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ABSTRACT: This paper describes our implementation of a primal-
dual interior point algorithm for linear programming. The topics 
discussed include economic data structures, efficient methods 
for some sparse matrix operations, sparse Cholesky factoriza
tion, methods for handling dense columns and comparisons with 
simplex based methods. Extensive numerical results demonstrate 
the efficiency of the resulting algorithm as well as some prob-
lems which remain to be solved. The role of interior point based 
solvers in the process of solving large-scale mathematical 
programming models is also discussed. 
SNOVANJE, IMPLEMENTACIJA IN TESTIRANJE PRIMARNO-DUALNE METODE 
NOTRANJE TOČKE ZA REŠEVANJE LINEARNIH PROGRAMOV: V sestavku je 
opisana naša implementacija primalno-dualne metode notranje 
točke za reševanje linearnih programov. Obravnavane so 
ekonomične podatkovne strukture, učinkoviti načini za izvajanje 
nekaterih operacij z razpršenimi matrikami, razpršeni razcep po 
Choleskem, metode za delo z gostimi stolpci ter primerjave z 
metodo simpleksov. Izčrpni rezultati numeričnega testiranja 
kažejo tako učinkovitost razvitih algoritmov, kot tudi nekatere 
probleme, ki jih je treba še razrešiti. Opisana je tudi vloga 
reševanja z metodami notranje točke v splošnem kontekstu modeli
ranja in reševanja velikih problemov matematičnega programiran
ja. 

Introduction 

The J iiiear piograj|iiiiing (LP) problem may bo s t a tod in the 

iiiiniiiiize (niaxiniize} c''x 

subject t o : A x = b , J < x < u 
(1 ) 

uheie A i s a rectaj igular niatr ix, c , x, 1, u, b ai-e 
coluinn vec to t s and the symbol '' denotes t ranspose of a 
vectof oi- iriatrix. Some of bounds in 1 and u may be 
i .n f in i te . The IniportEint fea tu res of t yp i ca l LP 
oons t r a in t inatrix A a re i t s gu i t e l a rge dimension, 
ai'jiiisity and a spec i f i c s t ruc tu i ' e i . e . p a t t e r n s in whieh 
i t s tioiizero eleiiients appear. A c l a s s i c a l way for solving 
tlie abo\'e pi'obleiii i s the siraplex algoritJuu, develoi^ed by 
G.B. Dantzig in l a t e 1940's . 03ntemporary v a r i a n t s of 
Lhis ulgoritlun, Khicli a re included in many comiiiercial or 
\.uiivo.Tsity deveioped softvvare packages, a re t a i l o r e d for 
so l \ i i ig guiLe l a rge problenis in a f a s t and r e l i a b l e way. 
llou'(,'\er, t h i s e s t ab l i shed algori thm has got recen t ly a 
sur ious coiiiijetitor- in the so c a l l e d i n t e r i o r point 
im.thods. Tliese luetliods becajne widely laiown af t e r 
Kaniiarkai''s pub l i ca t ion (Kaniiarkar, 1984) of JJUI 
algorithm tiiaL i s claimed to be mueh f a s t e r for 
pi-actical problenis than the siraplex method. Altliough 
Lhese i n i t i a l proniises appeared to be too o p t i m i s t i c , 
Kaiiiiarkar's algorithm and o ther i n t e r i o r point methods 
a re iiow regaiiJed as a compet i t ive methods for solving LP 
problenis. This i s p a r t i c u l a r l y t r u e when solving of some 
s |x;cif ic fomis of super s i z e problenis on supercomputers 
ia cunsidered. Such kind of problenis, which a re often 
(Micountored in conimunication, t r a n s p o r t a t i o n and 
iiiLlLtary opera t ions , a r e very sparse aiid usua l ly exh ib i t 

s ix;cif ic and genera l ly well-beliaved bli>i.;l; al.ruct.uroH 
tha t caii be e f f e c t i v e i y exp lo i ted . Kfforts to develop 
sof tuare systenis for solving super s i z e LP problenis with 
Kaniiarkar's filgoritlini proved to be \'ery f r u i t i u l . Oue of 
the outstanding s t eps in t h i s d i r e c t i o n i s AT&T's KORBX 
systeni. The systein c o n s i s t s of botli hardwai-e, which ušes 
p a r a l l e l prooessing, and softwai"e which evj j loi ts the 
resources of t h i s hai-divare (Carolaii e t aJ . , 1990). 
nowever', there i s a l so a necsi for ex'ploririg a b i l i t y of 
i n t e r i o r point methods for solving LP on a more widely 
ava i l ab l e s e r i a l computers. In the paper we present oiir 
woi'l( in t h i s di i -ect ion, whioh was perfor'nieti on MS-DOS 
personal computers and VAJiAfIS niiniconiputers. 

