki smo jih dobili na podlagi velikosti prodnikov (Scheidegger 1961, 135), ki jih prenaša voda. Začetna velikost fasete je odvisna predvsem od kamnine. V Vzhodnem rovu v Predjami so fasete še majhne vdolbinice s premerom 1 cm. So na stiku z gladko površino. Za njimi, na odtočni strani, pa je razvita mreža faset, kije nastala z vodnim tokom s hitrostjo 2,5 metra na sekundo. V Markovem spodmolu so na strmih delih struge najmanjše fasete dolge le 0,4 cm, torej nakazujejo hitrost vodnega toka 6 metrov na sekundo in drobnozmato, homogeno kamnino, na kateri nastajajo. Za apnence je značilna zrnata sestava in glede na lokalno velike hitrosti vodnega toka ter majhne vrtince v njem, pogosto omejena homogenost. Opazil sem več značilnih povezav faset v isti mreži. Ločimo fasete, ki imajo dokaj popolne oblike in tiste, ki so podrejene načinu povezovanja v mrežo zaradi nehomogenosti kamnine. Razporeditev vrtincev, ki na zato primerni kamnini prekrijejo vso površino, najprej določa kamnina, ko pa se vzpostavi ravnotežno stanje, za kar je potreben stacionarni tok, pa vrtinčenje pogojujejo oblike faset samih. Med začetnimi vrtinci nastanejo še vmesni, ki med seboj tekmujejo. To dokazujejo posamezne nesorazmerno majhne fasete v mreži. Po določenem času fasete v enakomernem toku dosežejo svojo mejno velikost in ravnotežno stanje. Pri poskusu na mavcu se velikost fasete po 2 urah ni več spreminjala. Po zbranem gradivu sklepam, da po obliki podobne fasete nastajajo v enakih hidroloških pogojih. Koje rov dovolj velik in homogena skalna površina večja od kritičnega premera vrtincev, tako da se pri določeni hitrosti razvije samostojno vrtinčenje ob stenah, nastanejo fasete, ki smo jih po obliki uvrstili v drugo skupino. To je osnovni, zreli tip faset (si. 4). Sorazmerno z večjo hitrostjo toka se manjša dolžina faset in sorazmerno z naraščanjem pritiska na stene se veča njihov radij, fasete pa so globlje. V cevastem rovu v Mali Boki so fasete enakih dolžin tako na stropu kot na tleh, so pa talne fasete skorajda za tretjino širše. Hitrost toka blizu stenje manjša v širših rovih in fasete so tako večje (Serbon 1987, 16). V prvi skupini, kjer so fasete razvrščene v prečne nize (si. 3), na njihovo oblikovanje vpliva tudi velikost prostora. Praviloma so takšne fasete nastale v ožinah rovov ali pa na talnih in stenskih žlebovih. Vrezujeta jih je hitrejši vodni tok v zalitem rovu ali pa odprti vodni tok, ki z manjšim pritiskom delujeta na stene. Predpostavljam, da velikost rova ali njegovega dela (vzdolžna zajeda) narekuje enakomerno vtinčenje toka čez ves prerez. V tretji skupini so najbolj podolgovate fasete. Zanje je značilno, da nastanejo, ko kamnino obliva plitev, odprt vodni tok. Njegov pritisk na steno je majhen. Zato je tudi značilna lega faset na skalnih blokih ali pa na izpostavljenih konveksnih delih jamskih strug in na stenah tik pod gladino višjega toka. Ko je tok zelo plitev, nastanejo tanke vzdolžne tokovnice, kar sem potrdil s poskusom na mavcu in se odraža tudi na podomem bloku deloma preperele sige v Mali Boki. Mreža faset je na pritočnem robu skalnega bloka (si. 5) nastala zaradi značilnega oblivanja skale. Za oviro se tok sprošča. Mreža je ožja na pritočni strani, na odtočni strani pa se razširi. Fasete nastanejo ob enotnem vrtincu, saj so zavite. Podskupini 1-2 in 2-3 sta kombinaciji osnovnih skupin. V skupini 2-3 so fasete značilno podolgovate zaradi izpostavljenosti na višjih delih v strugi. Vodni tok nad njimi pa je višji, torej z večjim pritiskom obliva stene kot fasete 3. skupine. V hitrejšem vodnem toku se tanjša mejna laminama plast ob kamnini. Vrtinčasto jedro se približuje steni. S tanjšanjem laminame mejne plasti, kije odvisna tudi od viskoznosti tekočine, se tanjša plast difuzije. To vodi omogoča hitrejši prenos reaktantov in pruduktov raztapljanja, kar pospeši korozijo. V izrazitem vrtinčastem toku je mejna difiizijska plast zanemarljiva (Dreybrodt 1988,154). Zaradi tanjše mejne plasti voda s svojo maso erozijsko neposredno deluje na kamnino. Pri nastanku faset na karbonatni kamnini sta pomembna oba procesa, tako lokalno hitrejše raztapljanje, kot neposredno erodiranje kamnine z vodno maso. Voda odnaša počasneje topne delce kamnine. S peščenjaka, kije sestavljen iz delcev kremena, povezanih s kalcitnim vezivom, voda odnese kremenove delce, ko raztopi kalcitno vezivo. Pri oblikovanju faset na odpornejši karbonatni kamnini večji delež prispeva korozija. To potrjujejo tudi mikroskopska opazovanja površine majhnih faset, ki so tudi pod večjimi povečavami gladke. Erozijsko zglajene površine so namreč pri velikih povečavah drobno hrapave. Fasete, ki so nastale pri poskusu na mavcu, so posledica raztapljanja mavca. Le večje delce, ki so štrleli iz površine, je neraztopljene odnesel vodni tok. Fasete praviloma ne nastanejo v rovih s prevladujočim erozijskim delovanjem vodnega toka (Babja jama). Obod takih rovov je zglajen. Iz primerjave nasičenosti voda in oblikovanosti skalnega reliefa v ponomi Finko vi jami in izvirni Podpeški jami (Ribniška Mala gora) ugotovimo, da ima pri nastanku skalnih oblik večji pomen sestava kamnine, kot pa nasičenost oziroma potencialna agresivnost vode. Ponoma voda je 21% nasičena, izvirna pa 60 % (Kranjc 1981, 52). V Finkovi jami so le stropne kotlice, skalni relief Podpeške jame pa je izrazito oblikovan z različnimi fasetami in stropnimi kotlicami. V prvi je kamnina močno prekristalizirana, v drugi obod sestavlja dokaj homogen oosparitni apnenec. Različno visoke in korozijsko agresivne vode imajo različen pomen pri oblikovanju skalnega reliefa. V Škocjanskih jamah visoke vode vrezujejo fasete, dno struge pa je prekrito s tanko plastjo sige. To je še ena potrditev, da le del voda sooblikuje skalni relief. Hitrost raztapljanja kamnine, kot je pokazal tudi poskus z mavcem, vpliva na obliko in velikost faset. Predvidevam, da so fasete manjše in značilno razpotegnjene (skupina 3), če se kamnina topi hitro. Fasete lahko sooblikuje ali preoblikuje tudi material, ki ga prenaša voda. Pesek, ki je pretežak, da bi ga vodni tok vključil v pravokotno vrtinčenje, ki vrezuje fasete, se vrti vzporedno s skalno površino. Fasete so zato na dnu krožno, erozijsko poglobljene. V občasno zalitih rovih (Osapska jama), kjer počasne vode odlagajo ilovico, korozija pod naplavino poglablja in širi fasete. Gre torej za kombinacijo faset in podnaplavinskih vdolbinic. NEKAJ PRIMEROV ZNAČILNEGA OBLIKOVANJA FASET Fasete lahko nastanejo v singenetskih in paragenetskih rovih. V prvih so lahko v zalitem rovu, v rovu, skozi katerega se pretaka odprti vodni tok, v meandrih, v paragenetskih rovih pa večje fasete nastanejo zaradi toka vode nad drobnozmato naplavino. Fasete so torej lahko na celem obodu ali le na delu oboda. Na obodu prevladujejo ali pa se pojavljajo v z drugimi oblikami, na primer s podnaplavinskimi žlebiči in vdolbinicami. Zaradi učinkovitosti vodnega toka tudi v drugem primeru prevladujejo. Prepletu različnih oblik faset lahko sledimo na majhnem odseku izbočenega, podkvasto zavitega rova v Markovem spodmolu (si. 17). Tla pritočnega dela rova, ki se dviguje pod kotom 25o, so do začetka zavoja, torej v najbolj strmem delu, gladka. Na zunanjem robu polkrožno zaključene gladke površine se na še malo navzgor nagnjeni površini začenjajo fasete skupine 2-3. Ta oblika je značilna za fasete, ki so na izbočenih delih tal ali pa na skalnih blokih, za katerimi se tok skokovito poglobi. Takšne fasete so tudi na spodnj ih delih sten. Na tleh, ki se v nadaljevanju spuščajo navzdol z manjšim strmcem (lOo), sledijo manjše fasete skupine 2-3, ki so značilne za hitrejše, plitkejše vodne tokove. Dolge so 2-5 cm in globoke 1,5 cm. Na tleh, ki se na odtočnem delu strmo spuščajo, so najmanjše fasete. Sprva so dolge 2 cm, na najbolj strmem delu, kjer se struga zoži v polkrožen žleb, ki ima naklon 45o in več, pa so fasete 1. skupine dolge le 0,42 cm. Povezane so v prečne nize. Prehodi med različnimi fasetami so seveda postopni. Na zgornjih delih sten in na stropu so večje fasete 2. skupine (si. 4), ki so značilne za zalite rove. Te fasete so starejšega porekla in kaže, da so prekrivale cel obod rova. Nato so jih na spodnjih delih sten in na tleh prekrile manjše fasete, ki jih je vrezal hiter, odprt vodni tok. Oblika in razporeditev faset sta torej pogojeni s spremenjenimi hidravličnimi razmerami v značilno oblikovanem rovu. V ponomi jami Tenteri pod Ribniško Malo goro sem v vhodnem delu in v labirintnem spletu rovov izmeril dolžino faset. Fasete na stropu, 8 m nad tlemi, so dolge 7 cm, na stenah proti tlem pa se manjšajo. Na robu struge, 1-2 m nad tlemi, so fasete dolge 5 cm. V strugi so pritočni, nekoliko dvignjeni Sl.n.Razporeditev faset v delu rova v Markovem spodmolu 1. večje fasete 2. skupine, stare 2. večje fasete skupine 2-3 3. manjše fasete skupine 2-3 4. manjše fasete v žlebu, 1. skupina Fig. 17. Distribution of the facets in one part of the channel in Markov spodmol 1. bigger facets of 2nd group, old 2. bigger facets of group 2-3 3. smaller facets of group 2-3 4. smaller facets in groove, 1st group deli, ki so vodnemu toku najbolj izpostavljeni, gladki, na njihovi odtočni strani pa se je oblikovala mreža majhnih faset, ki so dolge do 1 cm. V anastomoznem spletu rovov, v katerih tla in zlasti zgornje rove prekriva tanka plast ilovice, so fasete dolge 5-10 cm. Če sklepamo iz velikosti faset po formuli Lismonda in Lagmanija (1987, 38), dobimo naslednjo razporeditev hitrosti vodnega toka v jami: strop rova Tržiščice...................................................0,35 m/s korito Tržiščice 1-2 m nad tlemi................................0,50 m/s tla korita Tržiščice.....................................................2,5 m/s ožine anastomoznega spleta rovov............................0,25-0,50 m/s Po meritvah proda v jami Ki'anjc (1981, 52) sklepa, da ga prenaša tok vode, katere hitrost preseže tudi 2 metra na sekundo, torej je enaka tisti, ki vrezuje najmanjše fasete. Pritočne izpostavljene dele kamnine gladi tudi erozija. Rov je najbolj prevoden ob nižjih ali srednje visokih vodah, saj ožina za rovom povzroča zastajanje visokih voda. V anastomoznem spletu rovov, razen v ožinah, je tok počasnejši. Podobno razporeditev različnih velikosti faset lahko opazujemo tudi v glavnem vodnem rovu Križne jame. Na razčlenjenem obodu struge so na izpostavljenih, spodnjih delih sten in na tleh fasete dolge do 3 cm, 1-2 m nad tlemi pa 5 cm. Na istih višinah, a v zatišnih legah stenskih niš, so fasete dolge do 8 cm. V ožini, v katero se prelivajo visoke vode in jo zapolnijo v celoti, so po vsem obodu majhne fasete, ki so dolge do 3 cm. Različna velikost faset je posledica različne hitrosti toka, ki obliva skalo. Ta je določena z vzdolžno prepustnostjo rovov in oblikovanostjo sten. V večjih rovih je pritisk na stene večji, v vmesnih manjših rovih pa se poveča hitrost toka. V občasno ponomem Beško-Ocizeljskem jamskem sistemu so na stenah Novega rova velike fasete, ki imajo premer 1 m in več. Na njih so le nekaj cm dolge fasete (si. 18). To je posledica spremenjenega načina pretakanja vode skozi rov. Rov je bil najprej globoko zalit. Nato ga je le deloma preoblikoval hitrejši vodni tok, ki ni trajal dolgo, oziroma se le redko pojavi ob visokih vodah. Zanimiva je tudi razporeditev faset na velikem skabiem bloku, ki štrli iz korita Vzhodnega rova v Predjami. Blok je nagnjen v smeri vodnega toka. Na njem se menjavajo prečni pasovi gladke površine, ki so široki do 10 cm in fasete, ki so dolge 2-10 cm. Odseki kamnine, kije bolj strma, skorajda pravokotno izpostavljena vodnemu toku, so gladki. Takšne gladke površine so značilne za vse pritočne dele strmih ovir v strugah. Gladita jih material, ki ga prenaša voda in samo erozijsko delovanje hitre vodne mase. Fasete nastajajo le na površinah, ki z manjšimi koti odstopajo od smeri vodnega toka. Ugotovimo lahko, daje nastanek faset razmeroma kratkotrajen proces. Razumljivo je, da mlajše, zlasti manjše, fasete hitro prekrijejo morebitne starejše. Vodni tok, ki zadnji obliva kanmino, je praviloma odločilen za oblikovanje jamskih sten. Le del spreminjajočega toka vrezuje fasete, in to verjetno tudi ne najbolj dolgotrajni, temveč tisti, ki na strugo deluje najbolj učinkovito, kar smo ugotovili tudi na primeru vhodnega rova v Tenteri. Lauritzen in sodelavci (1985, 143) so izračunali, da v proučevanem zalitem rovu nastajajo fasete le ob največjem pretoku, ta pa traja le 5% leta. Merjenje z mikrometrom jim je omogočilo sklepanje, da so se