
DESIGN, IMPLEMENTATION AND
TESTING OF A PRIMAL-DUAL
INTERIOR POINT METHOD FOR
SOLVING LINEAR PROGRAMS

IN FOR MATICA 4/91

Keywords: linear programing, primal-dual
interior point algoritlnm, sparse Clnolesky
factorization

Janez Barle and Janez Grad
Univerza v Ljubljani

Ekonomska fakulteta
Kardeljeva ploščad 17

61109 Ljubljana
ABSTRACT: This paper describes our implementation of a primal-
dual interior point algorithm for linear programming. The topics
discussed include economic data structures, efficient methods
for some sparse matrix operations, sparse Cholesky factoriza
tion, methods for handling dense columns and comparisons with
simplex based methods. Extensive numerical results demonstrate
the efficiency of the resulting algorithm as well as some prob-
lems which remain to be solved. The role of interior point based
solvers in the process of solving large-scale mathematical
programming models is also discussed.
SNOVANJE, IMPLEMENTACIJA IN TESTIRANJE PRIMARNO-DUALNE METODE
NOTRANJE TOČKE ZA REŠEVANJE LINEARNIH PROGRAMOV: V sestavku je
opisana naša implementacija primalno-dualne metode notranje
točke za reševanje linearnih programov. Obravnavane so
ekonomične podatkovne strukture, učinkoviti načini za izvajanje
nekaterih operacij z razpršenimi matrikami, razpršeni razcep po
Choleskem, metode za delo z gostimi stolpci ter primerjave z
metodo simpleksov. Izčrpni rezultati numeričnega testiranja
kažejo tako učinkovitost razvitih algoritmov, kot tudi nekatere
probleme, ki jih je treba še razrešiti. Opisana je tudi vloga
reševanja z metodami notranje točke v splošnem kontekstu modeli
ranja in reševanja velikih problemov matematičnega programiran
ja.

Introduction

The J iiiear piograj|iiiiing (LP) problem may bo s t a tod in the

iiiiniiiiize (niaxiniize} c''x

subject t o : A x = b , J < x < u
(1)

uheie A i s a rectaj igular niatr ix, c , x, 1, u, b ai-e
coluinn vec to t s and the symbol '' denotes t ranspose of a
vectof oi- iriatrix. Some of bounds in 1 and u may be
i .n f in i te . The IniportEint fea tu res of t yp i ca l LP
oons t r a in t inatrix A a re i t s gu i t e l a rge dimension,
ai'jiiisity and a spec i f i c s t ruc tu i ' e i . e . p a t t e r n s in whieh
i t s tioiizero eleiiients appear. A c l a s s i c a l way for solving
tlie abo\'e pi'obleiii i s the siraplex algoritJuu, develoi^ed by
G.B. Dantzig in l a t e 1940's . 03ntemporary v a r i a n t s of
Lhis ulgoritlun, Khicli a re included in many comiiiercial or
\.uiivo.Tsity deveioped softvvare packages, a re t a i l o r e d for
so l \ i i ig guiLe l a rge problenis in a f a s t and r e l i a b l e way.
llou'(,'\er, t h i s e s t ab l i shed algori thm has got recen t ly a
sur ious coiiiijetitor- in the so c a l l e d i n t e r i o r point
im.thods. Tliese luetliods becajne widely laiown af t e r
Kaniiarkai''s pub l i ca t ion (Kaniiarkar, 1984) of JJUI
algorithm tiiaL i s claimed to be mueh f a s t e r for
pi-actical problenis than the siraplex method. Altliough
Lhese i n i t i a l proniises appeared to be too o p t i m i s t i c ,
Kaiiiiarkar's algorithm and o ther i n t e r i o r point methods
a re iiow regaiiJed as a compet i t ive methods for solving LP
problenis. This i s p a r t i c u l a r l y t r u e when solving of some
s |x;cif ic fomis of super s i z e problenis on supercomputers
ia cunsidered. Such kind of problenis, which a re often
(Micountored in conimunication, t r a n s p o r t a t i o n and
iiiLlLtary opera t ions , a r e very sparse aiid usua l ly exh ib i t

