
Informatica 39 (2015) 87–98 87

An Efficient Algorithm for Mining Frequent Closed Itemsets

Gang Fang 1, 2, Yue Wu 1, Ming Li 1 and Jia Chen 1

1School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu, Sichuan, 611731, P. R. China
2School of Computer Science and Engineering, Chongqing Three Gorges University,
Wanzhou, Chongqing, 404000, P. R. China
E-mail: gangfang07@sohu.com, ywu@uestc.edu.cn, ming.m.li@alcatel-lucent.com, jchen@uestc.edu.cn

Keywords: frequent closed itemsets, Galois connection, granular computing, association rules, data mining

Received: February 6, 2014

To avoid generating an undesirably large set of frequent itemsets for discovering all high confidence
association rules, the problem of finding frequent closed itemsets in a formal mining context is proposed.
In this paper, aiming to these shortcomings of typical algorithms for mining frequent closed itemsets,
such as the algorithm A-close and CLOSET, we propose an efficient algorithm for mining frequent
closed itemsets, which is based on Galois connection and granular computing. Firstly, we present the
smallest frequent closed itemsets and its characters, contain some properties and theorems, then
propose a novel notion, called the smallest frequent closed granule, which can help the algorithm save
reading the database to reduce the costed I/O for discovering frequent closed itemsets. And then we
propose a novel model for mining frequent closed itemsets based on the smallest frequent closed
granules, and a connection function for generating the smallest frequent closed itemsets. The generator
function create the power set of the smallest frequent closed itemsets in the enlarged frequent 1-item
manner, which can efficiently avoid generating an undesirably large set of candidate smallest frequent
closed itemsets to reduce the costed CPU and the occupied main memory for generating the smallest
frequent closed granules. Finally, we describe the algorithm for the proposed model. On these different
datasets, we report the performances of the algorithm and its trend of the performances to discover
frequent closed itemsets, and further discuss how to solve the bottleneck of the algorithm. For mining
frequent closed itemsets, all these experimental results indicate that the performances of the algorithm
are better than the traditional and typical algorithms, and it also has a good scalability. It is suitable for
mining dynamic transactions datasets.

Povzetek: Opisan je nov algoritem asociativnega učenja za pogoste entitete.

1 Introduction
Association rules mining is introduced in [1], Agrawal et
al. firstly propose a classic algorithm for discovering
association rules in [2], namely, the Apriori algorithm.
However, it is also well known that mining frequent
patterns often generates a very large number of frequent
itemsets and association rules, which reduces not only
efficiency but also effectiveness of mining since users
have to sift through a large number of mined rules to
discover useful ones. In order to avoid the shortcoming,
Pasquier et al. introduce the problems of mining frequent
closed itemsets in [3], and propose an efficient Apriori-
based mining algorithm, called A-close. Subsequent,
Zaki and Hsiao propose another mining algorithm in [4],
called CHARM, which improves mining efficiency by
exploring an item-based data structure. However, we find
A-close and CHARM are still costly when mining long
patterns or low minimum support thresholds in large
database, especially, CHARM depends on the given data
structure and need the overlarge memory. As a continued
study on frequent patterns mining without candidate
generation in [5], J. Pei et al. propose an efficient method
for mining frequent closed itemsets without candidate

generation in [6], called CLOSET. There are more study
works for mining frequent closed itemsets in [7-13]. The
familiar algorithms include MAFIA in [7], CLOSE+ in
[8] and DCI-CLOSED in [9].

At present, for mining frequent closed itemsets, there
are two types of main current methods as follows:

The first is the method of mining frequent closed
itemsets with candidate based on the Apriori algorithm in
[3 and 14]. The A-close algorithm in [3] is a well-known
typical algorithm for the first method, which adopts the
bottom-up search strategy as the Apriori-like in [2], and
constructs the set of generators in a level-wise manner:
(1)i generators are created by joining i generators .

For the first method, the advantages are the less usage of
memory, simple data structure, and easy implementing it
and maintaining; its disadvantages are the more occupied
CPU for matching candidate patterns, and the overlarge
costed I/O for the repeatedly scanning the database to
compute the support.

The second is the method of mining frequent closed
itemsets without candidate based on the FP-tree structure
in [6, 15 and 16]. The CLOSET algorithm in [6] is an
extended study of the FP-Growth for mining frequent
patterns in [5]. For the second method, the advantages

88 Informatica 39 (2015) 87–98 G. Fang et al.

are reducing the overlarge computing corresponding to
the joined potential generators in the A-close algorithm,
and saving the costed I/O of reading the database. But it
has these disadvantages, such as complex data structure
costs more memory, creating recursion FP-tree occupies
more CPU, and implementing it is troublesome.

Rough set theory in [17] and formal concept analysis
in [18 and 19] are two efficient methods for the
representation and discovery of knowledge in [20 and
21]. Rough set theory and formal concept analysis are
actually related and often complementary approaches to
data analysis, but rough set models enable us to precisely
define and analyse many notions of granular computing
in [22 and 23].

Reference [22] develops a general framework for the
study of granular computing and knowledge reduction in
formal concept analysis. In formal concept analysis,
granulation of the universe of discourse, description of
granules, relationship between granules, and computing
with granules are issues that need further scrutiny. Since
the basic structure of a concept lattice induced from a
formal context is the set of object concepts and every
formal concept in the concept lattice can be represented
as a join of some object concepts, each object concept
can be viewed as an information granule in the concept
lattice.

An important notion in formal concept analysis is
thus a formal concept, which is a pair consisting of a set
of objects (the extension) and a set of attributes (the
intension) such that the intension consists of exactly
those attributes that the objects in the extension have in
common, and the extension contains exactly those
objects that share all attributes in the intension in [22].
For the study of granular computing, the formal concept
is defined as a granule, such as an information granule.

