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10.1 Introduction

Majorana [1] put forward the idea of fermions having the property of being their
own antiparticles and such fermions are now usually called Majorana fermions or
Majorana particles.

The Majorana field ψM is defined in general as real or hermitean ψ†M = ψM.
Among the known bosons we have more commonly bosons, which are their

own antiparticles, and which we could be tempted to call analogously “Majorana
bosons” (a more usual name is “real neutral particles” [2]), such as the photon,
Z0, π0, . . . particles. Now the present authors extended [3,4] the Dirac sea idea [5]
of having negative energy electron single particle states in the second quantized
theory being already filled in vacuum, also to Bosons. This extension of the Dirac
sea idea to Bosons has a couple of new features:

1) We had to introduce the concept of having a negative number of bosons in
a single particle state. We described that by considering the analogy of a
single particle state in which a variable number of bosons can be present to
a harmonic oscillator, and then extend their wave functions from normal-
izable to only be analytical. The harmonic oscillator with wave functions
allowed to be non-normalizable and only required to be analytical has in-
deed a spectrum of energies En = (n+ 1

2
)ωwhere now n can be all integers

n = . . . ,−3,−2,−1, 0, 1, 2, . . .. So it corresponds to that there can be a negative
number of bosons in a single particle state.

2) It turns out though that these states - of say the “analytical wave function
harmonic oscillator” corresponding to negative numbers of bosons have al-
ternating norm square: For n ≥ 1 we have as usual 〈n|n〉 = 1 for n ≥ 0 (by
normalization) but for n ≤ −1we have instead 〈n|n〉 = c · (−1)n for n nega-
tive. (c is just a constant we put say c = +1.) This variation of norm square
is needed to uphold the usual rules for the creation a+ and annihilation a
operators

a+|n〉 =
√
1+ n|n+ 1〉

a|n〉 =
√
n|n− 1〉 (10.1)

to be valid also for negative n.
3) With the relations (10.1) it is easily seen that there is a “barrier” between n = −1

and n = 0 in the sense that the creation and annihilation operators a+, and a
cannot bring you across from the space spanned by the n = 0, 1, 2, . . . states
to the one spanned by the n = −1,−2, . . . one or opposite. It is indeed best
to consider the usual space spanned by the |n〉 ′s with n = 0, 1, 2, . . . as one
separate “sector” the “positive sector” and the one spanned by the |n〉 states
with n = −1,−2, . . . as another “sector” called the “negative sector”. Since in
the harmonic oscillator with the wave functions only required to be analytical
but not normalizable the states in the “positive sector” are not truly orthogonal
to those in the “negative sector” but rather have divergent or ill-defined inner
products with each other, it is best not even to (allow) consider inner products
like say
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146 H.B. Nielsen and M. Ninomiya

〈0|− 1〉 = ill defined

〈n|p〉 = ill defined (10.2)

when n ≤ −1 and p ≥ 0 or opposite.
Basically we shall consider only one sector at a time.

4) The use of our formalism with negative number of particles to connect to the
usual and physically correct description of bosons with some charge or at least
an (at first) conserved particle number comes by constructing a “Dirac sea for
bosons”. That is to say one first notes that e.g. the free Klein-Gordon equation

�φ = 0

has both positive and negative energy solutions, and that the inner product

〈ϕ1|ϕ2〉 =
∫
ϕ∗1
←→
∂ 0ϕ2d

3~X (10.3)

gives negative norm square for negative energy eigenstates and positive norm
square for positive energy eigenstates.
Then the physical or true world is achieved by using for the negative energy
single particle states the “negative sector” (see point 3) above) while one for
the positive energy single particle states use the “positive sector”. That is to
say that in the physical world there is (already) a negative number of bosons
in the negative energy single particle states. In the vacuum, for example, there
is just −1 boson in each negative energy single particle state.
This is analogous to that for fermions there is in the Dirac sea just +1 fermion
in each negative energy single particle state. For bosons – where we have −1

instead +1 particle– we just rather emptied Dirac sea by one boson in each
single particle negative energy state being removed from a thought upon
situation with with 0 particles everywhere. (Really it is not so nice to think
on this removal because the “removal” cross the barrier from the “positive
sector” to the “negative sector” and strictly speaking we should only look at
one sector at a time (as mentioned in 3).)

5) It is rather remarkable that the case with the “emptied out Dirac sea” described
in 4) – when we keep to positive sector for positive energy and negative
sector for negative energy– we obtain a positive definite Fock space. This Fock
space also has only positive energy of its excitations as possibilities. Indeed
we hereby obtained exactly a Fock space for a theory with bosons, that are
different from their antiparticles.

In the present paper we like to study how to present a theory for bosons
which are their own antiparticles, Majorana bosons so to speak, in this formalism
with the “emptied” Dirac sea.

Since in the Dirac sea formalisms – both for fermions and for bosons – an
antiparticle is the removal of a particle from the Dirac sea, an antiparticle a priori
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is something quite different from a particle with say positive energy. Therefore
to make a theory / a formalism for a theory with particle being identified with
its antiparticles – as for Majorana fermions or for the photon, Z0, π0 – is in our or
Dirac’s Dirac sea formalisms a priori not trivial. Therefore this article. Of course
it is at the end pretty trivial, but we think it has value for our understanding to
develop the formalism of going from the Dirac sea type picture to the theories
with particles being their own antiparticles (“Majorana theories”).

One point that makes such a study more interesting is that we do not have to
only consider the physical model in the boson case with using positive sector for
positive single particle energy states and negative sector for negative energy single
particle states. Rather we could – as a play– consider the sectors being chosen in
a non-physical way. For example we could avoid “emptying” the Dirac sea in
the boson-case and use the positive sector for both negative and positive energy
single boson eigenstates. In this case the Fock space would not have positive norm
square. Rather the states with an odd number of negative energy bosons would
have negative norm square, and of course allowing a positive number of negative
energy bosons leads to their being no bottom in the Hamiltonian for such a Fock
space.

The main point of the present article is to set up a formalism for particles that
are their own antiparticles (call them “Majorana”) on the basis of a formalism for
somehow charged particles further formulated with the Dirac sea. That is to say
we consider as our main subject how to restrict the theory with the Dirac sea –
and at first essentially charged particle – to a theory in which the particles and
antiparticles move in the same way and are identified with each other.

For example to describe a one-particle state of a “Majorana” particle one
would naturally think that one should use a state related to either the particle or
the antiparticle for instance being a superposition of a particle and antiparticle
state.

So the states of the Fock space HMaj for describing the particles which are
their own antipatricles shall be below identified with some corresponding states in
the theory with Dirac sea. However, there are more degrees of freedom in a theory
with charged particles (as the Dirac sea one) than in a corresponding theory for
particles which are their own antiparticle. Thus the states in the with Dirac sea
Fock space cannot all be transfered to the Fock space from “Majorana” particles.
So only a certain subspace of the Fockspace for the with Dirac sea theory can be
identified with states of some number of Majorana particles.

To develop our formalism for this transition from the Dirac sea theory to the
one for Majorana particles, we therefore need a specification of which subspace is
the one to be used to describe the “Majorana particles”. Below we shall argue for
that this subspace HMaj becomes

HMaj =
{
| 〉|
(
a(~p, E > 0) + a†(−~p, E < 0)

)
| 〉 = 0, for all ~p

}
(10.4)

where we used the notation of a(~p, E < 0) for the annihilation operator for a
particle with momentum ~p and energy E corresponding to that being positive i.e.

E > 0⇒ E =

√
m2 + ~p2. Correspondingly the annihilation operator a(~p, E < 0)
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annihilates a particle with energy E = −

√
m2 + ~p2. The corresponding creation

operators just have the dagger † attached to the annihilation operator, as usual.
We define

r(~p) =
1√
2

(
a(~p, E > 0) + a†(−~p, E < 0)

)
(10.5)

This then shall mean, that we should identify a basis, the basis elements of
which have a certain number of the “Majorana bosons”, say, with some momenta –
in a physical world we only expect conventional particles with positive energy –
for the subspace HMaj contained in the full space with Dirac sea.

We thus have to construct below creation b†(~p) and annihilation b(~p) opera-
tors for the particles which are their own antiparticles (“Majoranas”). These b†(~p)
and b(~p) should now in our work be presented by formulas giving them in terms
of the creation and annihilation operators for the theory with Dirac sea (and thus
acting on the Fock space H of this “full” theory). In fact we shall argue for (below)

b†n =


(a†(a†~p,E>0)−a(−~p,E<0))√

2
(on pos. sec for pos. E, neg sec for neg E)

(a†(a†~p,E>0)+a(−~p,E<0))√
2

for both sectors

· · ·
(10.6)

and then of course it has to be so that these b†(~p) and b(~p) do not bring a Hilbert
vector out of the subspace HMaj but let it stay there once it is there. It would be
the easiest to realize such a keeping inside HMaj by action with b†(~p) – and we
shall have it that way – if we arrange the commutation rules[

r(~p), b†( ~p ′)
]
= 0[

r(~p), b( ~p ′)
]
= 0 (10.7)

(Here the commutation for ~p 6= ~p ′ is trivial because it then concerns different
d.o.f. but the

[
r(~p), b†( ~p ′)

]
= 0 and

[
r(~p), b( ~p ′)

]
= 0 are the nontrivial relations

to be arranged (below))
Indeed we shall find below

b†(~p) =
1√
2

(
a†(~p, E > 0) + a(−~p, E < 0)

)
(defined on both pos.)

b(~p) =
1√
2

(
a(~p, E > 0) + a†(−~p, E < 0

)
(10.8)

It is then that we shall arrange that if we extrapolate to define also the
b(†)(~p, E < 0) and not only for positive energy b(†)(~p, E > 0) = b(†)(~p) we should
obtain the formula usual in conventional description of Majorana particle theories

b†(~p) = b†(~p, E > 0) = b(−~p, E < 0)

b(~p) = b(~p, E > 0) = b†(−~p, E < 0) (10.9)
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For fermions we simply do construct these r(~p) and b(~p) rather trivially and
it must be known in some notation to everybody. For bosons, however almost
nobody but ourselves work with Dirac sea at all, and therefore it must be a bit
more new to get particles which are their own antiparticles into such a scheme. For
bosons also we have already alluded to the phenomenon of different “sectors” (see
3) above) being called for due to our need for negative numbers of particles. We
therefore in the present article as something also new have to see what becomes of
the theory with bosons being their own antiparticles when we go to the unphysical
sector-combinations. (The physical combination of sectors means as described in
point 4) above, but if we e.g. have the positive sector both for negative and positive
energy single particle states, this is a unphysical sector-combination.) This is a
priori only a discussion though of academic interest, since the truly physical world
corresponds to the physical combination described in point 4) with the Dirac sea
“emptied out”.

However, in our attempts to describe string field theory in a novel way we
raised to a problem that seemed formally to have solution using such on unphysi-
cal sector-combination.

In the following section 10.2 we just, as a little warm up, discuss the introduc-
tion in the Majorana fermion theory on a subspace of the Fock space of a fermion
theory in Dirac sea formulation.

In section 10.3 we then review with more formalism our “Dirac sea for bosons”
theory.

Then in section 10.4 we introduce the formalism r(~p), b†(~p) and b(~p) relevant
for the Majorana rather theory or for particles which are their own antiparticles.
The operators r(~p) defined in (10.5) are the operators defined to be used for singling
out the Majorana subspace, and b†(~p) and b(~p) are the creation and annihilation
operators for “Majorana-bosons”.

In section 10.5 we go to the unphysical sector combinations to study the
presumably only of acdemic interest problems there.

In section 10.6 we bring conclusion and outlook.

