UDK 544.3:669.017.13:669.715'721'5 Original scientific article/Izvirni znanstveni članek ISSN 1580-2949 MTAEC9, 46(5)477(2012) PREDICTION OF THE THERMODYNAMIC PROPERTIES FOR LIQUID Al-Mg-Zn ALLOYS NAPOVEDOVANJE TERMODINAMIČNIH LASTNOSTI TEKOČE ZLITINE Al-Mg-Zn Dragana Živkovic1, Yong Du2, Ljubiša Balanovic1, Dragan Manasijevic1, Duško Minic3, Nadežda Talijan4 1University of Belgrade, Technical Faculty, Bor, Serbia 2 State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, China 3University of Priština, Faculty of Technical Sciences, Kosovska Mitrovica, Serbia 4University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia dzivkovic@tf.bor.ac.rs Prejem rokopisa - received: 2012-02-22; sprejem za objavo - accepted for publication: 2012-03-29 The results of a thermodynamic-property prediction for liquid Al-Mg-Zn alloys using the general solution model are presented in this paper. Calculations were done in nine sections of the system with different molar ratios of Mg:Zn, Zn:Al and Al:Mg in the temperature range of 900-1200 K. Partial and integral molar quantities - including the activities for all three components, the integral molar excess Gibbs energies and the integral molar enthalpies of mixing - were obtained. Some of the calculation results were compared with the experimental data available in the literature, showing a good agreement with it. Keywords: thermodynamics of alloys, Al-Mg-Zn system, general solution model V članku so predstavljeni rezultati raziskav termodinamičnih lastnosti tekočih zlitin Al-Mg-Zn, napovedanih z uporabo splošnega modela raztapljanja. Izračuni so bili izvršeni v devetih prerezih sistema z različnimi molarnimi deleži Mg:Zn, Zn:Al in Al:Mg v območju temperatur 900-1200 K. Dobljene so bile parcialne in celotne molarne količine, vključno z aktivnostmi za vse tri komponente, skupni molarni presežek Gibssove energije in skupna molarna entalpija mešanja. Ugotovljeno je dobro ujemanje izračunanih rezultatov z razpoložljivimi eksperimentalnimi podatki iz literature. Ključne besede: termodinamika zlitin, sistem Al-Mg-Zn, splošni model raztapljanja 1 INTRODUCTION The so-called ZA alloys - zinc-aluminum-based alloys - have a wide application in different fields of industry12. The ternary Al-Mg-Zn system belongs to this group of materials, which are of interest as the lead-free solders for die attach1-4. Therefore, different properties of this system were investigated in order to define it more completely5-9. The thermodynamics and the phase equilibria of the Al-Mg-Zn system have been examined widely10-20. Most of the literature data is related to the phase-diagram determination10-17. A complete reference compilation concerning the experimental data obtained for the above-mentioned ternary alloys up to 1998 can be found in the work of Liang et al.19, while the last review is given in an article by Raghavan15 from 2010. The liquidus projection of the Al-Mg-Zn system is shown in Figure 1, according to Refs. 14 and 17. Among the numerous researches, there are only a few thermodynamic studies17-19. Experimental thermodyna-mic investigations of the Al-Mg-Zn system in the liquid state were done for the chosen sections at the temperatures of 883 K and 933 K using vapor-pressure measure-ments17, EMF18 and mixing calorimetry19, while the thermodynamic assessments can be found in20 21. Considering the available literature and the lack of a complete thermodynamic data with respect to the wider temperature and concentration ranges, the results of the thermodynamic-property prediction for the liquid Al-Mg-Zn alloys in the temperature interval of 900-1200 K, using the general solution model, are given in this paper as a contribution to a full thermodynamic description of this ternary system. 