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Abstract. This is a report on work in progress about gravitational trace anomalies. We
review the problem of trace anomalies in chiral theories in view of the possibility that
such anomalies may contain not yet considered CP violating terms. The research consists
of various stages. In the first stage we examine chiral theories at one-loop with external
gravity and show that a (CP violating) Pontryagin term appears in the trace anomaly in
the presence of an unbalance of left and right chirality. However the imaginary coupling
of such term implies a breakdown of unitarity, putting a severe constraint on such type of
models. In a second stage we consider the compatibility of the presence of the Pontryagin
density in the trace anomaly with (local) supersymmetry, coming to an essentially negative
conclusion.

Povzetek. To je poročilo o raziskavah gravitacijskih slednih anomalij. Pri tem nas posebej
zanima, kaj lahko sledne anomalije prispevajo h kršitvi simetrije CP. Najprej obravnavamo
kiralne teorije v prisotnosti (zunanjega) gravitacijskega polja v enozančnem približku.
Pokažemo, da se v sledni anomaliji pojavi Pontrjaginov člen, ta krši CP simetrijo, kadar
število levoročnih in desnoročnih brezmasnih delcev ni v ravnovesju. Vendar modeli z
imaginarno sklopitvijo takega člena s poljem niso unitarni. V drugem koraku obravnavamo
skladnost Pontrjaginove gostote v sledni anomaliji v modelih z lokalno supersimetrijo in to
možnost v bistvu zavrnemo.

3.1 Introduction

We revisit trace anomalies in theories coupled to gravity, an old subject brought
back to people’s attention thanks to the importance acquired recently by conformal
field theories both in themselves and in relation to the AdS/CFT correspondence.
What has stimulated specifically this research is the suggestion by [1] that trace
anomalies may contain a CP violating term (the Pontryagin density). It is well
known that a basic condition for baryogenesis is the existence of CP nonconserving
reactions in an early stage of the universe. Many possible mechanisms for this
have been put forward, but to date none is completely satisfactory. The appearance
of a CP violating term in the trace anomaly of a theory weakly coupled to gravity
may provide a so far unexplored new mechanism for baryogenesis.

? e-mail: bonora@sissa.it
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3 Revisiting Trace Anomalies in Chiral Theories 23

Let us recall that the energy-momentum tensor in field theory is defined by
Tµν = 2√

−g
δS
δgµν

. Under an infinitesimal local rescaling of the matrix: δgµν =

2σgµν we have

δS =
1

2

∫
d4x
√
−gTµνδg

µν = −

∫
d4x
√
−gσT µ

µ .

If the action is invariant, classically T µ
µ = 0, but at one loop (in which case S

is replaced by the one-loop effective action W) the trace of the e.m. tensor is
generically nonvanishing. In D=4 it may contain, in principle, beside the Weyl
density (square of the Weyl tensor)

W2 = RnmklRnmkl − 2RnmRnm +
1

3
R2 (3.1)

and the Gauss-Bonnet (or Euler) one,

E = RnmklRnmkl − 4RnmRnm +R2, (3.2)

another nontrivial piece, the Pontryagin density,

P =
1

2

(
εnmlkRnmpqRlkpq

)
(3.3)

Each of these terms appears in the trace with its own coefficient:

Tµ
µ = aE+ cW2 + eP (3.4)

The coefficient a and c are known at one-loop for any type of matter. The coefficient
of (3.3) has not been sufficiently studied yet. The purpose of this paper is to fill up
this gap. The plan of our research consists of three stages. To start with we analyse
the one loop calculation of the trace anomaly in chiral models. Both the problem
and the relevant results are not new: the trace anomaly contains beside the square
Weyl density and the Euler density also the Pontryagin density. What is important
is that the e coefficient is purely imaginary. This entails a violation of unitarity at
one-loop and, consequently, introduces an additional criterion for a theory to be
acceptable. The latter is similar to the analogous criterion for chiral gauge and
gravitational anomalies, which is since long a selection criterion for acceptable
theories. A second stage of our research concerns the compatibility between the
appearance of the Pontryagin term in the trace anomaly and supersymmetry.
Since it is hard to supersymmetrize the above three terms and relate them to one
another in a supersymmetric context, the best course is to consider a conformal
theory in 4D coupled to (external) N = 1 supergravity formulated in terms of
superfields and find all the potential superconformal anomalies. This will allow
us to see whether (3.3) can be accommodated in an anomaly supermultiplet as a
trace anomaly member. The result of our analysis seems to exclude this possibility.
Finally, a third stage of our research is to analyse the possibility that the Pontryagin
density appears in the trace anomaly in a nonperturbative way, for instance via an
AdS/CFT correspondence as suggested in [1].