Algorithms 

Nowadays a plethora of research pai^ers is yjublished 
where different interior point, methods are ja-oposed. Wr; 
iiave employed the variant of a primal-dual interior 
point method which is supposed to be among the most 
efficient (Lustig et al. 1989). In order to mal̂ e cleui-
differences between such kind of methods and simplex 
based algorithms, we first give a brief explanation of 
the revised simplex algoritlun. The steps of this 
algorithm are roughly described within tht: following box 
whore B denotes the basis niatrix and CB the cost vectoi-
of the basic variables. It is therefore assumed that 
there is a set of in basic variables, which is usuallv 
clianged after each iteration in such a way that one 
nonbasi<; variable enters the basis and one basie 
variable leaves the basis. The informal description 
which follows is related to the second phase of the 
priinal i-evised siniplex algorithm, where the lxisic 
feasible solution is already known. 



-Rev i sed-s impi ex-riie thod-

Rl: Produce a pricing vector: H =: CD'''B-' (BTRAN). 

R2: Select the entering variable XB (colunm u = Ata) 
according to a given pricing strategy. If no 
entering variable ia found, terminate (solution 
is optimal). 

R3: Update the entering column: v = B"'u (FTRAN). 

R4: Deterniine the leaving variable. If none is found, 
tenninate (problem is unbounded). 

R5: Update the basis niatrix representation; 
refuctorize if necessary, Go to Rl. 

It must be noted however that there is not yet general 
agreement about what are the best algoritlims in detail, 
Euid how they should be impleraented in the most efficient 
way. In general, number crunching operations are 
concentrated uithin the steps Rl and R3 where two 
systeuis of linear equations have to be solved (these 
ojserations are often refered to as BTRAN and FTRAN). It 
is very iinportant that after basis change updating of 
basis iuatrix is possible without perfornung full 
factorization, which has to be done only periodioally. 
Other steps, particularly R2 and R4, deal mainly with 
logic decision and "book-keeping" problems. It is also 
obvious that a rather sophisticated data structures must 
be eraployed in order to exploit sparsity (Duff et al., 
1989). 

Interior jraint methods differ considerably from the 
simplex method. Primal-dual interior point raethod, which 
we have deoided to implement, requires LP problem being 
foniiulated in the following forin: 

raininiize c'''x 

subject to: A\ = b, x + s = u, x > O, s > O 

with the asso':;iated duai 

iiiaxiiiiize b''y - U^K 

subject to; A'''y - w + z = c, w > 0 , z > 0 

(2) 

(3) 

Fortunately, formulation (2) can be derived in a 
straightfoiTiRird way from formulation (1). An outline of 
the algorithm is sketched within the following box, 
where X, S, W and Z are diagonal matricea with diagonal 
elements equal to the components of corresponding 
vectors x, s, w and z. 4 is the user supplied constant 
which is usually computed by uslng the following 
f onnula: 

* = *(n) = 
n2 n < 5000 

n/n n > 5000 

and M = Tili(n)*inax([c|(i., |bj»} where t is a scalar 
multiplier wliich is used to allow variations of the 
initial |j, Furthei-more, dn = A''y*' + z" - c, where y<' and 
z° are initial y and z, and e = (1,1,...,!). od, ap are 
some appropriate step lengths in tlie primal and dual 
ai:iaces i'esi>3ctively. These step lengths must be chosen 
in a way which ensui-es nonnegativity of variables x, s, 
z and w, for exuaiple: 

U|, = ai)*min {minj {xj/-6xj , 6xj <0), minj (sj/6xj , 6xj>0|} 

Ud = uo *min {mirij (zj/-6zj , fiZj <0), minj (wj/-6wj , 6wj<0)) 

w)iere 0<uo<l is the user supplied parameter which is 
usually set to be equal 0.9995. 

Initial feasibility of the problem is formally assured 
by adding column Axo - b and row do to the matrix A, 
together with Xa and ya(=-Zb)i which are corresponding 
primal ajid dual variable with initial value 1. In order 
to achieve feasibility their values must decrease to 0. 

KI: 

K2: 

K3: 

K4: 

K5: 

K6: 

K7: 

K8: 

Pr imal -dua l - in te r ior -poin t -mothod 

Compute p = {c''x + u''v - h^y + M(xa - y a ) ) / * 

Compute 

Com)Xi te 

6 = (S->W + X->Z)-' 

p o s i t i v e def i n i t e matrix AOA''. 

Perform Choleaky f a c t o r i z a t i o n of the ABA" 

Compute 

Compute 

Update 

o(n) = ij(S-i - X-' )e - (W - Z)e 

6y = -(AeA'')-MA6(o(n) + zodo) + 
(Ax - b)) 
5x = e(Ai'6y + o(p) - Zbdo ) 
6s = -6x 
6z - -uX- 'e + Ze - X-' Z6x 
6w = -pS- ' e + We - S-1 Wfix 

yne w = yoi (J - ad6y 
Xnew = Xoi d - ap 6 x 
Sne w = Sol d - a p 6 s 
Zoe w = Zol d - a d 6 z 
Wn e w = Wo 1 d - Ud 6w 

If r e l a t i v e d u a l i t y gap s a t i s f i e s r e l a t i o n : 

c''x + uTw - Vv 
< e 

1 + UT„ _ b T y | 

where 6 i s user supplied cons tan t , t ennina te 
( so lu t ion i s op t ima l ) . Otherwise go to KI. 

