ACTA CARSOLOGICA XXVII/2 1 15-23 LJUBLJANA 1998 COBISS: 1.08 GENETIC TYPES OF CAVES IN SLOVAKIA GENETSKI TIPI JAM NA SLOVAŠKEM PAVEL BELLA1 1 Slovak Caves Administration, Hodzova 11, 031 01 LIPTOVSKy MIKULaŠ, SLOVAK REPUBLIC Prejeto / received: 5. 8. 1998 Izvleček UDK: 551.442(437.6) Pavel Bella: Genetski tipi jam na Slova{kem Tako na kraškem kot tudi na neprepustnem ozemlju Slovaške je zelo veliko tipološko različnih jam. V delih, ki obravnavajo Zahodne Karpate, genetski kriteriji za klasifikacijo jam niso enotni. V tem prispevku avtor predlaga nekaj osnovnih principov in značilnosti, s pomočjo katerih bi bilo mogoče klasificirati jame po njihovem nastanku. Nakazana so tudi vprašanja krasoslovnega in speleološkega izrazoslovja (eksokras in endokras, kras in pseudokras). Klju~ne besede: geomorfologija, speleologija, speleogeneza, Slovaška, Zahodni Karpati. Abstract UDC: 551.442(437.6) Pavel Bella: Genetic types of caves in Slovakia Karst and non-karst regions in the territory of Slovakia are notable for a very broad typological range of caves. The criteria of cave genetic classification in the existing works concerning parts of the Western Carpathians are not integrated. We suggest fundamental principles of classification and charaterize the basic genetic types of caves in this paper. We also advert to several problems of karstological and speleological terminology (exokras and endokarst, karst and pseudokarst). Key words: geomorphology, speleology, speleogenesis, Slovakia, Western Carphatians. The extent of karst regions in Slovakia is quite considerable and represents an area of over 2,700 sq.km. By orography, these regions belong to the Western Carpathians system. From the morphological point of view, karst in these mountain regions is represented by plateau karst (Slovak Karst, Slovak Paradise, Muran Plateau), dissected karst of massive ridges, horsts and combined fold-fault structures (Strazov Hills, Lesser Carpathians, Ziar, Zvolen Basin), dissected karst of monoclinal crests and ridges (Low Tatras, Belianske Tatras, High Tatras, Greater Fatra, Choc Hills) and karst of klippen structure (Vrsatec Klippens in the White Carpathians, Manin Highland, Pieniny mountain). Karst of travertine domes and cascades occurs both in mountain (Hincava in Slovak Paradise, Motycky at the boundary of the Greater Fatra and Stare Hory Hills) and basin locations (Bojnice in Horna Nitra Basin, Drevenik in Hornad Basin, Sliac in Zvolen Basin). Karst in basin regions is represented also by karst of isolated blocs and monadnocks and karst of flood plains and terraces (Upper Hron Valley, Liptov Basin). All of these karst types are situated in the Central-European mild climatic zone. Besides high-mountain karst on fold-fault and inclined structures (Red Hills in the Western Tatras, Belianske Tatras, High Tatras), cryptokarst related to lenses of crystalline limestones and magnesites, lying under an impermeable rock environment (Revuca Highland), is of special importance (J. Jakal 1993). More than 3,850 caves and rock shelters meeting the criteria of underground space occur in Slovakia. About 120 caves exist in non-karst rocks (basalt, andesite tuff, sandstone, granite, quartz-ite and hydrothermal quartz). Genetically these cave types are miscellaneous (P. Bella 1994, L. Gaal - P. Bella 1994). GENETIC CLASSIFICATION OF CAVES The development of geomorphological processes causing and changing geomorphological object form depends on several factors. The initial structure represents space configuration of structural-tectonic and geological dis-continuities (expressive tectonic fractures and ruptures, junction of karst and nonkarst rocks, in-cluding interbed impermeable layers, etc.), which enable forming and primordial effect of