In this contribution we will consider the first two issues above. In the next
section we will examine the problem of the one-loop trace anomaly in a prototype
chiral theory. Section 3.3 is devoted to the compatibility of the Pontryagin term in
the trace anomaly with supersymmetry.
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3.2 One-loop trace anomaly in chiral theories

The model we will consider is the simplest possible one: a left-handed spinor
coupled to external gravity in 4D. The action is

S =

∫
d4x

√
|g| iψ̄Lγ

m(∇m +
1

2
ωm)ψL (3.5)

where γm = ema γ
a, ∇ (m,n, ... are world indices, a, b, ... are flat indices) is the co-

variant derivative with respect to the world indices andωm is the spin connection:

ωm = ωabm Σab

where Σab = 1
4
[γa, γb] are the Lorentz generators. Finally ψL = 1+γ5

2
ψ. Classi-

cally the energy-momentum tensor

Tµν =
i

2
ψ̄Lγµ

↔
∇νψL (3.6)

is both conserved on shell and traceless. At one loop to make sense of the calcu-
lations one must introduce regulators. The latter generally break both diffeomor-
phism and conformal invariance. A careful choice of the regularization procedure
may preserve diff invariance, but anyhow breaks conformal invariance, so that the
trace of the e.m. tensor takes the form (3.4), with specific nonvanishing coefficients
a, c, e. There are various techniques to calculate the latter: cutoff, point splitting,
Pauli-Villars, dimensional regularizations. Here we would like to briefly recall the
heat kernel method utilized in [2] and in references cited therein (a more complete
account will appear elsewhere). Denoting by D the relevant Dirac operator in (3.5)
one can prove that

δW = −

∫
d4x
√
−gσT µ

µ = −
1

16π2

∫
d4x
√
−gσb4

(
x, x;D†D

)
.

Thus

T µ
µ = b4

(
x, x;D†D

)
(3.7)

The coefficient b4
(
x, x;D†D

)
appear in the heat kernel. The latter has the general

form

K (t, x, y;D) ∼ 1

(4πt)
2
e−

σ(x,y)
2t

(
1+ tb2 (x, y;D) + t2b4 (x, y;D) + · · ·

)
,

where D = D†D and σ (x, y) is the half square length of the geodesic connecting x
and y, so that σ (x, x) = 0. For coincident points we therefore have

K (t, x, x;D) ∼ 1

16π2

(
1

t2
+
1

t
b2 (x, x;D) + b4 (x, x;D) + · · ·

)
. (3.8)

This expression is divergent for t → 0 and needs to be regularized. This can
be done in various ways. The finite part, which we are interested in, has been
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calculated first by DeWitt, [3], and then by others with different methods. The
results are reported in [2]. For a spin 1

2
left-handed spinor as in our example one

gets

b4
(
x, x;D†D

)
=

1

180× 16π2

∫
d4x
√
−g
(
aE4 + cW

2 + e P
)

(3.9)

with

a =
11

4
, c = −

9

2
, e =

15

4
(3.10)

This result was obtained with an entirely Euclidean calculation. Turning to the
Minkowski the actual e.m trace at one loop is

Tµ
µ =

1

180× 16π2

(
11

4
E+ cW2 + i

15

4
P

)
(3.11)