10.2 Warming up by Fermion

10.2.1 Fermion Warm Up Introduction

As the warming up consider that we have a fermion theory at first described
by making naively (as if nonrelativistically, but we consider relativity) creation
a†(n,~p, E > 0) and a†(n,~p, E < 0) for respectively positive and negative energy
E of the single particle state. Also we consider the corresponding annihilation
operators a(σ,~p, E > 0) and a(σ,~p, E < 0)
The physically relevant second quantized system takes its outset in the physical
vacuum in which all the negative energy E < 0 single particle states are filled
while the positive energy ones are empty.

| vac phys〉 =
∏
σ,~p

a†(σ,~p, E < 0) | 0 totally empty〉 (10.10)
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Of course in modern practice you may ignore the Dirac sea and just start
from the physical vacuum | vac phys〉 and operate on that with creation and
annihilation operators. If you want to say create on antiparticle with momentum
~p (and of course physically wanted positive energy) you operate on | vac phys〉
with

a†anti(σ,~p, E > 0) = a(σ
1,−~p, E < 0) (10.11)

i.e. the antiparticle creation operator a†anti(σ,~p, E > 0) is equal to the annihilation
operator a(σ1,−~p, E < 0) with the “opposite” quantum numbers.

10.2.2 Constructing Majorana

Now the main interest of the present article is how to construct a theory of particles
being their own antiparticle (“Majorana”) from the theory with essentially charged
particles – carrying at least a particle-number “charge”– by appropriate projection
out of a sub-Fock space and by constructing creation and annihilation operators
for the Majorana –in this section– fermions.

Let us remark that this problem is so simple, that we can do it for momentum
value, and if we like to simplify this way we could decide to consider only one
single value of the momentum ~p and spin. Then there would be only two creation
and two annihilation operators to think about

a†(E > 0) = a†(σ,~p, E > 0)

a†(E < 0) = a†(σ,~p, E < 0) (10.12)

and thus the whole Fock space, we should play with would only have 2 · 2 = 4

states, defined by having filled or empty the two single particle states being the
only ones considered in this simplifying description just denoted by “E > 0” and
“E < 0”.

In fact the construction of a full Majorana-formalism will namely be obtained
by making the construction of the Majorana Fock (or Hilbert) space for each
momentum ~p and spin and then take the Cartesian product of all the obtained
Majorana-Fock spaces, a couple for each spin and momentum combination.

The four basis states in the Fock space after throwing away all but one mo-
mentum and one spin-state are:

| 1 antiparticle〉 =| vac totally empty〉
| vac phys〉 = a†(E < 0) | vac totally empty〉

| 1 fermion in phys〉 = a†(E > 0)a†(E < 0) | vac totally empty〉
| both particle and antip.〉 = a†(E > 0) | vac totally empty〉 (10.13)

Considering the situation from the point of view of the physical vacuum

| vac phys〉 = a†(E < 0) | vac totally empty〉 (10.14)
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creating a Majorana particle should at least either a particle or an antiparticle or
some superposition of the two (but not both).

So the one Majorana particle state shoule be a superpositon of

| 1 fermion in phys〉 = a†(E > 0)a†(E < 0) | vac totally empty〉 (10.15)

and
| 1 antiferm in phys〉 =| vac totally empty〉 (10.16)

The most symmetric state would natutally be to take with coefficients 1√
2

these two states with equal amplitude:

| 1 Majorana〉 = 1√
2

(
a†(E > 0)a†(E < 0) + 1

)
| vac totally empty〉 (10.17)

We should then construct a creation operators b†(σ,~p) or just b† so that

b† | vac phys〉 =| 1 Majorana〉 (10.18)

Indeed we see that
b† =

1√
2

(
a†(E > 0) + a(E < 0)

)
(10.19)

will do the job.
If we use b† and

b =
1√
2

(
a(E > 0) + a†(E < 0)

)
(10.20)

it turns out that states needed are the – superpositoins of –

| vac phys〉 = a†(E < 0) | vac totally empty〉 (10.21)

and
b† | vac phys〉 =| 1 Majorana〉 (10.22)

This subspace which in our simplyfication of ignoring all but one momentum
and spin state actually represents the whole space HMaj used to describe the
Majorana theory has only 2 dimensions contrary to the full Hilbert space H which
in our only one momentum and spin consideration has 4 dimensions.

So it is a genuine subspace and we shall look for an operator r = r(h,~p) which
gives zero when acting on HMaj but not when it acts on the rest of H.

It is easily seen that

r =
1√
2

(
a(E > 0) − a†(E < 0)

)
(10.23)



i
i

“proc17” — 2017/12/11 — 19:44 — page 152 — #166 i
i

i
i

i
i

152 H.B. Nielsen and M. Ninomiya

will do the job. Thus we can claim that

HMaj = {|〉 | r |〉 = 0} (10.24)

Written for the full theory with all the momenta and spins we rather have

HMaj = {| 〉 ∈ H | ∀h~p[r(~p, h) |〉 = 0]} (10.25)

where
r(~p, h) =

1√
2

(
a(~p, h, E > 0) − a†(−~p, h, E < 0)

)
(10.26)

and a(~p, h, E > 0) is the annihilation operator for a fermion with momentum ~p

and eigenstate h of the normalized helicity

h ∼ ~Σ · ~p/ | ~p | (10.27)

where ~Σ is the spin angular momentum, and the energy E = +

√
~p2 +m2.

The fully described creation opperator for a Majorana particle fermion with
momentum ~p and helicity h,

b†(~p, h) =
1√
2

(
a†(~p, h, E > 0) + a(−~p, h, E < 0)

)
(10.28)

and the corresponding annihilation operator

b(~p, h) =
1√
2

(
a(~p, h, E > 0) + a†(−~p, h, E < 0)

)
(10.29)

One easily checks that the operation with these operators b(~p, h) and b+(~p, h)
map HMaj on HMaj because{

r( ~p ′, h ′), b(~p, h)
}
+
= 0{

r( ~p ′, h ′), b†(~p, h)
}
+
= 0 (10.30)

10.3 Review of Dirac Sea for Bosons

Considering any relativistically invariant dispersion relation for a single particle it
is, by analyticity or better by having a finite order differential equation, impossible
to avoid that there will be both negative and positive energy (eigen) solutions. This
is true no matter whether you think of integer or half integer spin or on bosons
or fermions(the latter of course cannot matter at all for a single particle theory).
In fact this unavoidability of also negative energy single particle states is what is
behind the unavoidable CPT-theorem.
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There is for each type of equation a corresponding inner product for sin-
gle particle states, so that for instance the Klein-Gordon equation and the Dirac
equation have respectively

〈ϕ1 | ϕ2〉 =
∫
ϕ∗1

←→
∂

∂t
ϕ2d

3~X (Klein Gordon) (10.31)

and

〈ψ1 | ψ2〉 =
∫
ψ†1ψ2d

3~X =

∫
~ψ1γ

0ψ2d
3~X (for Dirac equation) (10.32)

( see e.g. [7])
At least in these examples –but it works more generally– the inner product of

a single particle state with itself, the norm square, gets negative for integer spin
and remains positive for the half integer spin particles, when going to the negative
energy states.

For integer spin particles (according to spin statistics theorem taken to be
bosons) as for example a scalar we thus have negative norm square for the negative
energy single particle states. This means that for all the states for which we want
to make an analogy to the filling of the Dirac sea, we have to have in mind, that
we have this negative norm square.

That is to say, that thinking of second quantizing the norm square of a multiple
particle state in the Fock space would a priori alternate depending on whether the
number of particles (bosons) with negative energy is even or odd.

Physically we do not want such a Fock space, which has non-positive-definite
norm –since for the purpose of getting positive probabilities we need a positive
definite inner product –.

The resolution to this norm square problem in our “Dirac sea for bosons” –
model is to compensate the negative norm square by another negative norm square
which appears, when one puts into a single particle state a negative number of
bosons.

This is then the major idea of our ‘Dirac sea for bosons”-work, that we formally
–realy of course our whole model in this work is a formal game – assume that it is
possible to have a negative number of particles (bosons) in a single particle state.
That is to say we extend the usual idea of the Fock space so as to not as usual have
its basic vectors described by putting various non-negative numbers of bosons
into each single particle state, but allow also to have a negative number of bosons.

Rather we allow also as Fock-space basis vector states corresponding to that
there could be negative integer numbers of bosons. So altogether we can have
any integer number of bosons in each of the single particle states (whether it
has positive or negative energy at first does not matter, you can put any integer
number of bosons in it anyway).

In our “Dirac-sea for Bosons” –paper [3] we present the development to
include negative numbers of particles via the analogy with an harmonic oscillator.
It is well-known that a single particle state with a non-negative number of bosons
in it is in perfect correspondance with a usual harmonic oscillator[6] in which
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the number of excitations can be any positive number or zero. If one extend the
harmonic oscillator to have in the full complex plan extending the position variable
q (say)and the wave function ψ(q) to be formally analytical wave function only,
but give up requiring normalizability, it turns out that the number of excitations
n extends to n ∈ Z, i.e. to n being any integer. This analogy to extend harmonic
oscillator can be used to suggest how to build up a formalism withe creation a†

and annihilation operators a and an inner product for a single particle states in
which one can have any integer number of bosons.

It is not necessary to use extended harmonic oscillator. In fact one could
instead just write down the usual relations for creation and annihilation operators
first for a single particle state say

a†(~p, E > 0) | k(~p, E > 0)〉 =
√
k(~p, E > 0) + 1 | k(~p, E > 0) + 1〉 (10.33)

and

a(~p, E > 0) | k(~p, E > 0)〉 =
√
k(~p, E > 0) | k(~p, E > 0) − 1〉 (10.34)

or the analogous ones for a negative energy single particle state

a†(~p, E < 0) | k(~p, E >)〉 =
√
k(~p, E > 0) + 1 | k(~p, E > 0) + 1〉 (10.35)

and

a(~p, E < 0) | k(~p, E > 0)〉 =
√
k(~p, E < 0) | k(~p, E < 0) − 1〉 (10.36)

and then extend them - formally by allowing the number k(~p, E > 0) of bosons in
say a positive energy single particle state with momentum ~p and (positive energy)
to be also allowed to be negative. You shall also allow the numbers k(~p, E < 0) in
a negative energy single particle state with momentum ~p to be both positive or
zero and negative.

Then there are a couple of very important consequences:

A) You see from these stepping formulas that there is a “barriere” between the
number of bosons k being k = −1 and k = 0. Operating with the annihilation
operator a on a state with k = 0 particles give zero

a | k = 0〉 = 0 (10.37)

and thus does not give the | k = −1〉 as expected from simple stepping. Similar
one cannot with the creation operator a† cross the barriere in the opposite
direction, since

a† | k = −1〉 =
√
−1+ 1 | k = 0〉 = 0 (10.38)
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Thus we have that the states describing the number of bosons k in a given
single particle state are not connected by –a finite number of operations – of
creation and annihilation operatiors.
Really this means that we make best by considering the positive sector of the
space of positive or zero number of bosons and another sector formed from
the | k〉 states with k = −1,−2,−3, ... being a negative number of bosons. By
ordinary creation and annihilation operators, as they would occur in some
interaction Hamiltonian, one cannot cross the barriere. This means that if to
beign with one has say a negative number of boson in a given single particle
state, then an ordinary interaction cannot change that fact.
Thus we take it that one can choose once forever to put some single particles
states in their positive sector and others in their negative sector, and they
then will stay even under operation of an interaction Hamiltonian. If one for
example make the ansatz that all the negative energy single particle states
have a negative number of bosons while the positive energy states have zero
or a positive number of bosons in them, then this ansatz can be kept forever.
This special choice we call the “physical choice” and we saw already[3] –and
shall see very soon here – that this choice gives us a positive definite Fock
space.