It was also assumed that the initial interior solution 
is supplied by the user. For exaniple, it is possible to 
ohoose X" z z" = min{e,u/2) and yo = O (Choi et al., 
1990). In general, interior point methtjds are not very 
sensible to the choice of the initial solution. 

The above description is based on two papers (Lustig et 
al. 1989, Choi et al. 1990) where algoritlmdc asix.-(:t-s of 
tlie raodularized fortran code OBl (Optiiiiizotion witli 
Barriers I) Kere doscribed. Our intention Kas to •Jevelop 
our own codo based on mentioned pajjers and stunjai'd 
methods for computing sparse Cliolesky faclorization 
(George, Liu, 1981). However, some of the implementation 
dctails are difforent, for example: 

a) In our implementation oolvmin A\o -. b and row do aru 
computed at eadh iteration, rather than only for the 
initial solution. xa and ya are defined as ratioK 
betneen current £ind initial m nomis of Axo - b iinJ 
do . Purtherraore, Xa and ya retain some s]7iall valuf 
even in the čase if their computed vsalue is zcro, 
Such approach enable us to save some sLoi-oge spacc-
and also, according to our experienoe, to improve 
accur'acy of the computed solution. 

b) Sometimes it is impossible for relative duality gup 
to reach prescribed 6 on step K8. In such cases we 
tei-minate algorithm when relative difference between 
tKo subscquent objective values become smaller than 
tlie prescribed constant, which is usuallly set to be 
0.1*€. 

On the wl>ole, published description of the algoritlun is 
good enougli to enable everyone to create, iiossib]y aftor 
some experimental investigation, worltable implemontation 
of a primal dual interior point method. Evidently the? 
algorithm consists mostly of floating point comi)Utat ions 
ajid consequently fortran is an obvious choice o C 
implementation language. Some featuros of the inloi-ior 
point metliods that make them so rauch different from thi' 
simplex method are obvious: 

1) Thei'0 is no partitioning into tosic and nonlsjsU-
variables. Tliis means that, in pi'inciple, ali 
variables and constraints are liaaidled in equal way 
during the solution process. 

2) Each iteration requires computationally expensive 
factorisation of positive definite matrix ur 
solution of the least squares problem. 



3) Solution vector x is always an interior point of the 
solution polytope. 

Feature 1) has a far-reaching consequences. It can be a 
riieans for. avoiding potential combinatorial problema 
arising in the movement from one basis to another which 
is typical for simplex method. On the other hand such 
approach iiiay degrade computational speed £ind stability, 

Tlie main computational problem of tjie interior point 
iiiethods is inversion of raatrix ASA^ or solution of the 
coi-responding linear least squares problem. This is 
usually done by computing spai-se Cholesky factorization 
of A6A''. In order to understand methods for doing this, 
one niust be acquainted with the methods for storing 
sparse matrices. In the next section the methods for 
storing sparse matrices which were applied in our 
implementation of primal-dual interior point methods are 
briefly described. 

Data structurea and implementation Issues 

Ex-ploitation of sparsity is based on the fact that only 
nonzero elements of sparse matrix (or vector) must be 
stored, together with infoiniation about their position 
within matrix (vector). In the čase of LP input data (A, 
b, C, u) uithin the franiework of interior point methods, 
we have eiiiployed the following data structures: 

1) Righthand-side vector b is stored Eis a dense vector. 

2) Constraint ii]atrix A is stored using three one 
diraensional vectors (XA,IA,CP) where 

XA = vector of nonzero values At j which are sorted by 
oolumns and (secondary) by row indices uithin a 
particular column, both in increased order. 

lA - vector of row indices of nonzero elements, which 
are sorted in a same raanner as XA. 

CP = vector of column pointers nhich consists of 
locations where the representation of columns 
begins in XA and lA. For example, elements of 
column i are ali in locations from CP(I) to 
CP(I+1)-1. 

3) Nonzero elements of c are stored (formally) as n+1. 
coluimi of A. liierefore they are stored betneen 
locations CP(N+1) and CP(N+2)-l in XA (values) and lA 
(indices). 

4) Noninfinite elements of u are stored (fonnally) as 
n+2. column of A. Therefore they are stored between 
locations CP(N+2) and CP(N+3)-l in XA (values) and lA 
(indices). 