s ix;cif ic and genera l ly well-beliaved bli>i.;l; al.ruct.uroH
tha t caii be e f f e c t i v e i y exp lo i ted . Kfforts to develop
sof tuare systenis for solving super s i z e LP problenis with
Kaniiarkar's filgoritlini proved to be \'ery f r u i t i u l . Oue of
the outstanding s t eps in t h i s d i r e c t i o n i s AT&T's KORBX
systeni. The systein c o n s i s t s of botli hardwai-e, which ušes
p a r a l l e l prooessing, and softwai"e which evj j loi ts the
resources of t h i s hai-divare (Carolaii e t aJ . , 1990).
nowever', there i s a l so a necsi for ex'ploririg a b i l i t y of
i n t e r i o r point methods for solving LP on a more widely
ava i l ab l e s e r i a l computers. In the paper we present oiir
woi'l(in t h i s di i -ect ion, whioh was perfor'nieti on MS-DOS
personal computers and VAJiAfIS niiniconiputers.

Algorithms

Nowadays a plethora of research pai^ers is yjublished
where different interior point, methods are ja-oposed. Wr;
iiave employed the variant of a primal-dual interior
point method which is supposed to be among the most
efficient (Lustig et al. 1989). In order to mal̂ e cleui-
differences between such kind of methods and simplex
based algorithms, we first give a brief explanation of
the revised simplex algoritlun. The steps of this
algorithm are roughly described within tht: following box
whore B denotes the basis niatrix and CB the cost vectoi-
of the basic variables. It is therefore assumed that
there is a set of in basic variables, which is usuallv
clianged after each iteration in such a way that one
nonbasi<; variable enters the basis and one basie
variable leaves the basis. The informal description
which follows is related to the second phase of the
priinal i-evised siniplex algorithm, where the lxisic
feasible solution is already known.

-Rev i sed-s impi ex-riie thod-

Rl: Produce a pricing vector: H =: CD'''B-' (BTRAN).

R2: Select the entering variable XB (colunm u = Ata)
according to a given pricing strategy. If no
entering variable ia found, terminate (solution
is optimal).

R3: Update the entering column: v = B"'u (FTRAN).

R4: Deterniine the leaving variable. If none is found,
tenninate (problem is unbounded).

R5: Update the basis niatrix representation;
refuctorize if necessary, Go to Rl.

It must be noted however that there is not yet general
agreement about what are the best algoritlims in detail,
Euid how they should be impleraented in the most efficient
way. In general, number crunching operations are
concentrated uithin the steps Rl and R3 where two
systeuis of linear equations have to be solved (these
ojserations are often refered to as BTRAN and FTRAN). It
is very iinportant that after basis change updating of
basis iuatrix is possible without perfornung full
factorization, which has to be done only periodioally.
Other steps, particularly R2 and R4, deal mainly with
logic decision and "book-keeping" problems. It is also
obvious that a rather sophisticated data structures must
be eraployed in order to exploit sparsity (Duff et al.,
1989).

Interior jraint methods differ considerably from the
simplex method. Primal-dual interior point raethod, which
we have deoided to implement, requires LP problem being
foniiulated in the following forin:

raininiize c'''x

subject to: A\ = b, x + s = u, x > O, s > O

with the asso':;iated duai

iiiaxiiiiize b''y - U^K

subject to; A'''y - w + z = c, w > 0 , z > 0

(2)

(3)

Fortunately, formulation (2) can be derived in a
straightfoiTiRird way from formulation (1). An outline of
the algorithm is sketched within the following box,
where X, S, W and Z are diagonal matricea with diagonal
elements equal to the components of corresponding
vectors x, s, w and z. 4 is the user supplied constant
which is usually computed by uslng the following
f onnula:

* = *(n) =
n2 n < 5000

n/n n > 5000

and M = Tili(n)*inax([c|(i., |bj»} where t is a scalar
multiplier wliich is used to allow variations of the
initial |j, Furthei-more, dn = A''y*' + z" - c, where y<' and
z° are initial y and z, and e = (1,1,...,!). od, ap are
some appropriate step lengths in tlie primal and dual
ai:iaces i'esi>3ctively. These step lengths must be chosen
in a way which ensui-es nonnegativity of variables x, s,
z and w, for exuaiple:

U|, = ai)*min {minj {xj/-6xj , 6xj <0), minj (sj/6xj , 6xj>0|}

Ud = uo *min {mirij (zj/-6zj , fiZj <0), minj (wj/-6wj , 6wj<0))

w)iere 0<uo<l is the user supplied parameter which is
usually set to be equal 0.9995.

Initial feasibility of the problem is formally assured
by adding column Axo - b and row do to the matrix A,
together with Xa and ya(=-Zb)i which are corresponding
primal ajid dual variable with initial value 1. In order
to achieve feasibility their values must decrease to 0.

KI:

K2:

K3:

K4:

K5:

K6:

K7:

K8:

Pr imal -dua l - in te r ior -poin t -mothod

Compute p = {c''x + u''v - h^y + M(xa - y a)) / *

Compute

Com)Xi te

6 = (S->W + X->Z)-'

p o s i t i v e def i n i t e matrix AOA''.

Perform Choleaky f a c t o r i z a t i o n of the ABA"

Compute

Compute

Update

o(n) = ij(S-i - X-')e - (W - Z)e

6y = -(AeA'')-MA6(o(n) + zodo) +
(Ax - b))
5x = e(Ai'6y + o(p) - Zbdo)
6s = -6x
6z - -uX- 'e + Ze - X-' Z6x
6w = -pS- ' e + We - S-1 Wfix

yne w = yoi (J - ad6y
Xnew = Xoi d - ap 6 x
Sne w = Sol d - a p 6 s
Zoe w = Zol d - a d 6 z
Wn e w = Wo 1 d - Ud 6w

If r e l a t i v e d u a l i t y gap s a t i s f i e s r e l a t i o n :

c''x + uTw - Vv
< e

1 + UT„ _ b T y |

where 6 i s user supplied cons tan t , t ennina te
(so lu t ion i s op t ima l) . Otherwise go to KI.

It was also assumed that the initial interior solution
is supplied by the user. For exaniple, it is possible to
ohoose X" z z" = min{e,u/2) and yo = O (Choi et al.,
1990). In general, interior point methtjds are not very
sensible to the choice of the initial solution.

The above description is based on two papers (Lustig et
al. 1989, Choi et al. 1990) where algoritlmdc asix.-(:t-s of
tlie raodularized fortran code OBl (Optiiiiizotion witli
Barriers I) Kere doscribed. Our intention Kas to •Jevelop
our own codo based on mentioned pajjers and stunjai'd
methods for computing sparse Cliolesky faclorization
(George, Liu, 1981). However, some of the implementation
dctails are difforent, for example:

a) In our implementation oolvmin A\o -. b and row do aru
computed at eadh iteration, rather than only for the
initial solution. xa and ya are defined as ratioK
betneen current £ind initial m nomis of Axo - b iinJ
do . Purtherraore, Xa and ya retain some s]7iall valuf
even in the čase if their computed vsalue is zcro,
Such approach enable us to save some sLoi-oge spacc-
and also, according to our experienoe, to improve
accur'acy of the computed solution.

b) Sometimes it is impossible for relative duality gup
to reach prescribed 6 on step K8. In such cases we
tei-minate algorithm when relative difference between
tKo subscquent objective values become smaller than
tlie prescribed constant, which is usuallly set to be
0.1*€.

On the wl>ole, published description of the algoritlun is
good enougli to enable everyone to create, iiossib]y aftor
some experimental investigation, worltable implemontation
of a primal dual interior point method. Evidently the?
algorithm consists mostly of floating point comi)Utat ions
ajid consequently fortran is an obvious choice o C
implementation language. Some featuros of the inloi-ior
point metliods that make them so rauch different from thi'
simplex method are obvious:

1) Thei'0 is no partitioning into tosic and nonlsjsU-
variables. Tliis means that, in pi'inciple, ali
variables and constraints are liaaidled in equal way
during the solution process.

