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In this paper, we present a high performance recovery algorithm for distributed systems in which 
checkpoints are taken asynchronously. It offers fast determination of the recent consistent global 
checkpoint (maximum consistent state) of a distributed system after the system recovers from a failure. 
The main feature of the proposed recovery algorithm is that it avoids to a good extent unnecessary 
comparisons of checkpoints while testing for their mutual consistency. The algorithm is executed 
simultaneously by all participating processes, which ensures its fast execution. Moreover, we have 
presented an enhancement of the proposed recovery idea to put a limit on the dynamically growing 
lengths of the data structures used. It further reduces the number of comparisons necessary to determine 
a recent consistent state and thereby reducing further the time of completion of the recovery algorithm. 
Finally, it is shown that the proposed algorithm offers better performance compared to some related 
existing works that use asynchronous checkpointing. 
Povzetek: Opisan je izboljšan postopek okrevanja v porazdeljenih sistemih. 

1 Introduction 
Checkpointing and rollback-recovery are well-

known techniques for providing fault-tolerance in 
distributed systems [1]-[5]. The failures are basically 
transient in nature such as hardware error [1]. Typically, 
in distributed systems, all the sites save their local states, 
known as local checkpoints. All the local checkpoints, 
one from each site, collectively form a global checkpoint. 
A global checkpoint is consistent if no message is sent 
after a checkpoint of the set and received before another 
checkpoint of the set [2]-[4], that is, each message 
recorded as received in a checkpoint should also be 
recorded as sent in another checkpoint. In this context, it 
may be mentioned that a message is called an orphan 
message if it is recorded as received in a checkpoint, but 
not recorded as sent in another checkpoint. The local 
checkpoints belonging to a consistent global checkpoint 
will be termed in the present work as globally consistent 
checkpoints (GCCs). After recovery from a failure 
processes in a distributed computation restart their 
computation from a consistent global checkpoint /state 
(CGS) of the system, i.e. from their respective GCCs. It 
may be noted that a consistent global checkpoint of a 
system is termed as a recent or a maximum one if, after 
the system recovers from a failure, the number of events 
(states) rolled back at each processor is a minimum [6]. 

To determine consistent global checkpoints, two 
fundamental approaches have been reported in the 
literature [1]-[9].  These are synchronous and 
asynchronous approaches. In the synchronous approach, 
processes involved coordinate their local checkpoint 
actions such that the set of all recent checkpoints in the 
system is guaranteed to be consistent. Although it 
simplifies recovery it has the following disadvantages: 
(1) additional messages need to be exchanged by the 
checkpointing algorithm when it takes each checkpoint; 
(2) synchronization delay is introduced during normal 
operation [5]. In the asynchronous approach, processes 
take checkpoints independently without any 
synchronization among them. Therefore, it is the simplest 
form of taking checkpoints. However, because of the 
absence of synchronization there is no guarantee that a 
set of local checkpoints taken will be a consistent set of 
checkpoints. That is, there may exist orphan messages 
between the local checkpoints. In order to get rid of the 
orphan messages while determining the GCCs, processes 
have to rollback. In such a situation, rolling back one 
process causes one or more other processes to roll back. 
This effect is known as the domino effect [5]. This is the 
main drawback of the asynchronous approach. So, a 
recovery algorithm has to search for the most recent 
consistent set of checkpoints before the system restarts 
its normal operation. Therefore, the recovery process is 
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quite complex while the checkpointing scheme is much 
simpler compared to the same in synchronous approach. 

2 Related Works  
In this work, we have considered asynchronous 

checkpointing approach because of its simplicity in 
taking checkpoints. So, in this section we state briefly the 
contributions of some noted related works. When 
processes take checkpoints independently, some or all of 
the checkpoints taken may be useless for the purpose of 
constructing consistent global checkpoints. A set of 
checkpoints can belong to the same consistent global 
snapshot if no zigzag path (Z-path) exists from a 
checkpoint to any other checkpoint [15]. In other words, 
absence of a Z-path means absence of any orphan 
message. A theoretical framework for characterizing 
quasi-synchronous algorithms has been presented in [12]. 
Quasi-synchronous checkpointing algorithms reduce the 
number of useless checkpoints by preventing the 
formation of noncausal Z-paths between checkpoints and 
advance recovery line. “Advancement of recovery line” 
is interpreted as follows: the more the recovery line is 
advanced, the less is the amount of computation to be 
redone by processes after the system of processes restart 
their normal operation; meaning thereby the reduction in 
the amount of rollback per process after the system 
recovers from failure. Depending on the degree to which 
the non causal Z-paths are prevented, quasi-synchronous 
checkpointing algorithms are classified into three classes 
namely [12], Strictly Z-Path Free (SZPF), Z-Path Free 
(ZPF), and Z-Cycle Free (ZCF). 

Manivannan and Singhal [13] have presented a 
quasi-synchronous checkpointing algorithm which 
allows the processes to take checkpoints asynchronously 
and reduces the number of useless checkpoints by 
forcing processes to take additional checkpoints. In this 
checkpointing algorithm, each process maintains a 
counter which is periodically incremented and the time 
period is same in all the processes. When a process takes 
a checkpoint, it assigns the current value of its counter as 
the sequence number for the checkpoint. Each message is 
equipped (i.e. piggybacked) with the sequence number of 
the current checkpoint. If the sequence number 
accompanying the message is greater than the sequence 
number of the current checkpoint of the process 
receiving the message, then the receiving process takes a 
checkpoint and assigns the sequence number received in 
the message as the sequence number to the new 
checkpoint and then processes the message. Quasi-
synchronous checkpointing algorithm makes sure that 
none of the checkpoints taken lies on a Z-cycle in order 
to make all checkpoints useful. Asynchronous recovery 
algorithms are also presented in this paper based on the 
checkpointing algorithm. A failed process needs to roll 
back to its latest checkpoint and requests other processes 
to rollback to their consistent (latest) checkpoints. The 
work claims to be free from any domino effect. However, 
arguably this work is more of a synchronous approach 
than an asynchronous approach; partly because all 
processes have identical time periods to take 

checkpoints, and checkpoint sequence numbers are used 
so that all the ith checkpoints of all processes are taken at 
the same time (i.e., logically at same time). Hence, we 
argue that there is no question of domino effect as this 
work is not at all an asynchronous approach.  