Based on the notions of granularity in [24] and
abstraction in [25], the ideas of granular computing have
been widely investigated in artificial intelligence in [26],
such as, granular computing has been applied to
association rules mining in [27 and 28], where a partition
model of granular computing is applied to constructing
information granule in [26], which depends on rough set
theory in [29] and quotient space theory in [30].

In this paper, we propose a novel model based on
granular computing, namely, an efficient algorithm for
mining frequent closed itemsets, which constructs the set
of generators in the enlarged frequent1 item manner to
reduce the costed CPU, and adopts granular computing to
reduce the costed I/O.

The rest of the paper is organized as follows:
In Section 2, we present the related concepts with

closed itemset and granular computing; In Section 3, we
propose a novel model for mining frequent closed
itemsets based on granular computing; In Section 4, we
describe the efficient mining algorithm; Section 5 reports
the performance comparison of our with A-close and
CLOSET. In Section 6, we summarize study work and
discuss some future research directions.

2 Related concepts
In this section, referring to the definitions and theorems
in [3, 4, 6, and 22], we present the following definitions,
properties, theorems, and propositions with closed
itemsets and granular computing.

Definition 2.1 A formal context is a triplet (,D U
,)A R , where

1 2{ , ,..., } ()nU u u u n U , called the universe of

discourse, is a finite nonempty set of objects;

1 2{ , ,..., } ()mA a a a m A , called the attributes

set, is also a finite nonempty set of attributes;
R U A , called the relations, is a binary relation

between objectsU and attributes A , where each couple
(,)u a R denotes the fact that the object ()u u U is

related to the attribute ()a a A .

Here, we make the following ratiocinations become
concise, and then let the attribute ()a a A be Boolean,

where each attribute is regarded as an item, i.e. the
attributes set A is a general itemset. In fact, these
ratiocinations are also suitable for the quantitative
attributes.

Definition 2.2 Galois connection, let (, ,)D U A R
be a formal context, for O U and I A , we define:

() : () ()O P U P A , namely

() { | , (,) }O i A o O o i R , which denotes the

maximal set of items shared by all objects ()o o O ;

() : () ()I P A P U , namely

() { | , (,) }I o U i I o i R , which denotes the

maximal set of objects that have all items ()i i I ;

And the couple of applications (,) is defined as a

Galois connection between the power set of U (i.e. ()P U)

and the power set of A (i.e. ()P A).

Property 2.1 For a formal context (, ,)D U A R , if

1 2, ,O O O U and 1 2, ,I I I A , then we have:

(1) 1 2 1 2() ()I I I I ;

(1*) 1 2 1 2() ()O O O O ;

(2) () ()I O O I .

Definition 2.3 Galois closure operators are defined
as the operators h in ()P A and in ()P U ,

where they are also expressed as the following notation:
() () (()), () () (())h I I I O O O .

Property 2.2 For a formal context (, ,)D U A R , let

(,) be the Galois connection. If 1 2, ,O O O U and ,I

1 2,I I A , then we have:

Extension: (3) ()I h I ; (3*) ()O O ;

Idempotency: (4) (()) ()h h I h I ;

(4*) (()) ()O O ;

Monotonicity: (5) 1 2 1 2() ()I I h I h I ;

(5*) 1 2 1 2() ()O O O O ;

An Efficient Algorithm for Mining Frequent… Informatica 39 (2015) 87–98 89

Definition 2.4 Closed itemsets, an itemsets C A
from D is a closed itemset if and only if ()h C C . The

smallest (minimal) closed itemset containing an itemset
I is obtained by applying h to I .

Here, we call ()h I the closure of I .

Theorem 2.1 For a formal context (, ,)D U A R , let

1 2,I I A be two itemsets. We have:

1 2 1 2() (() ())h I I h h I h I .

Proof. Let 1 2,I I A be two itemsets.

1 1 2 2(), ()I h I I h I (Extension)

1 2 1 2() ()I I h I h I

1 2 1 2() (() ())h I I h h I h I (Monotonicity)

And 1 1 2 2 1 2,I I I I I I

1 1 2 2 1 2() (), () ()h I h I I h I h I I

1 2 1 2(() ()) (())h h I h I h h I I (Monotonicity)

1 2 1 2(() ()) ()h h I h I h I I (Idempotency)

1 2 1 2() (() ())h I I h h I h I .

Proposition 2.1 For a formal context (, ,)D U A R ,

the closed itemset ()h I corresponding to the closure by h

of the itemset ()I I A is the intersection of all objects in

U that contain I :
() { ({ }) | ({ })}

o U
h I o I o

 .

Proof. Let ({ })
o S

H o

 , where

{ | ({ })}S o U I o . And we have

()
() (()) ({ }) ({ })

o I o S
h I I o o

 , where

{ | ()}S o U o I .

Let’s show that S S , i.e. ({ }) ()I o o I .

() { }; (()) ({ })I o I o (Property 2.1)

(())I I (Extension)

() (()) ({ })o I I I o
We have S S , and also have ()h I H .

Definition 2.5 Formal granule, for a formal context
(, ,)D U A R , a two-tuple , ()G I I is defined as a

formal granule of the context (, ,)D U A R , where

I , called the intension of formal granule, is an
abstract description of common features or properties
shared by objects in the extension, which is expressed as

1 2{ , ,..., }(,)kI i i i I A k I .

()I , called the extension of formal granule, is the

maximal set of objects that have all items ()i i I , which

is expressed as () { | , (,) }I o U i I o i R .

Definition 2.6 Intersection operation of two formal
granules is denoted by , which is described as follows:

There are two formal granules , ()G I I and

, ()G I I , respectively; then we have:

, () , () ()G I I G G I I I I .

3 A novel mining model
Firstly, we present some definitions, properties, theorems,
and corollaries from the Galois connection and granular
computing. And propose a novel model for mining
frequent closed itemsets based on granule computing.

3.1 Basic concepts
Definition 3.1 Itemset support, for a formal context

(, ,)D U A R , the support of the itemset I is expressed

as () () /support I I U .