geomorphological processes and following rise of morphoforms. The lithologic qualities of rocks belong among the passive factors, including less expressive fructuring and bedding, while geomorphological value of rocks can be summarily discussed. They influence the rate of geomorphological process effect and direct the development of morphoforms, mainly of lower taxonomic range. Active factors are hydrological processes, including physical and chemical qualities of water and hydrological regime in the relation with corrosive and corrosive-erosive (fluviokarst) effect, collapse, dilation movement, thermomechanical weathering, some processes of slope modelling, volcanic-exhalation and volcanic-explosive processes, etc. This category also contains tectonic movements indirectly influencing fluvial morphogenetic processes, on which its erosive or accu-mulative relief-form expression is dependent. Active and inactive morphogenetic processes in cave spaces are considered. The space disposition determines especially the alogenic position of karst, where morphoge-netic processes are bound to allochtonous water flow, and also the space configuration of karst territorial parts, those parts of caves with certain specific qualities which influence the development of underground spaces in other parts of the caves. Fundamental criteria of cave genetic classification are considered to be active factors, which are completed by passive factors, initial structure, and space disposition in the lower taxonomic range. SYNGENETIC CAVES Travertine crater caves originated simultaneously with the formation of travertine domes. Bojnicka Castle Cave in the Horna Nitra Basin is an intracrater oval bell cavern with a diameter of 22 metres. Caves of travertine depositing waterfalls. Semiclosed up to fully closed caverns formed by the horizontal accretion of travertine cascades. Jelenecka Cave in the Starohorska Valley is 60 metres long. Volcanic-exhalation caves created by emision of volcanic gases and vapour. They occur in the Pleistocene basalt in the Stiavnicke Hills (Sezam Cave is 26.4 metres long and 14.6 metres deep) and at Ragac in the Cerova Highland (two chimmey-shaped spaces 3.8 and 6.2 metres long). Volcanic-explosive caves formed by the explosion of volcanic gases and vapour. Ebeczkeho Cave at Ragac in the Cerova Highland is 17 metres long. EPIGENETIC CAVES Corrosive karst caves originate by the chemical dissolution of limestones and dolomites. The basic types of underground spaces in corrosive karst caves are vadose spaces, phreatic spaces with multiple loops, spaces with a mixture of phreatic and epiphreatic watertable - levelled components, epiphreatic watertable - levelled spaces. Besides the abysses of „aven" type and the caves of predominantly vertical shape, smaller caves of horizontal character formed by corrosion by infiltration atmospheric waters are known in vadose conditions. The Ochtinska Aragonite Cave (Ochtinsky cryptokarst) in the Revucka Highland was formed in an isolated lens of limestones. Its primary phreatic underground spaces were flooded. Cupola ceiling depressions originated by water convection. Plane solution ceilings and corrosion bevels (Laugdecken) correspond with phases of past water levels falling and their stagnation. Planes of repose (Facceten) originated by corrosion of slow water circulation. Corrosive-collapsing caves present mostly the abysses of „light hole" type and the corrosive hollows are remodelled by the collapsing of overlying rock. Corrosive bradykarst caves are created in magnesite in the Revuca Highland and the Volovec Hills. An ochre is a product of the disintegration of magnesite that is intensified by the oxidation of iron recrements. Underground hollows originated by washing away of ochre