Gupta et al. [11] have proposed a hybrid roll forward 
checkpointing/recovery approach. Processes take 
checkpoints periodically and these time periods are 
different for different processes.  Periodically, in absence 
of any failure, an initiator process invokes the algorithm 
to advance the recovery line; the duration of this period 
is assumed to be much larger than the time period of any 
individual process. Therefore, the domino effect is 
limited by this time period. The main advantages of this 
work are that each process may need to keep at most two 
checkpoints at any time, processes participate in the 
algorithm simultaneously ensuring re-execution time 
after a failure is limited by the period of execution of the 
algorithm, and finally, recovery is as simple as in the 
synchronous checkpointing/recovery approach. 

Ohara et al. [14] proposed an uncoordinated 
checkpointing algorithm for finding a recovery line 
where a given checkpoint is the earliest. In this 
algorithm, each process maintains a set of all local 
checkpoints on that process in a local vector. All local 
checkpoints which are just behind a given checkpoint are 
initially assumed to form a consistent global checkpoint. 
The algorithm checks happened-before relation for any 
coupled local checkpoints belonging to an ordered global 
checkpoint set. If there exists any happened-before 
relation, it replaces a local checkpoint with a successive 
local checkpoint of the same process. The algorithm may 
end by either finding a recovery line or running out of 
local checkpoints to be replaced.  

Venkatesan and Juang [16] presented an 
asynchronous checkpointing algorithm where each 
process take checkpoints independently and keeps track 
of the number of messages it has sent to other processes 
as well as the number of messages it has received from 
other processes. The algorithm is initiated by the process 
which fails and is recovered from thereafter or when it 
learns about process failure. During its each iteration, a 
process needs to compare the number of messages 
received by it and the actual number of messages sent by 
the other process, at each of its checkpoint starting from 
the most recent one. The received vectors corresponding 
to all the checkpoints including the current one and the 
one where next iteration starts, need to be fetched from 
the storage in order to decide the checkpoint for the next 
iteration to start with.  

3 System Model  
The distributed system has the following 

characteristics [1], [6], [10]: 
1. Processes do not share memory and they 

communicate via messages sent through channels. 
2. Channels are made virtually lossless and order of the 

messages is preserved by some end-to-end 
transmission protocol. 
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3. When a process fails, all other processes are notified 
of the failure in finite time. We also assume that no 
further processor (process) failures occur during the 
execution of the algorithm. In fact, the algorithm 
must be restarted if there are further failures. 

Below we state the problem considered in this work. 
 
Problem Formulation: In this work, we have considered 
asynchronous checkpointing approach because of its 
simplicity in taking checkpoints. That is, processes take 
checkpoints periodically and each process determines 
independently its time period of taking its checkpoints. 
So, different processes may have different time periods 
for taking their checkpoints. After the system recovers 
from a failure, processes start from the recent consistent 
state of the system. However, the main drawback of this 
approach is that determining a consistent global 
checkpoint may involve a very large number of pairwise 
comparisons of checkpoints belonging to different 
processes because of the presence of a possible domino 
effect. In absence of any hybrid approach [11], in the 
worst case, all checkpoints of all processes may have to 
be compared. However, asynchronous checkpointing 
approach is suitable for highly reliable systems where 
failures occur very seldom.  

In this work, our objective is to design an efficient 
recovery algorithm that will reduce considerably the 
number of unnecessary pairwise comparisons of 
checkpoints while determining a consistent global 
checkpoint. In other words, our objective is to identify a 
priori the checkpoints that can not be the GCCs so that 
we can exclude these checkpoints from comparison 
resulting in a fast determination of a recent consistent 
global checkpoint (state) of the system. Note that an 
initial version of this work has appeared in [17]. 

4 Data Structures 
Let us assume that the distributed system under 

consideration consists of n processes. Each process Pi 
maintains a vectors Vi of length n. The Vi vector records 
the number of messages process Pi has sent to every 
other process with the exception that the element vi,i (=Vi 
(i)), i.e. the number of messages process Pi has sent to 
itself will be always zero. The Vi vector is described 
below: 

Vi = [vi,0, vi,1, …. . ,vi,i, …. . ,vi,n-1] 
where vi,j  = Vi (j) and represents the number of messages 
sent by process Pi to process Pj, and vi,i is always zero. 

All entries in Vi are initialized to zero. Each time process 
Pi decides to send a message m to process Pj, then Vi(j) is 
incremented by one. This facilitates process Pi to know 
how many messages it has sent to process Pj.  In this 
work, Cj,r represents the rth checkpoint taken by process 
Pj. Sometimes when mentioning the checkpoint number 
is irrelevant, we simply use Cj to denote a checkpoint 
taken by Pj.  Each process Pi also maintains a linear list 
Ri of dynamically growing length. At any given time t, 
the length of the list Ri (i.e. the number of the entries in 

the list) is equal to the number of checkpoints taken by Pi 
till time t. For example, the length of the list is 3 at the 
3rd checkpoint of process Pi where as its length will be 4 
at its 4th checkpoint and so on. The list Ri is described as   
Ri = [ ri,1, …. . ,ri,r, ……,], where ri,r  = Ri (r) and 
represents the number of messages received by process Pi  
from all other processes till its rth checkpoint. Each such 
list is initially empty.  

Each process stores its vectors and the lists together 
with the corresponding checkpoints in stable storage. 
Also copies of the lists and the vectors are stored in the 
respective local memories of the processors running the 
processes. It offers their faster access than to access them 
from stable storage whenever possible. In addition, each 
process maintains a Boolean flag. This flag is used to 
convey some specific information (described later).  