Obviously, it is also necessary to store the matrix A9A'' 
and its triangular factor L, in the čase if Cholesky 
factorization is used uithin the solution process. These 
matrices can be stored using the same storage locations. 
Tlie ajnount of this storage is detennined by fill-in 
which generally can not be avoided during the Cholesky 
factorization of ASA^. It is therefore advisable to try 
to rainimize fill-in by appropriate reordering of rows 
and columns of ASA^. Ordering algorithms are essentially 
graph tc-cliniques for obtaining appropriate numbering of 
t)ie graph nodes. In our CEise nonzero structure of ASA'' 
represents an undirected graph G(X,E) with m nodes. The 
adjacency list of node x6X is a list containing ali 
nodes adjacent to x, which is represented by indices of 
nondiagonal nonzero elements of corresponding column of 
ASA^ . Tlie implementation of described structure is done 
by storing the adjacency lists sequentially in integer 
array AD,TOCY along with an index vector XADJ of length 
iM+1 containing pointers to the beginning of the lists in 
ADJNCT. Ttie extra entry XADJ{M+1) points to the next 
available location in ADJNCY (George, Liu, 1981). These 
arrays aie input data for ordering algorithms uhich can 
be generally divided in two groups: 

a) reoi-derings which try to minimize number of nonzero 
elements (and therefore fill-in) in triangular 

factor L. Although it is known to be NP-coHsplete 
problem (Duff et al. 1989) several reasonable good 
heuristics exist. One of tliem is the minimum degree 
algorithm. The name of this algoriOini is derived 
from its graph theoretic interpretation: in the 
graph associated with a syiiimetric sjjarse niatrix, 
tliis strategy corresponds to choosing that node foi-
the next elimination which has the least edges 
connected to it. 

b) i-eorderings which try to permute AGÂ f and triangular 
factor L into some particular desirable form. This 
can be for example so-called envelope or profile 
form. The most known algorithm of this type is the 
Reverse Cuthill-McKee algorithm. The objective of 
such kind of algorithms is to reorder the rows and 
columns of the matrix so that the nonzeroes in the 
obtained matrix are clustered near the main diagonal 
since this property is retained in the corresponding 
Cholesky factor L. Such a cluster is called the 
profile or envelope and is defined to contain also 
ali zero elements betueen the diagonal and the last 
nonzero element in the row or column. Tlie problem of 
minimizing the envelope size of a matrix is proven 
to be NP-complete (Billionet, Breteau, 1989) and 
consequently the Reverse Cuthill-McKee algorithm is 
only one among heuristic procedures for doing this. 

We have implemented both the minimum degree and the 
Reverse Cuthill-McKee algorithm uithin our LP package. 
In oi-der to give some insight into these methods, we 
shall 8how how they perform on the smallest exajiiple from 
the NETLIB library (Gay, 1985), which is known under the 
name AFIRO. This is the problem with constraint matrix 
having 27 rows and 51 columns which contain ali together 
102 nonzero elements. Its corresponding AdA' matrix has 
the structure as in the following picture, where only 
the upper triangular part is reproduced: 

1 2 3 4 5 6 7 
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 
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Figure 1. AFIRO - structure of the upper part of AOAT 

NondiEigonal emd diagonal nonzero elements are presented 
using symbols X and D respectively. It is obvious that, 
at least in this čase, matrix A6A''' is not as sparse as 
matrix A itself. Moreover, number of its nonzeroes raay 
substantially increeise during the subsequent Cholesky 
factorization. The following picture display3 how this 
sitution is controlled by applying the minimum degree 
algorithm. The produced ordering (permutation of rows 
and columns) is: (4,14,26,27,13,22,12,3,24,2,1,11,10,17, 
18,19,20,23,16,15,9,8,25,21,6,7,5) 
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Figure 2. AFIRO - structure of the Cholesky factor 

The above structure is determined not by actual 
iiuiuerical factorization but by simulation of it, or so 
called syinbolic factorization. The advantage of this 
appioach is that the data structures are set up once for 
ali, as the structure of the matrix does not change from 
one iteration to another. Obviously, at each iteration 
it is necessary to perfonn nuraerical factorization since 
AQA^ is changing along with diagonal matrix 6. The data 
sti-uctures retumed by the symbolic factorization can be 
prosented in a sparse storage scheme known as the 
ooiiipreased storage scheme of Sherman, cited in (George, 
Liu, 1981). The scheme has a storage array LNZ which 
will coiitain ali nonzero entries in the nondisigonal part 
of Cholesky factor L coluran-wise (or, which are the same 
iiumbei-s, in thie L^ row-wise), an INTEGER vector NZSUB 
which will hold the row subscripts of the nonzeroes, and 
an index vector XLNZ whose entries are pointers to the 
beginning of nonzeroes in each column in LNZ. The 
diagonal elements are stored separately in vector DIAG. 
In addition, an index vector XNZSUB is also used to hold 
pointers to the start of row subscripts in NZSUB for 
each column. This is the con3equence of the key idea of 
the Sherman's compressed scheme: some of indices from 
NZSUB can be used for presenting nonzero pattems of two 
or even more colurans. For exaniple, it is applicable when 
columns 17,18,19,20 froni the Figure 2 are considered. 