by the infiltrating atmospheric water along the tectonic faults. Cave BU-2 is 73 metres long. Fluviokarst caves are modeled by the corrosive and erosive effects of autochtonous and al- lochtonous water flow in limestone and dolomite. The longest caves in the Western Carpathians have fluviokarst origin (Demanova Cave System in the Low Tatras is 24 kilometres long, Stratena Cave System in the Slovak Paradise is 21.5 kilometres long). The basic types of underground spaces in fluviokarst caves are drawdown and invasion vadose spaces, phreatic spaces with multiple loops, spaces with a mixture of phreatic and epiphreatic watertable - levelled components, epi-phreatic watertable - levelled spaces. According to the development of the drawdown and invasion types of vadose caves and the Four-state Model (D. C. Ford, 1977; Ford & Williams1989) that differentiates the types of phreatic and watertable caves, P. Bella (1995) refers to the occurence of underground space types in ponor caves in the context of the position of the allogenous karst area: the slopes and the side valleys of the mountain valleys, the narrow valleys in the mountains and the submountains, the other hanging positions at the contact of non-karst and karst rocks in the mountains, the breach narrow valleys across the mountain between the basins, the breach narrow valleys across the karst plateau and the adjacent plateau slopes, the edges of karst plateau by low sides, the positions at the contact of nonkarst rocks on the karst plateau, the island positions of carbonate rocks in the basins at the clearway of boundary mountains, the island positions of carbonate rocks in the low areas of basins and headlands, the low fringe positions of carbonate rocks in the basins at their contact with the mountain range or karst plateau and the hanging fringe positions of carbonate rocks at the contact of basin with the mountain. Fluviokarst-collapsing caves are fluviokarst caves remodelled by the collapsing of overlying rock. Tectonic caves are characterized by narrow fissure underground hollows. They are enlarged by the tectonic movements as a consequence of endogenous processses (Cave of Dead Bats in the Low Tatras in limestone). Tectonic-corrosive caves are initial tectonic caves enlarged by the corrosion of infiltrate atmo-spheric waters. Tectonic-corrosive-collapsing caves are tectonic-corrosive caves remodelled by the collaps-ing of overlying rock. Tectonic-fluviokrast-collapsing caves are initial tectonic caves enlarged by the corrosive and erosive effects of water flow and are remodelled by the collapsing of overlying rock. Crevasse caves at the borders (edges) of rocky massifs originate as a result of block gravitation movement of rocks on slopes in limestone, dolomite, sandstone, basalt, andesite tuff and granite. Suitable conditions for the genesis of these caves in karst areas are in nappe outliers, borders of karst plateau and other abrupt georelief. Some caves are more than one hundred metres long. Crevasse-collapsing caves answer to the expanding and final stage of block gravitation move-ment of rocks on slopes. „Consequence caves" (I. Eszterhas, 1994) were formed by natural processes such as collapsing and dilatation movement of slope modelling; however these processes are results of the antropo-genic activities (mining, undermining, building activities), which cause instability of the rocks. Greater Cave is 58 metres long, Lesser Cave is 44 metres long, and both lie in the Stiavnicke Hills. Crevasse-corrosive-collapsing caves are crevasse caves in limestone and dolomite enlarged by the corrosion of infiltration atmospheric waters and collapsing of overlying rock at an advanced stage of gravitation slope movements. Crevasse-fluviokarst caves. Some border