5 Observations 
Consider the system of three processes P1, P2, and P3 

as shown in Fig. 1. The vectors V1, V2, and V3 initially 
have all their entries set to zero. The lists R1, R2, and R3 
are initially all empty. By the time process P1 takes its 
first checkpoint C1,1, it did not send any message to P2 or 
P3. So its V1 vector is [000]. Also, process P1 received 
one message before it took its first checkpoint; so now 
the list R1 has one entry, i.e. R1 = [1]. By the time process 
P1 takes its second checkpoint C1, 2, it has already sent 
one message to P2. So it increments V1(2) by 1 and the 
vector V1 is now = [010]. Also, process P1 has not 
received any messages (from P2 or from P3) before it 
takes its second checkpoint. So the list R1 at C1,2 is [1,1]. 
In the same way, the vector and the list are updated at 
each checkpoint of each process.  This example will be 
used later in this paper to illustrate the working principle 
of our proposed algorithm. 

We assume that a process Pi after recovery from its 
failure acts as the initiator process, i.e., Pi is responsible 
for invoking the recovery algorithm. To start with Pi 
sends a message requesting all Pj, 0 ≤ j ≤ n-1, j ≠ i, to 
send to it their respective Vj vectors corresponding to 
their latest checkpoints. Upon receiving the request, 
every process Pj sends its Vj to Pi. After receiving the 
vector Vj  from all processes  the initiator process Pi  
forms a two dimensional array VN . It is written below.  

 
where the jth row represents Vj, 1-nj0 ≤≤ . The 
initiator process then computes the column sums to 
create the following vector: 

 
VC = [vc

0, vc
1, …, vc

j, … ,vc
n-1] 

 
where  vc

j  =  column sum of the entries of the  jth column 
of VN and is given as  
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vc

j  = VC(j) = ∑VN (i , j), for i  =  1 to n. 
 

Therefore, vc
j represents the total number of messages 

sent to process Pj by all other processes as recorded in 
each sending process’ latest checkpoint. The initiator 
process Pi then unicasts vc

j (= VC(j)) to process Pj. After 
receiving vc

j from Pi, each process Pj computes Dj = Rj(r) 
- vc

j, assuming that the last checkpoint of process Pj is the 
rth checkpoint (Cj,r). The difference Dj (if >0) gives the 
exact number of orphan messages received by a process 
Pj till its checkpoint Cj,r, from all other processes in the 
system. Initiator process Pi also does similar computation 
to determine the exact number of orphan messages (if 
any) it has received till its latest checkpoint Ci,r. Proof of 
this statement is given later. 
      

 
Figure 1: Vectors (Vi) and lists (Ri) for i = 1, 2, and 3 

 
Observe that for every process Pj, vc

j and Rj(r) may not 
be identical, because some of the sent messages 
(recorded already by the sending processes at their 
respective latest checkpoints) may not have arrived yet at 
Pj (i.e. vc

j ≥ Rj(r)), or some of the received messages (by 
Pj) may not have been recorded at the latest checkpoints 
of some sending processes because these messages may 
have been sent after their latest checkpoints (i.e. vc

j ≤ 
Rj(r)).  
 

Assume that the last checkpoint of process Pj is the 
rth checkpoint (Cj,r) and Dj is greater than zero (Dj >0). 
Search in the list Rj is performed backwards, starting 
with its last component. Thus, we search the proceeding 
entries of the list Rj from Rj (r) till the first Rj (m) so that 
Rj (r) - Rj (m) ≥ Dj , (m < r). Then, the checkpoints Cj,r, 
…, Cj, m+1 are excluded from the consideration of GCC 
composition, i.e. these checkpoints will be skipped.  So, 
now we start from the checkpoint Cj,m of process Pj. The 
vector Vj at checkpoint Cj,m along with the Boolean flag 
“1” are sent to the initiator process Pi for the computation 
of the next iteration.   

In the next iteration, if Dj is smaller than or equal to 
zero (Dj ≤ 0), which means that process Pj has not 
received any orphan message till the checkpoint Cj,r. 
process Pj will send the flag “0” to the initiator process Pi 

.  The initiator process Pi will use the vector Vj at Cj,r for 
the computation of the next iteration. Initiator process Pi 
is also involved in similar computation like any other 

process Pj to determine its appropriate vector Vi needed 
for the computation of the next iteration. This will be 
repeated until all processes send “0” flags to the initiator 
process Pi and Pi’s own flag is also 0 . Then the initiator 
process Pi will notify all processes to rollback to their 
respective latest checkpoints at which their 
corresponding flags have the value 0 each. Thus, this set 
of checkpoints is a globally consistent checkpoint (proof 
is given later). 

The following observations are necessary for 
designing the recovery algorithm. 
 
Lemma 1: Let Cj,r be the latest checkpoint of process Pj 
at time t. If Dj > 0, then process Pj has received a total Dj 
number of orphan messages from other processes. 
Proof:  Rj(r) represents the total number of messages 
process Pj has received so far from all other processes till 
time t. Also vc

j represents the total number of messages 
sent by all other processes to Pj as recorded in their latest 
checkpoints. Therefore Dj > 0 means that at least some 
process Pi (i ≠ j) has sent some message(s) to Pj after 
taking its latest checkpoints. It also means that the 
sending processes have not yet been able to record these 
Dj messages. Since all such Dj messages have been 
received and recorded in Pj’s latest checkpoint, but 
remain unrecorded by the sending processes, therefore Pj 
has received Dj number of orphan messages from the rest 
of the processes with respect to the checkpoint Cj,r. ■ 
 
Lemma 2: If Dj ≤ 0, process Pj has not received any 
orphan message. 
Proof:  Dj = 0 means that the number of messages 
received by Pj is equal to the number of messages sent to 
Pj and these sent (also received) messages have already 
been recorded by the sending processes in their latest 
checkpoints. Therefore the received messages can not be 
orphan.  
 