DIAG(J) - DIAG{J) + Z(J)*XA{I) 
100 CONTINUE 

DO 200 I=ISTART,ISTOP-1 
IROW = IA(I) 
ZO : Z(IROW) 
L = XLNZ(IROW) 
KSUB = XNZSUB(IROW) 
JBEGIN = 1 + 1 
DO 150 J=JBEGIN,ISTOP 

125 CONTINUE 

IF (NZSUB(KSUB) .EQ. IA(J)) 'ITIEN 
LNZ(L) = LNZ(L) + ZO«XA(J) 

ELSE 
L = L + 1 
KSUB = KSUB + 1 
GOTO 125 

ENDIF 
150 CONTINUE 
200 CONTINUE 

DO 300 I=ISTART,ISTOP 
Z(IA(I)) = 0.0 

300 CONTINUE 
500 CONTINUE 

Another ordering algorithm which we have impleraented is 
the Reverse Cuthill-McKee algorithm. Its perfoniiance on 
our test problem is presented on the following picture. 
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Desoribed data structure is filled et each iteration 
after coinputation of ASAf is perfonned. The subsequent 
Cl>olesky factorization is perfomied using the same data 
structure. An interesting question is what is the best 
way to compute ASA^. At first sight row-oriented data 
structure foi- niatrix A seems to be more practical and 
efficieiit when computation of A8A'' is considered. 
However, theoretical argumenta (Duff et al. 1989) and 
practical testing convinced us that column-wise storage 
of A is inuoh more efficient. The point is in avoiding 
operations with zero components of A. Perhaps this c£in 
be best explained with our fortran code for computating 
ABA'', which follows. 

C At this moment LNZ and working vector Z must be 
C initialised to zero values. 

DO 500 IC0L=1,N 
ISTART = CP(IOOL) 
ISTOP - CP(I00L+1) - 1 
DO 100 I=ISTART, ISTOP 

J = IA(I) 
Z(J) = XA(I)»THETA(ICOL) 

Figure 3. AFIBO - Envelope after ROM algorithm 

The storage scheme for envelope methods has a main 
storage array ENV which will contain ali entries (zeroes 
as well as nonzerc-es) between tlie first nonzero entry in 
roK of L (or coluran of L^) and the diagonal, an index 
vector XENV whose entries are pointers to the beginnirig 
of nonzeroes in each row of L, and a vector DIAG whei-o 
diagonal entries are stored. 

Our- practical experience with the Reverse Cutliill-McKee 
algorithm was quite disappointing. Its corresponding 
storage sclieme is usually not as economical as thoso 
produced by the minimum degree algorithm. The results 
concerning speed of the numerical factorization were 
even less competitive. However, it would be interesting 
to try otiier profile methods. Some of them produce more 
economical storage scheme than the Reverse Cuthill-McKee 
algoritm (Billionet, Breteau, 1989). There are also some 
other efficient ordering algorithms, for example the 
nested dissection ordering algorithm (George, Liu, 
1981). Their quantitative and qualitative comparisons 
may be an interesting topics for further research. 



Handling of dense colunms 

The problem is what to do if one or more columns of A 
are dense vectors. In such cases coraputation of A6A'' 
leada to a very dense matrix eind therefore should be 
avoided, if it is possible. This situation can be 
overcome by first dividing columns of A into dense and 
sparse subinatrices: 

A = [Aa;A<j] and consequently 6 = [eslBd] 

and then performing incomplete Cholesky factorization: 

LLT = AaSs 

After this is done several approaches are possible. One 
ajiiong them is to use the incomplete Cholesky factors as 
preconditioner for a so called conjugate greidient 
algorithiii (Adler et al. 1989). Another way is to use a 
niethod which deals with "dense windows" (Andersen et al. 
1990). Tliis method solves equation AeA''y = q by 
lx:rfoniiing the following operations: 

Compute 

Set up 

]AJ 

VT 

V = Ad6<i 

-V 

I 

y 

6 

q 

0 

Solve for 6 by dense Cholesky factorization: 

[I + VT(LLT)-iV]6 = -VT(LLT)->q 

Compute y = (LL^)-i (q+V6) 

It is obvious that typically there are only a few dense 
columns in A Eind therefore coraputing and storing dense 
Cholesky factorization is a trivial task. 

Unfortunately, it was pointed out (Lustig et al., 1989) 
that reraoving dense columns can severely exacerbate the 
problem of ill-conditioning on badly conditioned 
probleras. For this reason a search of reliable methods 
for handling dense columns remains an open reseajrch 
problem. One among possible approaches is to exploit 
fact that LP problem generally can be fonnulated in many 
different but equivalent wayB. For exainple, it is 
possible to split dense column into two or more new 
columns which may result in sparser A9A''(Gondzio, 1991). 
Just to give impression about that approach, we note 
tliat tlie following two matrices represent two different 
but equivalent formulations: 

1 
2 
3 
4 
5 
6 

1 

X 
X 
X 
X 
X 
X 

2 

X 
X 

3 

X 

4 

X 

5 

X 

6 7 

X 

X X 

1 
2 
3 

> 4 
5 
6 
7 

lA 

X 
X 
X 

1 

IB 

X 
X 
X 
-1 

2 

X 
X 

3 

X 

4 

X 

5 6 7 

X 

X 

X X 

Figure 4. Column splitting 

The first formulation will lead to completely dense 
ASAT, while this is not so for the second one. 