gravitation crevasses of karst plateaus are remod-elled by the corrosive and erosive effects of water flow (Brzotin Cave and New Brzotin Cave in the Plesivec Plateau of Slovak Karst). Crevasse-talus caves. The gravitation crevasse is in the lower part of transverse profile of the underground hollows, the blocks of talus and felsenmeeres are in the upper part of transverse profile. L. Gaal and J. Gaal (1995) distinguish the caves in the crevasses of rockslides root area (betwen face and rockslide) and the caves created in the cracks inside the slided blocks. Pillar Cave is 182 metres long, Labyrinth Cave is 151 metres long; both lie in the Cerova Highland. Talus caves. Underground hollows with the typical chaotic divergence among the loose boul-ders that originated by the decay of slid blocks on slopes. The boulders can often form block fields. Talus caves occur most of all in the basaltic felsenmeeres in the Cerova Highland (caves up to 53 metres long). Abraded caves. The small caves up to 6 metres long in the quartzite were formed by the abrasion of Miocene sea at Devinska Kobyla in the Lesser Carpathians. Erosive-collapsing caves. Waterfall Shelter near Plastovce in the Krupina Plateau was formed by water stream erosion with subsequent collapsing in andesite tuff conglomerates. Suffosion caves. Borova hora Cave 77 metres long in the Zvolen Basin originated by washing away of loose sediments under travertine dome. Cryogenic caves formed in limestone, dolomite, andesite tuff, sandstone, basalt, granite, quartzite and hydrothermal quartz by frost weathering along fractures and bedding planes, mainly during the cold periods of Pleistocene. The length of these caves is at most several tens of metres; usually they are shorter. Corrosive-cryogenic caves. Corrosive karst caves are modified by frost weathering. Caves in organic residues. Only one cave 5.8 metres long in andesite conglomerates in the Polana mountains is known. It originated by weathering out of a tree stem that was drifted by surface streams in the Miocene. CONCLUSION The most extensive caves usually consist of several morphological parts, which are sometimes different also from a genetic point of view. Therefore some caves represent a combination of sever-al genetic types of underground spaces, the proportions of which are variable. The occurence of genetically heterogenic types of underground spaces in caves depends on the degree of space differentiation of the initial structure parameters, passive and active factors of mor-phogenic process as well as on space variations of its interconnections with surrounding parts or parts of caves. Since among the active genetic factors of some caves are a combination of exogenous and endogenous processes with direct morphogenic influence, it is problematic to discuss unambiguous designation of independent categories of „exokarst" and „endokarst" cave. Mechanical processses participate, to a great extent, in the formation of caves in karst rocks. Several authors tend to designate the space, formed by the gravitation movement or the thermome-chanical weathering with the paticipitation of slope morphogenetic processes, to be pseudokarst. But we often meet their corrosive enlargement which leads to the formation of combined types of pseudokarst and karst character (P. Bella, 1995). Terms „karst" and „pseudokarst" are not mutually exclusive (C. A. Self - G. J. Mullan, 1996). The existing definitions of terms „karst" and „pseudokarst" correspond to their typical variants. Different opinions exist: non-use of the term „pseudokarst", classification of pseudokarst caves also in karst rocks or describing only the type of morphogenetic process and rock. LITERATURE ANDREJCUK, V. N. (1991). Obstanovki razvitija