B) The norm square of the states | k〉 (with k = −1,−2, . . .) i.e. with negative
numbers k of bosons have to vary alternatingly with k even, k odd.
Using the writing of a negative k

| k〉 ∼ a|k|−1 | k = −1〉 (10.39)

We may evaluate 〈k | k〉 ∼< −1 | (a†)|k|−1a|k|−1 | −1〉 for k ≤ −1.
Now using still the usual commutation rule

[a†, a] = −1 (10.40)

you easily see that we normalize by putting

| k〉 = 1√
(|k|− 1)!

a|k|−1 | −1〉 (10.41)

and
〈k | k〉 = (−1)|k| (10.42)

say for k ≤ −1 (having taken 〈−1 | −1〉 = −1.) while of course for k =

0, 1, 2, . . . you have 〈k | k〉 = 1.
The major success of our “Dirac sea for bosons” is that one can arrange the
sign alternation with (10.42) with the total number of negative energy bosons
to cancel against the sign from in (10.31) so as to achieve, if we choose the
“physical sector”, to get in total the Fock space, which has positive norm square.
This “physical sector” corresponds to that negative energy single particle states
are in the negative sectors, while the positive energy single particle states are
in the positive sector.
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The basis vectors of the full Fock space for the physical sector are thus of the
form

| . . . , k(~p, E > 0), . . . ; . . . , k(~p, E < 0), . . .〉 (10.43)

where the dots . . . denotes that we have one integer number for every mo-
mentum vector –value (~p or ~p ′), but now the numbers k(~p, E > 0) of particles
in a positive energy are– in the physical sector-combination– restricted to
be non-negative while the numbers of bosons in the negative energy single
particle states are restricted to be negative

k(~p, E > 0) = 0, 1, 2, . . .

k(~p, E < 0) = −1,−2,−3, . . . (10.44)

These basis vectors (10.43) are all orthogonal to each other, and so the inner
product is alone given by their norm squares

〈. . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . . |
| . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

= (−1)](neg energy b)
∏
~p ′

(−1)|k(
~p ′,E<0)| = 1 (10.45)

Here ](neg energy b) means the total number of negative energy bosons i.e.

](neg energy b) =
∑
~p ′

k(~p, E < 0) (10.46)

(a negative number in our physical sector-combination). The factor

(−1)](neg energy b.)

comes from (10.31) which gives negative norm square for single particle states
with negative energy, because

←→
∂
∂t

is essentially the energy. The other factor∏
~p ′(−1)

|k( ~p ′,E<0)| comes from (10.42) one factor for each negative single par-
ticle energy state, i.e. each ~p ′. Had we here chosen another sector-combination,
e.g. to take k(~p, E < 0) non-negative as well as k(~p, E > 0), then we would
have instead

k(~p, E > 0) = 0, 1, 2, . . .

k( ~p ′, E < 0) = 0, 1, 2, . . .

}
(both pos sectors.) (10.47)

and the inner with themselves, norm squares product for the still mutually
orthogonal basis vectors would be

〈. . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .
| . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

= (−1)](neg energy b)

(for both positive sectors) (10.48)
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and that for this case (“sector combination”), the inner product is not positive
definite.
Such strange sector combination is of course mainly of academical interest.
But for instance this last mentioned “both positive sector” sector-combination,
can have easily position eigenstate particles in the Fock space description.
Normally positon is not possible to be well defined in relativistic theories.
As already mentioned above, we have a slightly complicated inner product in
as far as we have sign-factors in the inner product coming from two different
sides:

1)The inner product sign-factor from the single particle wave function coming
from (10.31) gives a minus for negative energy particles, ending up being
(−1)](neg. energy b) in (10.45).

2)The other inner product sign factor comes from (10.42).
In the above, we have used the dagger symbol “ † ” on a† to denote the Hermi-
tian conjugate w.r.t. only the inner product coming from (10.42), but have not
included the factor from 1) meaning from (10.31). Thus we strictly speaking
must consider also a full dagger (full †f) meaning hermitian conjugation corre-
sponding the full inner product also including 1), i.e. the (10.31) extra minus
for the negative energy states. So although we have not changed a(~p, E > 0)
nor a(~p, E < 0) we have to distinguish two different a† ′s namely a† and a†f .
In fact we obtain with this notation of two different †( ′)s.

a†f(~p, E > 0) = a†(~p, E > 0) (10.49)

but
a†f(~p, E < 0) = −a†(~p, E < 0) (10.50)

Since at the end, the physical/usual second quantized Boson-theory has as
its inner product the full inner product one should, in the physical use, use
the Hermitian conjugation †f. So the creation operators to be identified with
creation operators are respectively:
For a particle;

a†usual(~p) = a
†f(~p, E > 0) (10.51)

while for an antiparticle of momentum ~p it is;

a†usual anti(~p) = a(−~p, E < 0) (10.52)

Similarly:

ausual(~p) = a(~p, E > 0)

ausual anti(~p) = a
†f(−~p, E < 0) = −a†(−~p, E < 0) (10.53)

Using the extended commutation rules

[a(~p,>< E), a
†( ~p ′, >< E)] = δ ~p ′~p ·

{
1 for same < or >
0 for different < or >

(10.54)
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so that for instance
[a(~p,< E), a†( ~p ′, < E)] = δ~p ~p ′ (10.55)

We quickly derive the correspondingcommutation rules using the “full dag-
ger”

[a(~p, E > 0), a†f( ~p ′, E > 0)] = δ~p ~p ′ (10.56)

and
[a(~p, E < 0), a†f( ~p ′, E < 0)] = δ~p ~p ′ (10.57)

10.4 “Majorana-bosons”

We shall now in this section analogously to what we did in sections 10.2 for
Fermions as a warm up excercise from our Fock space defined in section 10.3 for
e.g. the physical sector- combination extract a subspace HMaj and on that find
a description of now bosons which are their own antiparticles. There would be
some meaning in analogy to the Fermion case to call such bosons which are their
own antiparticles by the nickname “Majorana-bosons”.

As for the fermions we shall expect a state with say kMaj(~p) “Majorana-
bosons”with momentum equal to ~p to be presented as a superposition of a number
of the “essentially charged” bosons or antibosons of the type discussed in forego-
ing section. Here an antiparticle of course means that one has made the number
of bosons in a negative energy single particle state one unit more negative. Typ-
ically since the physical vacuum has k(~p, E < 0) = −1 for all momenta and an
antiparticle of momentum ~pwould mean that k(−~p, E < 0) gets decreased from
−1 to −2. If you have several antiparticles l say in the same state with momentum
~p of course you decrease k(−~p, E < 0) to −1 − l, k(−~p, E < 0) = −1 − l (for l
antiparticles).

In other words we expect a state with say lMaj “Majorana-bosons” with
momentum ~p to be a superposition of states in the Fock space with the number of
antiparticles running from l = 0 to l = lMaj while correspondingly the number
with momentum ~p is made to lMaj−l so that there are together in the representing
state just equally many particles or antiparticles as the number of “Majorana-
bosons” lMaj wanted.

We actually hope –and we shall see we shall succeed– that we can construct a
“Majorana-boson” creation operator for say a “Majorana-boson” with momentum
~p,b†(~p) analogously to the expressions (10.19) and (10.20)
b†(~p) = 1√

2

(
a†(~p, E > 0) + a(−~p, E < 0)

)
and b(~p) = 1√

2

(
a(E > 0) + a†(E < 0)

)
.

Since an extra phase on the basis states does not matter so much we could also
choose for the boson the “Majorana boson” creation and annihilation operators to
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be

b†f(~p) =
1√
2

(
a†(E > 0) + a(−~p, E < 0)

)
=

1√
2

(
a†f(~p, E > 0) + a(−~p, E < 0)

)
b(~p) =

1√
2

(
a(~p, E > 0) + a†f(−~p, E < 0)

)
=

1√
2

(
a(~p, E > 0) − a†(−~p, E < 0)

)
. (10.58)

One must of course then check –first on the physical sector-combination but
later on others– that b†(~p) and b(~p) obey the usual commutation rules[

b(~p), b( ~p ′)
]
= 0[

b†f(~p), b†f( ~p ′)
]
= 0[

b(~p), b†f( ~p ′)
]
= δ~p ~p ′ . (10.59)

We also have to have a vacuum for the “Majorana-boson” theory, but for that
we use in the physical sector-combination theory the same state in the Fock space
as the one for the “essentially charged” boson system. This common physical
vacuum state (in the Fock space) is characterized as the basis vector

| . . . , k(~p, E > 0), . . . ; . . . , k(~p, E > 0), . . .〉 (10.60)

with
k(~p, E > 0) = 0 for all ~p (10.61)

and
k(~p, E < 0) = −1 for all ~p (10.62)

Indeed we also can check then of course that defining

| vac phys〉 =| . . . , k(~p, E > 0) = 0, . . . ; . . . , k( ~p ′, E < 0) = −1, . . .〉 (10.63)

we have
b(~p) | vac phys〉 = 0 (10.64)

On the other hand, we can also see that e.g.

1√
lMaj!

(
b†f(~p)

)lMaj
| vac phys〉

=
1

2lMaj/2
· Σl

(
lMaj
l

)(
a†(~p, E > 0)

)l
a(−~p, E < 0)lMaj−l | vac phys〉

= Σl

(
lMaj
l

)
| . . . , k(~p, E > 0) = l, . . . ; . . . , k(−~p, E < 0) = lMaj − l, . . .〉

·
√
l!
√
(lMaj − l)! ·

1√
lMaj!

=
1

2lMaj/2
· Σl

√(
lMaj
l

)
| . . . , k(~p, E > 0), . . . ; . . . , k(−~p, E < 0), . . .〉 (10.65)
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If we only put the Majorana-boson particles into the momentum ~p state of
course only k(~p, E > o) and k(−~p, E < 0) will be different from their | phys vac〉
values 0 and −1 respectively for E > 0 and E < 0. But really the extension to put
“Majorana-bosons” in any number of momentum states is trivial.

We now have also to construct the analogous operator to the r(~p) for the
fermions so that we can characterize the subspace HMaj to be for the boson case

HMaj = {|〉 | r(~p) |〉 = 0} . (10.66)

We in fact shall see that the proposal

r(~p) =
1√
2
(a(+~p, E > 0) + a†(−~p, E < 0))

=
1√
2
(a(~p, E > 0) − a†f(−~p, E < 0) (10.67)

does the job.
Now we check (using (10.58))[

r(~p), b†f(~p)
]
=

=

[
1√
2

(
a(~p), E > 0) + a†(−~p, E < 0)

)
,
1√
2

(
a†(~p), E > 0) + a(−~p, E < 0)

)]
or

=
1

2

[(
a(~p, E > 0) − a†f(−~p, E < 0)), (a†f(~p, E > 0) + a(−~p, E < 0)

)]
=
1

2
(1− 1) = 0 (10.68)

and also

[r(~p), b(~p)] =

=

[
1√
2

(
a(~p), E > 0) − a†f(−~p, E < 0)

)
,
1√
2

(
a(~p), E > 0) + a†f(−~p, E < 0)

)]
=

[
1√
2

(
a(~p), E > 0) + a†(−~p, E < 0)

)
,
1√
2

(
a(~p), E > 0) − a†(−~p, E < 0)

)]
= 0 (10.69)

We should also check that the physical vacuum

| phys vac〉 =| . . . , k(~p, E > 0) = 0, . . . ; . . . , k( ~p ′, E < 0) = −1, . . .〉 (10.70)

in which there is in all negative energy (with momentum ~p ′ say) single particle
states k( ~p ′, E < 0) = −1 bosons, and in all positive energy single particle states
k(~p, E > 0) = 0 bosons is annihilated by the r(~p) operators.
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Now indeed

r(~p) | phys vac〉

=
1

2

(
a(~p, E > 0) − a†f(−~p, E, 0)

)
| phys vac〉

=
1

2

(
a(~p, E > 0) + a†(−~p, E, 0)

)
· | . . . , k(~p, E > 0) = 0, . . . ; . . . , k(~p, E < 0)

= −1, . . .〉
= 0 (10.71)

basically because of the barriere, meaning the square roots in the formulas (10.34,10.35)
became zero.