fasete v tem rovu oblikovale približno 800 let. REBRA IN NJIHOV NASTANEK V izbranih jamah sem zasledil le en izrazit primer reber. V Markovem spodmolu so v vzdolžni zajedi na konkavni strani zavoja, 1,5 m nad tlemi, nastala pokončna rebra, torej SI. 18.Majhne fasete na velikih v Novem rovu v Beško Ocizeljski jami Fig. 18. Smaller facets above the big ones in Novi rov in Beka Ocizla prečna na smer vodnega toka (si. 19). Rebra so dolga 60 cm, to pa je tudi širina stenske zajede, široka pa so poprečno 5 cm in globoka 1,5 cm. Na nekaterih robovih med rebri je manjše rebro, ki se navzdol širi. Rebra so polkrožnih prečnih prerezov, njihovo dno pa je neizrazito valovito. Nastanek reber je razlagal Curl (1966). Nastala naj bi zaradi dolgotrajnega oblivanja stene s tokom enake hitrosti. Ugotovimo pa lahko, da so rebra značilna za vzdolžne, polkrožne stenske zajede. Te se oblikujejo zlasti ob tanjših skladih apnenca, ki so različno odporni v vodnem toku. Neizraziti prečni robovi v rebrih, ki se vrstijo na razdalji enaki njihovi širini kažejo, da so rebra skrajni primer faset 1. skupine. Predvidevam, daje za njihov nastanek odločilno določeno razmerje med hitrostjo in lokalno dimenzijo vodnega toka, ki jo določa premer rova ali pa zajede v steni. V njih se vodni tok značilno vrtinci prek celega premera. SI. 19.Rebra na vzdolžni stenski zajedi Markovega spodmola Fig.l9. Flutes on the longitudinal rocky notch of Markov spodmol SKLEP Do večine predpostavk o oblikovanju različnih tipov faset sem se dokopa! v številnih slovenskih kraških jamah, ki so se oblikovale v različnih hidroloških pogojih in kamninah. Bogato terensko gradivo je pripomoglo k nadgradnji dosedanjega znanja. Domneve o nastanku faset so mi pomagali razjasniti laboratorijski poskusi z mavcem. Na nastanek manjših faset odločilno vpliva predvsem sestava in razpokanost kamnine, ki jo oblivajo različno hitri vodni tokovi. Manjše fasete nastanejo s prekinitvijo laminame mejne plasti. Z vrtinci ob posameznih ovirah, večjih delcih kamnine ali vdolbinicah v njej, lahko nastanejo samostojne odprte fasete. Lastnost karbonatne kamnine je drobnozmata, pogosto dokaj homogena sestava. Kamnino zato enakomerno prekrijejo vrtinci in razvije se mreža faset. Nanehomogeni kamnini, sestavljeni iz delcev, ki so skorajda enaki teoretični dolžini faset ali pa na pretrti ali hitro razpadajoči kamnini, fasete ne nastanejo. Velikost počasneje topnih delcev v kamnini vpliva tudi na velikost vrtincev ob njih in tako na velikost faset. Vrtinci, ki oblikujejo velike fasete, so, kot lahko sklepam iz primerov s terena, predvsem posledica trenja med laminamo in vrtinčasto plastjo vodnega toka. Vrtinčenje se lahko razvije tudi ob večji oviri, manjše ovire se odražajo le na obliko posameznih večjih faset. Pod velikimi povečavami elektronskega vrstičnega mikroskopa so površine manjših faset gladke. To priča o pretežnem korozijskem delovanju vrtincev. Erozijsko zglajene površine so namreč drobno hrapave. Poprečna oblika in velikost faset, posamezne so v večji meri pogojene s kamnino, odraža predvsem hidrološke pogoje njihovega oblikovanja. Osnovi tip (2. skupina) mreže je sestavljen iz zaprtih faset, ki imajo odtočne robove povezane v diagonalne nize. Nastane, ko se ob razmeroma homogeni kamnini razvije popolno vrtinčenje, ki ni omejeno s prostorom. Smer vodnega toka je iz takšnih faset jasno razvidna. So večinoma sled srednje hitrih in hitrejših epifreatičnih vodnih tokov. Ko na vrtinčenje vpliva tudi prostor, njegova oblika in velikost, nastanejo fasete, ki so povezane v prečne nize. Nastajajo praviloma v ožinah med večjimi rovi ali pa v stenskih zajedah. Podolgovate, manjše fasete odražajo odprte, tanjše vodne tokove. Velike fasete so sledi počasnejših freatičnih tokov, ki z večjim pritiskom oblikujejo stene. Poznane različice, velikosti in položaj faset nam s pridom služijo kot speleogenetske sledi bodisi da v rovu prevladuje ena vi^ta faset ali pa da stene prekriva več tipov mrež. Slednje so lahko posledica spreminjajočih sedanjih vodnih tokov, oblike in velikosti rova ali pa spremenjenih hidroloških pogojev v vodonosniku, ko so mlajše fasete le deloma prekrile starejše. S poskusi na mavcu kaže vsekakor nadaljevati, saj bi pri oblikovanju faset lahko natančneje določili razmerja med sestavo kamnine in hitrostjo vodnega toka ter vrtinci v njem. LITERATURA Allen, J.R.L., 1972: The origin of cave flutes and scallops by enlargement of inhomogeneities." Rassegna speleologica Italiana, 14/1,3-20. Badiura, R., 1909: Križna jama.- Dom in svet, 30-33, Ljubljana. Bretz, J.H., 1942: Vadose and phreatic features of limestone caverns.- The journal of geology, V.l, N. 6/1, 675-811, Chicago. Bretz, J.H., 1956: Caves of Missouri.- Rolla, Missouri. Curl, R.L., 1966: Scallops and flutes,- The Transactions of Cave Research group of GB, 7/ 2, 121-160, Nottingham. Curl, R.L., 1974: Deducing Flow Velocity in Cave Conduits from Scallops.- The NSS Bulletin 36/2, 1-5. Dreybrodt, W., 1988: Processes inkarst Systems.- Springer-Verlag, Berlin, Heidelberg. Ford, D., 1988: Characteristics of Dissolutional Cave System in Carbonate Rocks.-Paleokarst, 25-57, Springer-Verlag New York. Ford, D. & P. Williams, 1989: Karst geomorphology and Hidrology.- London. U. Hyman, 601 p. Gams, L, 1963: Logarček., Acta carsologica 3, 5-74, Ljubljana. Gams, L, 1974: Kras.- Ljubljana. Goodchild, M.F & D.C. Ford, 1971: Analysis of scallop patterns by simulation under controlled conditions.- The journal of geology V 79/1, 52-62, Chicago. Gospodarič, R., 1974: Fluvialni sedimenti v BCrižni jami.- Acta carsologica 6, 327-366, Ljubljana. Gospodarič, R., 1985: O speleogenezi Divaške jame in Trhlovce.- Acta carsologica 13/ 1984, 5-36, Ljubljana. Habe, F., 1970: Predjamski podzemeljski svet,- Acta carsologica 5, 5-94, Ljubljana. Habe, F., 1976: Morfološki, hidrografski in speleološkirazvoj v studenškem flišnem zatoku,-Acta carsologica 7, 144-215, Ljubljana. Kranjc, A., 1981: Prispevek k poznavanju razvoja krasa v Ribniški Mali gori,- Acta carsologica 9/1980,27-81, Ljubljana. Lauritzen, S.E. & L Andrew & B. Wilkinson, 1983: Meam annual runoff and the scallop flow regime in a subarctic ennvironment.- Trans. British Cave Research Association 10/3, 97-102. Lauritzen, S.E. & J.A. Abbot & R. Amesen & G. Crossley & D. Grepperud & A. Iv & S. Johnson, 1985: Morphology and Hydraulics of an Active Phreatic Conduit.- Cave Science 12/4. Lismonde, B. & A. Lagmani, 1987: Les vagues d'erosion.- Karstologia 10-2, 33-38. Maire, R., 1980: La speleologie physique.- Spelunca 1980, Nol supplement. Michler, I., 1934: Križna jama.- Proteus 5, 97-102, Ljubljana. Renault, Ph., 1968: Contribution ... I'etude des action mecanique et sedimentologiques dans la speleogenŠse,- Annales de speleologie 23/3, 529-596. Rudnicki, J., 1960: ŠExperimental work on flutes developmentC.- Speleologia Tom 2, Nr. 1, 17-30, Warszava. Scheidegger, A.E., 1961: Theoretical Geomorphology.- Berlin, Göttingen, Heidelberg. Slabe, T., 1989: Skalne oblike v Križni jami in njihov speleogenetski pomen.- Acta carsologica 18, 197-220, Ljubljana. Slovenska kraška terminologija, 1973, Ljubljana. Shaw, T.R., 1992: History of cave science.- Second edition, p. 338, Sydney Speleological Society. Šušteršič, F., 1985: Speleometrična izhodišča za proučevanje jamskih prečnih prerezov-. Naškrš v.ll,No.l8-19, 81-87, Sarajevo. Trudgill, S., 1985: Limestone geomorfology.- London and New York. FACETS - AN IMPORTANT TRACE OF SHAPING AND DEVELOPMENT OF THE KARST CAVERNS Summary During my study of the rocky relief in the Slovene karst caves my attention was dedicated to facets which originate due to the turbulent water flow on the rough rocky surface. They are helpflil at defining the way and direction of water flow through the channels. Facet, called current marking too, is some 10 to 100 millimeters long oval solution niche. It is deeper and steeper on the inflow side, on the outflow side it is elongated and gently disappears. Various types of smaller facets are distinguished. Big facets ressemble to shallow solution cups. The flutes are oblong indentations of regular form arranged in the series transverse to the direction of the water flow. Typical of both features is their tendency to join in nets. About study and definition of the relation of the facets length and the water flow velocity, incising them, several authors have already reported. I decided to dedicate more attention to the comparison of their form properties and their ability to join into nets and to determine the factors and processes of their origin and formation. Extensive researches on the field and the laboratory tests (facets in plaster) were extremely useful. Here I summarize some results of the study. For the origin and for the facets development the rock, velocity and pressure of water flow with given viscosity and the aggressivity of water, as well as the size of the conduit and the shape of the rim are the most decisive. I suppose that the basic forms of the characteristical scallop network is mostly determined by the hydraulic conditions. The rock decides upon the origin, upon the shape of the particular facet within a network and partly influences on their size. Most of current markings appear on all types of the limestones, seldom they are found on dolomite, conglomerate, breccia, flowstone and sandstone. On homogeneous limestones where the particles are of regular shape and the same solubility, rather uniform scallop network occurs. More heterogeneous networks appear on inhomogeneous rock composed by intraclasts. On temporary flooded part of the wall in Pivka jama the facets are about 3 cm long, but where the rudists are protruded for 1.5 cm out of the surface there are no facets. On paleogene limestone the fossils have little influence on the shape of small facets. Facets are found on carbonate conglomerate and breccia too if the pieces of limestone are several times bigger than the facets length. In Smoganica the facets developed on chert sandstone with calcitic cement. Along thin fissures the facets may be elongated, threaded into series, the differences in the orientation and the size of facets are bigger. Along the fissures the edges of facets are fi-equently toothed. At great Reynold's numbers the friction depends on roughness of the tube's edge and is aknost independent on viscosity of the fluids, while at small Re it depends on viscosity and just a little on roughness (Reynolds 1974, 5). This property of rock walls overflown by the water stream is reflected, as it seems, in the formation of small or big current markings. The diameter of the whirlpools in the water flow depends mostly on water's velocity. But the lithology of the rock influences as well upon the size of the whirlpools. Near bigger obstacles the whirlpools of the water are bigger (Fig. 16). If the obstacles of the same size or bigger than the current markings are dense one to the another the interlacing of the whirlpools may conduct to chaos within the counters and the characteristic net of the curent markings does not appear. To get the net of current markings the size of the whirlpools must be bigger than the size of the constituent particles of the rock. The distribution of the smaller current markings is controlled apart from the hydraulic conditions and space geometry by the inhomogeneities of the rock. It was clearly shown at the experiments with plaster. While forming smaller current markings the interruption of the boundary laminar water layer is decisive due to unequal solubility of the grained rock composition. The same was stated by Ford & Williams (1989, 305) as well. In plaster the water incised at the obstacle a solution niche firstly. The obstacles, bigger particles of plaster, were later washed off. Singular facets developed along rare obstacles and not connected into network, remained open. The particular facet thus remained open. Allen (1972) too stated that a particular inhomogeneity in the rock causes the facet's origin. If the rock is homogeneous it is evenly washed by the turbulent flow and a net of current markings develops. An equal inhomogeneity is enabled by the grained structure of the carbonate rocks. The closed facet of various forms predomine in the net, most of them have half-circular inflow parts and triangular outflow parts. Is the origin of the facets possible only at a considerable thinning or interruption of the boundary water layer when its impact on corrosion and