2) Each iteration requires computationally expensive
factorisation of positive definite matrix ur
solution of the least squares problem.

3) Solution vector x is always an interior point of the
solution polytope.

Feature 1) has a far-reaching consequences. It can be a
riieans for. avoiding potential combinatorial problema
arising in the movement from one basis to another which
is typical for simplex method. On the other hand such
approach iiiay degrade computational speed £ind stability,

Tlie main computational problem of tjie interior point
iiiethods is inversion of raatrix ASA^ or solution of the
coi-responding linear least squares problem. This is
usually done by computing spai-se Cholesky factorization
of A6A''. In order to understand methods for doing this,
one niust be acquainted with the methods for storing
sparse matrices. In the next section the methods for
storing sparse matrices which were applied in our
implementation of primal-dual interior point methods are
briefly described.

Data structurea and implementation Issues

Ex-ploitation of sparsity is based on the fact that only
nonzero elements of sparse matrix (or vector) must be
stored, together with infoiniation about their position
within matrix (vector). In the čase of LP input data (A,
b, C, u) uithin the franiework of interior point methods,
we have eiiiployed the following data structures:

1) Righthand-side vector b is stored Eis a dense vector.

2) Constraint ii]atrix A is stored using three one
diraensional vectors (XA,IA,CP) where

XA = vector of nonzero values At j which are sorted by
oolumns and (secondary) by row indices uithin a
particular column, both in increased order.

lA - vector of row indices of nonzero elements, which
are sorted in a same raanner as XA.

CP = vector of column pointers nhich consists of
locations where the representation of columns
begins in XA and lA. For example, elements of
column i are ali in locations from CP(I) to
CP(I+1)-1.

3) Nonzero elements of c are stored (formally) as n+1.
coluimi of A. liierefore they are stored betneen
locations CP(N+1) and CP(N+2)-l in XA (values) and lA
(indices).

4) Noninfinite elements of u are stored (fonnally) as
n+2. column of A. Therefore they are stored between
locations CP(N+2) and CP(N+3)-l in XA (values) and lA
(indices).

Obviously, it is also necessary to store the matrix A9A''
and its triangular factor L, in the čase if Cholesky
factorization is used uithin the solution process. These
matrices can be stored using the same storage locations.
Tlie ajnount of this storage is detennined by fill-in
which generally can not be avoided during the Cholesky
factorization of ASA^. It is therefore advisable to try
to rainimize fill-in by appropriate reordering of rows
and columns of ASA^. Ordering algorithms are essentially
graph tc-cliniques for obtaining appropriate numbering of
t)ie graph nodes. In our CEise nonzero structure of ASA''
represents an undirected graph G(X,E) with m nodes. The
adjacency list of node x6X is a list containing ali
nodes adjacent to x, which is represented by indices of
nondiagonal nonzero elements of corresponding column of
ASA^ . Tlie implementation of described structure is done
by storing the adjacency lists sequentially in integer
array AD,TOCY along with an index vector XADJ of length
iM+1 containing pointers to the beginning of the lists in
ADJNCT. Ttie extra entry XADJ{M+1) points to the next
available location in ADJNCY (George, Liu, 1981). These
arrays aie input data for ordering algorithms uhich can
be generally divided in two groups:

a) reoi-derings which try to minimize number of nonzero
elements (and therefore fill-in) in triangular

factor L. Although it is known to be NP-coHsplete
problem (Duff et al. 1989) several reasonable good
heuristics exist. One of tliem is the minimum degree
algorithm. The name of this algoriOini is derived
from its graph theoretic interpretation: in the
graph associated with a syiiimetric sjjarse niatrix,
tliis strategy corresponds to choosing that node foi-
the next elimination which has the least edges
connected to it.

b) i-eorderings which try to permute AGÂ f and triangular
factor L into some particular desirable form. This
can be for example so-called envelope or profile
form. The most known algorithm of this type is the
Reverse Cuthill-McKee algorithm. The objective of
such kind of algorithms is to reorder the rows and
columns of the matrix so that the nonzeroes in the
obtained matrix are clustered near the main diagonal
since this property is retained in the corresponding
Cholesky factor L. Such a cluster is called the
profile or envelope and is defined to contain also
ali zero elements betueen the diagonal and the last
nonzero element in the row or column. Tlie problem of
minimizing the envelope size of a matrix is proven
to be NP-complete (Billionet, Breteau, 1989) and
consequently the Reverse Cuthill-McKee algorithm is
only one among heuristic procedures for doing this.