Also, Dj < 0 means that the number of the messages 
received by Pj is less than the number of messages sent to 
it. Now vc

j is the total number of messages sent by all 
other processes to Pj as recorded in the latest checkpoints 
of the sending processes. It means that all messages 
received by Pj have already been recorded by the senders. 
Hence none of such received messages can be an orphan. 
Hence the proof follows. ■  
Lemma 3: Let Dj > 0 at the checkpoint Cj,r of process Pj 
and let m denote the largest integer that satisfies Rj(r) - 
Rj(m) ≥ Dj (m < r). Then none of the checkpoints Cj,r, Cj,r-

1, …, Cj, m+1  belongs to the set of the globally consistent 
checkpoints.    
Proof: Because m is the largest integer that satisfies Rj(r) 
- Rj(m) ≥ Dj (m < r), the relation Rj(r) - Rj(i) < Dj is 
established for any i ( m+1 ≤ i ≤ r). Moreover, according 
to Lemma 1, Pj has received exactly Dj number of orphan 
messages from all other processes. So there must be at 
least one orphan message received by process Pj before 
Cj,r, and the same also is true before every checkpoint 
between Cj,r and Cj,m. Hence, none of the checkpoints Cj,r, 
Cj,r-1, …, Cj, m+1 can belong to the set of the globally 
consistent checkpoints. ■ 

R R R1 R1= R1=1,1

R

R R

V1 V1 V1 V1 V1

V2

V3 V3

Fa
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Theorem 1: Given a set S* = {Cj,r} of n checkpoints, one 
from each Pj, 1-nj0 ≤≤ , if for every checkpoint Cj,r, 
its corresponding Dj ≤  0, then S* is the set of the 
globally consistent checkpoints. 
Proof: Since Dj ≤  0, for each process Pj, ( 1-nj0 ≤≤ ) 
at its checkpoint Cj,r ε S*, therefore, all received 
messages by any such process Pj have already been 
recorded as sent by the sending processes in their 
corresponding checkpoints. Hence, according to Lemma 
2 none of the messages received by process Pj is an 
orphan message. This is true for all processes. Therefore, 
the system of n processes does not have any orphan 
messages with respect to the checkpoints of the set S*. 
Hence the set S* is the set of globally consistent 
checkpoints. ■  

Before we present the algorithm formally, we give 
an illustration of its working principle using the example 
of Fig. 1. 
 
An illustration: Suppose a failure ‘f’ occurs on the 
processor running the process P1. The process P1 that 
became faulty, acts as the initiator after recovery from 
failure. After the system recovers from the failure, to 
start with, initiator process P1 broadcasts a request asking 
the other two processes P2 and P3 to send their respective 
vectors V2 and V3 corresponding to their latest 
checkpoints C2,1, and C3,2. In this example, the three 
latest checkpoints of processes P1, P2, and P3 before the 
failure occurs are C1,5, C2,1, and C3,2. The respective 
vectors V1, V2, and V3 at the three latest checkpoints are 
[010], [100] and [020].  After receiving all these vectors, 
P1 (it becomes the initiator after recovery from failure) 
forms a two dimensional array VN.   It is written below: 
 
                                    0     1     0 
              VN =              1     0     0 
                                    0     2     0 

P1 creates the vector VC = [130] and unicasts vc
j to 

each process Pj, for j = 1, 2, and 3. After receiving vc
j 

from Pi each process Pj computes Dj ( = Rj(r) – vc
j) 

(assuming the last checkpoint of Pj is the rth checkpoint) 
to determine the total number of orphan messages (if 
any) it has received with respect to its latest checkpoint 
and also Pi does the same. The lists R1, R2, and R3 at the 
latest checkpoints (C1,5, C2,1, and C3,2) of processes P1, P2 
and P3 are [1,1,2,4,5], [2] and [0,1] respectively. P1 finds 
that D1 = (5-1) = 4; so it has received 4 orphan messages. 
It calculates the difference between R1(5) and R1(2) and 
finds that R1(5) – R1(2)  = 4 = D1; so process P1 now 
considers the vector V1  (= [010]) at C1,2  along with a 
flag “1” for the computation of the next iteration. P2 finds 
that it has not received any orphan message because D2 = 
(2-3) < 0. So it sends the same vector [100] and a flag 
“0” to P1.   Process P3 finds that D3 = (1-0) = 1; so it has 
received an orphan message. It calculates the difference 
between R3(2) and R3(1) and finds that R3(2) - R3(1)  = 1 
= D3; so process P3 now sends the vector V3  (= [010]) at 
C3,1  along with a flag “1” to P1  for the computation of 
the next iteration. In the second iteration, P1 forms the 
following two dimensional array. 

 
                                     0      1     0 
                   VN =          1      0     0 
                                     0      1     0  
      
P1 creates the vector VC = [120] and unicasts vc

j to 
process Pj, for j = 1, 2, and 3. P1 finds that it has not 
received any orphan message because at C1,2, its D1 = 1 – 
1 = 0. So, it sets its flag to 0. P2 also finds that it has not 
received any orphan message because at C2,1, its D2 = 2 – 
2 = 0; and it sends the flag “0” to P1. Similarly, P3 finds 
that it has not received any orphan message because at 
C3,1, its D3 ( = R3(1) – vc

3) = 0 – 0 = 0, and it sends a flag 
“0” to P1. Thus, P1 receives flag 0 from each process 
including its own flag set to 0. It then notifies each 
process to rollback to the current checkpoints 
corresponding to these flags (= 0). At this time, none of 
the processes needs to roll back further and hence P1 
terminates the algorithm. Thus the algorithm terminates 
after two iterations. Therefore the GCCs belonging to the 
maximum consistent state are C1,2, C2,1 , and C3,1.  

It may be noted that in each iteration we need to 
fetch only the latest Rj for each process Pj and some Vj 
vectors (not all) to determine the GCCs. In each iteration, 
the checkpoints that can not be the GCCs are identified 
and their vectors Vj are not fetched at all. That is, the 
presented approach will not repeat its operation 
unnecessarily for these vectors corresponding to these 
non-GCCs. It definitely makes the approach fast and 
efficient. Observe what happens if we do not consider the 
above idea to determine the GCCs. It is stated below. 