erosion is negligible? In the aggressive water the approach of the turbulent flow caused by friction along the boundary water layer may cause more abundant solution of the rock due to locally thinner diffusion layer. In such a way bigger facets can occur being the result of a laminar water flow there, where the influence of the rock has no essential impact on their formation. Bigger particles of the rock may prevent the high velocity flow to form the facets, but in slower flow they influence on the formation of the net mostly. At bigger inhomogeneities the "clusters" occur frequently. In them the water flows to several directions. In the ponor cave of Lokva the rudists jutting out of the surface do not influence upon the form of medium sized facets while smaller facets on similar rock in Pivka jama did not develop. Having good knowledge of hydraulic properties of the turbulent flow and of rock lithology one can consequently define the rate when the facets may develop, or determine the infiu-ence of the rock lithology to their size. The facets may develop on a particular sections of the rim which are sufficiently large for the formation of the whirlpools' net and which deviate from the water flow direction by smaller angles. The water in the whirlpools circulates perpendicularly to the surface which it overflows; that is confirmed by the outflow lenghthened and more shallow part of the facets. The biggest obstacle to the flow lines in the whirlpool is the facet's wall which is the most perpendicular to the water flow. The corrosion and erosion are the most efficient on this surface and thus the facets "move" downwards the flow. The moving is limited by the rock, by the fissures in particular to which smaller facets are frequently linked. Along the big facets, having the diameter of more than 50 cm the water flow direction is no more legible as the whirlpools which incised them have no more distinctive outflow tails. By increase of the water flow velocity the diameter of whirlpools and the length of the facets decrease. The smallest facets I have found in chosen caves were 0,4 cm long and the longest 40 cm long. The exception are big facets. They originated by the water flow which had the velocity from 6 to 0,5 m/s if we consider the equation by Lismonde and Lagmani (1987, 38): UL/v = 22000 in simplified version or in more complete form: UL/v = 20700 (l+0,266(ln(D/2L)-l,5)) which may be adopted for the conduits of regular circular cross-sections only. U means the water flow velocity, L is average facet's length. These calculations of the water flow velocity correspond rather well with those attained by the pebbles size (Scheidegger 1961, 135) fransported by water. The initial size of the facet depends on the rock mostly. In Vzhodni rov of Predjama the facets are small solution niches with diameter of I cm on the contact with smooth surface. Behind them, on the outflow side, the current markings net developed, formed by water flow of 2,5 m/s of velocity. In Markov spodmol there are on the steep side of the river bed the smallest facets only 0,4 cm long, thus indicating the water flow velocity of 6 m/s and fine-grained homogeneous rock on which they occur. The granular composition is characteristic for the limestones and according to locally high velocities of the water flow and small whirlpools it them, the limited homogeneity is frequent. I've noticed several characteristical connections of the facets within the same net. We distinguish the facets with rather accomplished shapes and those subdued to the manner of cormection in a net due to inhomogeneous rock. The distribution of the whirlpools which cover the adquate rock entirely is firstly controlled by the rock and when the equilibrium is achieved, for which a laminar flow is needed, the turbulent flow controls the shape of the facets themselves. Among the initial whirlpools the interjacent ones occur, competing among themselves. This is indicated by some extraordinary small facets within a net. After some time the facets in regular flow achieve their maximal size and the state of equilibrium. During the experiments in plaster the facets size did not change after 2 hours. I infer that the facets similar by shape develop in characteristical hydrological conditions. I have presented the shape of singular facets within 60 networks into numerical data. To each facet the lenght, the width of the left and right half and the point and the biggest depth were defined. I have also measured the radius of inflow, mostly half-circular edge of the facet and the final angle of the closed facets. Thus the average shape and size of facets in the particular networks were obtained. It turned out that in the networks the facets which are closed on the outflow side by wider or narrower angle and the facets which remain open on the outflow side predominate. These two shapes are either connected within the same network or predominate in it. For comparison of the facets referring to their shape I had to eliminate their size. For the average shapes of the facets I have calculated the proportion between the facet's length and the above mentioned width. The results are classified into three groups and into the intermediate groups. We speak about the second group when the conduit is big enough and the homogeneous rocky surface bigger than the diameter of the whirlpool of water thus that at the walls perfect whirls develop and "mature" facets occur. The difference between the longest and the shortest current marking is considerable, being from 24 to 375 mm. Proportionally with the flow velocity increase the length of the facets decreases and by increase of the pressure against the walls their radius augments and the current markings are deeper. The nets characteristically associated to lateral edges limiting the outflow parts of the facets into diagonal series predominate. To the first group belong the facets where the rate between the length and the width is smaller or equal to 1. They are mostly small, from 4,7 to 40 mm long and from 2 to 10 mm deep. The facets are associated into series which are distributed transverselly to the direction of the water flow. As a rule such facets developed in the narrows of the channels or on floor and wall solution flutes. They are incised by water flow increased in the flooded channel or the open water flow acting to the walls by smaller pressure. I presume that the size and the shape of the channel or its part (longitudinal notches) controls the constant turbulence across the entire section. To the third group belong the facets with the rate between the length and the width bigger than 2. The facets are relatively small, from 1 to 5 cm long. They occur when the rock is bathed by the shallow open water flow. Its pressure against the walls is slight. It is evidenced by the position of such facets also on rocky blocks or on exposed convex parts of the river beds and on the walls close below the level of higher water flow. In the chosen caves I had the opportunity to see only old big facets mostly badly preserved. The diameter of the biggest facets measures from 0,5 to 1,5 m and is from 0,3 to 0,5 mm deep. Big facets have the shape of shallow half bowls. Their net is hardly legible. By increase of the water flow velocity the boundary laminar layer along the rock becomes thinner. The turbulent nucleus approaches the wall. By thinning the boimdary laminar layer which depends upon the fluid viscosity too, the diffusion layer is made thinner as well. It enables the water to fransport the reagents and the product of dissolution quicker and thus the corrosion is increased. In a very expressed turbulent flow the existence of a diffusion boundary layer is neglected (Dreybrodt 1988,154). Due to thinner boundary layer the water acts by erosion directly to the rock by its mass. At the facets developing on the carbonate rock both processes are important: the locally faster dissolution and direct erosion of the rock by the water mass. The water fransports less soluble particles of the rock. From the sandstone composed by quartz particles cemented by calcite the water transports the quartz particles after dissolving the calcific cement. During the formation of the current markings on more resistant carbonate rock more important role is played by the corrosion. The microscopic observations of the small facets surfaces confirm it as they remain smooth under greater magnifications too. The erosionally polished surfaces are namely under greater magnifications thinnly rough. The facets formed at the experiments in plaster are due to plaster dissolution and only bigger particles, jutted out of the surface were undissolved washed off by the water flow. As a rule the facets do not occur in the conduits with prevailing erosional activity of the water flow (Babja jama). The rim of such passages is polished. Comparing the saturation ofwaterto shape ofthe rocky rehef in the swallow hole Finkova jama and in spring cave Podpeška jama (Ribniška Mala gora) one can establish that the lithology is much more important at the origin of rocky forms than the saturation, potential water aggressivity respectively. Allogenic water is up to 21% saturated and spring water up to 60% (Kranjc 1981, 52). In Finkova jama there are ceiling pockets only while the rocky relief of Podpeška jama abounds with various current markings and ceiling pockets. In the first cave the rock is strongly recrystallizwed, while in the second one the rim is built of rather homogeneous oosparitic limestone. Differently high and corrosionally aggressive waters play different role at the rocky relief formation. In Škocjanske jame the high waters incise the current markings and the riverbed bottom is covered by a thin film of fiowstone. It is another confirmation that a part of water only takes part at the formation of the rocky relief The velocity of the rock dissolution, shown also by the experiment in plaster, influences to shape and size of the facets. I suppose that the facets are smaller and characteristically lengthened (group 3) if the rock is easily dissolved. The facets can be formed or transformed by the material transported by the water. The sand being too heavy to be included into perpendicular turbulence incising the facets, whirls parallel to the rocky surface. This is why the facets are at the bottom circular and erosionally deepened. In vadose zone of the channels (Osapska jama) where slowly flowing waters deposit loam, the corrosion below the sediment deepens and widens the facets. Thus the combination of facets and below sediment solution niches are involved. Current markings develop in singenetic and paragenetic passages. In the first ones these are water flooded channels, the channels through which the open water flow passes, in the oxbows; in paragenetic charmels bigger facets develop due to water flow above the fine grained sediment. Thus the facets may occur on the entire rim or on one part of it only. On the rim they predominate or else they occur in combination with other forms, f e. below sediment half tubes or solution niches. In short, the current markings are an important speleogenetical sign. In seasonal ponor Beka Ocizla cave system there are on the walls of Novi rov big facets and on other places some cm long new facets. The charmel was phreatic at first and was later partly transformed by more rapid water stream. On the upper parts of the walls and on the ceiling of one part of the passage in Markov spodmol there are bigger facets distinctive for phreatic charmels. They are older and it seems that they covered the entire rim of the conduit. Later they were on the lower parts of the walls and on the floor covered by smaller facets incised by rapid, open water stream. The shape and distribution of the facets are controlled by changed hydraulic conditions in characteristically shaped conduits. Flutes are significant for longitudinal, half-bowl wall notches. They mostly develop along thinner limestone beds which are variously resistant against the water flow. Undistinctive transverse edges in the flutes which are found on the distance equal to their length show that flutes are the extreme case of facets of the flrst group. I presume that for their development the defined rate between the velocity and local dimension of the water flow is decisive which is controlled by the conduit's diameter or notches in the wall. The