karsta. Obstanovki karstogeneza: glubinnyj karst, endokarst, gidrotermokarst. Tezisy dokladov, Kungur, 92-100. BELLA, P. (1994). Geneticke typy jaskynnych priestorov Zapadnych Karpat. Slovensky kras, 32, 3-22. BELLA, P. (1995a). Kras a pseudokras - zakladne terminologicke problemy. Proceedings of International working meeting „Preserving of Pseudokarst Caves" (Rimavska Sobota - Salgo-tarjan), Banska Bystrica, 68-76. BELLA, P. (1995b). Ku geneze ponornych fluviokrasovych jaskyn alogennych uzemi Zapadnych Karpat. Zbornik referatov z konferencie „Relief a integrovany vyskum krajiny", Presov, 7-18. BELLA, P. (1998). Morfologicke a geneticke znaky Ochtinskej aragonitovej jaskyne. Aragonit, 3, 3-7. CIGNA, A. A. (1978). A Classification of Karstic Phenomena. International Journal of Speleology, 10, 1. CURL, R. L. (1966). Cave conduit enlargement by natural convention. Cave Notes, 8, 1, 4-8. ESZTERHAS, I. (1994). Konzekvenciabarlangok. Proceedings of the 5th Pseudokarst symposium with international parcipitation (Szczyrk), Bielsko-Biala, 25-28. ESZTERHAS, I. - GAAL, L. - TULUCAN, T. (1997). Caves in the volcanic rocks of the Car-pathian Ranges. Proceedings of the 6th International Symposium on Pseudokarst (Galyate-to, 1996), Isztimer, 136-157. FORD, D. C. (1977). Genetic Classification of Solution Cave System. Proceeding of the 7th International Congress of Speleology, Sheffield, 189-192. FORD, D. C. - WILLIAMS, P. W. (1989). Karst Geomorphology and Hydrology. Unwin Hyman, London. GAAL, L. - BELLA, P. (1994). Geneticke typy jaskyn v nekrasovych horninach Slovenska. Proceedings of the 5th Pseudokarst symposium with international parcipitation (Szczyrk), Bielsko-Biala, 20-24. GAAL, L. - ESZTERHAS, I. (1990). Pseudokrasove jaskyne Cerovej vrchoviny - otazky genezy a rozsirenia. Slovensky kras, 28, 71-102. GAAL, L. - GAAL, J. (1995). Vznik jaskyn svahovymi pohybmi blokoveho typu na priklade Pohanskeho hradu (Cerova vrchovina). Slovensky kras, 33, 35-54. HOLUBEK, P. (1995). Konzekvencne jaskyne v Stiavnickych vrchoch. Proceedings of International working meeting „Preserving of Pseudokarst Caves" (Rimavska Sobota - Salgotar-jan), Banska Bystrica, 58-60. JAKAL, J. (1993). Geomorfologia krasu Slovenska. Slovensky kras, 31, 13-28. KEMPE, S. - BRANDT, A. - SEEGER, M. - VLADI, F. (1975). „Facetten" and „Laugdecken", the typical morphological elements of caves developed in standing water. Annales des Speleologie, 30, 4, 705-708. KLIMCHOUK, A. (1997). Speleogenetic effects of water density differences. Proceedings of the 12th International Congress of Speleology, 1, La Chaux-de-Fonds, 161-164. LANGE, A. (1962). Water level planes in caves. Cave Notes, 4, 2, 12-16. LANGE, A. (1963). Planes of repose in caves. Cave Notes, 5, 6, 41-48. LEHOTSKY, R. (1995). Krasove a pseudokrasove jaskyne Devinskych Karpat. Slovensky kras, 32, 23-40. MITTER, P. (1979). Relief na travertinoch Slovenska. Manuscript, MSK Liptovsky Mikulas. MITTER, P. (1983). Frost Features in the Karst Region of the West Carphatian Mountains. Permafrost, Proceedings of the Fourth International Conference (Fairbanks - Alaska), Washington D. C., 861-865. MITTER, P. (1988). Speleologicky vyskum krasovych javov Plesivskej planiny. Vyskumne prace z ochrany prirody, 6A, 75-95. MITTER, P. (1989). Vlijanie gravitacionnych dvizenij na razvitie karsta gornych massivov na primere slovackich Karpat. Problems of Karst of Moutainous Countries, Proceedings of the International Symposium of Speleology (Tbilisi - Tskhaltubo - Sukhumi, 1987), Tbilisi, 132-136. NEMCOK, M. (1989). Strukturno-tektonicke pomery karbonatoveho komplexu Trangosky a Jaskyne mrtvych netopierov. Manuscript (archives of the SMOPaJ Liptovsky Mikulas). PILOUS, V. (1982). Pseudokrasove dutiny v neovulkanitech jizniho