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The solution of differential equations of fluid flow
by numerical program
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Abstract: The finite difference methods are used in the solution of engineering
problems and in fundamental studies of the behavior of fluids. Considering
the basic equations of energy, momentum, and mass conservation in a form
in which the fluid properties are constant. In the differential equations the
limiting assumptions of linear behavior, incompressibility, continuum
properties, and simplifications of boundary properties are given for the
solution.
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INTRODUCTION

The basic equations of energy, momentum, and mass conservation are given in the form
in which the fluid properties are constant. These may be written as follows:

Energy:

p(%+u.V]l =kV’T -~ PVu+AVu) +ud (1)
Momentum:

p[%+u.V}A =pg-VP+A+u)V(V.u)+uviu 2)
Mass:

[;+u.VJp =—p(Vu) 3)
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where / is the internal energy per unit mass, T is the temperature, P is the pressure, u is
the velocity, p the density, and @ the frictional heating. k, u, and A are the thermal
conductivity and the coefficients of dynamic and kinematic viscosity and in the Equation
of (2) g is given as the body force. The equations considered here are of flows in which
the density variations are small and can be neglected in the sense of the Boussinesq
approximation.

The basis of this approximation is that there are flows in which the temperature varies
little, and therefore the density varies little, yet in which the buoyancy drives the motion.
Thus the variation in density is neglected everywhere except in the buoyancy term. Let p,
denotes the density at the bottom where temperature is 7;,. For small temperature
difference between the top and bottom layer we can write

p =pb[1_a(T_Tb)]

where a is a coefficient of volume expansion. For liquid « is in the range 10~ to 10™. For
a temperature variation of moderate amount we have

M:M:ap"_m«l

p b p b
but the buoyancy term g(p—p,) is the same order of magnitude as the inertia,

acceleration or the viscous stress so is not negligible.

The differential in density in the continuity equation are of the order & and hence
neglected to give

% o @)
ox .

J

as for an incompressible fluid. Then the stress tensor becomes

Ju. Oou.
T.=—pf. iy )
Y POy TH ax.+8x.

J 1

Again the momentum equation becomes

ou, du, 9
P[ atl T, ax; ]z_gpb[l_a(T_Tb)biB _aifi"'.uA”i

which after using the Boussinesq approximation becomes (after a little manipulation)
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o o, ox, | p,

o, + ou, __ 9 (i+ng—ag(Tb ~T),, +VAu, Q)

where A=0°/ axj is the Laplacian operator.

Now we consider the energy equation. The velocity is of the order [OC |6T | gd ]1/2 and thus

the ratio of @ term to the term due to conduction of heat is of the order of

uogd
k

and this is in the range from 107 to 10™ for gases and liquids and the viscous dissipation
is neglected.

The term
du _pDp_p(dp) DT __ DT
dx, p Dt p\dT ), Dt P D

Using perfect gas relations p=pRT, R=(c,—¢,) and oe =1/T we get

ou, DT DT
—p—t =—apRT == =-p(c, —c,)—
ank p Dt p( p ‘l)) Dt

Thus though du, /dx, =0 holds in the equation of continuity, we should not use this

relation in the heating due to compression term for gases. For liquids however, this
heating is negligible. Thus the final form of the energy equation is

+u, — =KAT, (6)

where K =k/p,c, for a perfect gas and k/p,c for liquids. Equations (4), (5) and (6)

are called Boussinesq equations and describe the motion of a Boussinesq fluid.

The density variation is neglected in all terms except that involving the body force g (3).
In this case we take

p=p,+6p=p,—p,aT-T,) (7
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where « is the volume expansion coefficient of the fluid. Neglecting viscous heating @
we shall take / =c T, where c, is the heat capacity at constant volume. Grouping the

constant fluid properties in the form

xX= L and v = ld (8)
pc, p

we may rewrite (1) through (3) as

0 2
(atw.v)r:—x(v r ©)

[%M'V}=g—a(T—To)g—E+VV2U (10)

Vu=0 (11)
The vorticity is defined by
= Vxu (12)

Equation (10) may be expressed in terms of vorticity in the form

[;+u.V}u=—aV(T)xg+vV2w (13)

Equations (9), (11), (12) and (13) can be used to establish a set of two-dimensional
equations that then can be expressed in finite difference form. In two dimensions the zero
divergence of velocity (11) permits us to make use of a stream function defined by the
equations

o and VE-a\P (14)

u=—
dy 0x

in a rectangular coordinate system. Through (12) the mass conservation equation leads to
the relation

2. 2,

The vorticity has only one component in the two-dimensional case and is hence treated as

a scalar. If g is taken as a constant body force (gravity) directed in the negative y
direction, the momentum equation (13) becomes
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00 Ju®w o oT o w dw
IO LD e (16)
ot dx dy ox