2 THEORETICAL FUNDAMENTALS The general solution model for the calculation of the thermodynamic properties of ternary systems based on the known binary thermodynamic data has been provided by Chou22,23. It breaks down the boundary between symmetrical and asymmetrical models, and has already been proved in some practical examples24,25 as the correct and accurate model. This model was developed for multicomponent systems and its basic equations are as follows22: AG^ = i, j = 1 i * j A 0 + A1 ■ (Xi -Xj) + Xax(2^z -1) (1) k = 1 Figure 1: Al-Mg-Zn liquidus projection: a) 17 and b) 1 Slika 1: Projekcija likvidusa Al-Mg-Zn: a) 17 in b) 14 where A°ij, A1ij, A2ij are the regular-solution parameters for the binary system ij independent of the composition, relying only on the temperature: AG^^j = XiXj (A°jj + A'ij (Xi - Xj) + A'jj (Xi - Xj)' + ... + A^ij (Xi - Xj)2) (2) where Xi and Xj indicate the mole fractions of components i and j in the ij binary system, which is expressed as: m Xi (ij) = xi + X xk ^ ^iiij) (3) k =1 k ^ i, j in Eq.(3) and where the coefficient entered as presents the similarity coefficient of component k to component i in the ij system, and is defined as: r](ij, ik) t (k) =. ^i (j) i](ij, ik)+rj{ji, jk) (4) where ^(ij,ik) is the function related to the excess Gibbs free energy of the ij and ik binaries: X. =1 J](ij, ik) = j (AGE-^GE )2 dXi (5) x. = 0 In all the equations given, AGE and AGEij refer to the integral molar excess free energies for the multicom-ponent and binary systems, respectively, while X1, X2, X3 refer to the mole fraction of the components in the investigated multicomponent system. 3 RESULTS AND DISCUSSION Thermodynamic calculations in the Al-Mg-Zn ternary system were carried out in nine sections along the lines of the following constant molar ratios: Mg : Zn = 1:3, 1:1, 3:1-the sections from the Al corner; Zn-Al = 1 : 3, 1 : 1, 3 : 1 - the sections from the Mg corner; and Al : Mg = 1 : 3, 1 : 1, 3 : 1 - the sections from the Zn corner. The basic data necessary for the calculation was taken from the literature202627. The Redlich-Kister polynomials for the constitutional binaries in the investigated ternary Al-Mg-Zn system are presented in Table 1. Table 1: Redlich-Kister parameters for the liquid phase in the constitutional binaries of the Al-Mg-Zn system Tabela 1: Redlich-Kisterjevi parametri za staljeno fazo v sestavnih binarnih sistemih iz sistema Al-Mg-Zn System ij Al-Mg (20) Mg-Zn (20) Al-Zn (26) A°ij (T) -12000+ 8.566*T -77729.24+ 680.52266*T -95*T*ln(T)+ 40E-3*T2 10465.55-3.39259*T A^j (T) 1894-3*T 3674.72+ 0.57139*T / A2ij (T) 2000 -1588.15 / The prediction was done according to the fundamentals of the latest version of the general-solution model2223. Based on the starting data in Table 1, similarity coefficients were determined and further calculations were carried out for 81 alloys in all the selected cross sections of the investigated ternary Al-Mg-Zn system in the temperature interval of 900-1 200 K, as shown with Eqs.(1-5). The integral molar enthalpies of mixing were additionally calculated according to following expression: d(AGe / T) AHm (6) The results of the thermodynamic predictions, including the values of the ternary integral molar excess Gibbs Figure 2: Dependence of the integral molar excess energy on the composition and temperature in the Al-Mg-Zn system: a) sections from the zinc corner; b) sections from the aluminum corner; c) sections from the magnesium corner Slika 2: Odvisnost skupne molarne presežne energije od sestave in temperature v sistemu Al-Mg-Zn: a) prerez iz cinkovega kota; b) prerez iz aluminijevega kota; c) prerez iz magnezijevega kota Figure 3: Dependence of the integral molar enthalpies of mixing on the composition and temperature in the Al-Mg-Zn system: a) sections from the zinc corner; b) sections from the aluminum