The result of this physical section for the most attractive formalism with b(~p)
and b†f(~p) annihilating and creating operators for the Boson-type particle being
its own antiparticle (=Majorana Boson) and to them corresponding useful state
condition operator rf(~p) is summarized as:

b(~p) =
1√
2

(
a(~p, E > 0) − a†f(−~p, E < 0)

)
b†f(~p) =

1√
2

(
a†f(~p, E > 0) − a(−~p, E < 0)

)
| phys vac〉 =| . . . , k(all ~p, E > 0) = 0, . . . ; . . . , k(all ~p, E < 0) = −1, . . .〉

rf(~p) =
1√
2

(
a(~p, E > 0) + a†f(−~p, E < 0)

)
(10.72)

the useful subspace for bosons being their own antiparticles being

HMaj f =
{
| 〉 | ∀~prf(~p) | 〉 = 0

}
(10.73)

(One should note that whether one chooses our r( ~p ′) ′s or the rf(~p) ′s to de-
fine makes no difference for the space HMaj f rather than Hf, since we actually
have r(~p) = rf(~p) the two expressions being just expressed in terms of different
a†(~p, E < 0) and a†f(~p, E < 0) say)

We can easily check that our explicit state expressions (10.65) indeed are
annihilated by r(~p) It were formally left out theE > 0 or E < 0 for the b(~p) and
b†f(~p) it being understood that E > 0, but formally we can extrapolate also to
E < 0 and it turns of b(~p, E > 0) = b†f(−~p, E < 0)?

10.4.1 Charge Conjugation Operation

Since we discuss so much bosons being their own antiparticles coming out of a
formalism in which the bosons –at first– have antiparticles different from them-
selves, we should here define a charge conjugation operator C that transform a
boson into its antiparticle:
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That is to say we want this operator acting on the Fock space to have the commu-
tation properties with our creation and annihilation operators

C−1a(~p, E > 0)C = a†f(−~p, E < 0) (10.74)

and
C−1a†f(~p, E > 0)C = a(−~p, E < 0). (10.75)

We also have
C−1a(~p, E < 0)C = a†f(−~p, E > 0) (10.76)

and
C−1a†f(~p, E < 0)C = a(−~p, E > 0) (10.77)

These requirements suggest that we on the basis of (10.43) for the Fock space
have the operation

C | . . .
∼

k (~p, E > 0), . . . ; . . . ,
∼

k ( ~p ′, E < 0), . . .〉

=| . . . , k(~p, E > 0) = −
∼

k (− ~p ′, E < 0) + 1, . . . ; (10.78)

. . . , k( ~p ′, E < 0) = −1−
∼

k (− ~p ′, E > 0), . . .〉.

Using the “full inner product” this C operation conserves the norm, and in
fact it is unitary under the full inner product corresponding hermitean conjugation
†f i.e.

C†fC = 1 = CC†f (10.79)

But if we used the not full inner product, so that the norm squares for basis
vector would be given by (10.81) and therefore corresponding hermitean conjuga-
tion †, then if C acts on a state in which the difference of the number of positive
and negative energy bosons is odd, the norm square would change sign under the
operation with C.

So under † the charge conjugation operator could not possibly be unitary:

C†C 6= 1 6= CC† (10.80)

10.5 “Majorana boson” in unphysical sector-combination

As an example of one of the unphysical sector-combination we could take what in
our earlier work “Dirac sea for Bosons” were said to be based on the naive vacuum.
This naive vacuum theory means a theory in which we do not make any emptying
vacuum but rather let there be in both positive and negative single particle energy
states a positive or zero number of particles. So in this naive vacuum attached
sector combination we can completely ignore the extrapolated negative number
of boson possibilities; we so to speak could use the analogue of the harmonic
oscillator with normalized states only.
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This means that the inner product excluding the negative single particle state
normalization using (10.31) will be for this naive vacuum sector combination
completely positive definite.

However, including the negative norm factor for the negative energy states
from (10.31) so as to get the full inner product we do no longer have the positive
definite Hilbert inner product on the Fock space. Now rather we have for basis
vectors (10.43) instead of (10.45) that the norm squares

〈. . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . . | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉
= (−1)](neg. energy b.) (10.81)

This means that the norm square of a basis vector is positive when the number
of negative energy bosons is even, but negative when the number of negative
energy bosons is odd.

In the naive vacuum sector combination the vacuum analogue Fock space
state is the “naive vacuum”,

| naive vac.〉 =| . . . , k(~p, E > 0) = 0, . . . ; . . . , k(~p, E < 0) = 0, . . .〉. (10.82)

In analogy to what we did in the foregoing section 10.4, we should then
construct the states with various numbers of bosons of the Majorana type being
their own antiparticles by means of some creation and annihilation operators
b†f(~p) and b(~p), but first one needs a vacuum that is its own “anti state” so to
speak, meaning that the charge conjugation operator C acting on it gives it back.
i.e. one need a vacuum | vac?〉 so that

C | vac?〉 =| vac?〉 (10.83)

But this is a trouble! The “naive vacuum” | naive vac.〉 in not left invariant un-
der the charge conjugation operator C defined in the last subsection of Section 10.4
by (10.78).

Rather this naive vacuum is by C transformed into a quite different sector
combination, namely in that sector combination, in which there is a negative
number of bosons in both positive and negative energy single particle eigenstates.
i.e. the charge conjugation operates between one sector combination and another
one! But this then means, that we cannot make a representation of a theory with
(only) bosons being their own antiparticles unless we use more than just the naive
vacuum sector combination. i.e. we must include also the both number of particles
being negative sector combination.

In spite of this need for having the two sector combinations –both the naive
all positive particle number and the opposite all negative numbers of particles– in
order that the charge conjugation operator should stay inside the system –Fock
space, we should still have in mind that the creation and annihilation operators
cannot pass the barriers and thus can not go from sectors, also the inner product
between different sector combinations are divergent and ill defined (and we should
either avoid such inner products or define them arbitrarily).

So if we construct “Majorana boson” creation and annihilation operators
analogoulsy to the b(~p) and b†f(~p) in foregoing section as a linear combination of
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a(†)(~p,>< E) operators operating with such b(~p) and b†f( ~p ′)swill stay inside one
sector combination. For instance such b(~p) and b†f(~p) constructed analogously
to the physical sector ones formally would operate arround staying inside the
naive vacuum sector combination if one starts there, e.g. on the naive vacuum
| naive vac.〉. In this –slightly cheating way– we could then effectively build up
a formalism for bosons which are their own antiparticles inside just one sector
combination. When we say that it is “slightly cheating” to make this construction
on only one sector combination it is because we cannot have the true antiparticles if
we keep to a sector combination only, which is not mapped into itself by the charge
conjugation operator C. It namely then would mean that the true antiparticle
cannot be in the same sector combination.

Nevertheless let us in this section 5 study precisely this “slightly cheating”
formalism of keeping to the naive vacuum sector combination with positive
numbers of particles only.

We then after all simply use the naive vacuum | naive vac.〉 defined by (10.82)
as the “Majorana boson”-vacuum although it is not invariant under C, which we
must ignore or redefine, if this shall be o.k.

We may e.g. build up a formalism for the slightly cheating Majorana bosons
by starting from the | naive vac.〉 (10.82) and build up with b†f(~p) taken to be the
same as

b†f(~p) =
1√
2

(
a†f(~p, E > 0) + a(−~p, E < 0)

)
(10.84)

and

b(~p) =
1√
2

(
a(~p, E > 0) + a†f(−~p, E < 0)

)
=

1√
2

(
a(~p, E > 0) − a†(−~p, E < 0)

)
(10.85)

We have already checked that for all sector combinations we have[
b(~p, b†f( ~p ′)

]
= δ~p ~p ′ (10.86)

and of course [
b(~p, b( ~p ′

]
= 0

=
[
b†f(~p), b†f( ~p ′)

]
(10.87)

So we see that we can build up using b(~p) and b†f(~p) a tower of states
with any nonnegative number of what we can call the Majorana bosons for any
momentum ~p.

We can also in all the sector combinations use the already constructed

r(~p) =
1

2

(
a(~p, E > 0) − a†f(−~p, E < 0)

)
=
1

2

(
a(~p, E > 0) + a†(−~p, E < 0)

)
(10.88)
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to fullfill the commutation conditions[
r(~p), b†f(~p)

]
= 0[

r(~p), b( ~p ′)
]
= 0 (10.89)

and we even have
r(~p) | naive vac.〉 = 0 (10.90)

So indeed we have gotten a seemingly full theory of “Majorana Bosons” inside
the naive vacuum sector combination subspace

HMaj = {|〉 | ∀~p (r(~p) |〉 = 0)} (10.91)

but it is not kept under the C as expected.
But really what we ended up constructing were only a system of positive

energy particle states since the creation with b†f(~p) = b†(~p) starting from the
naive vacuum only produces positive energy particles in as far as the a(−~p, E < 0)
contained in b†f(~p) just gives zero on the naive vacuum.

So this a “bit cheating” formalism really just presented for us the “essentially
charged” positive energy particles as “the Majorana-bosons”.

That is to say this a bit cheating formalism suggests us to use in the naive
vacuum sector combination the “essentially charged particles” as were they their
own antiparticles.

If we similarly built a Majorana boson Fock space system of the

C | naive vac.〉 =| vac. with both E > 0 and E < 0 emptied out〉
=| . . . , k(~p, E > 0) = −1, . . . ; . . . , k(~p, E < 0) = −1, . . .〉, (10.92)

we would obtain a series of essentially antiparticles (with positive energies) con-
structed in the “both numbers of bosons negative” sector combination.

What we truly should have done were to start from the superposition

| self copy vac.〉=̂ 1√
2
(| naive vac.〉+ C | naive vac.〉)

=
1√
2
(| . . . , k(~p, E > 0) = 0, . . . ; . . . , k(~p, E < 0) = 0, . . .〉

+ | . . . , k(~p, E > 0) − 1, . . . ; . . . , k(~p, E < 0) = −1, . . .〉)
(10.93)

and then as we would successively go up the latter with b†f(~p) operators we would
successively fill equally many positive energy particles into the | naive vac.〉 and
positive energy antiparticles in C | naive vac.〉. Note that analogously to the above
called “a bit cheating” Majorana-boson construction using only the positive energy
single particle states we obtain here only use of the positive energy states for the
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naive vacuum sector combination and only the negative energy single particle
states for the Charge conjugation to the naive vacuum sector combination. Also it
should not be misunderstood: The filling in is not running parallel in the sense that
the sectors truly follow each other. Rather one has to look for if there is Majorana
boson by looking into both sector-combination- projections.

So we see that what is the true Majorana boson theory built on the two
unphysical sector combinations having respectively nonzero numbers of particles
(the naive vacuum construction) and negative particles number in both positive
and negative energies is the following:

A basis state with n(~p) Majorana bosons with momentum ~p, -and as we
always have for Majorana’s positive energy- gets described as a superposition
ot two states –one from each of the two sector combinations– with just n(~p)
ordinary (positive energy) essentially charged bosons (of the original types of our
construction created by a†..) and a corresponding Fock space state from the other
sector, now with n(~p) antiparticles in the other sector combination (the one built
from C | naive vac.〉).

Both of these separate sector combinations have for the used states a positive
definite Hilbert space.

As already stated the overlap between different sector combinaions vectors
are divergent and illdefined.

We can check this rather simple way of getting the Majorana bosons described
in our on the state 1

2
(| naive vac.〉+ C | naive vac.〉) built system of states by

noting what the condition r(~p) |〉 = 0 tells us the two sector combinations:
On a linear combination of basis vectors of the naive vacuum construction

type

|〉 = Σ | k(~p, E > 0) ≥ 0, . . . ; . . . , k(~p, E < 0) ≥ 0, . . .〉
C...k(~p,E>0)...;...k̃(~̇p,E<0)... (10.94)

the requirement
r(~p) |〉 = 0 (10.95)

relates coefficients which correspond to basis states being connected by k(~p, E > 0)
going one up while k(−~p, E < 0) going one unit down or opposite. As we get the
relation √

1+ k(~p, E > 0)C...k(~p,E>0)+1,...;...,k(−~p,E<0),...