As pointed out above the important aspect of (3.11) is the i appearing in front of
the Pontryagin density. The origin of this imaginary coupling is easy to trace. It
comes from the trace of gamma matrices including a γ5 factor. In 4d, while the
trace of an even number of gamma matrices, which give rise to first two terms
in the RHS of (3.11), is a real number, the trace of an even number of gamma’s
multiplied by γ5 is always imaginary. The Pontryagin term comes precisely from
the latter type of traces. It follows that, as a one loop effect, the energy momentum
tensor becomes complex, and, in particular, since T00 is the Hamiltonian density,
we must conclude that unitarity is not preserved in this type of theories. Exactly
as chiral gauge theories with nonvanishing chiral gauge anomalies are rejected as
sick theories, also chiral models with complex trace anomalies are not acceptable
theories. For instance the old-fashioned standard model with massless left-handed
neutrinos is in this situation. This model, provided it has an UV fixed point, has
a complex trace anomaly and breaks unitarity. This is avoided in the modern
formulation of the electroweak interactions by the addition of a right-handed
neutrino (for each flavor), or, alternatively, by using Majorana neutrinos. So, in
hindsight, one could have predicted massive neutrinos.

In general we can say that in models with a chirality unbalance a problem
with unitarity may arise due to the trace anomaly and has to be carefully taken
into account.

3.3 Pontryagin density and supersymmetry

In this section we discuss the problem posed by the possible appearance of the
Pontryagin term in the trace anomaly: is it compatible with supersymmetry? It is
a well known fact that trace anomalies in supersymmetric theories are members
of supermultiplets, to which also the Abelian chiral anomaly belongs. Thus one
way to analyse this issue would be to try and supersymmetrize the three terms
(3.1,3.2) and (3.3) and see whether they can be accommodated in supermultiplets.
This direct approach, however, is far from practical. What we will do, instead, is to
consider a conformal theory in 4D coupled to (external) supergravity formulated in
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terms of superfields, and find all the potential superconformal anomalies. This will
allow us to see whether (3.3) can be accommodated in an anomaly supermultiplet
as a trace anomaly member.

3.3.1 Minimal supergravity

The most well known model of N = 1 supergravity in D = 4 is the so-called
minimal supergravity, see for instance [4]. The superspace of N = 1 supergravity
is spanned by the supercoordinates ZM = (xm, θµ, θ̄µ̇). In this superspace one
introduces a superconnection, a supertorsion and the relevant supercurvature.
To determine the dynamics one imposes constraints on the supertorsion. Such
constraints are not unique. A particular choice of the latter, the minimal constraints,
define the minimal supergravity model, which can be formulated in terms of
the superfields R(z), Ga(z) andWαβγ(z). R andWαβγ are chiral while Ga is real.
One also needs the antichiral superfields R+(z) and W̄α̇β̇γ̇(z).Wαβγ is completely
symmetric in the spinor indices α,β, .... These superfields satisfy themselves
certain constraints. Altogether the independent degrees of freedom are 12 bosons
+ 12 fermions. One can define superconformal transformations in terms of a
parameter superfield σ. For instance

δR = (2σ̄− 4σ)R−
1

4
∇α̇∇α̇σ̄

δGa = −(σ+ σ̄)Ga + i∇a(σ̄− σ)

δWαβγ = −3σWαβγ

To find the possible superconformal anomalies we use a cohomological approach.
Having in mind a superconformal matter theory coupled to a N = 1 supergravity,
we define the functional operator that implements these transformations, i.e.

Σ =

∫
xθ

δχi
δ

δχi

where χi represent the various superfields in the game and xθ denotes integration
d4xd4θ. This operator is nilpotent: Σ2 = 0. As a consequence it defines a coho-
mology problem. The cochains are integrated local expressions of the superfields
and their superderivatives, invariant under superdiffeomorphism and local super-
Lorentz transformations. Candidates for superconformal anomalies are nontrivial
cocycles of Σ which are not coboundaries, i.e. integrated local functionals ∆σ,
linear in σ, such that

Σ∆σ = 0, and ∆σ 6= Σ C

for any integrated local functional C (not containing σ).
The complete analysis of all the possible nontrivial cocycles of the operator Σ

was carried out in [5]. It was shown there that the latter can be cast into the form

∆σ =

∫
xθ

[
E(z)

−8R(z)
σ(z)S(z) + h.c.