corner; c) sections from the magnesium corner Slika 3: Odvisnost skupne molarne entalpije mešanja od sestave in temperature v sistemu Al-Mg-Zn: a) prerez iz cinkovega kota; b) prerez iz aluminijevega kota; c) prerez iz magnezijevega kota Figure 4: Activity dependence on the composition and temperature in the investigated Al-Mg-Zn system: a) sections from the zinc corner; b) sections from the aluminum corner; c) sections from the magnesium corner Slika 4: Odvisnost aktivnosti od sestave in temperature v preiskovanem sistemu Al-Mg-Zn: a) prerez iz cinkovega kota; b) prerez iz aluminijevega kota; c) prerez iz magnezijevega kota energy, the ternary molar enthalpy of mixing and the activities of all three components in the liquid phase, were calculated for all the investigated sections at the investigated temperatures, and presented in Table 2 and Figure 5: Iso-activity diagrams for the constitutive elements in the ternary Al-Mg-Zn system at 1000 K Slika 5: Diagram izoaktivnosti za sestavne elemente v ternarnem sistemu Al-Mg-Zn pri 1000 K Figures 2 to 4, respectively. The calculated activity values for all three components were used for the construction of the iso-activity diagrams at 1000K and shown in Figure 5. Negative values of the integral molar excess Gibbs energies were obtained for most of the concentration range at all the investigated temperatures (Figure 2). The most negative value of about -3.5 kJ/mol was present in the section from the aluminum corner with a molar ratio of Mg : Zn = 1 : 1 for the low aluminum concentrations, while the highest positive values of about 0.2 kJ/mol were noticed for the higher contents of zinc and aluminum in sections Mg : Zn = 1 : 1 and Al: Mg = 3 : 1. In the case of the integral molar enthalpies of mixing, the minimum value of -5kJ/mol was noticed for the low aluminum contents in the section Mg : Zn = 1 : 1, while the maximum value of about +3 kJ/mol was obtained for the low magnesium contents in section Al: Zn = 1 : 1. Different deviations from Raoult law were detected considering three constituent metals in the Al-Mg-Zn system. Aluminum shows a positive deviation in the whole composition range of the investigated ternary system, moving towards almost an ideal behavior in the case of the section with a molar ratio of Mg : Zn = 3 : 1. On the other hand, magnesium shows a uniform negative deviation for all the examined sections of the system, Table 2: Characteristic dependencies of the integral molar excess energies and the integral molar enthalpies of mixing on the composition of the ternary Al-Mg-Zn alloys expressed as AGE (J/mol) = Ax2 + Bx + C and AHM (J/mol) = Dx2 + Ex + F at the investigated temperatures Tabela 2: Značilna odvisnost skupne presežne molarne energije in skupne molarne entalpije mešanja od sestave ternarne Al-Mg-Zn zlitine, izražena kot AGE (J/mol) = Ax2 + Bx + C in AHM (J/mol) = Dx2 + Ex + F pri preiskovanih temperaturah 933K Section A B C D E F Mg:Zn=1:3 -7444.08 10598.36 -3114.3 -10228 15172 -4917 Mg:Zn=1:1 -4584.48 8210.277 -3522.5 -5510.5 11645 -6040.4 Mg:Zn=3:1 -564.357 2931.14 -2279.32 2085.3 2368.8 -4300.3 Al:Zn=1:3 13523.87 -14194.9 1171.436 22679 -24340 1791.2 Al:Zn=1:1 11246.21 -12525.6 1697.977 20338 -22847 2566.1 Al:Zn=3:1 8269.261 -9230.4 1314.962 16806 -22847 2028.8 Al:Mg=1:3 8058.779 -8123.02 -463.269 13330 -11380 -2168.7 Al:Mg=1:1 2852.942 -2223.04 -930.149 4233.1 -1474.4 -2892.2 Al:Mg=3:1 -2062.89 2678.725 -717.506 -3290 5185.5 -1942.2 1000K Section A B C D E F Mg:Zn=1:3 -7301.1 10323.32 -2990.65 -10006 14727 -4694.9 Mg:Zn=1:1 -4608.32 8045.501 -3351 -5214.3 11053 -5744.2 Mg:Zn=3:1 -844.82 3049.588 -2143.19 2307.4 1924.6 -4078.2 Al:Zn=1:3 12810.45 -13429.3 1126.216 21791 -23452 1791.2 Al:Zn=1:1 10540.78 -11745.5 1636.327 19746 -22255 2566.1 Al:Zn=3:1 7633.816 -8521.86 