Slovenska. Ceskoslovensky kras, 32, 75-81. SELF, C. A. - MULLAN, G. J. (1996). Redefining the boundary betwen karst and pseudokarst. Cave and Karst Science, 23, 2, 63-70. ŠUŠTERŠIČ, F. (1984). Samogovor o speleogenezi. Nase jame, 26, 59-66. ZENIS, P. - GAAL, L. (1986). Magnesite karst in the Slovenske rudohorie Mts. (Czechoslovakia). Comunicacions, 90 Congreso International de Espeleologia, 2, Barcelona, 36-39. GENETSKI TIPI JAM NA SLOVAŠKEM Povzetek Del slovaškega krasa, ki sodi k Zahodnim Karpatom, je precej velik, saj obsega preko 2700 km2 ozemlja. Z morfološkega vidika sodijo v ta gorski kras slede~i tipi: planotasti kras, razrezan kras gmotastih pogorij, kras v horstih in nagubanih ter prelomnih strukturah, razrezan kras v monokli-nalnih grebenih ter hrbtih in kras v krpastih strukturah. Kras v lehnjakovih kopah in slapovih se pojavlja tako v gorah kot v kotlinah. Kras v kotlinah je lahko kras v posameznih blokih in monad-nokih ali kras v poplavnih ravnicah in terasah. Vsi našteti tipi krasa sodijo v srednjeevropski zmerni podnebni pas. Razen krasa v gorah v nagubano-prelomnih in nagnjenih strukturah, se pojavlja tudi kriptokras, vezan na le~e kristalinskih apnencev in magnezitov, ki leže pod neprepustnimi kamninami. Na Slovaškem je ve~ kot 3850 jam in spodmolov, ki z genetskega vidika predstavljajo sestavljene (mešane) oblike. Geomorfološki procesi, ki so povzro~ili dvig in spremembo oblike geomorfoloških pojavov, so odvisni od ve~ dejavnikov. Najpomembnejši kriteriji za genetsko klasifikacijo so tvorni dejavniki (hidrološki procesi, podiranje, raztezni premiki, razpadanje zaradi temperaturnih sprememb, procesi razvoja pobo~ij, procesi vulkanskih ekshalacij in eksplozij, itd.), ki jih dopolnjujejo pasivni dejavniki (litološke lastnosti kamnin), prvotne strukture (razporeditev struk-turno-tektonskih in geoloških nezveznosti) in položaj krasa v prostoru (npr. alogeni položaj) v nižjem taksonomskem razredu. Razdelitev slovaških jam po genetskih tipih: - singenetske jame: jame v travertinskih kraterjih, jame v lehnjakovih slapovih, vulkansko-ekshalacijske jame, vulkansko-eksplozivne jame; - epigenetske jame: korozijske, korozijsko-podorne, korozijske "bradikraške", fluviokraške, fluviokraško-podorne, tektonske, tektonsko-korozijske, tektonsko-korozijsko-podorne, tekton-sko-fluviokraško-podorne, jame-razpoke, jame podorne razpoke, jame podorno-korozijske razpoke, fluviokraške jame-razpoke, jame v pobo~nih podorih, jame-razpoke v pobo~nih podorih, abrazijske jame kot posledica morskega delovanja v neogenu, erozijsko-podorne, sufozijske, kriogene, korozijsko-kriogene in jame v organskih ostankih. Največje jame obi~ajno sestavljajo morfološko razli~ni deli, ki so v~asih tudi razli~nega nastanka. Tako nekatere jame predstavljajo sestav podzemeljskih prostorov različnega nastanka, katerih delež pa je lahko zelo različen. Ker nekatere izmed aktivnih genetskih dejavnikov, ki oblikujejo jame, sestavljajo tako eksoge-ni kot endogeni procesi, z neposrednim vplivom na morfogenezo, je vprašljivo govoriti o enotnih in neodvisnih kategorijah "eksokraških" in "endokraških" jam. Mehanski procesi v veliki meri vplivajo na nastanek jam v kraških kamninah. Nekateri avtorji se nagibajo k temu, da bi votle prostore, ki nastajajo zaradi gravitacijskih premikov ali površinskega razpadanja ob sodelovanju procesov oblikovanja pobočij, imenovali pseudokras. Toda v teh jamah pogosto naletimo na korozijske razširitve, ki vodijo v nastajanje kombiniranih tipov s kraškimi in pseudokraškimi značilnostmi. Obstoječi definiciji "krasa" in "pseudokrasa" odgovarjata njunima tipičnima razvojema. So pa tudi drugačna mnenja: oporekanje uporabi izraza "pseudokras", uvrščanje pseudokraških jam v kras, ali poudarjanje tipa morfogenega procesa ali zgolj kamnine.