Computational results 

In this section, we report the computational results of 
running our iraplementation of a primal-dual interior 
point method on a set of LP test problema available 
through NETLIB (Gay, 1985). NETLIB is a aystem designed 
to provide efficient distribution of public dtanain 
software to the scientific coimiunity through different 

Computer networks. We considered in our tests ali 53 
problems which are currently available to us. However, 
3 of tliem (CZPROB, 80BAU3 and PILOTS) we were not able 
to read from the input file due to insufficient 
generality of our subroutine for reading LP data wi'itten 
in MPS format. Therefore we have used only 50 problems 
in our tests. Some quantitative data related to their 
size and storage consumption (when the minimum degree 
algorithra is used) are presented in the following table. 

Problem: 

25FV47 
ADLITTLE 
AFIRO 
BANDM 
BEACONFD 
B0RE3D 
BRANDY 
CAPRI 
E226 
ETAMACRO 
FFFFF800 
GANGES 
GFRDPNC 
GR0W15 
GHOW22 
GROW7 
ISRAEL 
NESM 
PIL0T4 
PILOTJA 
PIL0TWE 
RECIPE 
SC205 
SCAGR25 
SCAGR7 
SCFXM1 
SCFXM2 
SCFXM3 
SCORPION 
SCRS8 
SCSDl 
SCSD6 
SCSD8 
SCTAPl 
SCTAP2 
SCTAP3 
SEBA 
SHAREIB 
SHARE2B 
SHELL 
SHIP04L 
SHIP04S 
SHIP08L 
SHIP08S 
SHIP12L 
SHIP12S 
SIEREJA 
STAIR 
STANDATA 
VTPBASE 

No: 

45 
2 
1 
19 
24 
9 
14 
U 
20 
16 
34 
35 
23 
32 
38 
18 
15 
47 
29 
49 
40 
6 
3 
12 
4 
17 
30 
36 
10 
26 
22 
31 
46 
13 
37 
43 
27 
8 
5 
28 
39 
33 
50 
42 
51 
44 
41 
25 
21 
7 

m: 

820 
56 
27 
305 
173 
233 
193 
271 
223 
400 
524 
1309 
616 
300 
440 
140 
174 
662 
410 
924 
722 
87 
205 
471 
129 
330 
660 
990 
388 
490 
77 
147 
397 
300 
1090 
1480 
515 
117 
96 
536 
360 
360 
712 
712 
1042 
1042 
1222 
356 
359 
198 

n: 

1876 
138 
51 
472 
295 
333 
303 
480 
472 
734 
1028 
1706 
1160 
645 
946 
301 
316 

2930 
1181 
2044 
2930 
178 
317 
671 
185 
600 
1200 
1800 
466 
1275 
760 
1350 
2750 
660 
2500 
3340 
1036 
253 
162 

1527 
2166 
1506 
4363 
2467 
5533 
2869 
2715 
538 
1258 
329 

n2(A): 

10705 
424 
102 

2494 
3408 
1446 
2202 
1933 
2768 
2188 
6401 
6937 
2445 
5620 
8252 
2612 
2443 
13260 
7242 
13339 
9537 
652 
665 
1725 
465 

2732 
5469 
8206 
1534 
3288 
2388 
4316 
8584 
1872 
7334 
9734 
4360 
1179 
777 

3058 
6380 
4400 
12882 
7194 
16276 
8284 
7951 
3831 
3173 
945 

nz(AAT) 

11894 
384 
90 

3724 
2842 
2424 
2734 
3112 
2823 
2771 
10615 
8965 
1451 
3430 
5040 
1590 

11227 
4743 
6743 
14174 
5547 
582 
656 
2393 
629 
3233 
6486 
9739 
2101 
2198 
1133 
2099 
4280 
1686 
6595 
8866 
51915 
1001 
871 
1991 
4588 
3272 
9224 
5440 
11715 
6387 
6118 
6653 
1758 
1773 

nz(L): 

34590 
355 
80 

4355 
2727 
2860 
3236 
5569 
3416 
11186 
18520 
29359 
1537 
5790 
8590 
2590 
11259 
21283 
14273 
50793 
15422 
584 
986 
2510 
636 

4400 
8977 
13631 
2086 
6117 
1315 
2398 
5482 
2261 
13729 
17156 
53695 
1345 
925 

3556 
4428 
3252 
8948 
5464 
11193 
6289 
11665 
15281 
2726 
2217 

nz(ind); 

8925 
171 
46 

1913 
1783 
1331 
1306 
2628 
1390 
4016 
6601 
7080 
1270 
5372 
8039 
2324 
1373 
8604 
6781 
12560 
6109 
153 
701 
1521 
417 
1797 
3673 
5556 
937 