1264.693 16510 -18548 2028.8 Al:Mg=1:3 7728.575 -7927.42 -334.914 12441 -10492 -2168.7 Al:Mg=1:1 2754.998 -2275.25 -785.379 3640.8 -882.13 -2892.2 Al:Mg=3:1 -1990.84 2513.915 -628.224 -3586.1 5481.6 -1942.2 1100K Section A B C D E F Mg:Zn=1:3 -7124.355 9967.950 -2827.029 -9799.6 14315 -4488.7 Mg:Zn=1:1 -4692.6 7872.956 -3122.95 -4939.3 10503 -5469.2 Mg:Zn=3:1 -1299.82 3281.329 -1960.96 2513.6 1512.1 -3872 Al:Zn=1:3 11814.41 -12358.4 1059.365 20966 -22627 1791.2 Al:Zn=1:1 9524.121 -10620.6 1544.861 19196 -21705 2566.1 Al:Zn=3:1 6700.34 -7480.99 1189.845 16235 -18273 2028.8 Al:Mg=1:3 7304.49 -7707.24 -142.743 11616 -9666.6 -2168.7 Al:Mg=1:1 2644.862 -2392.36 -568.803 3090.8 -332.13 -2892.2 Al:Mg=3:1 -1868.6 2251.542 -494.81 -3861.1 5756.6 -1942.2 1200K Section A B C D E F Mg:Zn=1:3 -6979.237 9651.942 -2674.257 -9743.3 14202 -4432.4 Mg:Zn=1:1 -4817.76 7751.966 -2909.49 -4864.3 10353 -5394.2 Mg:Zn=3:1 -1784.52 3551.037 -1789.76 2569.9 1399.6 -3815.7 Al:Zn=1:3 10843.84 -11317.1 993.472 20741 -22402 1791.2 Al:Zn=1:1 8512.729 -9505.34 1454.325 19046 -21555 2566.1 Al:Zn=3:1 5765.485 -6441.27 1115.435 16160 -18198 2028.8 Al:Mg=1:3 6905.864 -7515.85 50.01534 11391 -9441.6 -2168.7 Al:Mg=1:1 2538.665 -2517.19 -351.668 2940.8 -182.13 -2892.2 Al:Mg=3:1 -1749.7 1990.177 -361.146 -3936.1 5831.6 -1942.2 while zinc behaves differently - showing a slightly positive deviation for section Al : Mg = 3:1 and negative deviations in the other two sections. The temperature influence on the calculated thermo-dynamic properties was not significant in the investigated interval 933-1200 K. The described tendencies indicate a prevalent existence of the mutual mixing tendencies between the constitutive components in the Al-Mg-Zn system at the investigated temperatures, where magnesium and zinc exhibit a more significant mixing tendency than aluminum. Figure 6: Comparison of calculated and reference-literature experimental values19,20 Slika 6: Primerjava izračunanih podatkov z literaturnimi eksperimentalnimi vrednostmi19,20 The calculated thermodynamic quantities were compared with the available literature data at the temperature of 933 K 19,20 in order to test the accuracy of the applied prediction model. These comparisons are shown in Figure 6 for different examples - the magnesium activity (Figure 6a), the magnesium chemical potential (b) and the integral molar enthalpies of mixing for the three sections from the zinc corner (c). As can be seen, a good agreement was noticed between the results of this work and the reference experimental data19,20. 4 CONCLUSION The calculation of the thermodynamic properties in the ternary Al-Mg-Zn system was done by applying the general solution model. On the basis of the thermo-dynamic parameters from the constituent binary subsystems, the integral molar excess Gibbs energies and the integral molar enthalpies of mixing were calculated for the whole system, in nine sections from different corners, in the temperature range of 900-1 200 K. The obtained data showed a mostly negative deviation from Raoult law, indicating predominantly mutual mixing tendencies in the investigation system. We found that: (i) experimental investigation and thermodynamic-property determination at the selected temperatures are rather difficult to perform due to the evaporation of zinc and oxidation of magnesium in the case of the investigated Al-Mg-Zn alloys; (ii) there is a good agreement between the available experimental data and the data calculated in this paper; and (iii) due to the incomplete thermodynamic data relating to the investigated system recorded in the reference literature, the predicted results from this paper can be taken as relevant thermodynamic data relating to the examined multicomponent ZA-based system. This can be done because the accuracy of the model, used in different cases, had already been proven as cited in literature24,25 and it is important to continuously examine the Al-Mg-Zn alloys28 and other Al-based ternary alloys29 30. Acknowledgment The results of this paper were obtained in the frame of Project OI 172037 financed by the Ministry of Science and Technological Development, the Republic of Serbia, and a bilateral scientific and technological cooperation project between the Republic of Serbia and the People's Republic of China (2011-2012). 