First, C1,5, C2,1, and C3,2 are considered and 
compared pairwise to determine if they are globally 
consistent. Since C1,5 and C3,2 are not, so in the next 
iteration C1,4, C2,1, and C3,1 are considered pairwise. But 
C1,4 cannot be a GCC. Therefore C1,3, C2,1, and C3,1 are 
now considered. But since C1,3 can not be a GCC, 
therefore C1,2, C2,1, and C3,1 are now considered. This 
time it is found that these three checkpoints are globally 
consistent. Therefore four iterations for pairwise 
comparisons of three checkpoints, one from each 
process, are needed to determine the GCCs as opposed to 
only two when the approach presented in this work is 
followed. It also means that the number of trips to the 
stable storage for fetching checkpoints can also be 
reduced to a good extent in the proposed approach. It 
definitely makes our algorithm fast. Moreover when 
processes take  large number of checkpoints before a 
failure occurs, our approach may offer even much better 
performance from the viewpoint of a possible large 
reduction in the number of iterations (i.e. the number of 
trips to stable storage as well) to determine the GCCs. As 
a result, the recovery scheme also will be faster. Besides, 
it is clear from the example that each process Pj 
simultaneously identifies the checkpoints that cannot be 
globally consistent and therefore these checkpoints 
should be skipped. This parallelism of the algorithm 
further enhances the speed of execution of the recovery 
approach.  
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6 Algorithm to Determine Globally 
Consistent Checkpoints 

In the following algorithm we assume that process Pi 
was faulty. So, it becomes the initiator of the recovery 
algorithm after it recovers from the failure. 

6.1 Algorithm Recovery 
Input:     Given the latest n checkpoints, one for each 

process Pj , 0 ≤  j  ≤ n-1, for an n process system 
and the corresponding vectors Vj and lists Rj at 
these n checkpoints. 

 
Output: A set of globally consistent checkpoints 

(maximum consistent state of the system). 
 

The responsibilities of each participating process Pj 
and the initiator process Pi are stated in Fig. 2. 
Proof of Correctness:   Each process Pj repeats its steps 1, 
2, 3, and 4 to arrive at a checkpoint that has not recorded 
the receipt of any orphan message from the other 
processes (using the observations of Lemmas 1, 2, and 
3). In other words, it identifies the checkpoints that can 
not belong to the set of the globally consistent 
checkpoints and skips them. This decision is taken by 
identifying a checkpoint Cj,m such that m is the largest 
integer that satisfies Rj(r) - Rj(m) ≥ Dj (m < r). None of 
the checkpoints Cj,r, Cj,r-1, …, Cj, m+1 can belong to the set 
of the globally consistent checkpoints and they are 
skipped. However, the initiator process Pi decides when 
to terminate the algorithm, i.e., when the checkpoints can 
become globally consistent. Process Pi checks to see if all 
processes send flags of 0, i.e. Dj ≤  0 for each process Pj. 
If so, the algorithm terminates according to Theorem 1. 
Note that the condition Dj  ≤  0 must always occur 
during the execution of the algorithm. It may be observed 
that in the worst case, because of some typical 
communication pattern, the domino effect may force 
each process to restart from its initial state where for 
each process Pj  we always have Dj = 0. Besides, since 
the algorithm starts with the latest checkpoints, the 
number of events (states) rolled back at each processor is 
a minimum.  This is true because, in its Step 4 each 
process Pj skips only the checkpoints that are non GCCs. 
Thus the algorithm determines the maximum consistent 
state of the system as well. ■ 

6.2 Advantages of the proposed approach 
The presented algorithm offers the following 

advantages. During its each iteration, each process Pj 
determines the checkpoints that can not be the GCCs. 
Therefore, the algorithm is able to avoid any unnecessary 
computations of VC corresponding to these non GCCs. 
The presented algorithm skips checkpoints that do not 
belong to the set of the globally consistent checkpoints; 
thus it avoids many unnecessary pairwise comparisons. It 
also means that the number of trips to the stable storage 
for fetching checkpoints can also be reduced to a good 
extent in the proposed approach. It definitely makes the 

algorithm fast and efficient. The simultaneous execution 
of the algorithm by all participating processes also 
contributes to the speed of execution of the algorithm. 
Besides, the algorithm can find the maximum number of 
checkpoints to be skipped by determining the largest 
integer m, which satisfies Rj(r) - Rj(m) ≥  Dj. This 
guarantees significant reduction in the iterations of 
computation. 

6.3 Performance 
Message complexity: Suppose the termination of the 

algorithm requires the construction of the vector VC by 
the initiator process Pi to occur k times (i.e. k number of 
iterations). During each such time every process in the n-
process system exchanges a couple of messages with the 
initiator process Pi. Thus, O(n) messages are sufficient 
for each time. Thus, considering k times, the message 
complexity of the algorithm is O(kn).  

Besides message complexity, another factor that 
must be considered as a performance measure is the 
number of pairwise comparisons of the checkpoints 
among the processes that is needed to be performed by 
any asynchronous checkpointing/recovery approach. This 
is done in order to determine a consistent global state of 
the system. Obviously larger the number of such 
comparisons, larger is the execution time of the recovery 
algorithm. This has been discussed in the previous 
subsection.  

It may be noted that the number of such pairwise 
comparisons is also related to the number of times 
checkpoints are fetched from stable storage, i.e. the 
number of trips to the storage. The time spent on such 
trips may be substantial enough to affect to a good extent 
the speed of execution of any recovery algorithm. One 
possible solution may be to fetch a large number of 
checkpoints at a time. However, it may not be a good 
idea at all in many situations; for example, a process may 
end up in fetching too many when that many are not 
needed, or too little when more are needed. So, it 
becomes quite arbitrary about how many checkpoints 
should be fetched at a time. Therefore, it is wise to 
consider that a process will fetch one checkpoint at a 
time and in fact, this is true for all existing asynchronous 
checkpointing / recovery algorithms. In the following 
analysis we consider the fact that larger the number of 
pairwise comparisons of checkpoints, larger is the 
number of trips to stable storage, and therefore, larger is 
the execution time as a result.  