Definition 3.2 Frequent itemsets, the itemset I is said
to be frequent if the support of I in D is at least the given
minsupport . The set FI of frequent itemsets in D is

defined as { | () }FI I A support I minsupport .

Property 3.1 All subsets of a frequent itemset are
frequent; all supersets of an infrequent itemset are
infrequent. (Intuitive in [2])

Definition 3.3 Frequent closed itemsets, the closed
itemset C is said to be frequent if the support of C in D is
at least the given minsupport . The set FCI of frequent

closed itemsets in D is defined as follows:
{ | () () }FCI C A C h C support C minsupport .

Property 3.2 Frequent closed itemsets FCI is the
subset of frequent itemset FI , namely FCI FI .

Definition 3.4 The smallest frequent closed itemsets,
the frequent itemset I is said to be the smallest frequent
closed itemset if , () ()I I support I support I . The

set minFC of the smallest frequent closed itemsets in D is

{ | () ()}minFC I FI I I support I support I .

Theorem 3.1 For a formal context (, ,)D U A R ,

if I be a frequent closed itemset, and there is the smallest
frequent closed itemset '(() ('))I I I , i.e.

 ' () (')minI FCI I FC I I .

Proof. Let I k , there are two cases as follows:

(1) If 1 1 (1)I I I k , and have ()support I

1 1() () ()support I I I I support I support I .

Since I FCI FI , we have minI FC . Let 'I I , and

we have ' () (')minI FC I I .

(2) If 1 1 (1)I I I k , and have ()support I

1 1() () ()support I I I .

(i) If 2 1 2 (2)I I I I k , and 1()support I

2 2 1 1() () ().support I I I I support I support I
Since 1I I FCI FI , we have 1 minI FC . Let 1'I I ,

and we have 1' () () (')minI FC I I I .

(ii) Otherwise 2 1 2 (2)I I I I k , and have

1 2 1 2() () () ()support I support I I I ...

Go on doing until the thk step, and ()support I
()k k minsupport I I FC . Let ' kI I , and we have 'I

1() () ... () (')min kFC I I I I .

Based on definition 2.4 and theorem 3.1, we have:

90 Informatica 39 (2015) 87–98 G. Fang et al.

Corollary 3.1 Let I be the smallest frequent closed
itemset, i.e. minI FC . And the frequent closed itemset

corresponding to I is () (())h I I .

Corollary 3.2 For a formal context (, ,)D U A R ,

the set FCI of frequent closed itemsets in D is expressed
as { () | }minFCI h I I FC .

Theorem 3.2 Let I I A , where ()support I

()support I . Then we have () ()h I h I and ,I A

() ()h I I h I I .

Proof. () ()I I A support I support I

 () ()I I

 () ()I I

(()) (()), . . () ()I I i e h I h I
I A

() (() ())h I I h h I h I (Theorem 2.1)

 () ()h I h I

() (() ()) ()h I I h h I h I h I I .

Theorem 3.3 min minI FC I I I FC .

Proof. Suppose 1 1min minI FC I I I FC .

1 1 minI I I FC

2 1 1 2 () ()I I support I support I

2 1 () ()I I

1 2 3 2 (') (') (')I I I I I I I I I

3 (') () ()I I I

3 2 3 2, . . () ()I I i e I I

 3 1() ()I I

1 3() (') ()I I I

1 1() (') () (')I I I I I (Definition 2.6)

3() ()I I

3 3() (), . . () ()I I i e support I support I

3 3 () ()I I support I support I

minI FC . However, the itemset I is the smallest

frequent closed itemset, namely minI FC .

1 1min minI FC I I I FC

min minI FC I I I FC .

Corollary 3.3 ,min minI FC I I I FC
(1)I I

Definition 3.5 The smallest frequent closed granules
set, the formal granule , ()G I I is said to be the

smallest frequent closed granule minG if the intension I of

G is the smallest frequent closed itemset. The set minFG

of the smallest frequent closed granules is defined as:
{ , () | }min minFG G I I I FC

3.2 Frequent closed itemsets mining
In this section, we propose a novel model for mining
frequent closed itemsets based on granule computing.

Based on the previous introductions, the following is a
formal statement of this model.

For a formal context (, ,)D U A R , discovering all

frequent closed itemsets in D can be divided into two
steps as follows:

(1)According to the minimal support given by user,
mining the smallest frequent closed granules set in D .
(Details in the steps from (1) to (18) from Section 4.2)

(2)Based on the smallest frequent closed granules set,
discovering all frequent closed itemsets in D . (Details in
the steps from (19) to (21) from Section 4.2)

Here the first step is based on definition 3.5, theorem
2.1, and theorem 3.2; the second step refers to Definition
2.4, Proposition 2.1, and Theorem 3.1(Corollary 3.1).
From the theory, they provide the demonstration for the
novel mining model.

4 The efficient mining algorithm
In this section, we use an efficient mining algorithm to
describe the novel model, which is denoted by EMFCI.

4.1 Generator function
Here, we propose a function for generating the intension
of the smallest frequent closed granules.

Definition 4.1 Set vector operationfor two sets is
defined as follows:

Let 1 2 1 2{ , ,..., }, { , ,..., }m nP p p p Q q q q be two sets,

and then the set vector operation is expressed as TP Q

1

2
1 2

{ }

{ }
0 { } { } ... { }

...

{ }

n

m

p

p
q q q

p

1 1 1 1 2 1

2 2 1 2 2 2

1 2

{ } { , } { , } ... { , }

{ } { , } { , } ... { , }

...

{ } { , } { , } ... { , }

n

n

m m m m n

p p q p q p q

p p q p q p q

p p q p q p q

1 1 1 1 2 1 2 2 1{{ },{ , },{ , },...,{ , },{ },{ , },np p q p q p q p p q

2 2 2 1 2 { , },...,{ , },...,{ },{ , },{ , },n m m mp q p q p p q p q

 ...,{ , }m np q (Formal notation)

1 1 1 1 2 1 2 2 1 2 2{{ },{ },{ },...,{ },{ },{ },{ },np p q p q p q p p q p q

2 1 2 ...,{ },...,{ },{ },{ },...,{ }n m m m m np q p p q p q p q .