water flow whirls across the entire diameter in a characteristic manner. Translated by Maja Kranjc HIDRODINAMICNI REŽIM KRAŠKEGA VODONOSNIKA MED SOLKANSKO AKUMULACIJO IN BRUHALNIKOM LIJAKOM HYDRODINAMIC REGIME OF THE KARST AQUIFER BETWEEN THE ACCUMULATION OF THE HYDRO - POWER STATION SOLKAN AND THE LIJAK EFFLUENT METKA PETRIČ Izvleček UDK 556.33 (497.12) Petrič, Metka: Hidrodinamični režim kraškega vodonosnika med solkansko akumulacijo in bruhalnikom Lijakom Primerjava nihanja podzemne vode v bruhalniku Lijaku pri Novi Gorici s spreminjanjem višine akumulacije HE Solkan je pokazala na hidravlično povezavo med obema objektoma. S kvantitativno analizo ugotovljenih vplivov so bile določene hidrodinamične lastnosti vodonosnika v zaledju izvira. Izračuni temeljijo na predpostavki, da so piezometrski valovi v Lijaku realizacija osnovnih valov, ki jih povzroči spreminjanje višine vode v akumulacijskem jezeru. Difuzivnost je faktor, ki pogojuje njihovo razširjanje v prostoru in času. Na podlagi zapisov obeh nihanj je bila tako najprej izračunana difuzivnost vodonosnika, nato pa še teoretične krivulje nihanja podzemne vode v Lijaku. Te se dobro ujemajo s krivuljami, dobljenimi na osnovi rezultatov opazovanj. Ključne besede: krasoslovje, hidrologija krasa, hidrodinamični režim, kraški bruhalnik Lijak, Trnovska planota, Slovenija. Abstract UDC 556.33 (497.12) Petrič, Metka: Hydrodinamic regime of the karst aquifer between the accumulation of the hydro - power station Solkan and the Lijak effluent Close hydraulic connection between the periodical effluent Lijak near Nova Gorica and the Solkan accumulation was shown by the comparis^on of water level oscillations in both objects. Hydrodinamic properties of the aquifer in the background of the spring were determined by the quantitative analysis of the established relations. Calculations are based on the presumption that the piezometric waves in Lijak are the realization of the basic waves, which are caused by the water level oscillations in Solkan accumulation. The propagation of those waves through space and time is conditioned by the difusibility. So first the difusibility of the aquifer and then also the theoretical curves of the water level oscillations in the effluent Lijak were calculated from the known data. The correlation between the calculated and the observed curves is very good. Key words: karstology, karst hydrology, hydrodinamic regime, karst effluent Lijak, Trnovo plateau, Slovenia. Naslov - Address Metka Petrič, dipl.inž.geol., raziskovalni asistent Inštitut za raziskovanje krasa ZRC S AZU Institute for Karst Research Scintific Research Centre of the Slovene Academy of Sciences and Arts Titov trg 2 SLO - 66230 Postojna VSEBINA UVOD..........................................................................................................................183 GEOGRAFSKI PREGLED.........................................................................................183 KLIMATSKE IN HIDROLOŠKE RAZMERE............................................................184 GEOLOŠKE IN HIDROGEOLOŠKE RAZMERE.....................................................185 ANALIZA HIDRODINAMIČNEGA REŽIMA KRAŠKEGA VODONOSNIKA.....186 SKLEP.........................................................................................................................197 LITERATURA.............................................................................................................198 SUMMARY.................................................................................................................199 UVOD Kraški izvir Lijak deluje kot občasni bruhalnik, ki le v obdobju visokih vod preliva čez neprepustno flišno bariero. S kontinuiranim merjenjem višine podzemne vode so bile določene hidrodinamične lastnosti vodonosnika v zaledju izvira. Ugotovljen je bil kraški režim s kratkotrajnimi visokimi valovi in daljšimi obdobji nizkih vod ter veliko amplitudo (Janež 1992). Visoki valovi nastopijo kot posledica močnejših padavin, doseženemu maksimumu pa sledi zniževanje piezometrskega nivoja po negativni eksponenciahii krivulji. Posebnost zapisa nihanja podzemne vode v Lijaku so odstopanja od te značilne krivulje upadanja. Pojavljajo se kratkotrajna znižanja, ki niso v nobeni zvezi s padavinami. Izvor dodatnega nihanja je bil pojasnjen s primerjavo med izmerjenimi piezometrskimi nivoji v Lijaku in zapisom spreminjanja višine vode v akumulaciji HE Solkan. Hitra znižanja gladine akumulacijskega jezera imajo namreč jasen odziv v limnigramu Lijaka. Ugotovljena odvisnost dokazuje obstoj kraškega vodonosnika med obema objektoma (Čar & Gospodarič 1988), nadaljnja kvantitativna analiza hidrodinamičnega režima pa omogoča tudi opredelitev njegovih značilnih lastnosti. Članek je povzetek mojega diplomskega dela, pri katerem sta mi s strokovnimi nasveti pomagala mentor prof.dr. Miran Veselič in dipl.inž.geol. Jože Janež iz RŽS Idrija. Ob tej priliki se jima za pomoč še enkrat zahvaljujem. GEOGRAFSKI PREGLED Vodonosnik med umetno akumulacijo HE Solkan in izvirom Lijakom obsega območje zahodnega dela Trnovskega gozda med Grgarjem in Trnovim. Teren s 300 - 900 m nadmorske višine je izrazito kraški. Razvite so številne globoke vrtače, brezna in tudi dve ledeni jami. Na južni strani je omejen z neprepustno pregrado, ki jo gradijo flišne plasti spodnje Vipavske doline in okolice Nove Gorice. Približno 6 km vzhodno od Nove Gorice je občasni kraški bruhabiik Lijak. Nahaja se na koti 102 m v dnu visoke skalne zajede pod robom Trnovskega gozda severozahodno od Ozeljana v spodnji Vipavski dolini. Ob visokem vodostaju se vode iz izvira združijo v potok Lijak, ki se severno od Renč izliva v reko Vipavo. Soča priteče na Goriško iz severozahodne smeri po dolini med Sabotinom in Skalnico. Približno 1.2 km severno od Solkana se obrne proti jugozahodu in teče naprej na italijansko ozemlje. Na tem mestu so leta 1984 zgradili jez za hidroelektrarno Solkan, ki sodi v sklop Soških elektrarn. Nivo akumulacije je običajno na 77 m nadmorske višine. KLIMATSKE IN HIDROLOŠKE RAZMERE Klimatske razmere Strm prehod iz Vipavske doline na visoko kraško planoto Trnovskega gozda ima jasen odraz tudi v klunatskih razmerah. Za Vipavsko dolino so značitai mediteranski vplivi in srednja letna temperatura okrog 12° C. V osrednjih delih Trnovskega gozda z občutno hladnejšim podnebjem se ta temperatura giblje le še med 7° C in 9° C, v najvišjih predelih pa doseže komaj 5° C. Podobne razlike so opazne tudi pri razporedu padavin, ki naraščajo z nadmorsko višino in z oddaljevanjem od Vipavske doline proti severovzhodu (Janež 1992). Pregled padavin za padavinsko postajo Trnovo v obdobju 1960 - 1990 je pokazal, da znašajo letne padavme na tem območju med 1500 in 2700 mm s povprečno vrednostjo 2025 mm. Hidrološke razmere V okvhoi raziskav kraškega bruhalnika Lijaka je bila v neposrednem zaledju izvira leta 1988 izvrtana in nato leta 1989 poglobljena do globine 147 m vrtina Li-0188 (Čar & Janež 1990). Z namestitvijo limnigrafa v vrtino je bilo zagotovljeno neprekinjeno beleženje vodostaja. Pri analizi so bili uporabljeni podatki za obdobje od 19.7.1989 do 2.6.1990. Zapisi nihanja podzemne vode kažejo na značilni kraški režim s kratkotrajnimi visokimi valovi in daljšimi obdobji nizkih vod ter veliko amplitudo. Najnižje seje nivo podtataice spustil do 76.55 m nadmorske višine 29.10.1989, najvišjo vrednost 115.76 m pa je dosegel 7.4.1990. Amplitida torej znaša kar 39.21 m. Porasti vodostaja so hitri s povprečno hitrostjo dviga 1.5 m/h, maksimalne hitrosti pa znašajo celo 5 m/h (Čar & Janež 1990). Vsake zaznavne padavine rezultirajo s porastom piezometrske gladine. Reakcija je zelo hitra, s časovnim zaostankom manjšim od 24 ur. Bolj točne korelacije zaradi grobega merila - dnevni podatek za padavine - ni možno izvesti. V ekstremnih primerih se dvigne nivo podzemne vode nad prelivni flišni rob pri 102 m nadmorske višine in izvir bruha. Po prenehanju padavin sledi doseženemu maksimimu upadanje po negativni eksponencialni krivulji. Pri tem se vrednosti asimptotično približujejo nivoju akumulacije HE Solkan, ki se večji del zadržuje okrog kote 77 m. Tudi v HE Solkan imajo avtomatsko registrirno napravo za beleženje gladine akumulacijskega jezera. Nivo regulirajo umetno glede na trenutne razmere in potrebe elektrarne. V obdobju od 19.7.1989 do 2.6.1990je bila maksimalna amplituda nihanja 1.62 m. Najvišja gladina je bila zabeležena 21.12.1989 in sicer 77.20 m nadmorske višine, najnižja 75.58 m pa 1.2.1990. S primerjavo zapisov obeh nihanj seje pokazalo, da imajo hitra, kratkotrajna znižanja akumulacije HE Solkan v obdobju srednjih in nizkih vod jasen odziv v limnigramu Lijaka. Pri višjih vodostajih pa je ta povezava zabrisana zaradi prevladujočega vpliva padavin na nihanje gladine vode v vrtini. GEOLOŠKE IN HIDROGEOLOŠKE RAZMERE Podatke o geološki zgradbi obravnavanega ozemlja sem povzela po Osnovni geološki karti 1:100 000 list Gorica (Buser 1968) s tolmačem (Buser 1973) ter po člankih Geološka zgradba in nekatere značilnosti bruhalnika Lijaka (Čar & Gospodarič 1988) in Geološka zgradba jugozahodne Slovenije (Placer 1981). Dopolnila sem jih še z rezultati podrobne geološke preučitve okolice Lijaka (Čar & Gospodarič 1986), območja Ravnice in Škabrijela (Čar 1987) in območja Grgarske kotline (Čar 1988). Stratigrafsko-litološka razčlenitev plasti Najstarejši na obravnavanem območju so barremijski in aptijski temno rjavkasti do sivo rjavkasti mikritni organogeni apnenci z vložki apnenčevih peščenjakov zahodno od Trnovega. V normalnem geološkem zaporedju prehajajo proti zahodu v svetlo sive do rjavo sive plastnate apnence albijske in cenomanijske starosti, ki gradijo tudi območje Škabrijela, Skalnice in Sabotina ter dve krpi v okolici Solkana. Enake starosti je pas temno sivega bituminoznega dolomita severozahodno od Voglarjev. Vzhodno od Grgarja, na Sabotinu in na ozemlju med Lijakom in Ravnico najdemo turonijske in senonijske bele do svetlo sive neplastnate ali neizrazito plastnate apnence z rudisti. V posameznih krpah v okolici Lijaka izdanjajo zgomjesenonijski in paleocenski rdeči in zelenkasto sivi laporovci in laporasti apnenci. Severno od Ravnice pa ležijo diskordantno na zgornjekrednih plasteh apnenčevi konglomerati in peščenjaki ter peščenjaki in konglomerati, ki so značilni za začetni flišni razvoj. Velik del ozemlja prekrivajo inverzne eocenske flišne plasti Vipavske doline. Kamnine enake starosti najdemo v normahii legi tudi v okolici Ravnice. Najmlajši so kvartarni terasni sedimenti pri Novi Gorici, aluvialni nanosi v Grgarski kotlini, ob potoku Lijaku in v okolici Solkana ter delno sprijet pobočni grušč, ki prekriva zgornji del flišnega pobočja Vipavske doline in njegov prehod v apnenčeve stene Trnovskega gozda. Tektonske razmere V tektonski rajonizaciji jugozahodne Slovenije sta bila na obravnavanem ozemlju opredeljena dva pokrova. Tako pripada Trnovski gozd Trnovskemu pokrovu, območje na severozahodu Vipavske doline pa predstavlja del Hrušiškega pokrova (Placer 1981). Močan narivni stik med obema, ki je nakazan z inverzno lego flišnih plasti, se pred Ozeljanom spusti iz pobočja v dno Vipavske doline in se vleče po flišnih kamninah proti severozahodu V Furlansko nižino. Plasti Trnovskega gozda prehajajo zahodno od Ozeljana v neprekinjenem zaporedju v poleglo antiklinalo, ki tone proti severozahodu (Čar & Gospodaric 1986). Ozemlje je razsekano s številnimi različno močnimi prelomi s prevladujočo dinarsko smerjo. Glavna prelomna cona Raškega preloma se na obravnavanem območju vleče od Šmihela do Grgarske kotline. V eni izmed vzporednih prelomnih con pa se nahaja izvir Lijak (Čar & Gospodarič 1986). Geološka zgradba neposredne okolice Lijaka V obdobju 1988/89 so 15 m za izvirom izvrtali vrtino Li - 0188. Analiza njenega jedra je dala pomembne podatke o geološki zgradbi tega območja. Do globine 8 m je bil navrtan grobozmat pobočni grušč, nato pa do globine 126 m svetlo siv zgomjekredni apnenec. Vrtina je potekala skozi enake litološke člene, kar potrjuje s površinskim kartiranjem ugotovljeno subvertikalno lego plasti in s tem na antiklinalni del polegle gube. Od globine 126 m do konca vrtine pri 147 m so bile določene neprepustne flišne plasti. Ob dinarsko usmerj enemu prelomu, ki seka neposredno okolico bruhalnika, j e v zgomj ekrednih apnencih 20 m široka porušena cona, v kateri leži izvirno območje Lijaka (Čar & Gospodarič 1986). Hidrogeološka funkcija plasti Po njihovi hidrogeološki funkciji uvrščamo kamnine obravnavanega ozemlja v štiri razrede (Čar & Habič 1987), ki so shematsko prikazani na sliki 1. Močno zakraseli in pretrti spodnjekredni in zgomjekredni apnenci osrednjega dela Trnovskega gozda spadajo med dobro prepustna območja s kraško in razpoklinsko poroznostjo. Kvartarne pobočne grušče in breče, ki prekrivajo prehod iz flišnega pobočja Vipavske doline v apnenčeve stene Trnovskega gozda, uvrščamo med dobro prepustna območja z medzmsko poroznostjo. Enako poroznost imajo aluviahii nanosi v Grgarski kotlini, okolici Nove Gorice in v širokem pasu med Šempasom in Kromberkom, vendar so slabše prepustni. Fliš Vipavske doline in okolice Ravnice ter paleocenski laporji pa predstavljajo neprepustna območja z omejenimi prepustnimi vložki. ANALIZA HIDRODINAMIČNEGA REŽIMA KRAŠKEGA VODONOSNIKA Predstavitev problema Na sliki 2 so prikazani zapis nihanja podzemne vode v Lijaku, zapis umetnega spreminjanja višine solkanske akumulacije in podatki o dnevnih višinah padavin na padavinski postaji Trnovo. Že na prvi pogled je dobro vidna zveza med njimi. Vsake zaznavne padavine povzročijo hiter dvig nivoja podzemne vode v Lijaku, doseženemu maksimumu pa sledi upadanje po značilni negativni eksponencialni krivulji. Vplivi spreminjanja višine akumulacije HE Solkan se kažejo kot odstopanja od te idealne krivulje. Če dejanski krivulji upadanja priredimo teoretično negativno eksponencialno krivuljo, lahko z razlikami med SI. 1: Hidrogeološka skica ozemlja med Lijakom in solkansko akumulacijo. 