2791 
464 
960 
1682 
1430 
6719 
8636 
6176 
526 
350 

2099 
1608 
1198 
3224 
2160 
4742 
2063 
5742 
6263 
1505 
974 

Table 1. Ouantitative data about LP problems 

Numbers in the second column are related to the sequence 
of problems ordered by the number of nonzeroes. The last 
two columns show numbers of used entries in LNZ and 
NZSUB resceptively. On the one hand these data shoK that 
usage of compressed storage scheme is very efficient, 
but on the other hand indicate that density of 
triangular Cholesky factor can be a serious problem. In 
general, storage consumption of our iraplementation can 
be estimated using the following approxiiiiate formula: 

real numbers (REAL«8).. 
integers 

6n + 4m + nz(A+c+u) + nz(L) 
n + 4m + nz(A+c+u) + nz(ind) 

where nz(A+c+u) is the number of nontrivial eleraents in 
A,C and u together. It must be noted that interior point 
methods generally consume more storage than simplex 
based methods. Nevertheless, use of the above formula 



10 

sliows that about 40 out of 50 probleins can be solved on 
a stondai-d PC with no more than 640 KB meinory. 
Oui- coraputational testing was performed on a VAX8550 
Computer. The operating 8ystein wa3 VMS, version 5.2, and 
the VMS FDRTRAN compiler, version 5.2, was used with the 
default options. The algorithm was uaed with default 
paraiiietors QO =0.9995, r=0.1 and 6=10-'. Computed optijnal 
objective value emd number of iterations were conipared 
with those obtained using OBl (Lustig et al. 1989). 

Problem: I ter. 
(Lustig) 

Computed 
opt. value 

Relative Opt. value 
d. gap Lustig et al. 

25FV47 
ADLITTLE 
AFIRO 
BANDM 
BEACONFD 
B0Rlt3D 
BIiANDY 
CAPRI 
E226 
tTAMACl« 
FIT-TFSOO 
aUJG£S 
GFlffiPNC 
0K0W15 
a[!OW22 
Gi<0W7 
ISRAEL 
NESM 
PIL0T4 
P l L a r j A 
PILOIVE 
RECIPE 
SC205 
SCAGR25 
SCkORl 
SGFXM1 
SCFXM2 
SCEXM3 
SCORPION 
SCRS8 
SCSDl 
SCSD6 
SCSD8 
SCTAPl 
SCTAP2 
SCTAP3 
SEBA 
SHAREIB 
3IiyiE2B 
SHELL 
SH1P04L 
SHIP04S 
SHIP08L 
SH1P08S 
SH1P12L 
SHIP12S 
SIERRA 
STAIR 
STANDATA 
VTPBASE 

48 (48) 
21 (17) 
14 (13) 
31 (28) 
25 (21) 
28 (25) 
34 (27) 
40 (37) 
34 (31) 
51 (52) 
66 (59) 
41 (33) 
30 (26) 
34 (25) 
32 (30) 
30 (22) 
47 (47) 
70 (66) 
58 (56) 
67 (67) 
74 (71) 
18 ( 1 6 ) 
22 (16) 
28 (24) 
22 (22) 
38 (31) 
38 (37) 
41 (39) 
21 ( 1 8 ) 
51 (50) 
14 (12) 
15 (15) 
14 (15) 
22 (22) 
23 (23) 
27 (26) 
32 (29) 
42 (40) 
20 (17) 
39 (37) 
26 (22) 
22 (21) 
26 ( 2 4 ) 
25 (23) 
29 (27) 
29 (27) 
30 (26) 
27 (25) 
34 (28) 
28 (24) 

5 5 0 1 . 8 4 5 9 
2 2 5 4 9 4 . 9 6 

- 4 6 4 . 7 5 3 1 4 
- 1 5 8 . 6 2 8 0 2 

33592 .486 
1373.0804 
1518 .5100 
2 6 9 0 . 0 1 6 5 

- 1 8 . 7 5 1 9 2 9 
- 7 5 5 . 7 1 5 2 3 

555679 .61 
- 1 0 9 5 8 5 . 7 4 

6 9 0 2 2 3 6 . 0 
-1.0687094e+8 
-1.6083431e+8 
-47787812. 
-896644.82 
14076037. 

-2581.1378 
-6113.1349 
-2.7201067e+6 
-266.61600 
-52.202061 
-14753433. 
-2331389.8 
18416.759 
36660.263 
54901.255 
1878.1250 
904.29696 
8.6666667 
50.500000 
905.00001 
1412.2500 
1724.8071 
1424.0000 
15711.600 

-76589.318 
-415.73224 
1.2088253e+9 
1793324.5 
1798714 
1909055 
1920098 
1470187 
1489236 
15394362. 

-251.26695 
1257.6995 
129831.46 

.321e-06 
,447e-07 
.249e-08 
.579e-07 
.427e-07 
.184e-08 
.412e-07 
.443e-05 

0.371e-07 
0.132e-07 
0.869e-06 
0.670e-08 
0.896e-07 
0.105e-07 
0.347e-06 
0.519e-08 
0.593e-07 
0.218e-04 
.779e-06 
.155e-06 
.728e-06 
.867e-08 
.785e-07 
.132e-06 
.316e-07 
.192e-06 
.149e-06 
.194e-06 
.141e-06 

0.453e-07 
0.320e-07 
0.638e-08 
0.998e-08 
0.643e-10 
.809e-08 
.150e-08 
.470e-07 
.254e-07 
.778e-07 , 
.116e-06 
.161e-06 
.124e-06 
.llle-06 

0.856e-07 
0.139e-06 
0.161e-06 
0.140e-06 
0.187e-06 
0.295e-07 
0.414e-08 

5501.8459 
225494.96 

-464,75314 
-158.62802 
33592.486 
1373.0804 
1518,5099 
2690.0127 

-18.751929 
-755.71523 
555679.56 

-109585.74 
6902236.0 

-1.0687094e+8 
-l,6083434e+8 
-47787812. 
-896644.82 
14076036. 