(Simple notation)
The operation is the main idea of generator function,

let ,P Q be two sets, it is expressed as (,) Tf P Q P Q .

The application of (,)f P Q refers to Section 4.2.

For example, for a formal context (, ,)D U A R , let

A be a general itemset{ , , }a b c , and then we use the set

vector operation to generate () (() 0)P A p P A p as

follows:
(1) () 0P A ;

(2) { } () () (())T
x xI a P A P A I P A

 { } 0 {{ }}a a ;

An Efficient Algorithm for Mining Frequent… Informatica 39 (2015) 87–98 91

(3) { } () () (())T
x xI b P A P A I P A

 {{ }} ({ } 0 { })a b a

{{ },{ },{ }}a b ab ;

(4) { } () () (())T
x xI c P A P A I P A

 {{ },{ },{ }} ({ } 0 { } { } { }a b ab c a b ab

{{ },{ },{ },{ },{ },{ },{ }}a b ab c ac bc abc .

For a formal context (, ,)D U A R , if A is a general

itemsets, namely, it is a set of Boolean attributes, ()P A is

general the power set where () 2 1AP A . But if A is

a set of quantitative attributes, where ()P A is called the

extended power set of A , and ()P A is expressed as:

() (1) 1a
a A

P A V

 , here aV is a reprocessed

discrete range of attribute a A .

4.2 An algorithm for mining frequent
closed itemsets

In this section, we describe the efficient algorithm based
on the novel model in Section 3 via the following pseudo
code.

Algorithm: EMFCI
Input: a formal context (, ,)D U A R , the minimal

support minsupport .

Output: frequent closed itemsets FCI .
(1)Read D ;
(2)Construct { | , ()a aFG FG a A G I I FG

1 () }aI V I I minsupport ;

(3) { | { }, ({ })a a a aF F V v F G v v FG
}aFG FG a A ; // aV is the range of attribute a A .

(4) 0minFC ;

(5)For ()F do begin

(6) c minS FC ; //Generate the candidate

(7) For ()cs S do begin

(8) If 1 1 2 2(() ())FI FCmint N t s t N t s then

(9) Construct , ()G s s ;

(10) If (())s minsupport then

(11) If (()) ()))t s s t then

(12) Write , ()G s s to minFG ;

(13) Write s to minFC ;

(14) else
(15) Write s to FCminN ;

(16) else
(17) Write s to FIN ;

(18)End
(19)For (, ())minG I I FG do begin

(20) Write () (())h I I to FCI ;

(21)End
(22)Answer FCI ;

These steps from (1) to (18) in the algorithm extract
the smallest frequent closed granules set. And these steps
from (19) to (21) generate all frequent closed itemsets.

4.3 Example and analysis
Here, we firstly provide an example for the algorithm,
and then analyse the pruning strategies in the algorithm.

No. Operation

1

{ { },{1,3,5} , { },{2,3,4} ,FG a b
{ },{1,2,5} , { },{3,4,5} }c e

(Pruning { }d by property 3.1and definition 3.3)

2 {{ },{ },{ },{ }}F a b c e

3
{ } {{ }}ca S a

{ { },{1,3,5} }minFG a , {{ }}minFC a

4

{ } {{ },{ }}cb S b ab
{ { },{1,3,5} , { },{2,3,4} }minFG a b
{{ },{ }}minFC a b

(Pruning{ }ab by property 3.1and definition 3.3)

5

{ } {{ },{ },{ }}cc S c ac bc
{ { },{1,3,5} , { },{2,3,4} }minFG a b

{ },{1,2,5} , { },{1,5} }c ac
{{ },{ },{ },{ }}minFC a b c ac

(Pruning{ }bc by property 3.1and definition 3.3)

6

{ } {{ },{ },{ },{ },{ }}ce S e ae be ce ace
{ { },{1,3,5} , { },{2,3,4} }minFG a b

{ },{1,2,5} , { },{1,5} , { },{3,4,5} ,c ac e
{ },{3,5} , { },{3,4} }ae be

{{ },{ },{ },{ },{ },{ },{ }}minFC a b c ac e ae be
(Pruning{ , }ce ace by property 3.1and definition

3.3)`
Note: the search course is ended, discovering all
the smallest frequent closed granules minFC

7

1 3 5({ }) { } { }h a u u u a

2 3 4({ }) { } { }h b u u u b

1 2 5({ }) { } { }h c u u u c

1 5({ }) { } { }h ac u u ac

3 4 5({ }) { } { }h e u u u e

3 5({ }) { } { }h ae u u ae

3 4({ }) { } { }h be u u be
Note: based on the smallest frequent closed
granules set minFC , getting all frequent closed

itemsets

8
Answer

{{ },{ },{ },{ },{ },{ },{ }}FCI a b c ac e ae be

Table 1: Frequent closed itemsets mining
for 40%minsupport .

92 Informatica 39 (2015) 87–98 G. Fang et al.

For a formal context (, ,)D U A R , where { , ,A a b

1 2 3 4 5 1 2 3, , }, { , , , , }, { }, { },c d e U u u u u u u acd u bc u

4 5{ }, { }, { }abe u be u ace ; and 40%minsupport . The

course of discovering frequent closed itemsets is
described as table 1.

For mining frequent closed itemsets, the algorithm
adopts some pruning strategies as follows, property 3.1,
definition 3.3 and 3.4, and theorem 3.3. They can help
the algorithm efficiently reduce the search space for
mining frequent closed itemsets.

5 Performance and scalability study
In this section, we design the following experiments on
these different datasets:

Firstly, we report the performances of the algorithm
EMFCI with A-Close and CLOSET on the six different
datasets.