5 REFERENCES 1 T. Shimizu, H. Ishikawa, I. Ohnuma, K. Ishida, Journal of Electronic Materials, 28 (1999), 1172 2 M. Rettenmayr, P. Lambracht, B. Kempf, C. Tschudin, Journal of Electronic Materials, 31 (2002) 4, 278 3Lj. Balanovic, D. Živkovic, A. Mitovski, D. Manasijevic, Ž. Živ-kovic, Journal of Thermal Analysis and Calorimetry, 103 (2011) 3, 1055 4 P. Brož, D. Živkovic, J. Medved, N. Talijan, D. Manasijevic, G. Klančnik, Experimental and theoretical study of thermodynamic properties and phase equilibria in ternary Al-Zn-X alloys, in COST MP0602 Book (Volume 3 Chapter 6), in print 5G. Bergman, J. L. T. Waugh, L. Pauling, Acta Crystalographica, 10 (1957), 254 6 T. Takeuchi, S. Murasaki, A. Matsumoro, U. Mizutani, Journal of Non Crystalline Solids, 156-158 (1993), 914 7 A. Niikura, A. P. Tsai, N. Nishiyama, A. Inoue, T. Matsumoto, Materials Science Engineering, 181/182 A (1994), 1387 8N. K. Mukhopaghyay, J. Bhatt, A. K. Pramanick, B. S. Murty, P. Paufler, Journal of Materials Science, 39 (2004), 5155 9 M. Zhu, G. Yang, D. Wan, Z. Wang, Y. Zhou, Rare Metals, 28 (2009) 4, 401 10 P. Donnadieu, A. Quivy, T. Tarfa, P. Ochin, A. Dezellus, M. G. Har-melin, P. Liang, H. L. Lukas, H. J. Seifert, F. Aldinger, G. Effenberg, Zeitschrift für Metallkunde, 88 (1997) 12, 911 11 D. Petrov, A. Watson, J. Grobner, P. Rogl, J. C. Tedenac, M. Bulano-va, Turkevich, Alluminium-magnesium-zinc, Ternary Alloys Systems, Vol.11A3, G. Effenberg, S. Ilyenko, Ed., Springer, Germany, 2006 12 Y. P. Ren, G. W. Qin, W. L. Pei, Y. Gio, H. D. Zhao, H. X. Li, M. Jiang, S. M. Hao, Journal of Alloys and Compounds, 481 (2009), 176 13 M. Ohno, D. Mirkovic, R. Schmid-Fetzer, Materials Science Engineering, 421A (2006), 328 14 V. Raghavan, Journal of Phase Equilibria and Diffusion, 28 (2007), 203 15 V. Raghavan, Journal of Phase Equilibria and Diffusion, 31 (2010), 29 16 A. L. Voskov, G. F. Voronin, Russian Journal of Physical Chemistry A, 84 (2010), 525 17 Z. Kozuka, J. Moriyama, I. Kushima, Journal of the Electrochemical Society of Japan, 28 (1960), 298 18 A. M. Pogodaev, E. E. Lukashenko, Russian Metallurgy, 6 (1974), 74 19 Y. B. Kim, F. Sommer, B. Predel, Journal of Alloys and Compounds, 247 (1997), 43 20 P. Liang, T. Tarfa, J. A. Robinson, S. Wagner, P. Ochin, M. G. Har-melin, H. J. Seifert, H. L. Lukas, F. Aldinger, Thermochimica Acta, 314 (1998), 87 21 H. Liang, S. L. Chen, Y. A. Chang, Metallurgical and Materials Transactions, 28A (1997), 1725 22 K. C. Chou, K. Wei S., Metallurgical and Materials Transactions, 28B (1997), 439 23 K. C. Chou, CALPHAD, 19 (1995), 315 24 D. Živkovic, Ž. Živkovic, Y. H. Liu., Journal of Alloys and Compounds, 265 (1998), 176 25 D. Živkovic, I. Katayama, L. Gomidželovic, D. Manasijevic, R. No-vakovic, International Journal of Materials Research, 98 (2007) 10, 1025 26 S. Sabine an Mey, Zeitschrift für Metallkunde, 84 (1993) 7, 451 27 A. T. Dinsdale, A. Kroupa, J. Vizdal, J. Vreštal, A. Watson, A. Ze-manova, COST 531 Database for Lead-free Solders, Ver. 3.0, 2008 28 H. R. Zaid, A. M. Hatab, A. M. A. Ibrahim, Journal of Mining and Metallurgy, Section B-Metallurgy, 47 (2011) 1, 31 29 G. Klančnik, J. Medved, J. Min. Metall. Sect. B-Metall., 47 (2) B (2011), 179 30X. Fang, M. Song, K. Li, Y. Du, J. Min. Metall. Sect. B-Metall., 46 (2) B (2010), 171