-2581.1405 
-6113.1365 
-2.7201075e+6 
-266.61600 
-52.202061 
-14753433. 
-2331389.8 
18416.759 
36660.262 
54901.255 
1878.1248 
904.29695 
8.6666667 
50.500000 
905.00000 
1412.2500 
1724.8071 
1424.0000 
15711.600 

-76589.319 
-415.73224 
1.2088253e+9 
1793324.5 
1798714. 
1909055. 
1920098. 
1470187. 
1489236. 
15394362. 

-251.26695 
1257,6995 
129831,46 

Table 2. Coraputational results 

Our testing was therefore successful in a sense that we 
liave solved ali 50 probleras with reasonable accuracy. 
Houever, we have experienced numerical troubles (such as 
floating overflow or underflow) on some probleras: 

1) To solve problem SCFXM1 we had to use ao=0.95. 
2) To solve probleins PILar4, PILOTWE and PILOTJA, which 

are lmown to be very ill-conditioned, we had to use 
ao=0.95 again and also to change initial x to value 
r=0.001. 

Although we liave eventually solved above probleins after 
some experiuientation with algorithm parameters, a sound 
solution would be to use some kind of scaling. This 
means tliat instead of ABA'"', in some cases it is better 
to Koik with the matrix RAOATR, where R is a suitable 

chosen diagonal matrix. 

On the whole, we were not able to obtain such quality of 
solution as it was reported for OBl, neither in tenns of 
number of iterations, nor in teiins of obtained relutive 
duality gap. This is easily explainable by the fact that 
niany fine details and important options, which are 
present in OBl, 8u~e not yet implemented in our code. 

We have performed also some other types of eouiputational 
testing, just to check validity of sorae assuniptions 
about interior point methods. For exainple: 
- A good siraplex code usually outperfomis interior point 
methods on small problems. 

- Some pi-obleiiis, which are supposed to be difficult for 
aimplex based methods, can be easily (and mueh fastor) 
solved if some interior point luethod is used. B'or 
example, this is the čase uith problem 251'\'47. 

- Coraputational work within a step of interior ix)iiit 
methods ia dominated by sparse CholesUy factorizalion 
of ASA^" . Its share on bigger problems is 60% to 90% of 
overall tirne. 

Systeni design and implementation 

Iraplementations of interior- point raetliod wei'e done in a 
form of highly portable fortran inodules IjPEhTV and LPMDG. 
The former ušes the Reverse Cuthill-McKee algorithm, tlie 
latter ušes the minimum degree algorithm. l'l-iey are stili 
in the phase of testing and development, for which we 
are using mainly VAX/VMS computer system, although the 
same code is running also on the PC. Our ultimate goal 
is to create reliable, portable and user-friendly LP 
software package based on the interior point algoritlmis, 
whioh is to be called LPINT. In our opinion such Itind of 
system must contain portable full screen usei' interface 
and also subroutines foi' graphical display of different 
LP inatrices (Alvarado, 1990). It is also very important 
to allow user to include his/her subroutines into the 
package. Data exchange between a user pi-ograra ajid IĴ INT 
may be done with the usage of some type of communioation 
region (CR) , An overall LPINT systera arciiitecture can be 
ilustrated witli the following picture: 

external fiJes 

configurat ion 
profile 
basis 
solution 

<—> iteration log 
MPS data 
IJvalues data 
problem file 
messages 
reports 

LPINT 

Interactive 
interface; 

windows 
pop-up menus 
pull-down 
menus 

CR 
optimizer 

(LPENV or LFMDG) 

GRAPHICAL 
Subroutine 
Library 

Figure 5. LPINT system architecture 

Concluslons 

Generally we can say that the interior point methods are 
getting more and more reliable and sophisticated aa 
well. Moreover, interior point methods had greatlv 
influenced algoritliraic and experimental work in the 
field of linear prograinraing. Houever, it is not likely 
that interior point methods can completely rcplace tlie 
simplex method in future. In our opinion rfjasons foi-
this are mainly in simplex method ability to produce 
optimal basic solution. The knowledge of basic status of 
variables is very important, especially when postoptimal 
einalysis or solution of mixed integer programs are 
considered. Ch the other hand, when one wish to solve 
big LP problem for the first time, it is advisable to 
start with some interior point based package. It is a 
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fast, reliable and robust way to obtain the firat 
Information about LP model. 

A primal-dual interior point method can be implemented 
in a rather easy and straightforward way. This fact, as 
well as method's efficiency Eind mathematical elegance, 
can be a big step toward deeper understanding of 
interior point methods in general. 
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