]
(3.12)
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where S(z) is a suitable chiral superfield, and all the possibilities for S were
classified. For supergravity alone (without matter) the only nontrivial possibilities
turn out to be:

S1(z) =WαβγWαβγ and S2(z) = (∇̄α̇∇̄α̇ − 8R)(GaG
a + 2RR+)(3.13)

(the operator (∇̄α̇∇̄α̇ − 8R) maps a real superfield into a chiral one).
It is well-known that the (3.12) cocycles contain not only the trace anomaly, but

a full supermultiplet of anomalies. The local expressions of the latter are obtained
by stripping off the corresponding parameters from the integrals in (3.12).

In order to recognize the ordinary field content of the cocycles (3.13) one has
to pass to the component form. This is done by choosing the lowest components
of the supervielbein as follows:

EM
A(z)

∣∣
θ=θ̄=0

=

ema(x) 12ψmα(x) 12 ψ̄mα̇(x)0 δµ
α 0

0 0 δµ̇α̇


where ema are the usual 4D vierbein and ψmα(x), ψ̄mα̇(x) the gravitino field
components. Similarly one identifies the independent components of the other
superfields (the lowest component of R and Ga). For σwe have

σ(z) = ω(x) + iα(x) +
√
2Θαχα(x) +Θ

αΘα(F(x) + iG(x)) (3.14)

where Θα are Lorentz covariant anticommuting coordinates, [4]. The component
fields of (3.14) identify the various anomalies in the cocycles (3.13). In particularω
is the parameter of the ordinary conformal transformations and α the parameter
of the chiral transformations. They single out the corresponding anomalies. At
this point it is a matter of algebra to write down the anomalies in component.
Retaining for simplicity only the metric we obtain the ordinary form of the cocycles.
This is

∆(1)
σ ≈ (3.15)∫
x

e
{
ω

(
RnmklRnmkl − 2RnmRnm +

1

3
R2
)
−
1

2
αεnmlkRnmpqRlkpq

}
for the first cocycle (≈ denotes precisely the ordinary form), and

∆(2)
σ = 4

∫
x

eω
(2
3
R2 − 2RnmRnm

)
(3.16)

for the second. Taking a suitable linear combination of the two we get

∆(1)
σ +

1

2
∆(2)
σ ≈ (3.17)∫

x

e
{
ω
(
RnmklRnmkl − 4RnmRnm +R2

)
−
1

2
αεnmlkRnmpqRlkpq

}
We see that (3.15) containW2 while (3.17) contains the Euler density in the terms
proportional toω (trace anomaly). They both contain the Pontryagin density in
the term proportional to α (chiral anomaly).
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In conclusion ∆(1)
σ corresponds to a multiplet of anomalies, whose first component is

the Weyl density multiplied byω, accompanied by the Pontryagin density (the Delbourgo-
Salam anomaly) multiplied by α. On the other hand ∆(2)

σ does not contain the Pontryagin
density and the part linear inω is a combination of the Weyl and Gauss-Bonnet density.
None of them contains the Pontryagin density in the trace anomaly part. Therefore
we must conclude that, as far as N = 1 minimal supergravity is concerned, our
conclusion about the compatibility between the Pontryagin density as a trace
anomaly terms and local supersymmetry, is negative.

3.3.2 Other nonminimal supergravities

As previously mentioned the minimal model of supergravity is far from unique.
There are many other choices of the supertorsion constraints, beside the minimal
one. Most of them are connected by field redefinitions and represent the same
theory. But there are choices that give rise to different dynamics. This is the case
for the nonminimal 20+20 and 16+16 models. In the former case one introduces
two new spinor superfields Tα and T̄α̇, while setting R = R+ = 0. This model
has 20+20 degrees of freedom. The bosonic dofs are those of the minimal model,
excluding R and R+, plus 10 additional ones which can be identified with the
lowest components of the superfields S = DαTα − (n + 1)TαTα and S̄, D̄α̇Tα
and DαTα̇. The superconformal parameter is a generic complex superfield Σ

constrained by the condition

(DαDα + (n+ 1)TαDα)
[
3n(Σ̄− Σ) − (Σ̄+ Σ)