In our analysis we will not consider complexity due 
to message size, as most related works including ours use 
control messages of reasonably small size and all these 
works differ mainly in terms of the number of 
comparisons, number of iterations, and the number of 
control message needed to determine a consistent global 
state.  It may be noted that computing this number of 
comparisons is not very straightforward because it 
depends solely on the nature of the distributed 
computations. However, we give an approximate 
analysis which may not be very accurate; still it will offer 
a clear understanding of the advantages of our algorithm  
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Figure 2: The responsibilities of each participating process Pj and the initiator process Pi 

over some other noted asynchronous checkpointing / 
recovery approaches [14], [16]. It is stated below. 

Let the system consist of n processes. For simplicity 
we assume that after a failure occurs and the system 
recovers from it, each process will skip on an average its 
latest (r-1) checkpoints to restart its computation. Thus a 
process Pj will skip its latest (r-1) checkpoints Cj,m+2, …. , 
Cj,r+m. We also assume that the set {C0,m+1, C1,m+1, …,Cn-

1,m+1} represents the globally consistent checkpoint 
(maximum consistent state) of the system and our 
algorithm will determine it in k number of iterations. In 
this simple model, we consider a recovery approach 
associated with asynchronous checkpointing scheme in 
which the pairwise comparisons to determine 
checkpoints’ consistency involves first the checkpoints 
of the set {C0,m+r, …. , Cn-1,m+r}, followed by the set 
{C0,m+r-1, …. , Cn-1,m+r-1}, … and so on, and finally the set 
{C0,m+1, …., Cn-1,m+1}which is the globally consistent 
state. Therefore, the total number of comparisons is 
given by [r x{n(n-1)}/2]. Note that this may not be the 
exact way to perform the comparisons in a particular 
case; still it offers a clear view of how complex it can be. 
In general, a checkpoint(s) in one set may also have to be 
compared with a checkpoint(s) in another set. On the 
other hand, not necessarily all checkpoints in a set may 
be needed to be pairwise compared. It depends on the 
nature of the distributed computations. So the actual 
number of comparisons may be larger or smaller than the 
number [r× {n(n-1)}/2]. Anyway, it is clear that this 
number is much larger than the total number of 
comparisons k×n, offered by our approach, where n is the 
number of parallel comparisons to test if Dj > 0 in each 
iteration and 1 ≤ k ≤ r. Observe that in the worst case, the 
number of comparisons of the proposed approach may 
become [r× {n(n-1)}/2]. Below we have compared the 
performance of our approach with the approaches in [14], 
[16]. 

6.3.1 Comparison with Ohara et. al. [14] 
Ohara et al. [14] have proposed an asynchronous 

approach for finding a recovery line where a given 
checkpoint is the earliest. All the local checkpoints which 
are just behind a given checkpoint are initially assumed 
to form a consistent global checkpoint. In this algorithm, 
happened-before relations are checked for every coupled 
local checkpoints belonging to an ordered global 
checkpoint set. If there exists any happened-before 
relation, it replaces a local checkpoint with a successive 
local checkpoint of the same process. The algorithm may 
end by either finding a recovery line or running out of 
local checkpoints to be replaced. This leads to exhaustive 
comparisons of happened before relations for every 
coupled local checkpoints. The number of such 
comparisons is approximately [r× {n(n-1)}/2] as 
calculated earlier. In our algorithm, it skips the 
checkpoints that do not belong to the set of the globally 
consistent checkpoints. Thus, our algorithm reduces to a 
good extent unnecessary pairwise comparisons of the 
checkpoints to determine global consistent checkpoint of 

the system. Performance comparison of the above 
mentioned approach [14] and our approach is shown in 
Fig. 4. 

Fig. 3 illustrates how the number of comparisons is 
affected with the increase in the average number of 
checkpoints per process (r) in the asynchronous approach 
[14] and in our approach. Fig. 4 shows the variation of 
the number of comparisons with the increase in the 
number of processes (n). Both figures highlight the 
advantages offered by our approach, i.e. considerable 
amount of reduction in the number of comparisons in our 
approach. It helps the processes to restart their 
computation related to the distributed application much 
faster after the system recovers from a failure. 
 

 
Figure 3: Number of comparisons vs. the average 

number of checkpoints per process (r). 
 

6.3.2 Comparison with Venkatesan et. al. [16] 
Venkatesan and Juang [16] presented an 

asynchronous checkpointing algorithm where each 
process takes checkpoints independently and keeps track 
of the number of messages it has sent to other processes 
as well as the number of messages it has received from 
other processes. The existence of orphan messages is 
discovered by comparing the number of messages sent 
and received. The algorithm is initiated by the process 
when a failure occurs or when it learns about process 
failure. 

 
Figure 4: Number of comparisons vs. the number of 

processes (n). 
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During its each iteration, a process needs to compare 

the number of messages received by it and the actual 
number of messages sent by the other process, at each of 
its checkpoints starting from the recent one. The received 
vectors corresponding to all the checkpoints including 
the current one and the one where next iteration should 
start, need to be fetched from the storage in order to 
decide the checkpoint for the next iteration to start with. 
It means that the number of trips to the storage for 
fetching the information related to the received message 
(for the purpose of comparison) will be equal to the 
number of checkpoints starting from the current 
checkpoint all the way to the checkpoint where the next 
iteration should start.  
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Figure 5: Number of control messages vs. the 

number of processes (n). 
 