Finally, the energy equation (9) in two dimensional form becomes

)

oT ouT T o’T 9T
—+ + =X =5t
ot ox dy ox* dy

THE DIFFERENCE EQUATIONS

To derive a set of finite difference equations, corresponding to differential equations (14)
through (17), we prescribe a mesh of cells through which the fluid flows. In Figure 1 it is
given one such prescription showing where the variables may be defied for convenient
differencing. A square mesh with side length a is given in Figure 1, but a rectangular
mesh where Ax is not equal to Ay can be used. The designation of velocities at half points
along elements of the cells is important for satisfying conservation properties.
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Figure 1. A representative section of the lattice of points used in the finite
calculation (ABRAHAM AND TILLER, 1972)

We consider the cell as a volume element of fluid and prescribe mass conservation by

u u 1%

+
Ax Ay

i, 2 "W 2 i+1/2,j+1 —V

i+1/2,j — O (18)

When the velocities are given by

ViV and v — Vi, “Va, (19)

U = _
i,j+1/2 i+1/2,
! Ay ’ Ax
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the continuity equation is automatically satisfied in difference form. Further, the
continuity condition is satisfied for groups of four cells in the form

u U, + Vijs1 — Vi —0 20)

2Ax 2Ay

i+l

if we prescribe the last equation

Uy, = Vi Wi ja _ Uiy i TU o0 1)
2Ay 2

Also, if the convection of energy is given in the form

(UT)1+1,A1' _(uT)i—l,j + (VT)i,j+1 _(VT)i,j—l (22)

2Ax 24y

no extraneous source of sinks of heat will result (ABRAHAM AND TILLER, 1972). This is
true both because of the manner of centering the velocities and because of the use of
differences of products of the variables. An analogous form to Equation (22) above also
may be used for the transport of vorticity. The vorticity at the point 7, j may be defined in
terms of nearest neighbor velocities as

Ui i Ui Viaon — Vi,
o, =— e B - (23)
Ay Ax
Using Equation (19) above,
_ (V/i,j _llji.j—l) - (ll/i,j-H _Wi,j) " (Wi,j _ll/i+1,j) - (W—li,‘/‘ _llli,j (24)
i A Ax?

An explicit differencing scheme with centered time differences is used in this formulation
(ABRAHAM AND TILLER, 1972). A variable value at the current time is designated by a
superscript 7. Backward and forward time values are labeled with superscripts n-/ and
n+1, respectively.

T”jH _ Tn.fl
L) LN — Un,Vn,Tn 25
2At f( ) ()

For numerical stability it is necessary to use a special form for the conduction terms, also
involving backward and forward time values (RICHTMYER, 1957). In these terms the
Dufort-Frankel method is used as, (DUFORT AND FRANKEL, 1953),
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n-1
iy T (26)
5] 2

The two-dimensional conduction terms are

( 1n1+1 _Tznj) (:n Tzn; I) ( :1 J _7-;"]) (_zl; _7.;:1,_;)

Ay Ax?

27

It is convenient for variable mesh specification to introduce a factor f = Ax/Ay . Then if

Ay =a, Ax = fa, the complete set of difference equations becomes (ABRAHAM AND
TILLER, 1972)

(a) Energy conservation (ABRAHAM AND TILLER, 1972)

T)! T n
TinH —[1/ 2%6f f ;"1 {Tin.l _@ (M )H—] j (Ll )z+l JJ +(VT ) A —(VT)," |+
5J Cl f 5] a f i,j+1 o) (28)
248t T, + T " u 41,
fz { - ]fz L ]‘*’(Ti,jafl + Ti,_/—l - Tz; 1) }

(b) Vorticity (ABRAHAM AND TILLER, 1972)

"_H _|:1/ 2\/26[ .f2 -2|—1 :|{a)in/1 _Q (ua))i+1/ (u(j)), —-1,j +(Va))l g (Vw),, ]
a f " f

a
i+,
—0,, - o;; }

(29)

+ "

fz i,j+1

i+l,j i-1,j

Tn+l _ Tn+l + X
fa a

LG (s ) a[ g

(c) Stream function (ABRAHAM AND TILLER, 1972)

1 2
Vas= m (‘l/m,_, Vi )+ foz_-i-l) (‘Vt,_i+1 Y, ta'e, ) (30)