]
= 0

where n is a numerical parameter. It is easy to find a nontrivial cocycle of this
symmetry

∆(1)
n.m. =

∫
x,θ

EΣWαβγWαβγ
T̄α̇T̄

α̇

S̄2
+ h.c.

and to prove that its ordinary component form is, up to a multiplicative factor,

∆
(1)
Σ ≈
1

4

∫
x

e
{
ω

(
RnmklRnmkl − 2RnmRnm +

1

3
R2
)
−
1

2
αεnmlkRnmpqRlkpq

}
where ω + iα is the lowest component of the superfield Σ. That is, the same
ordinary form as ∆(1)

σ . As for other possible cocycles they can be obtained from the
minimal supergravity ones by way of superfield redefinitions. To understand this
point one should remember what was said above: different models of supergravity
are defined by making a definite choice of the torsion constraints and, after such a
choice, by identifying the dynamical degrees of freedom. This is the way minimal
and nonminimal models are introduced. However it is possible to transform the
choices of constraints into one another by means of linear transformations of the
supervierbein and the superconnection, [7,8]:

E ′M
A = EM

BXB
A, E ′A

M = X−1
A
BEB

M, Φ ′MA
B = ΦMA

B + χMA
B
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for suitable XAB and χMAB. This was done in [6] and will not be repeated here.
The result is a very complicated form for the cocycle ∆(2)

n.m., derived from ∆
(2)
σ .

However the ordinary component form is the same for both.
As for the 16+16 nonminimal supergravity, it is obtained from the 20+20

model by imposing

Tα = Dαψ, Tα̇ = Dα̇ψ

where ψ is a (dimensionless) real superfield. The independent bosonic dofs are the
lowest component of S, S̄, cαα̇ and Gαα̇, beside the metric. The superconformal
transformation are expressed in terms of a real vector superfield L and an arbitrary
chiral superfield Λ satisfying the constraint

(DαDα + (n+ 1)TαDα) (2L+ (3n+ 1)Λ) = 0.

The derivation of the nontrivial superconformal cocycles is much the same as
for the previous model. The end result is two cocycles whose form, in terms of
superfields, is considerably complicated, but whose ordinary form is the same as
∆

(1)
σ and ∆(2)

σ .
At this point we must clarify whether the cocycles we have found in 20+20

and 16+16 nonminimal supergravities are the only ones. In [6] a systematic coho-
mological search of such nontrivial cocycles has not been done, the reason being
that when dimensionless fields, like ψ and ψ̄, are present in a theory a polynomial
analysis is not sufficient (and a non-polynomial one is of course very complicated).
But we can argue as follows: consider a nontrivial cocycle in nonminimal or 16+16
nonminimal supergravity; it can be mapped to a minimal cocycle which either
vanishes or coincides with the ones classified in [5]. There is no other possibility
because in minimal supergravity there are no dimensionless superfields (apart
from the vielbein) and the polynomial analysis carried out in [5] is sufficient to
identify all cocycles. We conclude that the 20+20 and 16+16 nonminimal nontriv-
ial cocycles, which reduce in the ordinary form to a nonvanishing expression,
correspond to ∆(1)

σ and ∆(2)
σ in minimal supergravity and only to them.

None of these cocycles contains the Pontryagin density in the trace anomaly
part. Therefore we must conclude that, as far as N = 1minimal and nonminimal
supergravity is concerned, our conclusion about the compatibility between the
Pontryagin density as a trace anomaly terms and local supersymmetry, is negative.

3.4 Conclusion

A component of the trace anomaly which appear in chiral theories (the Pontryagin
density) may have interesting implications. It is a CP violating term and, as such, it
could be an interesting mechanism for baryogenesis. At one loop, as we have seen,
this term violates unitarity and the only use we can make of it is as a selection
criterion for phenomenological models with an UV fixed point. If, on the other
hand, by some other kind of mechanism still to be discovered, this term appears
in the trace of the em tensor with a real coefficient, it may become very interesting
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as a CP violating term. In the last section we have seen that, however, this is
incompatible with supersymmetry. In other words, if such mechanism exists, it
can become effective only after supersymmetry breaking. The search for the P
term continues.
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