Secondly, we report the relationships between some
parameters of the datasets and the performances of the
algorithm EMFCI for mining frequent closed itemsets.

Finally, for the bottleneck of the algorithm EMFCI,
we improve it to get the algorithm IEMFCI, and report its
performances on the extended high dimension dataset to
show the scalability of the algorithm EMFCI.

There are two original datasets as follows:
The first is the Food Mart 2000 retail dataset, which

comes from SQL Server 2000. It contains 164558
records in 1998. By the same customer at the same time
as a basket, we take items purchased from these records.
Because the supports of the bottom items are small, we
generalize the bottom items to the product department.
Finally, we obtain 34015 transactions with time-stamps.
It is a dataset with the Boolean attributes.

The second is from a Web log data, which is a real
data that expresses some behaviour of students browsing,
where the attributes set is made of , ,login time duration

 , ,network flow IDtype and sex . The dataset with the

discrete quantitative attributes has 296031 transactions.
Now, we generalize attributes, and replicate some

attributes or transactions to create the following extended
datasets described as table 2, where each dataset can be
defined as a formal mining context (, ,)D U A R .

All the experiments are performed on an Intel (R)
Core (TM)2 Duo CPU (T6570 @) 2.10 GHz 1.19GHz)
PC with 1.99 GB main memory, running on Microsoft
Window XP Professional. All the programs are written in
C# with Microsoft Visual Studio 2008. The algorithm A-
close and CLOSET are implemented as described in [3]
and [6].

Name Descriptions () ;P A U

Dataset
1

The first original
dataset

222 1 ;
34015

Dataset
2

Replicating dataset 1
three attributes

252 1 ;
34015

Dataset
3

Replicating dataset 1
four times

222 1 ;
5*34015

Dataset
4

The second
original dataset

5*4*4*14*3-1;
296031

Dataset
5

Replicating dataset 1
one attribute

5*4*4*14*3*5-1;
296031

Dataset
6

Replicating dataset 4
one time

5*4*4*14*3-1;
2*296031

Dataset
7

For the Food Mart
2000, we regard the
same customer at the
same time as a basket
and generalize the
bottom items to the
product subcategory

1022 1 ;
34015

Table 2: The datasets used in the experiments.

5.1 The experiments of performance
comparison

In this section, for discovering frequent closed itemsets
on these different datasets, we compare the algorithm
EMFCI with the algorithm A-close and CLOSET from
the following two aspects, namely, one is comparing the
performances among them as the minimal support is
added; the other is comparing them as the number of
frequent closed itemsets is added.

1. Testing on the original datasets
For the two original datasets, we firstly compare the

algorithm EMFCI with the A-close and CLOSET based
on the varying minimal support and the number of
frequent closed itemsets. These experimental results are
described as figure 1, 2, 3, and 4, respectively.

Figure 1: Performance comparison with the support on
dataset 1.

Figure 2: Performance comparison with the number of
frequent closed itemsets on dataset 1.

An Efficient Algorithm for Mining Frequent… Informatica 39 (2015) 87–98 93

Figure 3: Performance comparison with the support on
dataset 4.

Figure 4: Performance comparison with the number of
frequent closed itemsets on dataset 4.

Based on the comparison results from figure 1, 2, 3,
and 4, we know that the performances of the algorithm
EMFCI are better than the A-close and CLOSET.

Obviously, the algorithm CLOSET is also superior to
the A-close. Hence, we don’t compare the EMFCI with
the A-close in the following experiments.

2. Testing on the extended datasets
We further report the performances of the algorithm

EMFCI on the extended datasets. Based on the different
minimal support and the number of frequent closed
itemsets, we compare the EMFCI with the CLOSET, the
experimental results are described as figure 5 to 12.

Figure 5: Performance comparison with the support on
dataset 2.

Figure 6: Performance comparison with the number of
frequent closed itemsets on dataset 2.

Figure 7: Performance comparison with the support on
dataset 3.

Figure 8: Performance comparison with the number of
frequent closed itemsets on dataset 3.

Figure 9: Performance comparison with the support on
dataset 5.

Figure 10: Performance comparison with the number of
frequent closed itemsets on dataset 5.

Figure 11: Performance comparison with the support on
dataset 6.

Figure 12: Performance comparison with the number of
frequent closed itemsets on dataset 6.

Based on the comparison results from figure 5 to 12,
we know that the performances of the algorithm EMFCI
are also better than the CLOSET on the datasets with the
Boolean or quantitative attributes.

5.2 The relationships between these
parameters and performances

In this part, we mainly discuss the relationships between
the performances and the following parameters:

U , is the number of objects in the formal mining

context (, ,)D U A R , in other word, it is the number of

transactions in the mining database.

94 Informatica 39 (2015) 87–98 G. Fang et al.

()P I , is the number of nonempty power sets for

attribute values, called the search space of the algorithm,
where I is the smallest frequent closed itemsets from the
attribute set A , ()P I is defined as the power set of I .

(Refer to section 4.1)
Here, the representation of the performances has two

kinds of parameters as follows:
()t x : is the runtime of algorithm x , which is from

input to output for mining frequent closed itemsets.
p , is defined as the improved ratio of the runtime

between the algorithm EMFCI and CLOSET, which is
denoted by the following equation:

1 () / ()p t EMFCI t CLOSET .

1. The relationships between the performances
and the search space

(1)Reporting the relationships on the extended
dataset of the first original dataset

For the first original dataset, namely, dataset 1, we
test the trend of the performances as the search space is
increasing on dataset 2, which is the extended dataset
with replicating three attributes of the first dataset. As the
search space is varying, the trend of the runtime for the
algorithm EMFCI is expressed as figure 13, the trend of
the improved ratio between the algorithm EMFCI and
CLOSET is expressed as figure 14.

Figure 13: The trend of the runtime on dataset 2.

Figure 14: The trend of the improved ratio on dataset 2.