+C...,k( ~p ′,E>0),...;...,k(−~p,E<0)−1,...·

√
k(−~p, E < 0) = 0 (10.96)

we can easily see that the states being annihilated are of the form

∑
(−1)k(~p,E>0)

√
k(−~p, E < 0)!√
k(~p, E > 0)!

· | . . . , k(~p, E > 0), . . . ; . . . , k(−~p, E < 0), . . .〉,

(10.97)
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where we sum over k(~p, E > 0) and the difference d = k(~p, E > 0) − k(−~p, E < 0)

is FIXED.
As a special case we might look at possibility that the difference

d = k(~p, E > 0) − k(−~p, E < 0) (10.98)

were 0. In this case the | naive vac.〉 itself would be in the series. In this case the
solution (10.97) reduces to∑

k=0

(−1)k | . . . , k(~p, E > 0) = k, . . . ; . . . , k(−~p, E < 0) = k, . . .〉 (10.99)

But it is now the problem that this series does not converge. But for appropri-
ate values of the difference d,

d ≥ 2, (10.100)

the series (10.97)converge.
For the convergent cases we can estimate the norm square of a state (10.97) to

go proportional to

‖ |〉‖2 ∝
∞∑
k=0

(k− d)!

k!
(−1)k−d (10.101)

where the (−1)k−d now comes from the alternating “full” norm square due to the
factor (−1)](neg. energy b.). This expression in turn is proportional to

∞∑
k=0

(
k− d

−d

)
(−1)k−d =

∑
n=−d

(
n

−d

)
(−1)n (n = k− d)

=
(−1)−d

(1− (−1))
−d+1

(10.102)

which is zero for d− 1 ≥ 1.
So indeed it is seen that the basis states in HMaj part inside the naive vacuum

sector combination has zero norm. Since the states with different numbers of
Majorana-bosons are represented by mutually orthogonal it means that the whole
part of the naive vacuum sector combination used to represent the Majorana-
bosons has totally zero inner product. Basically that means that the inner product
transfered from the original theory with its “essentially charged bosons” to the for
Majorana bosons in subspace HMaj turns out to be zero.

This result means –extrapolating to suppose zero norm also in the divergent
cases– that in the unphysical sector combination we get no non-trivial inner
product for the Majorana-bosons.

If ones use the true Majorana boson description by as necessary combining
two sector combinations, one could use the ambiguity (and divergence) of the
inner product of states from different sectors to make up instead a non trivial inner
product.
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10.5.1 Overview of All four Sector Combinations

Strictly speaking we could make an infinite number of sector combinations, be-
cause we for every single particle state – meaning for every combination of a
spin state and a momentum say ~p – could choose for just that single particle
state to postulate the second quantized system considered to be started at such
a side of the “barriers” that just this special single particle state had always a
negative number of bosons in it. For another one we could instead choose to
have only a non-negative numbe of bosons. Using all the choice possibilities of
this type would lead us so to speak to the infinite number of sector combina-
tions 2#“single particle states”, where #“single particle states” means the number
of single particle states. But most of these enormously many sector combinations
would not be Lorentz invariant nor rotational invariant. Really, since the sector
combination should presumably rather be considered a part of the initial state
condition than of the laws of Nature, it might be o.k. that it be not Lorentz nor
rotational invariant. Nevertheless we strongly suspect that it is the most impor-
tant to consider the Lorentz and rotational invariant sector-combination-choices.
Restricting to the latter we can only choose a seprate sector for the positive enegry
states and for the negative energy sector, and then there would be only 22 = 4

sector combinations.
Quite generally we have the usual rules for creation and annihilation oper-

ators,but you have to have in mind that we have two different hermitean con-
jugations denoted respectively by † and by †f, and that the creation operators
constructed from the same annihilation operators are related

a†f(~p, E > 0) = a†(~p, E > 0)

a†f(~p, E < 0) = −a†(~p, E < 0) (10.103)

These “usual” relations are[
a(~p, E > 0), a†( ~p ′, E > 0)

]
= δ~p ~p ′[

a(~p, E < 0), a†( ~p ′, E < 0)
]
= δ~p ~p ′[

a(~p, E > 0), a†f( ~p ′, E > 0)
]
= δ~p ~p ′[

a(~p, E < 0), a†f( ~p ′, E < 0)
]
= −δ~p ~p ′ (10.104)

while we have exact commutation for awith a or for a† or a†f with a† or a†f . Each
a(~p, E >< 0) or a†f or a† act changing only the number of particle in just the single
relevant single particle state, meaning it changes only k(~p, E >< 0); the rules are as
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seen analytical continuations generally

a†(~p, E > 0) | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=
√
k(~p, E > 0) + 1 | . . . , k(~p, E > 0) + 1, . . . ; . . . , k( ~p ′, E < 0), . . .〉

a†( ~p ′, E < 0) | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=

√
k( ~p ′, E < 0) + 1 | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0) + 1, . . .〉

a†f(~p, E > 0) | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=
√
k(~p, E > 0) + 1 | . . . , k(~p, E > 0) + 1, . . . ; . . . , k( ~p ′, E < 0), . . .〉

a†f( ~p ′, E < 0) | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=−

√
k( ~p ′, E < 0) + 1 | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0) + 1, . . .〉

a(~p, E > 0) | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=
√
k(~p, E > 0) | . . . , k(~p, E > 0) − 1, . . . ; . . . , k( ~p ′, E < 0), . . .〉

a( ~p ′, E < 0) | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=

√
k( ~p ′, E < 0) | . . . , k(~p, E > 0) + 1, . . . ; . . . , k( ~p ′, E < 0) − 1, . . .〉 (10.105)

The four sector combination with the same sector for the same sign of the
energy E of the single particle states were called:

1)The “physical sector” has

k(~p, E > 0) = 0, 1, 2, . . .

k(~p, E < 0) = −1,−2,−3 . . . (10.106)

2)The “sector-combination constructed from the naive vacuum” has

k(~p, E > 0) = 0, 1, 2, . . .

k(~p, E < 0) = 0, 1, 2, . . . (10.107)

3)The “both sectors with negative numbers” sector-combination has

k(~p, E > 0) = −1,−2,−3 . . .

k(~p, E < 0) = −1,−2,−3 . . . (10.108)

4)The “a positive number with negative energy and vise versa” has

k(~p, E > 0) = −1,−2,−3 . . .

k(~p, E < 0) = 0, 1, 2, . . . (10.109)

In the physical sector combination the Fock space ends up having positive
definite norm square and so this sector-combination is the one usual taken for
being the in nature realized one.
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10.5.2 Formulas for “Majorana particles”

The theory of Majorana fermions may be so well known that we had nothing to
say, but it were written about it in section 2.

For the boson case we introduced for each (vectorial) value of the momentum
an operator acting on the Fock space called r(~p) defined by (10.88)

r(~p) =
1√
2

(
a(~p, E > 0) − a†f(−~p, E < 0)

)
=

1√
2

(
a(~p, E > 0) + a†(−~p, E < 0)

)
(10.110)

with the properties [
r(~p), b( ~p ′)

]
= 0[

r(~p), b†( ~p ′)
]
= 0[

r(~p), b†f( ~p ′)
]
= 0 (10.111)

where the creation b†f(~p)
(
= b†f(~p

)
and annihilation b(~p) operators for the “Ma-

jorana bosons” (i.e. boson being its own antiparticle) were defined in terms of the
a’s as

b†f(~p) =
1√
2

(
a†f(~p, E > 0) + a(−~p, E < 0)

)
(10.112)

and

b(~p) =
1√
2

(
a(~p, E > 0) + a†f(−~p, E < 0)

)
(10.113)

=
1√
2

(
a(~p, E > 0) − a†(−~p, E < 0

)
(10.114)

These operators obey (see(10.86) and (10.87))[
b(~p, b†f( ~p ′)

]
= δ~p ~p ′[

b(~p, b( ~p ′
]
= 0[

b†f(~p), b†f( ~p ′)
]
= 0 (10.115)

and so these operators are suitable for creating and annihilation of particles, and
indeed these particles are the “Majorana bosons”. As a replacement for the in
usual formalism for “Majorana bosons” say

b(~p, E) = b†f(−~p,−E) (10.116)
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we have in our notation
b(−~p) |with

>↔<= b
†f(~p) (10.117)

as is easily seen from (10.113) and (10.112) just above.
But now we need also a vacuum from which to start the creation of the

“Majorana bosons” with b†f(~p). In the two sector-combinations 1) the physical
one and 4) “a positive number with negative energy and vice versa” there are the
suitable vacua:

In 1)

| physical vac〉 =| . . . , k(~p, E > 0) = 0, . . . ; . . . , k(~p, E < 0) = −1, . . .〉 (10.118)

and in 4)

|
pos in E < 0

neg in E > 0
〉 = 1 . . . , k(~p, E > 0) = −1, . . . ; . . . , k(~p, E < 0) = 0, . . .〉 (10.119)

In the sector-combinations 2) and 3), however, there are no charge conjugation
symmetric states to use as the vacuum state for a “Majorana-boson” formalism. In
this case the vacuum of 2) goes under charge conjugation C into that of 3).

10.6 Outlook on String Field Theory Motivation

One of our own motivations for developping the sort of boson Dirac sea theory
for bosons being their own antiparticles, i.e. a theory with Dirac sea, were to use it
in our own so called “novel string field theory”[8–11].

In this “novel string field theory” we sought to rewrite the whole of string
theory[12–15,28,29] (see also modified cubic theory [24])- although we did not
yet come to superstrings[25,17,26] although that should be relatively easy - into a
formalism in which there seems a priori to be no strings. The strings only come
out of our novel string field theory [18–23] by a rather complicated special way
of looking at it. In fact our basic model in this novel string field theory is rather
like a system of /a Fock space for massless scalar particles, which we call “objects”
in our formulation, but they have much although not all properties similar to
scalar massless particles. These particles/objects we think must be in an abstract
way what we here called Majorana bosons. This means they should be their own
antiparticles to the extend that they have antiparticles.

But their being put into cyclically ordered orientable chains may put a need
for a deeper understanding of the Majorananess for these “objects”.

The reason for the objects, that in our novel string field theory are a kind
of constituents, for the strings being supposed to a nature reminiscent of the
Majorana particles or being their own antiparticles, is that they carry in themselves
no particle number or charge, except that they can have (26)-momentum. (For
complete consistency of the bosonic string theory it is wellknown that 26 space
time dimensions are required.) The bulk of the string (in string theory) can namely
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be shrunk or expanded ad libitum, and it is therefore not in itself charged, although
it can carry some conserved quantum numbers such as the momentum densities.

We take this to mean that the string as just bulk string should be considered
to be equal to its own antimaterial. If we think of splitting up the string into small
pieces like Thorn[27], or we split the right and left mover parts separately like we
did ourselves, one would in both cases say that the pieces of Thorn’s or the objects
of ours should be their own antiparticles. With our a bit joking notation: they
should be Majorana. Thus we a priori could speculate that, if for some reason we
should also like to think our objects as particles, then from the analytical properties
of the single particle in relativistic theories must have both positive and negative
energy states. Then a treatment of particles being their own antiparticles in the
Dirac sea formulation could - at least superficially -look to be relevant.