In our algorithm, the decision about the checkpoint at 
which the next iteration should start is based on the R-
vector at the recent checkpoint only. This algorithm skips 
checkpoints that do not belong to the set of the globally 
consistent checkpoints by examining this R-vector only. 
Therefore, in order to determine the checkpoint for the 
next iteration to start with, the number of trips to the 
storage is only one per iteration. This means that the total 
number of trips to complete the execution of our 
algorithm is reduced to a good extent compared to that in 
[16].  We now compare the two algorithms based on the 
number of control messages needed to execute the 
respective algorithms. 

In [16], in each iteration, for an n-process system 
n(n-1) messages are exchanged among the processes. 
Thus, O(n2) messages are exchanged in each iteration. In 
our algorithm, 3(n-1) messages are exchanged in each 
iteration. Thus, O(n) messages are sufficient in each 
iteration in our algorithm where n is the number of 
processes in the system. Fig. 5 shows the message 
complexity comparison of the two algorithms with the 
increase in the number of processes. This figure clearly 
shows the advantage offered by our algorithm over the 
one in [16].  

7 Further Enhancement 
We have seen that the linear list Rj maintained by a 

process Pj increases dynamically. If the application 
program has large execution time and there is seldom any 

failure during its execution, the length of the lists may 
become too large; thereby it may consume considerable 
amount of memory. To solve this problem, i.e. to keep 
the list from growing too much we will propose a simple 
solution in this section. The following operation is 
needed in the implementation of the idea. 

We define the subtraction operation on two vectors 
Vj of process Pj at its two checkpoints Cj,m and Cj,s with (s 
> m) as follows: 

 
Vj at Cj,s – Vj at Cj,m  = [(vj,0 at Cj,s – vj,0 at Cj,m), … , 

(vj, n-1 at Cj,s – vj, n-1 at Cj,m)] = [(vj,p at Cj,s – vj,p at Cj,m)]  
for 0 ≤ p ≤ n-1 
 
We now state the basic idea to keep the growing 

lengths of the lists in control. This idea has been used in 
designing the enhanced recovery algorithm stated later in 
this section. It may be noted that the recovery algorithm 
stated earlier does not consider the use of this idea. 

In absence of any failure an algorithm runs 
periodically (say the time period is T which should be 
much larger than the time period of any individual 
process) to put a limit on the length of the R-vector. The 
lengths of the lists (R-vectors) may then be limited by the 
number of checkpoints taken by the processes during the 
time interval (T) between two successive executions of 
the algorithm. Besides in doing so, this also advances the 
recovery line in the event that a recent recovery line 
exists other than the one found during the previous 
execution of the algorithm. In effect, the number of 
comparisons of the checkpoints to determine a recent 
consistent state may also drastically reduce since there is 
a possibility that the algorithm will consider in a 
particular run only the checkpoints which the processes 
take during the interval T. Therefore, this enhanced 
algorithm, in general, may take much less time to 
complete its execution compared to Algorithm Recovery. 
Also note that at the completion of the lth execution of the 
algorithm a process Pj will have in stable storage only its 
recent globally consistent checkpoint, say Cj,m and any 
other checkpoint (s) it has taken thereafter and prior to 
the start of the lth periodic execution of the algorithm.  

In describing the following two rules for updating 
the lists Rj and the vectors Vj of a process Pj we have 
assumed that the latest globally consistent checkpoint of 
process Pj is Cj,m as determined by the lth execution of the 
algorithm and it has taken (k-m) more checkpoints 
thereafter and prior to the start of the lth periodic 
execution of the algorithm. 
Rule 1:  Updated Rj at Cj,m = {}  and updated Vj at Cj,m = 
[00…0] 
 Rule 2:  Updated Rj at Cj,s for (m+1 ≤ s ≤ k) = [(Rj(m+1) 
– Rj(m)), … , (Rj(s) – Rj(m))],  and 

Updated Vj at each Cj,s = [(vj,p at Cj,s – vj,p at Cj,m)]  
for 0 ≤ p ≤ n-1 
 
When we implement the above idea of reducing the 

lengths of the lists, either of the following two 
approaches can be adopted: 
Approach 1: When a failure occurs and the system 
recovers from the failure, the algorithm is run again in 
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spite of its periodic execution, with the hope that a recent 
(maximum) consistent state may be found which is not 
identical to the one determined by its last periodical 
execution. In such a situation the time to complete the 
application will be less because of the advancement of 
the recovery line. 

On the other hand, if such a situation as mentioned 
above does not exist, the algorithm will output the same 
consistent state as determined in its last periodic 
execution. In this case, however, the application will take 
an additional amount of time equal to the execution time 
of the algorithm for its completion.  

 
Approach 2: After the system recovers from a failure all 
processes restart from their respective globally consistent 
checkpoints which have already been determined by the 
algorithm’s last periodic execution prior to the 
occurrence of the failure. The recovery becomes as 
simple as that in a synchronous approach. However, 
since this approach does not look for the possible 
existence of a recent consistent state other than the 
already existing one, therefore the time to complete the 
application may increase. 

Observe that irrespective of which approach is 
followed, the next periodic execution of the algorithm 
will occur T time units after the system restarts. About 
when to apply a specific rule, Rules 1 and 2 will be 
implemented when the algorithm runs periodically in 
absence of any failure. Rule 1 is also implemented when 
determination of a consistent global state of the system is 
needed after the system recovers from a failure 
(Approach 1).  In the following algorithm we have 
considered a combination of the two approaches.  

For the selection of an initiator process for running 
the algorithm periodically, we consider that each process 
Pi maintains a local CLKi variable which is incremented 
at periodic time interval T. It also maintains a local 
counter denoted as counteri , initially set to 0 and is 
incremented by process Pi during its turn  to initiate the 
recovery algorithm. Thus, a process on its own 
determines if it is its turn to initiate the execution of the 
algorithm. In this context, observe that the set of GCCs is 
unique and is independent of the initiator process. We 
state below how a process Pi does it before we formally 
state the algorithm:  
 
Selection of an initiator process: 
At each process Pi (0 ≤  i  ≤ n-1): 
     If CLKi = (i+(counteri*n))*T           
    counteri= counteri+1;        
      /*When its turn to initiate the recovery algorithm, 
         i.e.,  Pi becomes the initiator*/ 
 

Algorithm Recovery – Enhanced: 
Input:     Given the latest n checkpoints, one for each 

process Pj , 0 ≤  j  ≤ n-1, for an n process  
               system and the corresponding vectors Vj and 

lists Rj at these n checkpoints. 
Output:  A set of globally consistent checkpoints 

(maximum consistent state of the system). 
 