1 - dobro prepustaa območja s kraško in razpoklinsko poroznostjo, 2 - dobro prepustna območja z medzrnsko poroznostjo, 3 - slabo prepustna območja z medzmsko poroznostjo, 4 - neprepustna območja z omejenimi prepustnimi vložki, 5 - prelom, 6 - domnevna meja pokrova, 7 - domnevna narivnica, 8 - kraški bruhalnik Lijak, 9 - jez HE Solkan Fig. 1: Hydrogeological sketch of the area between the Lijak effluent and the accumulation Solkan. 1 - well permeable zones with karst and fissure porosity, 2 - well permeable zones with intergranular porosity, 3 - badly permeable zones with intergranular porosity, 4 - impermeable zones with permeable inliers, 5 - fault, 6 - supposed nappe border, 7 - supposed overthrust line, 8 - karst effluent Lijak, 9 - dam of the hydro-power station Solkan obema krivuljama določimo reakcije piezometrskega nivoja v Lijaku na hitra znižanja solkanskega akumulacijskega jezera. S tem je omogočena direktna primerjava obeh nihanj. Nadaljnja analiza temelji na predpostavki, daje nihanje piezometrskega vala v Lijaku realizacija osnovnega vala, ki ga povzroči spreminjanje višine solkanske akumulacije. Faktor, ki pogojuje to razširjanje v prostoru in času, je difuzivnost. Izračunamo jo lahko na osnovi splošne enačbe piezometrske površine z upoštevanjem podatkov za osnovni in realizirani val. Diftizivnost opisuje razširjanje tlačne motnje skozi porozno kamnino, zasičeno z vodo. Definirana je kot kvocient med transmisivnostjo T, ki v vodonosniku opisuje funkcijo prevodnika in koeficientom elastičnega vskladiščenja S, ki določa funkcijo akumulatorja. Če v enačbi širjenja piezometrskih valov upoštevamo rezultate kontinuiranega merjenja nihanja nivoja vode v Lijaku in v akumulacij i, lahko ocenimo vrednost difiizivnosti kraškega vodonosnika med njima. Na osnovi izračunane difuzivnosti in podatkov o spreminjanju gladine akumulacije HE Solkan je mogoče določiti teoretične ki ivulje nihanja piezometrskega nivoja v Lijaku. V splošnem lahko ob znani vrednosti difuzivnosti vodonosnika v okviru ugotovljene natančnosti določimo vpliv spreminjanja višine akumulacije na nivo podzemne vode na poljubni oddaljenosti od izhodišča. (miw.) 8.8. 27.8. SI. 2: Vpliv padavin (3) in umetnega spreminjanja višine akumulacije HE Solkan (2) na piezometrski nivo v Lijaku (1). 4 - teoretična krivulja upadanja Fig. 2: The influence of precipitations (3) and artificial oscillations in the accumulation Solkan (2) on the piezometric level in the Lijak observation well (1). 4 - theoretical regression curve M. Petrič, Hidrodinamični režim kraškega vodonosnika med solkansko akumulacijo in bruhalnikom Lijakom Analiza krivulje piezometrskega nivoja vode v Lijaku Direktna primerjava med spreminjanjem višine solkanske akumulacije in nihanjem nivoja podzemne vode v Lijaku ni možna zaradi prevladujočega vpliva padavin. Dejanski krivulji nihanja zato priredimo teoretično negativno eksponencialno krivuljo, po kateri bi se zniževal piezometrski nivo, če nanj ne bi vplivalo gibanje gladine akumulacijskega jezera. Iz razlike med obema krivuljama nato določimo reakcije podzemne vode v izviru na hitre spremembe višine akumulacije. Tako dobljene vrednosti predstavljajo osnovo za nadaljnjo analizo hidrodinamičnega režima v vodonosniku. V matematičnem smislu je zgoraj opisano obliko krivulje definiral E. Maillet (1905, po Mijatoviču 1968). Opredelil je t.i. "krivuljo praznjenja", ki podaja zmanjševanje dotoka iz rezervoarja pri pogojih brez napajanja: Q^ dotok ob času t^, ko se je praznjenje začelo dotok ob času t a Mailletov koeficient praznjenja Analogno je definirana krivulja upadanja nivoja podzemne vode, ki se prav tako obnaša kot negativna eksponencialna funkcija: ß = (2) H^ nivo podzemne vode v času t^, ko se je upadanje začelo nivo podzemne vode a' koeficient upadanja Za različne hidravlične tipe kraških vodonosnikov veljajo nekoliko spremenjene oblike te enačbe. V primeru Lijaka pa lahko za obdobje srednjih in nizkih vod privzamemo laminami režim toka, ki ga opisuje kar osnovna enačba. Ker praznjenje vodonosnika poteka istočasno iz različnih kolektorjev od kanalov največjega preseka preko manjših kanalov in razpok do mikrorazpok, ima vsak kolektorski nivo poseben podrežim upadanja nivoja podzemne vode, ki ga opredeljuje določen koeficient a'. Enačba upadanja dobi kompleksno obliko (Mijatovič 1968): H, = Ho^ ■ + Hoi ■ +...+Hon ■ e"«'"'»") (3) Krivulja upadanja je tako sestavljena iz posameznih odsekov, ki jih v semilogaritemskem merilu predstavljajo premice z različnim naklonom. Vsak tak odsek predstavlja poseben podrežim z značilnim koeficientom a' (si. 3). log Ht log H01 log H02 log H03 _ iga_ t01 t02 t03 SI. 3: Teoretična krivulja upadanja v semilogaritemskem merilu Fig. 3: Theoretical regression curve in the semilogarithmic scale Koeficient a predstavlja tangens kota, ki ga oklepa premica z absciso. Dobimo ga z logaritmiranjem iz osnovne enačbe: a = log Ho - log Ht 0.4343 (4) Neznanki v tej enačbi, H^ in a', določata posamezne odseke in omogočata izračun krivulje upadanja. Določimo ju tako, da v izbranih točkah dejanske krivulje upadanja nivoja vode v Lijaku izmerimo vrednosti H^ = f(t) glede na referenčni nivo 77 m. S prikazom v semilogaritemskem merilu lahko opredelimo posamezne podrežime upadanja in izračunamo koeficiente a'. Z upoštevanjem teh vrednosti v modificirani osnovni Mailletovi enačbi (2) priredimo vsaki krivulji upadanja piezometrskega nivoja v izviru ustrezno teoretično negativno eksponencialno krivuljo. Za primere na sliki 2 so dobljeni koeficienti prikazani v tabeli 1, prirejene teoretične krivulje pa na sliki 2. Tabela 1: Vrednosti H in a' za primere na sliki 2 Krivulja t„ (ura) H (m) a' 3 0 0.910 0.011184 0 10.568 0.031238 4 48 3.981 0.011790 154 1.738 0.006348 0 3.802 0.054468 5 25 1.274 0.010446 104 0.589 0.002987 Izračunane krivulje se ujemajo z dejanskimi. Odstopanja, ki se pojavljajo, pa so reakcija nivoja podzemne vode v Lijaku na spreminjanje višine solkanske akumulacije in predstavljajo osnovni podatek za nadaljnjo analizo hidrodinamičnih razmer v kraškem vodonosniku. Analiza razširjanja umetnih piezometrskih valov Z analizo razširjanja piezometrskih valov lahko v danih okoliščinah opredelimo hidrodinamične lastnosti vodonosnika in ocenimo vrednost difiizivnosti Pri tem izhajamo iz splošne enačbe toka (Boussinesq 1877; Ferris 1951; po Krivicu 1982): dH(x,t) (5) ~ t' 8t H(x,t) piezometrska površina, ki se spreminja v prostoru in času X oddaljenost od izhodiščne točke t čas, od začetka pri t = O S koeficient elastičnega vskladiščenja T transmisivnost To je enačba nestacionamega toka, ki opisuje pretakanje podzemne vode skozi sisteme linijskih, paralelnih prevodnikov. Rešitev diferencialne enačbe je odvisna od oblike spreminjanja proste gladine s časom. V naravi je značilno sinusno nihanje nivoja vode v vodonosnikih, ki ga zaradi periodičnosti opisujejo enostavne enačbe, S tem problemom so se ukvarjali številni avtorji, ki so postavili teoretične osnove za različne hidrodinamične modele (Krivic 1982). V obravnavanem primeru kraškega vodonosnika med solkansko akumulacijo in izvirom Lijakom pa nihanje nima oblike sinusoide. V HE Solkan namreč umetno spreminjajo nivo akumulacije glede na trenutne razmere in potrebe elektrarne, zato ima tudi spreminjanje proste gladine s časom poljubno obliko. Ker ga je nemogoče opredeliti z enačbami za periodično nihanje, je za ta posebni primer potrebno izpeljati splošno enačbo. Izpeljava predpostavlja idealizirane razmere v vodonosniku. Rešitev enačbe je funkcija H = H(x,t), ki definira piezometrsko površino. Glede na robne pogoje H(x,t) = O za t< O in H(x,t) = h^za tlO da dvojna transformacija Carson - Laplacea rešitev temeljne enačbe, ki se po aplikaciji teorema superpozicije prehodnih stanj razširi še na bolj kompleksne primere (Bonnet & Schneider 1969 po Krivicu 1982): O o kjer je p^J—--in ^ = ^ 4Dt \A-D-{t-ti) H(x,t) piezometrska površina, ki se spreminja v prostoru in času amplituda nihanja X oddaljenost od izhodiščne točke t čas, od začetka pri t = O D diflizivnost h. piezometrska površina izhodiščnega nihanja v času t Izpeljano splošno enačbo piezometrske površine (6) sem uporabila pri analizi razširjanja umetnih piezometrskih valov med akumulacijo HE Solkan in izvirom Lijakom. Osnovne pogoje tega širjenja opisujeta dve skupini podatkov (si. 4). Prva obsega digitaliziran zapis spreminjanja gladine akumulacije HE Solkan in predstavlja vrednost osnovnega vala v izhodiščni točki x = 0. Običajno se ta gladina zadržuje na koti 77 m, kratkotrajna znižanja ali zvišanja so posledica umetnega spreminjanja nivoja jezera. Natančno obliko nihanja sem dobila z ločeno analizo za posamezne časovne intervale, ki obsegajo čas od začetka spremembe, preko intervalnega maksimuma do vrnitve v začetno stanje. V celotnem opazovahiem obdobju od 19.7.1989 do 2.6.1990 sem določila 45 različno dolgih intervalov. Drugo skupino podatkov predstavljajo nivoji podzemne vode v Lijaku. Značilne piezometrske višine sem dobila z digitaliziranjem zapisa nihanja podzemne vode, v katerem je bil na osnovi modificirane Mailletove enačbe (2) že odstranjen prevladujoč vpliv padavin. Tudi v tem primeru je referenčni nivo kota 77 m. Izražene vrednosti predstavljajo realizacijo osnovnega vala na oddaljenosti x = 6000 m od izhodiščne točke; torej po opravljeni poti od solkanske akumulacije do Lijaka. Tabela podatkov obsega tako naslednje parametre (si. 4): h. za vsak interval obsega skupino podatkov o višini vode v akumulaciji glede na referenčni nivo 77 m od začetka (t. = 0) do konca intervala v časovnih razmikih Dt. = 2 uri t čas, kije potekel od začetka intervala do izbranega trenutka in se spreminja v vsakem intervalu od t. = O do t . 1 imax H(x,t) predstavlja podatek o piezometrski višini vode v vrtini Li - 0188 v izbranem trenutku na oddaljenosti x = 6000 m od izhodiščne točke po odstranitvi prevladujočega vpliva padavin; vrednosti so določene glede na referenčni nivo 77 m. t v vsakem intervalu trenutni čas t X razdalja med akumulacijo HE Solkan in izvirom Lijak; torej pot, ki jo opravi opazovani val h amplituda vsakega posameznega intervala Vsak interval s podatki o višini vode v akumulaciji h. predstavlja en val, ki ga opisuje splošna enačba piezometrske površine (6). V tej enačbi je ob znanih vrednostih za osnovni in realizirani val iskana neznanka diflizivnost D, ki opisuje širjenje teh valov v prostoru in času. O ti1 ti2 ti3 ti4 ti5 ti6 ti7 ti (h) SI. 4: Osnovni val akumulacije HE Solkan (zgoraj) in realizirani val v Lijaku na oddaljenosti x = 6000 m od izhodišča (spodaj) Fig. 4: Basic wave of the accumulation Solkan (above) and influenced wave in the Lijak observation well at the distance x=6000 m from the starting - point (below) Rešitev integrala je neskončna vrsta, ki konvergira proti 0.5-Vn (Vidav 1976). Število členov te vrste, ki pridejo v poštev pri izračunu, pa je odvisno od izbranih mej integrala. V obravnavanem primeru je pomembna zgornja meja, ki ima obliko I . Ob upoštevanju dejanskih in predpostavljenih vrednosti parametrov je zadostna \ADt natančnost dosežena že z izračunom prvih šestih členov neskončne vrste. Splošna enačba piezometrske površine dobi tako naslednjo obliko: 2 v' v' v' v' v" (7) H{x,f)= ho-a —- --- w v ,; ^ V^Y 3 10 42 216 1320^ 4Dr Vn 3 10 42 216 1320 kjer nastopajo isti parametri kot v enačbi (6). Vpeljala sem nove spremenljivke: 0+ ADitj-t,), O m = x^ x^ , 2 = k = —j= H = e = ^^D p-t^ Vn in prikazala enačbo (7) v spremenjeni obliki: +(^,1 +(.h2-KX. +.:+{h,j -Ä,,)-«-) 42-e Vrednosti v oklepaju sem izrazila kot: fl = -H{x,t;y^h, - /z,o)+(/z,2 - - h^) b = kih,-m +(h„ --- c = -y(h,-m' +(h„- ^ = -^iK-m' -hj-nl / = +(^,1 +(/7,2 ^ = +(/^,2 -/^n)-«" +...