One could then ask, what we learned above, that could be of any help sug-
gesting, how to treat long series of “objects”, if these objects are to be considered
bosons that are their own antiparticles:

• 1. In the novel string field theory of ours it is important for the association
to the strings, that one considers ring shaped chains of objects. We called
such ring shaped chains of objects for “cyclically ordered chains”. Now such
ordering of our “objects” (as we call them), or of any type of particles, into
chains in which each particle (or “object”) can be assigned a number (although
in our special model only a number modulo some large number N) is o.k. for
particles with an individuality. However, if we have particles (or “objects”) that
are say bosons, then all particles are identical - or one could say any allowed
state is a superposition of states in which all possible permutations on the
particles have been performed and a superposition of the results of all these
permutations with same amplitude only is presented as the final state -. But
this then means that one cannot order them, because you cannot say, which is
before which in the ordering, because you cannot name the single particle.
You could only say, that some particle A is, say, just before some particle
B in a (cyclic) ordering, if you characterize A as being the particle with a
certain combination of coordinates (or other properties) and B as being the
one with a certain other combination of coordinates (and other properties).
Unless you somehow specify by e.g. some approximate coordinates (or other
characteristic) which particle you think about, it has no meaning to express
some relation involving the relative ordering, say, of two bosons.

• 2. The problem just mentioned in assigning order to bosons means, that the
concept of “cyclically ordered chains” of objects - or for that matter building
up any string from particle pieces like Thorn say - cannot be done once the
particles or objects are bosons, but rather should be preferably formulated
before one symmetrize the wave function under the particle permutation so as
to implement that they are bosons. One shall so to speak go back in the
“pedagogical” development of boson-theory and think in the way before the
symmetry principle under permutations making the particles bosons were
imposed. In this earlier stage of the description the cyclically ordered chains,
or any type of ordering, which one might wish, makes sense. So here it looks
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that going back and postponing the boson constraint is needed for ordering
chains.

• 3. But seeking to go back prior to boson or fermion formulation makes a
problem for the Dirac sea - in both boson and fermion cases -: If we want to
consider the case of individual particles or objects fully, we have to imagine
that we have given names (or numbers) to all the particles in the Dirac sea!
For this problem we may think of a couple of solutions:

– a. We could imagine an interaction that would organize the particles in
the ground state (to be considered a replacement for the physical vacuum)
or that some especially important state for the Fock space obtained by
imposing some other principle is postulated to make up a kind of vacuum
state. Then one could hope or arrange for the interaction or state-selecting
principle chosen, that the vacuum state becomes such, that the objects (or
particles) in the Dirac sea goes into such a state, that these objects have
such positions or momenta, that it due to this state becomes possible to
recognize such structure that their ordering in the wanted chain becomes
obvious. If so, then the (cyclic) ordering can come to make sense.
This solution to the problem may be attractive a priori, because we then
in principle using the now somewhat complicated state of the vacuum
can assign orderings to the whole Dirac sea, and thus in principle give an
individuality even to the Dirac sea particles and missing particles / the
holes can make sense, too. They so to speak can inherit their individuality
from the particles missing, which before being removed were sitting in the
chains of the vacuum. We have thus at least got allowance to talk about a
chain ordering for pieces of chains for the holes. There is so to speak an
ordering of the holes given by the ordering of the particles removed from
the Dirac sea originating from the chain postulated to have appeared from
the interaction or from some special selection principle for the vacuum
state.
A little technical worry about the “gauge choice” in our novel string field
theory: In our novel string field theory we had made a gauge choice for
the parametrization of the strings, that led to the objects having a special
component of their momenta p+, or in the language of our papers on this
string field theory J+(I) for the Ith object in the chain fixed to a chosen
small value aα ′/2. Since the argument for there having to be negative
energy solutions(to say the Dirac equation) and thus a need for a Dirac sea
at all is actually analyticity of the equation of motion, we would suppose
that also for our objects one should keep “analyticity” in developing ones
picture of the “negative energy states” and thereby of the Dirac sea. But
then the p+ or J+, which is fixed to constant could hardly get continued
to anything else than the same constant ? This sounds a bit unpleasant,
if we imagine the p+ be lightlike or timelike, because then we cannot
find the negative energy state with the chosen gauge condition, and the
whole reason for the Dirac sea seems to have disappeared. And thus the
discussion of Majorana may also have lost its ground. But if we imagine
the gauge choice fixed component to be spacelike, then we obtain, that
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the gauge condition surface intersects the light cone in two disconnected
pieces that are actually having respectively positive and negative energy.
So assumming the gauge choice done with a space-like component we
have indeed the possibility of the Majorananess discussion! And also in
this case of a spacelike p or J component being fixed (by gauge choice) our
construction of the Majorana bosons makes perfect sense.
Now it gets again severely complicated by the chains postulated in the
vaccuum. In the space-like gauge fixing case it also becomes of course
complicated, but the complication is due to the complicated state rather
than to the gauge fixing alone.
Let us, however, stress again: To make a ordering of the objects in the Dirac
sea into say cyclically ordered chains a much more complicated state in
the Fock space is needed than the simple say physical vacuum.
To figure out how to think about such a situation with a “complicated”
vacuum state replacing the, say, “physical vacuum” as discussed above,
we might think about the analogous situation with the fermions. When one
has a quantum field theory with fermions having interactions, it means that
the interaction part of the Hamiltonian has caused that the ground state for
the full Hamiltonian is no longer the state with just the Dirac sea fillied and
the positive energy single particle states empty. Rather it is a “complicated”
superposition of states in the Fock space, most of which would in the free
theory have positive energy. These are states which can be described as
states with some - infinite - number of positive energy fermions and some
anti-fermions present (in addition to the vacuum with just the Dirac sea
filled). The presence of anti-fermions (holes) means, that if one acts with
a creation operators b†(~p, E < 0) for inserting a fermion with a negative
energy (E < 0), then one shall not necessarily get 0 as in the free theory
vacuum, because one has the possibility(chance) of hitting a single particle
state in which there is a hole. The Fock-space state created by such an action
will have higher full Hamiltonian energy than the “interaction vacuum”,
because the latter is by definition the lowest energy state, but one has
anyway succeeded in inserting a fermion in a state which from the free
theory counted has a negative energy. It should be absolutely possible
that such an inserted in the just mentioned sense negative energy particle
could be part of the construction of say a bound state or some composite
object resonance or so. Similarly it could on top of a “complicated vacuum”
(meaning a ground state e.g. for the full Hamiltonian but not for the free
one) be possible to remove with an annihilation operator a(~p, E > 0) a
particle from a single particle state (having with the free Hamiltonian)
positive energy (E > 0). One could namely have the chance of hitting a
positve energy single particle state, in which there already is a particle in
the “complicated vacuum”. Such a removal or hole in a positive single
particle state is what we ought to call a “negative energy anti-particle”.
We here sought to argue, that if one for some reason or another (because
of interaction and taking the ground state, or because one has postuleted
some “complicated vacuum” just to make ordering make sense) use a
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“complicated vacuum”, then it becomes possible formally to add particles
or anti-particles with negative energy.
Especially we want to stress the possibility that, if one wants to describe
properly a resonance or a bound state composed or several particles (e.g.
fermions) then one might need to assign some of the constituents negative
energy in the sense just alluded to here.
Strictly speaking it comes to look in the “complicated vacuum” as if one
has got doubled the number of species of effective particle, because one now
by acting with e.g. a†(~p, E > 0) both can risk to produce a positive energy
particle, and can risk to fill in a hole in positive energy single particle state
and thereby creating a negative energy anti-particle. So operating with
the same operator we risk two different results, which may be interpreted
as if one had effectively had two different types of operators and thereby
doubly as many types of particles as we started with. We have so to speak
- in the case of non-Majorana particles - gotten both positive and negative
energy particles and also both positve and negative anti-particles effective
on the “complicated vacuum”.
If we go to make our particles Majorana, we reduce the number of species
by a factor two (as expected in as far as Majorana means that particle and
anti-particle gets identified.)
In the case of the “complicated vacuum” the transition to Majorana also
reduce the number of species by a factor 2 and thus compensates for the
effect of the “complicated vacuum”. With Majorana the particles and anti-
particles are no longer distinguished, but with the “complicated vacuum”
we obtain both positive and negative energy (Majorana)particles. It essen-
tially functions as if the particle were no more Majorana. The “complicated
vacuum”, so to speak, removed the Majorananess.
We hope in later publication to be able to check that the just delivered story
of the interaction vacuum increasing the number of species effectively by
the factor two, is found when using the Bethe-Salpeter equation to describe
bound states. Then there ought according to the just said to be effectively
both negative and positive states relevant for the “constituent” particles in
the Bethe-Salpeter equation.
Applying the just put forward point of view on the objects in our novel
string field theory we should imagine that in this formulation with the
“complicated vacuum” being one with chains in it it is possible for some
objects to have their energy negative. Nevertheless a whole chain formed
from them might end up with positive energy by necessity.
Such a possibility of negative energy for single objects that can nevertheless
be put onto the vacuum might be very important for complete annihilation
of pieces of one chain put onto the vacuum with part on an other one also
put onto that vacuum. If we did not have such possibility for both signs
along the chains, then we could not arrange that two incomming cyclically
ordered chains could partly annihilate, because energy conservation locally
along the chains would prevent that.
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At least in principle it must though be admitted, that such a picture based
on an interaction or by some restriction of the state of the whole world
makes a complicated vacuum is a bit complicated technically.
But physically it is wellknown, that the vacuum in quantum field theories
is a very complicated state, and so we might also expect that in string
theory a similarly complicated vacuum would be needed. And that should
even be the case in our novel string field theory in spite of the statement,
often stated about this theory, that it has no interaction properly; all the
seeming interactions being fake. But we could circumvent the need for
an interaction to produce the complicated vacuum, we seemingly need
by claiming that we instead have a restriction on the Fock space states of
the system of objects, that is allowed. Such a constraint could force the
vacuum to be more complicated, and thus in succession lead to that it
becomes allowed in the more complicated vacuum to have some of the
objects having even negative energy, which in turn could allow a complete
annihilation of objects from one cyclicaally ordered chain and another set
up in the same state (built on the complicated vacuum)

– b. We give up seeing any chain structure in the vacuum as a whole, but
rather attempt to be satisfied with ordering the missing particles, (or may
be the antiparticles?).
Naturally we would start imagining that we can have a Majorana boson, if
we wish, represented by -1 negative energy boson, because the Majorana
boson is a superposiotion of a particle and an antiparticle, and the latter
really can be considered -1 particle of negative energy.
At first one might think that having two bound states or two strings,
which would like to partially annihilate -as it seems that we need in our
derivation of Venezianoamplitude in our novel string field theory - could
be indeed achieved by having part of one of these composed structures
treated or thought upon as consisting of antiparticles, since one would
say that particle and anti-particle can annihilate. However, when anti-
particle and particle both with positive energy annihilate, then at least
some energy is in excess and they therefore cannot annihilate completely
into nothing. Rather there would have to some emmitted material left
over to take away the energy. If we therefore as it seems that we would
to get the terms missing in our novel string field theory t get the correct
three term Veneziano amplitude should have a total annihilaton without
left over such positive energy particles and antiparticles are not sufficient.
Therefore this b. alternative seems not to truly help us with the problem of
our novel string field theory to reproduce the Veneziano model fully.

• 4. In our formalism above - taken in the physical vacuum - the “Majorana-
boson” became a superposition of being a hole and a genuine positive enrgy
particle. The hole meant it were in part of the superposition - i.e. with some
probability 50 % - −1 particle with negative energy. So one would with signifi-
cant probability be able to consider that the “Majoran-boson” were indeed a
lack of a negative energy original particle. For calculating amplitudes of some
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sort one would then imagine that we might even have to add up contributions
from the holes and contributions from the positive energy particles.
For each object, say, we should think we should have both a contribution in
which it is considered a particle (with positive energy) and one in which it is a
hole.

• 5. From the construction of the creation and annihilation operators for the
“Bosons being their own antiparticles ” - the b’s - being constructed as contain-
ing the quite analogous contributions from a hole part and a particle part, it
looks that in building up states with many Majorana- bosons one gets an anal-
ogous built up for both the holes and the particles and with say the analogous
momenta.
Here analogous means that the holes are holes for states with opposite mo-
mentum, but since it is holes it becomes the same net momentum for the hole
as from the particle analogous to it.