The responsibilities of the initiator process Pi and each 
participating process Pj are stated in Fig. 6. 

 
An example: Consider the system as shown in Fig. 7. 
Ignore the presence of the failure ‘f’ for the time being. 
Suppose that the periodic execution of algorithm starts 
immediately after processes P1 and P3 take their 
respective checkpoints C1,5 and C3,2. The algorithm 
determines the latest consistent global checkpoint of the 
system. It is {C1,2, C2,1, C3,1}.    

The two rules are applied to update the lists R1, R2, 
and R3, and the vectors V1, V2, and V3 at the checkpoints 
of processes P1, P2, and P3 starting from their respective 
latest globally consistent checkpoints, which are namely 
C1,2, C2,1, C3,1. The system with the updated lists and 
vectors is shown in Fig. 8. The checkpoints shown in Fig. 
8 are the only ones saved in stable storage.  

Now assume that a failure ‘f’ has occurred. 
Therefore the algorithm determines the consistent global 
checkpoint of the system, which is {C1,2, C2,1, C3,1} and 
applies only Rule 1 to reset the vectors to zero and to 
make the lists empty at the respective GCCs of the three 
processes.  

   

 
 

Figure 7: Before the execution of the algorithm 
 

The system in this situation is shown in Fig. 9. The 
three respective consistent checkpoints are the only ones 
saved in the stable storage at this time.  

Note that the consistent global state remains the 
same (see Figs. 8 and 9). This is the situation when time 
to complete the application program increases by an 
amount equal to the time to execute the recovery 
algorithm. This has been pointed out earlier in the 
description of Approach 1. However, this will not happen 
if only Approach 2 is followed for recovery. 
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Figure 8: After the execution of the algorithm in 

absence of any failure 
 

 
 

Figure 9: The system restarts from its consistent 
global state {C1,2,C2,1,C3,1}after recovery. 

7.1 Comparison with [11] and [13] 
Gupta et al. [11] have proposed a roll-forward hybrid 

checkpointing / recovery scheme using basic 
checkpoints. The direct dependency concept used in the 
communication-induced checkpointing scheme has been 
applied to basic checkpoints to design a simple algorithm 
to find a consistent global checkpoint. They have used 
the concept of forced checkpoints that ensures a small re-
execution time after recovery from a failure. This scheme 
has the advantages of simple recovery as in synchronous 
approach and simple way to create checkpoints like in 
asynchronous approach.  

Our proposed approach (enhanced version) is not a 
hybrid approach. It runs periodically only to put a limit 
on the size of the R-vectors. This is the primary objective 
of the enhanced approach. In doing so it may come out 
with a recent recovery line that is different from the one 
found during the last execution of the algorithm. Thus, 
effectively as mentioned earlier, even though the 
proposed algorithm is not a hybrid one, still as in [11] it 
may reduce drastically the number of comparisons 
needed to identify a recovery line, as well as it may limit 
the domino effect by the time period T, based on the 
message communication pattern among the processes.  

Our proposed approach is quite different from the 
work in [13] in that in our approach processes take 

checkpoints completely independently based on their 
individual time periods that are different for different 
processes. In [13], processes take checkpoints with the 
same time periods and they make sure that there is no 
orphan message between any two ith checkpoints of two 
processes. Therefore, it is more of a synchronous 
approach than an asynchronous approach, where as our 
approach is purely an asynchronous approach. 

8 Conclusions  
In this paper we have presented an efficient recovery 

algorithm for distributed systems. Asynchronous 
checkpointing scheme has been considered because of its 
simplicity in taking checkpoints. The main feature of the 
recovery algorithm is that to determine a maximum 
consistent state, the algorithm in its each iteration does 
not need to compare all the vectors at all the checkpoints 
of the processes. In its each iteration the algorithm 
identifies and skips those checkpoints that can not belong 
to the set of the globally consistent checkpoints. It not 
only reduces the computational overhead to a good 
extent, but also the number of trips to the stable storage 
for fetching checkpoints is  reduced compared to the 
works in [14] and [16], and as a result its execution 
becomes even faster. In this context, it may be noted that 
in any algorithm that uses asynchronous checkpointing, 
there is always some computational time wasted to create 
process checkpoints that later do not belong to CGS and 
this problem can not be avoided. This is true for our 
proposed algorithms as well. Besides, it is executed 
simultaneously by all participating processes while 
determining a maximum consistent state. It further 
contributes to its speed of execution. We have also 
proposed a simple enhanced asynchronous recovery 
scheme to control the dynamically growing length of the 
lists. In effect, the number of comparisons of the 
checkpoints to determine a recent consistent state may 
also drastically reduce and based on the communication 
pattern among the processes it may limit the domino 
effect by the time period T. Even though we do not apply 
any hybrid checkpointing scheme [11], still this approach 
offers the option to achieve a recovery scheme which is 
as simple as the approach proposed in [11].  In this 
context, it may be noted that if the system model changes 
such that order of the messages sent through the channel 
cannot be preserved, it will adversely affect the 
processing time, because a process must wait to receive 
message m1 before processing its already received 
message m2. Here, we have assumed that the proper 
order is m1 followed by m2. 
Our future work is directed at the new challenging area 
of designing recovery schemes for cluster federation 
computing environment in which different clusters may 
adopt different ways for checkpointing, for example, 
some may apply coordinated approach,  where as other 
may apply asynchronous approach [18 ], [19 ].  
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Figure 6: The responsibilities of the initiator process Pi and each participating process Pj for the enhanced 
algorithm. 
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