+(/7, -Ä,,)-«;') Ijzu Ob upoštevanju teh vrednosti in množenju z e" dobi enačba naslednjo obliko: a-s}' + f -z' +g = Q d«) Z uporabo računalniškega programa EUREKA sem določila ničle tega polinoma. Zaradi visoke stopnje polinoma in velikih vrednosti koeficientov je določitev ničel v nekaterih intervalih nezanesljiva. Vendar je primerjava rezultatov pokazala, da se v večini primerov vrednosti za e gibljejo okoli istega števila. Zato sem na osnovi teh rezultatov določila povprečno vrednost za e in po enačbi £) = g- še difiizivnost kraškega vodonosnika: e^, = 734.85 D = 540 000 m^/h D= 150m% Računi, dobljeni na podlagi zapisa nihanja gladine podzemne vode v Lijaku v odvisnosti od spreminjanja nivoja vode v solkanski akumulaciji na razdalji 6000 m od izhodišča, so torej dali vrednost diflizivnosti 150 mVs. Kontrola in vrednotenje tega rezultata bi bila možna z analizo rezultatov črpalnega poizkusa. Primerjava iz literature pa je obalni kraški vodonosnik, na katerega vpliva plimovanje v Tržaškem zalivu. S podobno metodo je bila zanj izračunana difuzivnost okrog 200 mVs (Krivic 1982). Izračun teoretične krivulje piezometrske površine Na osnovi izračunane difuzivnosti in podatkov o spreminjanju gladine akumulacije HE Solkan je mogoče določiti teoretično krivuljo nihanja piezometrskega nivoja v vrtini Li -0188. Vse naštete parametre namreč povezuje splošna enačba piezometrske površine. Vrednosti H(x,t) predstavljajo realizacijo osnovnega vala, ki potuje skozi kraški vodonosnik z diflizivnostjo D na oddaljenosti x od izhodiščne točke. S pomočjo računalniškega programa sem za konstantno vrednost diflizivnosti D=150 mVs za vseh 45 intervalov izračunala višine H(x,t). Zadostna natančnost pri izračunu integrala Jj; je glede na velikost zgornje meje dosežena z upoštevanjem prvih dvaindvajsetih členov neskončne vrste. Rezultati so prikazani na sliki 5. Vsak interval je predstavljen z izračunano teoretično krivuljo in z dejansko krivuljo nihanja piezometrskega nivoja podzemne vode v Lijaku po odstranjenem prevladujočem vplivu padavin. Iz slik je jasno vidno, da se teoretične in dejanske krivulje dokaj dobro ujemajo. Odstopanja se razlikujejo od intervala do intervala in so posledica različnih faktorjev: (a) Splošna enačba piezometrske površine temelji na hipotezah, ki opredeljujejo preprost model in ne upoštevajo nekaterih stranskih vplivov. (b) Spremembe akumulacije manjše od 0.07 m ne povzročijo reakcije piezometra. (c) Pri zelo počasnem upadanju nivoja vode v akumulaciji piezometer reagira šele takrat, ko sprememba preseže 0.05 m. (d) Razlike nastopajo v drugem delu krivulje, ki opisuje vračanje nivoja podzemne vode v začetni položaj. Pri teoretičnih krivuljah, ki sledijo umetnemu nihanju akumulacije, je 12 16 20 24 28 t (h) 12 16 20 24 t (h) 12 16 20 24 28 t (h) 12 16 20 24 28 t (h) 12 16 20 24 28 t (h) 12 16 20 24 28 t (h) 12 16 20 24 28 t (h) 12 16 20 24 28 t (h) 12 16 20 24 28 t (h) 12 16 20 24 28 t (h) 12 16 20 24 28 tCh) AT SI. 5: Dejanske (1) in izračunane teoretične (2) krivulje nihanja podzemne vode Fig. 5: Real (1) and calculated theoretical (2) curves of the groundwater level oscillations ta del strm in vrnitev v osnovno lego je hitra. Dejanska krivulja pa reagira bolj počasi in kaže postopno prilagajanje nivoja podzemne vode, kije značilno za naravna nihanja. V nekaterih primerih je ta pojav prikrit zaradi vpliva padavin, ki povzročijo hiter dvig gladine podzemne vode. (e) Nekatera odstopanja so tudi posledica napak pri analizi krivulje upadanja. Te so še posebej izrazite v začetnem strmem delu, kjer je vpliv padavin največji. (f) 21.8.1989 sta dva ločena intervala nihanja akumulacije v razponu le dveh ur. Gladina podzemne vode počasi reagira na to spremembo, zato se piezometrski krivulji zlijeta v eno samo. (g) Na ostre spremembe nivoja akumulacije piezometer ne reagira takoj in posledica je zglajena oblika dejanske krivulje. Pri primerjavi teoretičnih in dejanskih krivulj seje tudi pokazalo, da se gladina podzemne vode odzove na spremembo z določenim časovnim zaostankom, kije odvisen od hitrosti širjenja valov skozi vodonosnik in se od krivulje do krivulje razlikuje. V nekaterih primerih je reakcija praktično takojšnja, v drugih pa zamuja tudi do 6 ur. Skušala sem določiti odvisnost hitrosti odziva od višine vodostaja, vendar je primerjava pokazala, da zaostanki niso pogojeni z nivojem vode v vodonosniku. Pri tem moramo upoštevati, daje bila ugotovljena občasna neusklajenost umih mehanizmov v Lijaku in Solkanu in si lahko različne zaostanke razlagamo tudi kot posledico teh napak. Poleg tega tudi digitalizacija krivulje nihanja podzemne vode v Lijaku ni dovolj natančna, da bi omogočala točno določitev časovnih zaostankov. SKLEP Kraški bruhalnik Lijak leži približno 6 km vzhodno od Nove Gorice v dnu visoke skalne zajede pod robom Trnovskega gozda. Deluje kot občasni izvir, ki le v kratkem obdobju visokih vod preliva čez neprepustno podlago. Voda izvira na kontaktu vodonosnih krednih apnencev Trnovskega gozda in neprepustnih eocenskih flišnih kamnin spodnje Vipavske doline, ki imajo vlogo bočne pregrade. S preučevanjem in analizo piezometrskega nivoja v vrtini za izvirom je bil ugotovljen značilen kraški režim nihanja podzemne vode s kratkotrajnimi visokimi valovi in daljšimi obdobji nizkih vod ter veliko amplitudo. Porasti vodostaja so hitri, doseženemu maksimumu pa sledi upadanje po negativni eksponenciakii krivulji. Posebnost Lijaka so nenadne spremembe nivoja vode, ki odstopajo od te idealne krivulje in niso v nikakršni zvezi s padavinami. Ta zanimiv pojav je bil pojasnjen s primerjavo rezultatov opazovanja nihanja podzemne vode v izviru z zapisom spreminjanja gladine akumulacije HE Solkan. Že na prvi pogled je vidna zveza med obema objektoma, saj imajo hitra, kratkotrajna znižanja akumulacijskega jezera jasen odziv v limnigramu Lijaka. Izdelana kvantitativna analiza pa je to zvezo le še potrdila. Značilnosti vodonosnika sem opredelila na osnovi analize širjenja piezometrskih valov od izhodišča v solkanski akumulaciji do opazovane realizacije v Lijaku. Razširjanje teh valov v prostoru in času je pogojeno z diflizivnostjo. Ta je definirana kot kvocient med transmisivnostjo, ki v vodonosniku opredeljuje funkcijo prevodnika in koeficientom elastičnega vskladiščenja, ki opisuje ftinkcijo akumulatorja. Na osnovi splošne enačbe piezometrske površine sem s primerjavo osnovnega in realiziranega vala izračunala, da ima diflizivnost obravnavanega kraškega vodonosnika vrednost 150 mVs. Na osnovi podatkov o spreminjanju višine akumulacijskega jezera in izračunane diflizivnosti sem določila še teoretično krivuljo nihanja gladine podzemne vode v Lijaku. Zaradi privzetih poenostavitev teoretične in dejanske krivulje niso povsem enake, očitno pa je, da se ujemajo v generalnem trendu in s tem dokazujejo ugotovljeno hidravlično zvezo med akumulacijo in izvirom. Dobljeni rezultati so potrdili uporabnost prikazane metode za analizo širjenja umetnih piezometrskih valov v prostoru in času. Ob znani vrednosti difuzivnosti lahko v okviru ugotovljene natančnosti določimo vpliv spreminjanja višine akumulacij e na nivo podzemne vode v določenem času na poljubni oddalj enost od izhodišča. Rezultate prikazane kvantitativne metode bi bilo potrebno preveriti še z nekaterimi dodatnimi analizami. V HE Solkan in Lijaku so nadaljevali z začetimi meritvami tudi po 2.6.1990 in primerjava dobljenih zapisov bi lahko dala nove podatke o hidrodinamičnih lastnostih vodonosnika in povedala več o mejah uporabnosti prikazane metode. Podobno vlogo bi imela tudi analiza rezultatov črpalnega poizkusa na Lijaku, ki bi omogočila primerjavo izračunanih difuzivnosti. Z namestitvijo dodataih piezometrov na različnih mestih v kraškem vodonosniku pa bi dobili še širši pregled nad pretakanjem podzemne vode in nihanjem njene gladine v kraškem vodonosniku zahodnega dela Trnovskega gozda. LITERATURA Objavljena dela Buser, S., 1968: Osnovna geološka karta SFRJ 1:100.000, list Gorica. Zvezni geološki zavod, Beograd. Buser, S., 1973: Tolmač lista Gorica. Osnovna geološka karta SFRJ 1:100.000. Zvezni geološki zavod, Beograd. Čar, J. & R. Gospodarič, 1988: Geološka zgradba in nekatere hidrološke značilnosti bruhalnika Lijaka. Acta carsologica 17/1 (1988), 13-32, Ljubljana. Janež, J., 1992: Hidrološke značilnosti kraškega bruhalnika Lijaka. Rudarsko-metalurški zbornik 39/1-2 (1992), 181-192, Ljubljana. Krivic, R, 1982: Transmission des ondes de maree a travers l'aquifere cotier de Kras. Geologija 25/2 (1982), 309-325, Ljubljana. Mijatovič, B. F., 1968: Metoda ispitivanja hidrodinamičkog režima kraških izdani pomoču analize krive pražnjenja i fluktuacije nivoa izdani u recesionim uslovima. Vesnik Zav. geol. geof. istr., B8,43-81, Beograd. Placer, L., 1981: Geološka zgradba jugozahodne Slovenije. Geologija 24/1 (1981), 27-60, Ljubljana. Vidav, L, 1976: Višja matematika 3. Državna založba Slovenije, Ljubljana. Neobjavljena dela Čar, J., 1987: Podrobna geološka preučitev območja Ravnice in Škabrijela. Tipkano poročilo. Arhiv RŽS Idrija. Čar, J., 1988: Podrobna geološka preučitev območja Grgarske kotline. Tipkano poročilo. Arhiv RŽS Idrija. Čar, J. & R. Gospodaric, 1986: Podrobna geološka preučitev okolice Lijaka. Tipkano poročilo. Arhiv RŽS Idrija. Čar, J. & J. Janež, 1990: Opazovanje nihanja podzemne vode v piezometru Lijak 1/88 in primerjava z vodostaji akumulacije HE Solkan v obdobju 14.6.1989 - 16.6.1990. Tipkano poročilo. Arhiv RŽS Idrija. Habič, P. & J. Čar, 1987: Strokovne osnove za zavarovanje vodnih virov in vodnih zalog Tmovsko-Banjške planote, L faza. Osnove za določitev varstvenih območij in režimov zavarovanja. Tipkano poročilo. Arhiv RŽS Idrija. HYDRODINAMIC REGIME OF THE KARST AQUIFER BETWEEN THE ACCUMULATION OF THE HYDRO - POWER STATION SOLKAN AND THE LIJAK EFFLUENT SUMMARY The karst effluent Lijak is located about 6 km to the east of Nova Gorica in the bottom of the high rocky indentation under the edge of the Trnovo plateau. It works like a temporary spring and flows over the impermeable basis only during short periods of high waters. The spring is situated on the contact between waterbearing Cretaceous limestones of the Trnovo Plateau and the impermeable barrier of Eocene flysch beds of the lower Vipava valley (Fig. 1). The tipical karst regime of the underground water level oscillations with short periods of high altitudes, longer periods of low waters and high amplitude was established by the measurements and analyses of the piezometric level in the borehole behind the sprmg. The raise of the water table, that follows the precipitations, is very fast. In the phase of regression the decrease of the piezometric level is described with the negative exponential curve. The peculiarity of the Lijak spring are unexpected changes in the water level, that decline from the ideal curve, and are in no connection with the precipitations. This interesting phenomena was explained with the comparison between the water level oscillations in the accumulation of the hydro-power station Solkan and the effluent Lijak. The connection between both objects is visible at first sight. Fast changes of the water height in the accumulation have an evident response in the water table of the Lijak observation well (Fig. 2). This relationship was confirmed by quantitative analyses. For the direct comparison between both oscillations the predominated influence of the precipitations on the water level in the spring had to be removed. So first the theoretical negative regression curve was adjusted to the real curve (Fig. 2). From the differences between both curves the reactions of the piezometric level in Lijak on the fast changes of the water level in the accumulation were defined. These data