Based on figure 13, we know that the runtime is
added as the search space is increasing. Based on figure
14, we find that the improved ratio is reduced as the
search space is increasing.

(2)Reporting the relationships on the extended
dataset of the second original dataset

For the second original dataset, namely, dataset 4,
we extend an attribute to get dataset 5, and test the trend
of the performances on the dataset. The experimental
results are expressed as figure 15 and 16, respectively.

Figure 15: The trend of the runtime on dataset 5.

Figure 16: The trend of the improved ratio on dataset 5.

According to figure 15 and 16, we get the similar
comparisons results as above. Hence, we can draw the
following conclusions:

The runtime of the algorithm EMFCI is added as the
search space is increasing; on the contrary, the improved
ratio is reduced. Namely, if the search space is increasing,
the performances of the algorithm EMFCI will become
worse and worse. In other word, the algorithm is not
suitable for mining the dataset with too many smallest
frequent closed itemsets.

2. The relationships among the performances, the
search space and the number of objects

(1)Reporting the relationships on the first original
dataset and its extended dataset

For the first original dataset (dataset 1), and its
extended dataset, dataset 3 with replicating its objects
four times, we test the trend of the performances as the
search space is increasing on the two datasets. As the
search space is varying, the trend of the runtime for the
algorithm EMFCI is expressed as figure 17, the trend of
the improved ratio between the algorithm EMFCI and
CLOSET is expressed as figure 18.

Figure 17: The trend of the runtime on dataset 1 and 3.

Figure 18: The trend of the improved ratio on dataset 1
and 3.

Based on figure17, we know that the runtime of the
algorithm is added as the search space or the number of
objects is increasing.

Based on figure18, we find that the improved ratio of
the algorithm is reduced as the search space is increasing,
but it become relatively stable as the number of objects is
increasing.

(2)Reporting the relationships on the second original
dataset and its extended dataset

For the second original dataset, namely, dataset 4,
we replicate its objects one time to get dataset 6, and test
the trend of the performances on the dataset 4 and 6. The

An Efficient Algorithm for Mining Frequent… Informatica 39 (2015) 87–98 95

experimental results are expressed as figure 19 and 20,
respectively.

Figure 19: The trend of the runtime on dataset 4 and 6

Figure 20: The trend of the improved ratio on dataset 4
and 6

According to figure 19 and 20, we draw the same
conclusions as follows:

The runtime of the algorithm EMFCI is added as the
search space or the number of objects is increasing, the
improved ratio of the algorithm is reduced as the search
space is increasing, but it become relatively stable as the
number of objects is adding. Namely, the performances
of the algorithm EMFCI will become relatively stable as
the number of objects is increasing. Hence, it is suitable
for mining dynamic transactions datasets.

According to all these experimental results, we can
draw the following conclusions:

(1) The performances of the algorithm EMFCI are
better than the traditional typical algorithms for mining
frequent closed itemsets on the datasets with the Boolean
attributes or the 1uantitative attributes.

(2) The runtime of the algorithm EMFCI is added as
the search space. If the search space is too large, its
performances will become worse and worse. This is the
bottleneck of the algorithm.

(3) The runtime of the EMFCI is also added as the
number of objects is increasing.

(4) For the algorithm CLOSET, the improved ratio
of the algorithm is reduced as the search space is adding,
but it become relatively stable as the number of objects is
increasing. Namely, the performances of the EMFCI will
become relatively stable as the number of objects is
increasing. It is suitable for mining dynamic transactions
datasets.

5.3 A further discussion for solving the
bottleneck of the algorithm

Based on these conclusions in section 5.2, for the formal
mining context (, ,)D U A R , if the search space ()P I

is overlarge, where ()I I A is the smallest frequent

closed itemsets, ()P I is defined as the power set of I , the

performance of EMFCI will become worse and worse.

In this section, we adopt a partitioning method to
avoid the bottleneck. In other word, the overlarge search
space is divided into some smaller search spaces. The
theoretical basis can be described as follows:

Let 1 2{ }()mtt tI a ,a ,...,a I A , and then we have the

following
11|| () || (|| || 1) 1t

m
i a

P I V , namely,

11|| () || 1 (|| || 1)t

m
i a

P I V

1 2 1

1

(|| || 1) (|| || 1) ... (|| || 1)t t tma a a

m

V V V

1 21 1 1 2

2

(|| || 1) (|| || 1) ... (|| || 1) ...t t tm m m ma a a

m

V V V

... 1 ...1 2 (1) 1 2 (1)
(|| || 1) ... (|| || 1)t tm m m m m m mk k k

k

a a

m

V V

;

1 2()km m ... m m .

Obviously, we also have || () || 1P I

1 2
(|| () || 1) (|| () || 1) ... (|| () || 1)

km m mP I P I P I ;

Where 1 2 1

1
{ }mtt t

mI a ,a ,...,a ,

1 21 1 1 2

2
{ }m m m mt t t

mI a ,a ,...,a ,…,

11 2 (1) 1 2 (1){ }m m ... m m m ... m mk k k

k

t t

mI a ,...,a .

In this paper, we let 19|| () || 2
imP I . If is too big,

the method also has the same bottleneck; if is too
small, the cost of partitioning search space is expensive.
For these two cases, their performances are expressed as
figure 23.

The partitioning method is used in the algorithm
EMFCI, which is called improved EMFCI, i.e. IEMFCI.

5.3.1 Example
For the example in section 4.3, we use the algorithm

IEMFCI to discover frequent closed itemsets, the course
of which is described as follows, where 4 .

(Note: 4 used in the example, 192 used in the
following experiments)

Step1. { { },{1,3,5} , { },{2,3,4} ,FG a b
{ },{1,2,5} , { },{3,4,5} }c e .

Step2. {{ },{ },{ },{ }},|| () || 15 4F a b c e P F .

Step3. Partitioning the search space, get two search
spaces 1 2{{ },{ }}, {{ },{ }}F a b F c e , where || () || 4iP F .