• 6. With any sort of even formal interaction one would think that a hole and a
particle can annihilate as stuff annihilate anti-matter. But if you have a pair
of positive energy particles or anti-particles, they can only annihilate into
some other particles of some sort. They cannot just disappear together. That is
however, possible, if you have a negative energy particle and a positive energy
one of just opposite four(or 26) momenta.

• 7. If one would say choose a gauge so that the particles get as in our gauge
choice in our papers on the novel string theory that a certain momentum
component, p+ say, is specified to be a fixed value aα ′/2 as we choose, then
one would have to let the particle, the state of which is made the hole have its
p+ = −aα ′/2, i.e. the opposite value. (Then if one has negative numbers of
such particles, of course they contribute a positive p+ again.) If one has indeed
completely opposite four momenta - including energy - then an anihilation
without left over is possible, otherwise not. It is therefore it is so crucial with
negative energy constituents, if any such total disappearance of a pair is
needed/wanted.
But if we have physically only the free simple vacuum in which one has just
for bosons emptied the negative energy states and for fermions just filled the
negative energy states and no more, then all modifications will even particle
for particle have positive energy. It will either be a removal of a negative energy
particle meaning an antiparticle created or an insertion of a positive energy
particle. Both these modifications would mean insertion of positive energy
and they could not annihilate with each other without leaving decay material.
So to have a piece of a cyclically ordered chain annihilate without decay material
with another piece, it is needed that we do not just have the free theory vacuum.
We need instead something like a “complicated vacuum” such as can be gotten
by the effect of either interactions, or from some more complicated postulate
as to what the vacuum state should be.
In our novel string field theory, in which it is claimed that there are no in-
teractions in the object formulation, we cannot refer to interactions. Rather
we must refer to making a postulate about what the “complicated vacuum
state” should be. As already mentioned above we need in order that ordering
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into the cyclically ordered chains can make sense to have as the (vacuum)
state a state in which the various objects can have so different single particle
states that we can use their single particle state characteristic to mark them
so as to give them sufficient individuality. Really we should postulate such a
“complicated vacuum state” that there would for each object be an effectively
unique successor lying as neighbor for the first one. But such restrictions to
somewhat welldefined positions relative to neighbors in a chain must mean
that it cannot at all be so, that there are just, 1 for fermions, -1 for bosons,
particels in the negative energy states and zero in the positive ones. Rather it
means, that considering such a free vacuum as starting point the state with
the chains organized into the “compicated vacuum” is strongly excited. So
there are many both particles and anti particles present in this “complicated
vacuum ” needed to have chains inside the vacuum.
But as already said such “complicated vacuum” can give the possibility of
having effectively negative energy constituents. Since our objects are essen-
tially constituents, this also means that our objects in a complicated vacuum
can get allowed to be of negative energy. We must arrange that by allowing
them in our gauge choice to get the J+ have both signs. If so we may enjoy the
full annihilation without left over material.

• 8. To construct an operator creating a chain (or series) of Majorana particles
- in our novel SFT we mean the objects - we strictly speaking should use a
specific linear combination of the hole and the positive energy particle (or
object) for every Majorana particle created along the chain, but if we project
out at the end the constructed Fock space state into the subspace used for the
Majorana boson description, it is not so important to use precisely the correct
linear combination. We shall namely obtain the right linear combination, since
in that case it comes out of such a projection automatically.
But trusting that projecting into the Majorana-describing sub-space will do
the job, we can just choose at will whether we use a series of positive energy
particle (or object) creation operator or instead the corresponding hole creating
(destruction of negative energy) operator.

Since our objects are a priori Majorana ones, it may at the end due to the
doubling of state-types mentioned get them rather described effective as non-
Majorana, in the way that they can be in both positive and negative energy single
particle states. This actually reminds us more about the “naive vacuum” sector
combination. But now it is the result of the “complicated vacuum” and of the
thereby associated “doubling of the number of species effectively”.

10.6.1 The “Rough Dirac Sea” in General

Let us extract and stress the idea, which we suppose will be very important for
our formulation of the scattering amplitude for strings in our novel string field
theory, but which could also be imagined to deliver an approximation that could
be useful especially for bound states with many constituents, “the (very) rough
Dirac sea”. This rough Dirac sea is really the same as what we called above the
“complicated vacuum”.
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The picture of true rough sea (a rough sea is the opposite of a calm sea,
and it means that there lots of high waves may actually) be a very good one to
pedagogically promote the idea of the effects of the “complicated vacuum” or the
“rough Dirac sea” leading to that we effectively get negative energy particles and
antiparticles.

In this picture the “calm Dirac sea” means the free approximation vacuum, in
which - in the physical choice of sector combination, which is what one normally
will have in mind - the negative energy states are filled for the fermion case, while
“emptied out” in the boson case. In any case this calm Dirac sea is the picture for
the theory vacuum in the unperturbed approximation (the free vacuum). But in
interacting quantum field theories the vacuum gets perturbed by the interaction
and becomes a more complicated state “the complicated vacuum”, and it is for this
“complicated vacuum” that the analogy with the rough sea is very good. There
should have been near the surface -at the average surface height - a region in
heights, in which you find with some probability water and with some probability
air. Just at the should-have-been surface (= average surface) one expects that the
probability for finding water is 50 % and for finding air in a given point is 50 %.

Now imagine: we come with an extra water molecule (or may be just a tiny bit
of water) and want to insert it into the sea or the air not too far from the “should-
have-been surface”. Now if there happen to be a wave of water present, where you
want to or attempt to insert such an extra tiny bit of water, you will not succeed,
and that is analogous to getting zero, when you want to create a particle with a
creation operator into a state that is already filled (say, we think for simplicity on
the fermion case). If, however, there happen to be a valley in the waves, you will
succeed in inserting a tiny bit of water even if it is under the average water height!
This corresponds to inserting a negative energy particle into the “rough Dirac sea”
or the “complicated vacuum”. You may also think about removing a droplet of
water. That will of course only succeed, if there is some water in the point in space,
wherein you want to do it. Again it is not guaranteed that you can remove a bit of
water in the rough sea, even if you attempt to remove it deeper than the average
water height, because there might be a valley among the waves. Also if you hit a
wave you might be able to remove a bit of water from a height above the average
height.

In this way we see that you can produce sometimes a hole in the water both
with positive and negative height (analogous to the both positive and negative
(single particle) energy). Similarly you may produce both above and below extra
bubbles of water.

This means that we have got a kind of doubling: While in the calm Dirac sea
you can only make droplets ( particles) above the average surface and only holes
( antiparticles) below, we now in the rough sea can do all four combinations.

10.6.2 Infinite Momentum Frame Wrong, in Rough Dirac Sea?

With “rough Dirac sea”-thinking we arrived at the idea, that one might describe
for instance a bound state or resonance as composed of constituent particles not all
having positive energy; but some of the constituents could have negative energy.



i
i

“proc17” — 2017/12/11 — 19:44 — page 180 — #194 i
i

i
i

i
i

180 H.B. Nielsen and M. Ninomiya

It must be legal to choose to describe a bound state or resonance state by a
linear combination - weighted with what is essentially a wave function for the
constituents in the bound state or resonance - of creation operators and annihila-
tion operators (for describing the contained anti-particles among the constituent
particles) and let it act on the vacuum. We might, say, think of an operator of the
form

A†(bound state) = (10.120)

=

∫
Ψ(~p1, h1, s1; ...;~pN, hN, sN)

∗
∏
h1,s1

(a†(~p1, h1, s1)d
3~p1,h1,s1) · · ·

∏
hN,sN

(a†(~pn, hN, sN)d
3~pN); (10.121)

|bound state (Fock)state〉 = (10.122)

= A†(bound state)|“complicated vacuum”〉 (10.123)

=

∫
Ψ(~p1, h1, s1; ...;~pN, hN, sN) (10.124)∏

h1,s1

(a†(~p1, h1, s1)d
3~p1,h1,s1) · · ·

∏
hN,sN

(a†(~pn, hN, sN)d
3~pN) (10.125)

|“complicated vacuum”〉 (10.126)

where Ψ(~p1, h1, s1; ...;~pN, hN, sN) is (essentially) the wave function for a bounds
state of N constituents numbered from 1 to N. The momenta of the constituents
are denoted by ~pi with i = 1, 2, ..., N, while the internal quantum numbers are
denoted hi, and then there is the symbol si that can be si = “positive”= (E > 0) or
si =“negative” = (E < 0) , meaning that the single particle energy of the constituent
here is allowed to be both positive and negative, it being denoted by si, which
of these two possibilities is realized for constituent number i. In this expression
(10.126) we took just N constituents, but it is trivial to write formally also the
possibillity of the bound state being in a state, that is a superposition of states with
different values of the number N of constituents:

A†(bound state) = (10.127)

=
∑

N=1,2,...

∫
ΨN(~p1, h1, s1; ...;~pN, hN, sN)

∗
∏
h1,s1

(a†(~p1, h1, s1)d
3~p1,h1,s1) · · ·

∏
hN,sN

(a†(~pn, hN, sN)d
3~pN). (10.128)

In this way we could describe a (bound) state inserted on the background of
the true (“complicated”) vacuum with a superposition of different numbers of
constituents. In principle we could find a wave function set, ΨN(~p1, h1, s1; ...;
~pN, hN, sN) for N = 1, 2, ..., that could precisely produce the (bound) state or
resonace in question. It might because of the allowance of both negative and
positive energy constituents be possible to construct in this way a given state in
more than one way. But one could well imagine, that if we would like to have
the wave function reasonably smooth, then it would be hard to quite avoid the
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negative energy constituents contributions - they are of course only relevant by
giving nonzero contributions to the state created provided the Diarc sea is rough
- and thus it looks like being essentially needed to use wave functions with also
negative energy constituents, unless one is willing to give up the accuracy in
which the influence from the interaction on the vacuum must be included.

But if we thus accept a description with negative constituent energy, the usual
thinking on the “infinite momentum frame”[31] seems wrong:

If we in fact have constituents with single particle state negative energy,
then boosting such a state eversomuch in the longitudinal momentum direction
cannot bring these negative energy constituents to get posive longitudinal and
thereby positive Bjorken x. So the usual story that provided we boost enough all
constituents obtain positive x cannot be kept in our rough Dirac sea scenario with
its negative energy constituents!

This may be the reason for the trouble in our novel string field theory which
triggered us into the present work. In this novel string field theory formulation
we namely used infinite momentum frame and actually took it, that all the there
called objects - which are essentially constituents - had their J+ = aα ′/2. But
now the 26-momentum, which is proportional to the Jµ, should then for all the
objects have the + component positve. But now the notation is so, that this +

component means the longitudinal momentum in the infinite momentum frame.
So we assumed a gauge choice in our formulation of this novel string field theory
which is inconsistent with the negative energy constituent story arising from rough
Dirac sea.

This “mistake” is very likely to be the explanation for the strange fact, that
we in deriving the Veneziano model from our novel string field theory formalism
only got one out of the three terms we would have expected.

The suggested solution to our trouble would then be to allow also for con-
stituents with the J+ being negative. That would mean we could not keep to the
simple gauge choice enforcing a positive value to J+ but would have to allow also
negative values for this J+.

That in turn might then allow constituent pairs from say different bound states
- or different strings as it would be in our formalism - to totally annihilate meaning
without leaving any material after them, because no excess energy would have to
be there after the annihilation. Negative energy and positive energy together have
the chance of such total annihilation.

10.7 Conclusion and Outlook

The in many ways intuitively nice and appealing language of the Dirac sea, which
we have in an earlier work extended also to be applicable for bosons, is at first not
so well suited for particles –“Majorana particles”– which are identical to their own
antiparticles. In the present article we have nevertheless developped precisely this
question of how to describe particles –bosons or fermions– which are, as we call
it, “Majorana”. We use also this terminology “Majorana” even for bosons to mean
that a particle is its own antiparticle. The fermion case is rather well known. So our
main story was first to review, how it were at all possible to make (a free) theory
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for bosons based on a Dirac sea, and secondly the new features of this Dirac sea
for boson theory as follows:

a)negative norm squares
b)negative number of particles.