were then used in further analyses. The calculations were based on a presumption, that the reactions in the Lijak effluent are the realization of the basic waves, which are caused by water level oscillations in the accumulation. The propagation of those waves through space and time is conditioned by the difosibility. The described parameters are defined in the general equation of the piezometric surface, which for the discussed case can be derived into equations (7), (8), (9) and (10). By the comparison betwen the basic and the influenced wave and on the bases of those equations the difusibility of the discussed karst aquifer D = 150 mVs was estimated . From the known changes of the water level in the accumulation and calculated difusibility the theoretical curve of the water level oscillations in the effluent Lijak can be established. For the discussed case those curves are shown in Figure 5. Because of the assumed simplifications theoretical and real curves are not completely the same, but it is obvious, that they have the same general trend. Hence this method can be used for the analyses of the propagation of the artificial piezometric waves through space and time. Also the established hydrodinamic connection between the accumulation and the spring has been proved. The results of the shown quantitative method should be checked with some additional analyses. The comparison with further measurements in the Solkan accumulation and the effluent Lijak would give some new data about the hydrodinamic properties of the karst aquifer and tell us more about the useflihiess of the shown method. Through the comparison with the analyses of the pumping test data the calculated difusibility could be confirmed. With the installation of the additional piezometric boreholes on various locations in the karst aquifer also a wider overlook on the groundwater flow and the water level oscillations in the karst aquifer of the Trnovo plateau would be given. poročila AN ACCOUNT ON STUDY EXCHANGE WITH FRANCE 1993 Due to the tradition since 1979 this year too the researchers of the Karst Research Institute ZRC SAZU have taken part at the scientific technical cooperation with France, more precisely URA 903 CNRS (Aix-en-Provence), Laboratoire souterrain du CNRS (Moulis). The visit lasted from October 11 to 19, 1993 and was realized by two geologists mag. Martin Knez and mag. Stanka Šebela. In the first part we visited, guided by prof J. Nicod and under the authority of prof J.J.Blanc the caves Grottes de Baudmard in the Verdon canyon. In the Baudinard canyon's profile four levels of the cave systems may be observed. In these caves J.J.Blanc (1992) studied the speleogenesis in respect to tectonic laws. In one of these caves, in the Grotte de I'Eglise namely, the prehistoric symbols in the roof solution cups were discovered presenting the sun, stars respectively. The age of these signs is postglacial. Our voyage continued to Montpellier where we were hosted by the Ambert family. We discussed the possibilities for common french-slovene cooperation in future. Near Montpellier and at St. Guilhem le Desert dr. P. Ambert presented us his studies on travertines which is the study topic of several researchers in France. The second part of study voyage was spent in Pyrenees. In small village named Moulis lies world famous Laboratoire souterrain du CNRS where they breed the famous Slovene proteus. Within the area of karst hydrogeology and chemistry we got a lot of new knowledge from dr. A. Mangin and dr. M. Bakalowicz who accepted us kindly and presented us their work. D. d'Hulst presented the computer aided program for big data bases (t, CO humidity, pressure) from the Grotte de Gargas where they monitor the impact of tourist visits on the prehistoric paintings. The biologist R. Rouch presented us interesting assessment of hydrogeology and biology in the karst aquifers confirming the same bases of the karst system. In Moulis the director M. dr. C. Juberthie presented the cave-laboratory where they daily observe the cave animals from all over the world. A special attention is paid to proteus. We visited the cave Mas d'Azil through which the road goes. We also visited the entrance to the cave Niaux where are the most famous prehistoric paintings. Our kind hosts enabled our visit to a part of the Systeme de la Cuomo d'Hyouemedo which is the longest french cave, 130 km and and among the deepest (- 1004 m). The labyrinth of the passages and potholes remains one of the speleologically the most promising systems. The caver and the guide, P. Durand who is in charge of the caving hut Maison du Gouffre dans le Labaderque village, a little northwards from Arbas, guided us for one hour by foot to one of the 40 enfrances, called Grotte de pene Blanque (930 m a.s.l.). This cave is a system of horizontal passages and potholes. In three hours we only got a general impression about the cave labyrinth where is quite easy to be lost. The horizontal passages are former phreatic charmels actually filled up by the old cave sediments but also the areas with the moon-milk. The Arbas-Paloumere massif, where the cave developed, was uplifted and it still does today (6-8 mm/10 years). It is built by the limestones and dolomites from Liassic to Jurassic and by the limestones of the Urgonian age (K). An important fault is "north-Pyrennean" having the direction E-W. Along the parallel satellite fault, probably in Triassic, the characteristic pyrennean rocks outcroped from the earth crust - called "lersolite". In future scientific-technical cooperation with France we expect more comon work within the problematics of the travertines namely the comparison and complement of the Slovene cases with these from France. Stanka Šebela THE FIRST INTERNATIONAL KARSTOLOGICAL SCHOOL "CLASSICAL KARST" The Karst Research Institute ZRC SAZU has organized within the Speleological Association of Slovenia, supported by the Slovenian Commission at UNESCO and sponsored by the Ministry for Science and Technology and the Ministiy for School and Sport, the first international karstological school at us. The topic of school was Classical Karst, it was held in Lipica in the time from September 20 to 23, 1993. The decision for the organisation of such school is due to facts that the Slovene classical karst presents a reference karst abroad, scientists from all over the world revisit it wishing to know it better. The topic of the first school was classical karst and its superficial geomorphological phenomena and its underground and the processes dealing with the problematics of the karst pollution. The school was well visited. There were 36 participants altogether, among them professors, researchers and students. Thirteen participants came from abroad, namely: Czech Republic, France, Italy, Germany, Poland, Russia and United States of America. In the morning the lectures were held and in the afternoon the field work took place; Škocjanske jame were presented in all its richness and diversity, contact karst of Brkini Hills and the examples of classical dolines. The first complex of lectures presented Škocjanske jame. A. Kranjc - Classical Karst, about the name and its history, D. Rojšek - Inventory of natural heritage, M. Knez - Phreatic Channels in Velika dolina (Škocjanske jame), J. Kogovšek - Impact of human activity on Škocjanske jame and M. Puc - The Project Škocjanske jame. The second complex included the lectures of B. Berce-Bratko, L. Mahne and M. Mlinar treating the problematics of Park of Nofranjska, primarily the relationship between man and karst, the tourism, the recreation in Park, management and financial sfructure. M. Piškula reported on diving explorations in the Timavo springs, F. Cucchi about dissolution and lowering of the karst surface, P. Bosak about paleokarst in Czech Republic, E.P. Lhnert about specific karst properties in Westphalia (Germany), D. Crouch about geological bases of Greek colonization, U. Sauro presented the karst in the world by slides. The student of geology M. Vrabec has taken an active part by presenting the poster entitled Some thoughts on pull-apart origin of karst poljes along Idrija strike slip fault in Slovenia. J. Kunaver presented the role and the importance of karst and its phenomena in ecological education; F. Šušteršič lecture was entitled Classical Dolines of Classical Site and he presented the examples in field in detail. Karstological school ended by the whole day excursion over the classical karst of Notranjska. For this excursion as well as for field work at other days a written material, a guide-book was prepared. Referring to great interest for the first school we plan to organize it each year and treat a chosen topic with the karst problematics in detail. Janja Kogovšek AN ACCOUNT OF THE INTERNATIONAL SYMPOSIUM MAN ON KARST At the time from September 23 to 25, 1993 at Postojna the International Symposium Man on Karst was held, organized within the International Geographical Union, Commission on Environmental Changes and Conservation in Karst Areas by the Karst Research Institute ZRC SAZU. The meeting was dedicated to the 70"' anniversary of the Academician Prof. Dr. Ivan Gams who was at that occasion honoured by the honorary membership of the Czech's Speleological Union. The participants were greeted by the minister for Science and Technology, Dr. R. Bohinc, by the secretary general of the Slovene Academy of Sciences and Arts Acad. Prof Dr. M. Drovenik, by the maire of Postojna, Mr. I. Bratina, by the representative of the Association of the Geographic Societies of Slovenia, Prof Dr. A. Čeme, and by the representatives of the international organizations, Prof Dr. P. Forti, the UIS president and Dr. P. Bosak, secretary of the UIS, by Prof. Dr. Ugo Sauro, the president of the Commission on the Environmental Changes and Conservation in Karst Areas at the International Geographical Union. The Symposium was attended by 69 participants who delivered 50 papers. The introductory lecture of P. Habič presented the important part played by the man celebrating his jubilee for the progress of the karstology in this century and M. Panoš presented the karstology as a joint system of sciences on karst. After the opening part and the plenaiy lectures the work was organized within two sections. In the section Karst as a Natural Process 24 communications were delivered. The lectures dealt with the conditions of the sedimentation of some carbonate rocks, tectonics and its influence on formation of the karst aquifers. Several papers treated hydrogeological topics, development of particular hydrogeological areas and chemical and isotopic composition of the karst waters. Some papers dealt with geomorphological formation of the surface on karst and development of the soil on karst. Several lecturers spoke about the development of the karst underground, distribution of caves and speleomorphology, about the cave minerals and speleoclimatology. In the section Man and Karst 26 lectures were delivered. According to the subjects they may be divided into some groups. The contributions about the agrarian use of the karst surface mostly presented the types of the land use from the lithological differences point of view and soil origin or hydrotechnical works on karst. The intensive and unsuitable land use in past provoked the degradation of the karst surface. Similar themes were treated by the papers involved in the use of mountainous regions for touristic purposes, ski ressorts in particular. The introduction of intensive activities may severly threaten the water supply functions of these, frequently the only scarcely inhabited, areas in Europe. Several papers presented the work at the preparation of the professional bases for the legislation which should protect the vulnerable karst areas. They are protected within the various landscape parks but the protection measures coniront with the interests of the people living there, their traditional spatial use or with the interests of the touristic economy. There were the papers delivered treating the polluted karst groundwater and its autopurification capacity, the determination of the protection zones of particular karst springs and the underground water tracing. Several papers treated the use of caves and himian impact on the underground. The last effect may be traced into the prehistory as the caves served as human dwellings thousands years ago and bones, the remains of the paleolithic hunters' preys, are found in them. The influence of the touristic visits on the changes of the cave climate were presented as well as the devastation of the caves due to ill-treatment. The use of caves for mass graves in our half past history was presented too. During the symposium three excursions were organized. The first one to the Classical Karst from Vrhnika to Pivka, the second one to Karst between Pivka basin and the springs at Osp. The third excursion was in the Postojnska jama cave system. During the Symposium the Commission for the Environmental Changes and Conservation in Karst Areas at the International Geographical Union and the Bureau of International Union of the Speleology have held two meetings. Andrej Mihevc THE INTERNATIONAL ROUND-TABLE "MARTEL AND THE SLOVENE KARST 1893-1993" (POSTOJNA, NOVEMBER 12 -13,1993) Hundred years ago, in the autumn of 1893, the world famous speleologist Edouard A. Martel came to explore the Dinaric Karst within the Austro-Hungarian Monarchy. He visited a great deal of this karst, but trully important explorations he carried out in Camiola, in the Postojnska jama cave system. To honour and to recall memories of these events, to reassess the Martel's work in our karst from the modem point of view and to review the significance of our karst in older French literature, the Karst Research Institute ZRC SAZU under the patronage of the Speleological Association of Slovenia and in the coperation with the Museum of Notranjska, organized this round table. 