Step4. For the first search space 1 {{ },{ }}F a b , have

① { } {{ }}ca S a
1 { { },{1,3,5} }minFG a , 1 {{ }}minFC a ;

② { } {{ },{ }}cb S b ab
1 { { },{1,3,5} , { },{2,3,4} }minFG a b ,
1 {{ },{ }}minFC a b .

For the second search space 2 {{ },{ }}F c e , have

① { } {{ }}cc S c
2 { { },{1,2,5} }minFG c , 2 {{ }}minFC c ;

96 Informatica 39 (2015) 87–98 G. Fang et al.

② { } {{ },{ }}ce S e ce
2 { { },{1,2,5} , { },{3,4,5} }minFG c e ,
2 {{ },{ }}minFC c e .

Step5. 1 2{ , }min minF FC FC , repeating the step2,

where || () || 15 4P F , but || || 2F , the partitioning

operation must be ended; otherwise, the algorithm need
to continue to partition the search space.

1 {{ },{ }}min cFC S a b ,

{ { },{1,3,5} , { },{2,3,4} }minFG a b ,

{{ },{ }}minFC a b ;

 2 { }
0 { } { }

{ }min c

c
FC S a b

e

{{ },{ },{ },{ },{ },{ }}c ac bc e ae be ;

{ { },{1,3,5} , { },{2,3,4} }minFG a b
{ },{1,2,5} , { },{1,5} , { },{3,4,5} ,c ac e
{ },{3,5} , { },{3,4} }ae be

{{ },{ },{ },{ },{ },{ },{ }}minFC a b c ac e ae be
The rest of steps are the same as the example in

section 4.3. The algorithm IEMFCI reduces the checking
of itemset{ }ace , but adds the task of partitioning. As the

number of transactions is lesser, the example does not
show its advantage, please see the experiments in section
5.3.3. Here, the example only describes the execution
course of IEMFCI.

5.3.2 Comparisons of the time and space
complexity

For (, ,)D U A R , let C be a set of frequent closed

itemsets, and let L be the average length of frequent
closed itemsets, 2k is a parameter with partitioning the
search space. The comparisons are expressed as table 3.

Items Time complexity Space complexity
A-close (|| ||)LO C (|| || / || ||)O C A

CLOSET 2(|| ||)O C (|| ||)O C

IEMFCI ((/ 1) || ||)O L k C (|| || / || ||)O C k A
Table 3: Comparisons of the time and space complexity.

5.3.3 Test on the high dimension datasets
In this section, to show the scalability of the algorithm
EMFCI, firstly, we compare the improved algorithm
IEMFCI with EMFCI, A-close and CLOSET on the high
dimension dataset (dataset 7 as table 1), which is an
extended dataset based on the first original dataset. The
comparison results are expressed as figure 21 and 22,
where the parameter (2,) 2mp m on the abscissa shows

the search space ()P I of the given support.

Figure 21: Performance comparison with the lower
support on dataset 7.

Figure 22: Performance comparison with the higher
support on dataset 7.

Then, for the improved algorithm IEMFCI, we adopt
different parameters to test its trend of performance,

where 52 , 192 and 222 . The comparison result
is expressed as figure 23, where IEMFCI ((2,)p n) is

the improved algorithm IEMFCI when the parameter of
partitioning the search space is (2,) 2np n .

Figure 23: The trend of performance with the different
parameter on dataset 7.

Based on these comparisons, we draw the following
conclusions:

Firstly, the improved algorithm IEMFCI is better
than the algorithms EMFCI, A-close and CLOSET.

Secondly, the improved algorithm IEMFCI gets rid
of the bottleneck in the algorithms EMFCI, especially,
when the search space ()P I is overlarge, the advantage

of IEMFCI is very distinct.
Finally, for the improved algorithm IEMFCI, the

parameter of partitioning the search space is not too big,
but it is not too small.

6 Conclusion
In this paper, for the shortcomings of typical algorithms
for mining frequent closed itemsets, we propose an
efficient algorithm for mining frequent closed itemsets,
which is based on Galois connection and granular
computing. We present the notion of smallest frequent
closed granule to reduce the costed I/O for discovering
frequent closed itemsets. And we propose a connection
function for generating the smallest frequent closed
itemsets in the enlarged frequent 1-item manner to

An Efficient Algorithm for Mining Frequent… Informatica 39 (2015) 87–98 97

reduce the costed CPU and the occupied main memory.
But the number of the smallest frequent closed itemsets
is too many, the performances of the algorithm become
worse and worse, so we further discuss how to solve the
bottleneck, namely, propose its improved algorithm on
high dimension dataset. The algorithm is also suitable for
mining dynamic transaction datasets.

Acknowledgement
The authors would like to thank the anonymous
reviewers for the constructive comment. This work was a
project supported by Chongqing Cutting-edge and
Applied Foundation Research Program (Grant No.
cstc2014jcyjA40035). And it was also supported by
Scientific and Technological Research Program of
Chongqing Three Gorges University (Grant
No.13ZD20).

References
[1] R. Agrawal, T. Imielinski, and A. Swami (1993).

Mining association rules between sets of items in
large databases. In Proceedings of the 1993 ACM
SIGMOD Int’l Conference on Management of Data,
Washington DC, USA, pp. 207–216.

[2] R. Agrawal and R. Srikant (1994). Fast algorithms
for mining association rules. In Proceedings of the
20th Int’l Conference on Very large Data Bases,
Santiago, Chile, pp. 487–499.

[3] N. Pasquier, Y. Bastide and R. Taouil et al. (1999).
Discovering frequent closed itemsets for association
rules. In Proceedings of the 7th Int’l Conference on
Database Theory, Jerusalem, Israel, January, pp.
398–416.

[4] Mohammed J. Zaki, Ching-Jui Hsiao (1999). Charm:
An efficient algorithm for closed association rule
mining. Technical Report 99-10, Computer Science,
Rensselaer Polytechnic Institute.