The main point then became how to get what we call a Majorana-boson
theory through these new features. This comes about by constructing in terms of
the creation and annihilation operators a†f(~p, E > 0) and a(~p, E < 0) for a type of
boson that might have a charge, some creation and annihilation operators b(~p)
and b†f(~p) for the Majorana boson, which is really a superposition of a boson and
an anti-boson of the type described by a and a†.

10.7.1 The old Dirac sea for bosons

The Dirac sea for boson theory is based on having a Fock space, for which a basis
consists of states with a number of bosons k(~p, E >< 0), which can be both positive,
zero and negative integer, in both positive and negative energy E single particle
states for each 3−momentum ~p,

| . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉 ∈ Fock space. (10.129)

Because of the complication that the inner product

〈ϕ1 |(f) ϕ2〉 =
∫
ϕ∗1

←→
∂

∂t
ϕ2d

3~X (10.130)

for a (single particle) boson is not positive definite we have to distinguish two
different inner products | and |f say and thus also the two thereto responding
hermitean conjugations † and †f, meaning respectively without and with the∫
ϕ∗1
←→
∂
∂t
ϕ2d

3~X included. In fact we have for the norm square for these two inner
products

〈. . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . . |f
. . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=(−1)](neg. energy b.〈. . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . . |

. . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=(−1)](neg. energy b. ·
∏

(~p,E><0)for which k≤−1

(−1)|k| (10.131)

10.7.2 Main Success of Our Previous Dirac Sea (also) for Bosons:

The remarkable feature of the sector with the emptied out Dirac sea for bosons -
what we called the physical sector - is that one has arranged the sign alternation
(10.42) with the total number of negative energy bosons to cancel the sign from
(10.31) so as to achieve that the total Fock space has positive norm square. This
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“physical sector” corresponds to that negative energy single particle states are
in the negative sectors, while the positive energy single particle states are in the
positive sector.

Thus the basis vectors of the full Fock space for the physical sector are of the
form

| . . . , k(~p, E > 0), . . . ; . . . , k(~p, E < 0), . . .〉 (10.132)

where the dots . . . denotes that we have one integer number for every momentum
vector –value (~p or ~p ′), but now the numbers k(~p, E > 0) of particles in a positive
energy are– in the physical sector-combination– restricted to be non-negative while
the numbers of bosons in the negative energy single particle states are restricted
to be negative

k(~p, E > 0) = 0, 1, 2, . . .

k(~p, E < 0) = −1,−2,−3, . . . (10.133)

In this physical sector our Dirac Sea formalism is completely equivalent to
the conventional formalism for quantizing Bosons with “charge” (i.e. Bosons
that are not their own antiparticles), say e.g. π+ and π−.

But let us remind ourselves that this idea of using Dirac sea allows one to not
fill the Dirac sea, if one should wish to think of such world. With our extension of
the idea of the Dirac sea to also include Bosons one also gets allowed to not empty
out to have −1 boson in each negative energy single particle state. But for bosons
you have the further strange feature of the phantasy world with the Dirac sea not
treated as it should be to get physical, that one even gets negative norm square
states, in addition to like in the fermion case having lost the bottom in the energy.

10.7.3 Present Article Main Point were to Allow for Bosons being their own
Antiparticles also in Dirac sea Formalism

We could construct a “Majorana-boson” creation operator for say a “Majorana-
boson” with momentum ~p, b†(~p) analogously to the expressions (10.19) and
(10.20).
b†(~p) = 1√

2

(
a†(~p, E > 0) + a(−~p, E < 0)

)
and b(~p) = 1√

2

(
a(E > 0) + a†(E < 0)

)
Since an extra phase on the basis states does not matter so much we could also

choose for the bosons the “Majorana boson” creation and annihilation operators
to be

b†f(~p) =
1√
2

(
a†(E > 0) + a(−~p, E < 0)

)
=

1√
2

(
a†f(~p, E > 0) + a(−~p, E < 0)

)
b(~p) =

1√
2

(
a(~p, E > 0) + a†f(−~p, E < 0)

)
=

1√
2

(
a(~p, E > 0) − a†(−~p, E < 0)

)
(10.134)
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Such creation operators b†f(~p) and their corresponding annihilation operators
b(~p) make up the completely usual creation and annihilation operator algebra
for Bosons that are their own antiparticles in the case of the “physical sector
combination”. This “physical sector combination” means that we emptied out the
Dirac sea in the sense that in the “vacuum” put just −1 boson in each negative
energy single particle state. This correspondence means that our formalism is
for this “physical sector combination” completely equivalent to how one usually
describes Bosons - naturally without charge - which are their own antiparticles.
But our formalism is to put into the framework of starting with a priori “charged”
Bosons which then quite analogously to fermions have the possibility of having
negative energy (as single particles). We then treat the analogous problem(s) to
the Dirac sea for Fermions, by “putting minus one boson in each of the negative
energy single particle states. That a bit miraculously solves both the problem of
negative norm squares and negative second quantized energy, and even we can
on top of that restrict the theory, if we so wish,to enforce the bosons to be identified with
their own antiparticles.

We saw above that

• 1. We obtain the Fock-space (Hilbert-space) for the Bosons being their own
antiparticles by restriction to a subspace

HMaj = {|〉 | r(~p) |〉 = 0} , (10.135)

where we have defined

r(~p) =
1√
2
(a(+~p, E > 0) + a†(−~p, E < 0))

=
1√
2
(a(~p, E > 0) − a†f(−~p, E < 0). (10.136)

Of course when one forces in the original Dirac sea formalism the antiparticles
differnt from the particles to behave the same way in detail it means a drastic
reduction of the degrees of freedom for the second quantized system - the Fock
space-, and thus it is of course quite natural that we only use the subspace
HMaj being of much less (but still infinite) dimension than the original one.

• 2. In our formalism - since we use to write the creation operator for the boson
being its own antiparticle as a sum of creation of a particle and of a hole (10.134)
- a “Majorana-boson”is physically described as statistically or in superposition
being with some chanse a particle and with some chance a hole. Really it is
obvious, that it is 50 % chance for each. So the physical picture is that the
“Majorana-boson” is a superposition of a hole and an original positive energy
particle in the “physical sector combination”.
• 3. We could construct a charge conjugation operation C which on our Fock

space with both negative and positive energy states present as possibilities
obtained the definition:

C | . . .
∼

k (~p, E > 0), . . . ; . . . ,
∼

k ( ~p ′, E < 0), . . .〉

=| . . . , k(~p, E > 0) = −
∼

k (− ~p ′, E < 0) + 1, . . . ; (10.137)

. . . , k( ~p ′, E < 0) = −1−
∼

k (− ~p ′, E > 0), . . .〉.
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Of course the state of the system of negative single particle comes to depend on
that of the positive energy system after the charge conjugation and oppositely.
With (10.58) or (10.134) one sees that on the whole system or Fock space
of Bosons being their own antiparticles is left invariant under the charge
conjugation operator C. This is as expected since these “Majorana Bosons”
should be invariant under C.

10.7.4 The Unphysical Sector Combinations and Boson-theories therein with
Bosons being their own antiparticles

As a curiosity - but perhaps the most new in the present article - we have not
only the physical sector combination, which so successfully just gives the usual
formalism for both “charged” bosons and for what we called Majorana-bososns
(the ones of their own antiparticles) but three more “sector-combinations” meaning
combinations of whether one allows only negative numbers of bosons, or only
non-negative numbers for the positive and the negative single particle states. The
reader should have in mind that there is what we called the barier, meaning that
the creation and annihilation operators cannot cross from a negative number of
particles in a single particle state to a positive one or opposite, and thus we can
consider the theories in which a given single particle state has a positive or zero
number of particles in it as a completely different theory from one in which one
has a negative number of bosons in that single particle state. For simplicity we
had chosen to only impose that we only considered that all single particle states
with one sign of the single particle energy would have their number of particles
being on the same side of the barrier. But even with this simplifying choice there
remained 22 = 4 different sector-combinations. One of these sector-combinations -
and of course the most important one because it matches the usual and physical
formalism - were the “physical sector combination” characterized by their being a
non-negative number k of bosons in all the positive energy single particle states
(i.e. for E > 0), while the number k of bosons in the negative energy single particle
states (i.e. for E < 0) is restricted to be genuinely negative −1,−2,−3, ....

The sector combination possibility 4) in our enumeration above the Fock
space gets negative definite instead of as the one for the physical sector combi-
nation which gets positive definite. But these sector combinations are analogous
or isomorphic with the appropriate sign changes allowed. Also our charge con-
jugation operator C operates inside both the “physical sector combination” and
inside the sector combination number 4), which is characterized as having just the
opposite to those of the physical sector, meaning that in sector combination 4) one
has a negative number of particles in each positive energy (single particle)state,
while there is a positive or zero number in the negative energy states. Thus the
construction of particles being their own antiparticles would be rather analogous
to that in the physical sector combination.

Less trivial is it to think about the two sector combinations 2) and 3) because
now the charge conjugation operator C goes between them:Acting with the charge
conjugation operator C on a state in the section combination 2) which we called the
“naive vacuum sector combination” one gets a result of the operation in the different
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sector combination namely 3). You can say that the charge conjugation operator does
not respect the barrier, it is only the creation and annihilation operators which
respect this barrier. A priori one would therefore now expect that one should
construct the formalism for the boson being its own antiparticle for these sector
combinations 2) and 3) based on a Fock space covering both parts of the sector
combination 2) and part of 3). To realize that one gets eigenstates of the charge
conjugation operator such a combination of the the two sector combinations is
of course also needed. However, if one just wanted to realize an algebra of the
creation and annihilation operators that could be interpreted as a formalism for
the boson type being its own antiparticle, one might throw away one of the two
sector combinations, say combination 3), and keep only the “naive vacuum sector
combination” 2). Since the creation and annihilation operators cannot cross the
barrier from one sector combination into the other one, such a keeping to only one
of the two sectors between the charge conjugation operator goes back and forth
would not make much difference for the creation and annihilation operators. We
did in fact develop such a formalism for bosons being their own antiparticles in this
way in alone “the naive vacuum sector combination”. Interestingly it now turned
out that keeping to only one sector combination the whole Fock space constructed
for the boson being its own antiparticle became of zero norm square. Really we
should say Hilbert inner product became completely zero for the subsector of the
Fock space - of this unphysical “naive vacuum sector combination” -. This is of
course at least possible since the sector combinations 2)(=the naive vacuum one)
and 3) have both positive and negative norm square states- so that no-zero Hilbert
vectors can be formed as linear combinations of positive and negative normsquare
Hilbert-vectors. (In the physical sector combination nor the sector combination 4)
zero norm states cannot be found because the Hilbert innerproduct is respectively
positively and negatively definite.).

10.7.5 Speculations Bound States, Rough Dirac Sea etc.

Then in the last section above we have some to the rest more weakly connected
speculations meant to be of help for the original problem bringing us to the
considerations in this article, namely our “novel string field theory”. A major
suggestion, that came out of these considerations were to have in mind that,
when you have an interacting quantum field theory, the vacuum gets into a rather
complicated superposition of Fock space states, that makes descriptions as the
“rough Dirac sea” or “the complicated vacuum” appropriate. While in say the
“physical vacuum” - descussed in the article - you can only remove particles from
negative energy states and only add particles to the positive single particle states,
one does not have this restriction in the interacting vacuum, or say the “rough
Dirac sea” vacuum. This point of view suggests that to make a proper description
of a bound state or a resonance by means of a wave function in a relativistic
quantum field theory, describing how to add or remove constituents from the
“rough Dirac sea”-vacuum one should include also negative energy possibilities for
the particles or antiparticle constituents.
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These considerations are also hoped to be helpful for the problems we have
for the moment with obtaining the full Veneziano model amplitude from our novel
string field theory.
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