(d) In Equation (29) it is chosen to give the temperature gradient term using advanced
times since these are available if the temperature is computed first. The order of
calculation, assuming known values throughout the mesh at times » and #n-1, is that
of advancing the time to 7"/ for the temperature field, then the vorticity field,
following this with a simultaneous solution of the stream function field with the new
vorticities as source terms in Poisson’s equation. The time step size Af must in
general be restricted in size both for stability and accuracy (FROMM, 1963). In
Equation (30) we do not indicate an iteration procedure but latest values are always
used. These latest values of course depend upon the direction in which one sweeps
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the field of values. A simple criterion to determine adequate convergence of
Equation (30) is given from the experimental set-up (ABRAHAM AND TILLER, 1972).

v —y" <0.0002

€2))

The Block Diagram for incompressible flows computation:

INPUT DATA
'

INFUT GEOM
(Inpurt of Gevrnalry)
FRINT GEOM
(GeoTnairy Prind)

l

GUESS SOL

(Inmial Fuess schoiion)
— |
CALCU PSI
(Sohoion «f ¥ w1 )

WATT (B oundary @update)

Figure 2. Block Diagram of the numerical program

For understanding of the numerical
methods, it is included a skeleton program
for computing incompressible flows. Only
the main equation of the incompressible
flows are used, giving just the basic flow
dynamics in the absence of all but the
convective or inertial and viscous forces.
There is a certain completeness in the
given program in that additions may be

made as insertions without involving major
reprogramming.

We begin the block program by entering
INPUT DATA which reads input data. The
input data include a minimum of input
parameters such as grid size, grid aspect
ratio, print interval, and Reynolds number.
The INPUT DATA program also is used to
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consolidate parameters to provide for
simplified constants that will later speed
the computation. It also determines the size
of the initial time step. The program
INPUT GEOM, like INPUT DATA, reads
input data but is specialized to give a
flexibility of geometry with a minimum
number of data words. The boundary must
consist of straight line segments passing
through mesh points, but this is the only
restriction on the geometry. INPUT
GEOM also establishes the initial values
for boundary points. The program PRINT
GEOM gives a symbolic printout of input
geometry for checkout purposes. The
symbols used characterize the type of
bundary condition that is to be imposed.

Before starting the computation it is
convenient to introduce an additional
program GUESS SOL to establish initial
guess values based on already prescribed
boundary values. An intelligent guess
enables us to speed up the convergence of
our initial y solution. This initial guess
varies from a crude layout of values given
by a linear interpolation between boundary
values all the way to known exact
solutions. If some initially specified
distribution is to be perturbed, this is also
programmed in the subroutine (GUESS
SOL). The program enters the subroutine
CALCU PSI for actual solution of
Poisson’s equation. Here, through an
iteration averaging process, it is obtained
the stream function distribution. Most
often the stream function is the potential
flow solution for the given geometry.

After obtaining convergence to some
specified accuracy it is established
boundary values of vorticity at no-slip
surfaces. This is done in the subroutine
WATT. At this point in the calculation we
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have a complete solution with a consistent
set of numbers for y and . It also may be
desirable to include input parameters or
functions evaluated from the data for
identification relative to the printouts. The
program PRINTMAP is used to print a
sheet of normalized and highly rounded
values to give a picture that bears some
resemblance to a contour map. A good
printer map in some cases may provide a
substitute for a contour map (ABRAHAM
AND TILLER, 1972). The PRINTDATA
program simply prints out the data values
at all grid points in a layout that is
geometrically similar to the given maps but
usually requires several sheets to contain
the information. Finally PRINTPARA
serves as a labelling program, providing
orientation information for the given
printouts. This is a logical point to
terminate the program.

However, we have not yet advanced the
solutions in time, but we have only
obtained a consistent initial solution. From
this initial solution we now may reevaluate
the size of time step required to maintain
stability. This is done in the program
CHECKSTA which tells us to reduce the
time step that was initially furnished, we
can use CHECKSTA to reevaluate any
constants that are affected by this change.
The arrow in the block diagram symbolizes
a repeated reentry into the program until
stability conditions are appropriate for
proceeding with the computation. The next
set of subroutines allows for the
advancement of the vorticity distribution to
correspond to a new time, one time
increment as At  established by
CHECKSTA beyond the previous solution.
VCONVECCAL computes the convection
of the wvorticity distribution in the
coordinate direction of the u velocity in the
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x-coordinate. Similarly, HCONVECCAL
gives the convection associated with the v
velocity in the y-direction. Finally,
DIFFUCAL incorporates the diffusion of
vorticity that will occur over the time
interval. The time-advanced distribution of
vorticity will induce a change in the flow
so we now must evaluate a new stream
function distribution by reentering CALCU
PSI. Each passage through this loop of
subroutines amounts to the advancement in
time of the solution by a small discrete
time interval. We may or may not record
data at each time step, but the stability is
tested every time step.

One important point about the program
listing is that there are no details missing
so far as the physics of the calculation is
concerned. Because the program has been
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