25 experts from five countries (Austria, France, Italy, Great Britain, Slovenia) have taken part; among them must be mentioned in particular Dr. Karl Mais, the director of the Speleological Institute, Vienna, Dr. T. R. Shaw, the author of a comprehensive book History of Speleology, and the representatives of France, Mr. D. Lopez, consul and Mr. J. Granon, the attach for science. In the last moment several eminent participants renounced their arrival, among them unfortunately D. Andr, connoisseur and collector of the material of Martel's biography and correspondence, who sent an interesting set of slides about Martel which were shovm to the participants. Due to short daylight the work was a bit unusually disposed: during the day the field work and late in the afternoon and in the evening the discussion part of the meeting. There have been presented seven main papers, four of them treating the Martel's work on the Slovene karst (A. Kranjc, A. Mihevc, D. Rojšek, S. Šebela) and three Martel's activity and his significance with an accent on his work in the Dinaric karst (A. Kranjc, K. Mais, T.R. Shaw). These papers served as the basis for interesting and detailed discussion for which there was no lack of time as usually and which is the essential advantage of the round tables. The field work followed "the Martel's traces" in Postojnska jama. Otoška jama, Pivka jama. Črna jama and Magdalena jama and in Škocjanske jame. For the organization there were no special financial means neither a cotisation was foreseen this is why the material support of Postojnska jama, Škocjanske jame and the Postojna commune was so welcome. Of course, the organiser still has difficult and responsable task to publish the presented papers and, as usually, we rely on financial support of the Ministry for Science and Technology. Andrej Kranjc K.-F. BUSCH, L. LUCKNER, K. TIEMER: GEOHYDRAULIK, 3. NEUBEARBEITETE AUFLAGE, 497 STRANI. GEBRÜDER BORNTRAEGER, BERLIN - STUTTGART 1993. Že iz naslova vidimo, da gre za 3. predelano izdajo knjige o geohidravlüd. Prva in druga knj iga iz let 1972 in 1973 sta na nemško govorečem območju postali temeljni deli o hidravliki podzemnih vod, zaradi hitrega razvoja predvsem matematično-analitičnega pristopa k obravnavanju problemov pa je bila nujno potrebna nova, predelana in razširjena izdaja, ki sedaj uspešno združuje že preizkušeno z novimi dosežki v znanosti in praksi zadnjih dveh desetletij. V trde platnice vezana knjiga običajnega formata je sestavljena iz uvoda in petih poglavij. V uvodu so predstavljeni osnovni pojmi geohidravlike in opisan je njen praktičen pomen, nekaj več besed pa je namenjenih tudi matematičnemu modeliranju, kije v zadnjem času že postalo nepogrešljivo orodje pri reševanju hidrogeoloških problemov. Na koncu so na kratko predstavljeni najpomembnejši znanstveniki, ki so se v zgodovini znanosti ukvarjali z raziskavami podzemne vode. V bistvo problema nas uvede prvo poglavje, ki govori o osnovah geohidravličnega obravnavanja stanj in procesov. Temeljna je ugotovitev, daje podzemlje večfazni sistem in so njegove karakteristike določene z lastnostmi posameznih faz. Tako so prikazane osnovne značilnosti vode in zraka ter hidravlične karakteristike poroznega sredstva. Poglavje je zaključeno z opisom odpornosti krhkih kamnin na deformacije. Vsi prikazani parametri so obdelani podrobno in iz različnih zornih kotov, dodatno težo teoretičnim razlagam pa dajejo številni eksperimentalno podprti grafi in tabele ter posamezni praktični primeri. Drugo poglavje obravnava matematično modeliranje procesov transporta fluidnih faz v poroznem mediju, na katerem temeljijo geohidravlični izračuni in analogne ali digitalne simulacije geohidravličnih procesov. Najprej so predstavljeni nekateri osnovni pojmi modeliranja, nato pa so podrobno opisani Darcyjev zakon kot osnovni dinamični zakon geohidravlike in prav tako pomembne bilančne enačbe. Vsa raznolikost in kompleksnost dogajanja v podzemlju se odražata v številnih različnih izpeljavah teh zakonov. Če pa hočemo tako dobljene matematične izraze uporabiti za reševanje konkretnih problemov, je potrebno najprej modelu primemo shematizh-ati realne pogoje pretakanja podzemne vode. Načini obdelave so v knjigi prikazani na teoretičnih in praktičnih primerih. Na koncu poglavja so pojasnjeni še nekateri pomožni matematični postopki, kijih uporabljamo v geohidravliki. Ker je analitična metoda v hidravliki podzemne vode sinonim za eksplicitno, v strnjeni obliki predstavljeno rešitev matematičnega modela, so v tretjem poglavju obravnavane analitične rešitve podzemnih tokovnih problemov, za katere so bile v prejšnjem poglavju izpeljane tokovne enačbe. Do zelo preciznih podrobnosti je obdelano računanje toka med kanali in v vodnjakih ter toka v vertikabi ravnini, ki ga predstavljajo primeri precejanja v kanalih, skozi nasip in pod jezom. Definirane so enačbe za številne različne karakteristike vodonosnikov in podzemnih tokov. Teorija je predstavljena zelo nazorno in matematični izrazi so opremljeni s številnimi slikami, diagrami in tabelami, za boljše razumevanje pa je prikazano tudi reševanje praktičnih problemov. Četrto poglavje je v celoti posvečeno analognim in digitalnim metodam reševanja hidravličnih problemov, saj so opisani analitični postopki omejeni le na enostavne tokovne probleme. Najprej so obdelani različni tipi analognih modelov. Vsaka metoda je podrobno predstavljena s sistemom enačb ter s shemo in fotografijo naprave, ki so jo izdelali v laboratoriju. V logični zvezi z razvojem računskih tehnik sledi prikaz digitahie simulacije, ki podaja numerične rešitve infinitezimalnih matematičnih modelov s pomočjo računalnikov. V začetku so razložene osnovne zahteve modeliranja, nato pa sta predstavljeni analizi s prostorsko in s časovno diskretizacijo. Pri tem sta posebej izpostavljeni metoda končnih elementov in metoda končnih diferenc. Kot v vseh ostalih poglavjih se tudi tu podrobno razloženi postopki analize in izpeljave osnovnih enačb lepo dopolnjujejo s konkretnimi primeri iz prakse. V zaključku poglavja so prikazani še problemi, ki jih rešujemo s kombinacijo analitičnih in numeričnih postopkov. Zadnje poglavje opisuje obratno pot reševanja nalog, za katere so podatki o hidravliki podzemne vode določeni s testi merjenja odvisnih spremenljivk in pri katerih je potrebno ugotoviti še številne nedokazane parametre modela. Potek reševanja problema je prikazan s shematskim diagramom, posamezni koraki pa so nato še detajlno razloženi v nadaljevanju. Primer takega sistema je interpretacija črpalnih poizkusov, ki jim je v tem poglavju namenjen osrednji prostor Teoretično so definirane osnovne enačbe vodnjakov in prikazane metode obdelave rezultatov črpalnih poizkusov, praktična uporabnost pa je pojasnjena s podrobnim opisom zaporednih korakov obdelave na konkretnem primeru. V zaključku je prikazana metoda reševanja nalog razširjena še na numerične metode identifikacije parametrov. BCnjiga se končuje s pregledom literature in seznamom ključnih pojmov, ki so obdelani v posameznih poglavjih. Že na naslovnici je knjiga predstavljena kot učbenik za hidrogeologijo. Njen naslov pa nam pove, da obravnava geohidravliko, posebno vejo hidrogeologije, kije definirana kot tehnično-aplikativna veda o ravnotežju in gibanju fiuidnih mas v podzemlju ter medsebojnem učinkovanju med fluidom in trdno osnovo. Temu ustrezen je tudi pristop, ki ga lahko zasledimo med prebiranjem. Učbenik je pretežno posvečen matematičnim metodam reševanja problemov pretakanja podzemne vode in bralec brez potrebnega matematičnega predznanja bo imel velike težave pri razumevanju posameznih tem. Teorija geohidravlike je predstavljena zelo nazorno z osnovnimi opisi in matematičnimi izrazi, večjo preglednost in eksperimentalno podprto težo pa knjigi daje 238 slik in 50 tabel. Še posebej dobra orientacija vsakemu bralcu so praktični primeri, ki dodatno pojasnjujejo teoretične izpeljave. Knjigo zato priporočam vsem, ki bi se radi nekoliko bolj poglobili v zakonitosti procesov hidravlike podzemne vode in v metode reševanja s tem povezanih problemov. Kot pri večini tovrstne literature pa bodo verjetno tudi tokrat malo razočarani hidrogeologi, ki se ukvarjajo s pretakanjem podzemnih vod v krasu. Osnove so sicer podane tudi za kraško-razpoklinske vodonosnike, pri konkretni obdelavi pa takih primerov ne zasledimo več. Metka Petrič ACTA CARSOLOGICA KRASOSLOVNI ZBORNIK XXII (1993) Izdala Slovenska akademija znanosti in umetnosti v Ljubljani Tehnična ureditev in DTP Milojka Žalik Huzjan Tisk Tiskarna Lotos Postojna Naklada 1000 izvodov ERRATA CORRIGE At transcription of special signs a systematical error occurred Pri transkripciji posebnih znakov je prišlo do sistematične napake. p. 17 Valvasor, J.W., 1689: Die Ehre dess Herzogthums Grain. Nürnberg-Laybach, vol. 1, pp.142, 487, 490 p. 20 Acadšmie Leotaud p. 33 Bory de Saint-Vincent, [J.B.G.IVI.], 1838: Sur I'existence du Guacharo (Steatorn/s) ä i'Tle de la Trinite, Compte rendu des seances de l'Acadšmie des Sciences, Paris, 7 (9), 474-478 Chopard, L., 1954: Contribution ä Tštude des orthopteroides cavernicoles. Notes BiospšI., 9, 27-36 Dauxion Lavaysse, J.J., 1813: Voyage aux ?les de Trinidad, de Tabago, de la Marguerite, et dans diverses parties de Venezuela, dans I'Amerique Mšridionale. Paris, Schoell Du Tertre, J.B., 1654: Histoire generate, des isles de S. Christophe, de la Guadeloupe, de la Martinique, et autres dans I'Amerique. Paris, Langlois p. 34 Ldotaud, A., 1866: Oiseaux de I'Tle de la Trinidad, (Antilles). Port d'Espagne, Chronicle Publishing Office McAtee, W.L., 1922: Notes on the food of the guacharo ( Steatorn/s caripensis). Auk, 29, 108-109 p. 48 Chopard, L., 1923: Description d'un Gryllide cavernicole de la Jamaique. Bull. Soc. Ent. Fr., annee 1923, 84-86 Cvijic, J., 1893: Das Karstphänomen. Geogr. Abh. 5 (3), 217-330 Daneš, J.V., 1914: Karststudien in Jamaica. Sber. K. Böhm. Ges. Wiss. Math.-Nat. Kl., Jg. 1914, paper no. 20 p. 49 Martel, E.A., 1894: Les abimes ... Paris, Delagrave Martel, E.A., -1896: Applications g6ologiques de la sp6leologie ... Annls. Mines Paris, ser. 9, 10 (5), 5-100 p. 62 Anon., 1906: Les lies Bahamas. Nature, Paris, 34 pt.ii, suppl. to no. 1727 (30 June), 33-34 p. 63 Martel, E.A., 1921: Nouveau traite des eaux souterraines. Paris, Doin p. 74 Bellin., 1773: Description des debarquements qui sont au nord de I'isle de Saint-Domingue. Versailles, Departement de la Marine p. 86 Pawson, K. [s.a.]: Explorations in the caves and potholes of Trinidad, W.I. 1945-46 (with brief notes on the Barbados caves). Unpublished article, 58 pp. + 3 maps p. 171 Renault, Ph., 1968: Contribution ä I'etude des actions mecaniques et södimentologiques dans la spšišogenese.- Annales de speleologie 23/3, 529-596. Rudnicki, J., 1960: [Experimental work on flutes development].- Speleologia Tom 2, Nr. 1, 17-30, Warszawa p. 204 E.P. Löhnert p. 207 the attachš of science D. Andre