[5] J. Han, J. Pei, and Y. Yin (2000). Mining frequent
patterns without candidate generation. In
Proceedings of the 2000 ACM SIGMOD Int’l
Conference on Management of Data, New York,
USA, pp. 1–12.

[6] J. Pei, J. Han, and R. Mao (2000). CLOSET: An
Efficient Algorithm for Mining Frequent Closed
Itemsets. In Proceedings of the 2000 ACM SIGMOD
Workshop on Research Issues in Data Mining and
Knowledge Discovery. Dallas, Texas, USA, pp. 21–
30.

[7] D. Burdick, M. Calimlim, and J. Gehrke (2001).
MAFIA: A maximal frequent item set algorithm for
transactional databases. In Proceedings of the 17th
Int’l Conference on Data Engineering. Heidelberg,
pp. 443-452.

[8] J. Y. Wang, J. Han, and J. Pei (2003). CLOSET+:
Searching for the best strategies for mining frequent
closed itemsets. In Proceedings of the 9th ACM
SIGKDD Int’l Conference on Knowledge Discovery
and Data Mining, Washington, DC, pp. 236 - 245.

[9] C. Lucchese, S. Orlando, and R. Perego (2006). Fast
and memory efficient mining of frequent closed
itemsets. IEEE Trans on Knowledge and Dada
Engineering, vol. 18, no. 1, pp. 21- 36.

[10] R. Singh, T. Johnsten, and V. Raghavan et al
(2010). Efficient Algorithm for Discovering
Potential Interesting Patterns with Closed Itemsets.
In Proceedings of the 2010 IEEE Int’l Conference on
Granular Computing, pp. 414 - 419.

[11] F. Nori, M. Deypir, and M. Hadi et al. (2011). A
new sliding window based algorithm for frequent
closed itemset mining over data streams. In
Proceedings of the 1st Int’l Conference on Computer
and Knowledge Engineering, IEEE Press, pp. 249-
253.

[12] Guang-Peng Chen, Yu-Bin Yang, and Yao Zhang
(2012). MapReduce-Based Balanced Mining for
Closed Frequent Itemset. In Proceedings of the 2012
IEEE 19th Int’l Conference on Web Services, IEEE
Press, pp. 652 - 653.

[13] M. Sreedevi, Reddy L.S.S. (2013). Mining regular
closed patterns in transactional databases. In
Proceedings of the 2013 7th Int’l Conference on
Intelligent Systems and Control, IEEE Press, pp. 380
- 383.

[14] Yu-quan Z. and Yu-qing S. (2007). Research on an
Algorithm for Mining Frequent Closed Itemsets.
Journal of Computer Research and Development,
vol. 44, no. 7, pp. 1177-1183.

[15] Shengwei L., Lingsheng L., and Chong H. (2009).
Mining closed frequent itemset based on FP-Tree. In
Proceedings of the IEEE Int’l Conference on
Granular Computing, IEEE Press, pp. 354 - 357.

[16] Wachiramethin J., Werapun J. (2009). BPA: A
Bitmap-Prefix-tree Array data structure for frequent
closed pattern mining. In Proceedings of the 2009
Int’l Conference on Machine Learning and
Cybernetics, IEEE Press, vol .1, pp. 154 - 160.

[17] Z. Pawlak (1982). Rough sets. Journal of
computing and information science in Engineering,
no.11, pp. 341–356.

[18] R. Wille (1982). Restructuring lattice theory: an
approach based on hierarchies of concepts. In: I.
Rival (Ed.), Ordered Sets, Reidel, Dordrecht-Boston,
pp. 445–470.

[19] B. Ganter, R. Wille (1999). Formal Concept
Analysis, Mathematic Foundations. Springer, Berlin.

[20] J. Poelmans, D. I. Ignatov, and S. O. Kuznetsov et
al (2013). Formal concept analysis in knowledge
processing: A survey on applications. Expert Systems
with Applications, vol.40, no. 16, pp. 6538–6560.

[21] M. W. Shao, Y. Leung (2014). Relations between
granular reduct and dominance reduct in formal
contexts. Knowledge-Based Systems, vol.65, pp. 1–
11.

[22] Wei-Zhi W., Yee Leung, Ju-Sheng M. (2009).
Granular Computing and Knowledge Reduction in
Formal Contexts. IEEE Transactions on Knowledge
and Data Engineering, vol.21, no.10, pp. 1461-1474.

98 Informatica 39 (2015) 87–98 G. Fang et al.

[23] R. Belohlavek, B. D. Baets, J. Konecny (2014).
Granularity of attributes in formal concept analysis.
Information Sciences, vol.260, pp.149–170.

[24] Hobbs J. R. (1985). Granularity. In Proceedings of
the 9th International Joint Conference on Artificial
Intelligence, San Francisco, USA, pp. 432-435.

[25] Giunchglia F., Walsh T. (1992). A theory of
abstraction. Artificial Intelligence, vol. 57, no. 2-3.
pp. 323-389.

[26] Yao Y.Y. (2004). A partition model of granular
computing. Lecture Notes in Computer Science
Transactions on Rough Sets, vol. 3100, pp.232–253.

[27] T. R. Qiu, X. Q. Chen, and Q. Liu et al. (2010).
Granular Computing Approach to Finding Associa-
tion Rules in Relational Database. International
Journal of intelligent systems, no. 25, pp. 165–179.

[28] G. Fang, Y. Wu (2013). Frequent Spatiotemporal
Association Patterns Mining Based on Granular
Computing. Informatica, vol.37, no.4, pp.443-453.

[29] Pawlak Z. (1998). Granularity of knowledge,
indiscernibility and rough sets. In Proceedings of
IEEE Int Conf on Fuzzy Systems, IEEE Press,
Anchorage, AK, pp.106–110.

[30] Zhang L., Zhang B. (2003). The quotient space
theory of problem solving. Lecture Notes in
Computer Science, vol. 2639, pp. 11–15.