We have implemented both the minimum degree and the
Reverse Cuthill-McKee algorithm uithin our LP package.
In oi-der to give some insight into these methods, we
shall 8how how they perform on the smallest exajiiple from
the NETLIB library (Gay, 1985), which is known under the
name AFIRO. This is the problem with constraint matrix
having 27 rows and 51 columns which contain ali together
102 nonzero elements. Its corresponding AdA' matrix has
the structure as in the following picture, where only
the upper triangular part is reproduced:

1 2 3 4 5 6 7
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

D X
D
X
X
D
X

D X
D X X X X X

D X X X X
D
D
D
D

D X X X
D X
D
D
D
X
X
D
X X X
X X X
D
D
D

X
X

D

X

X
X
X
X
X X
X
X

x~ X
X
X
D
D

X

X
X
X
X
X
X

D

X
X
X

X

D

X

X
X X
X
X
X
X
X

X
X

D
D
D

Figure 1. AFIRO - structure of the upper part of AOAT

NondiEigonal emd diagonal nonzero elements are presented
using symbols X and D respectively. It is obvious that,
at least in this čase, matrix A6A''' is not as sparse as
matrix A itself. Moreover, number of its nonzeroes raay
substantially increeise during the subsequent Cholesky
factorization. The following picture display3 how this
sitution is controlled by applying the minimum degree
algorithm. The produced ordering (permutation of rows
and columns) is: (4,14,26,27,13,22,12,3,24,2,1,11,10,17,
18,19,20,23,16,15,9,8,25,21,6,7,5)

1 2 2 1 2 1 2 1 1 1 1 1 2 2 1 1 2 2
4 4 6 7 3 2 2 3 4 2 1 1 0 7 8 9 0 3 6 5 9 8 5 1 6 7 5

4
14
26
27
13
22
12
3
24
2
1
11
10
17
18
19
20
23
16
15
9
8
25
21
6
7
5

D
D
D
D
D X
D

X

X
X
D
D X
D

X

X
X
X
D

X

X

X

X
X

X X
X
X
X
D

X
X
X
D
D
D
D
D

X

X

X

X X X
X
X

D X
D

X X
X X
X X
X X
D X
D
D

X

X
X
X

D X
D

X
X
X
X
X
X
X
X
X
X
X
X
D

X

X

X
X

X X

X
X

X X
X X
X X
X X X
X X X
D X X

D X
D

Figure 2. AFIRO - structure of the Cholesky factor

The above structure is determined not by actual
iiuiuerical factorization but by simulation of it, or so
called syinbolic factorization. The advantage of this
appioach is that the data structures are set up once for
ali, as the structure of the matrix does not change from
one iteration to another. Obviously, at each iteration
it is necessary to perfonn nuraerical factorization since
AQA^ is changing along with diagonal matrix 6. The data
sti-uctures retumed by the symbolic factorization can be
prosented in a sparse storage scheme known as the
ooiiipreased storage scheme of Sherman, cited in (George,
Liu, 1981). The scheme has a storage array LNZ which
will coiitain ali nonzero entries in the nondisigonal part
of Cholesky factor L coluran-wise (or, which are the same
iiumbei-s, in thie L^ row-wise), an INTEGER vector NZSUB
which will hold the row subscripts of the nonzeroes, and
an index vector XLNZ whose entries are pointers to the
beginning of nonzeroes in each column in LNZ. The
diagonal elements are stored separately in vector DIAG.
In addition, an index vector XNZSUB is also used to hold
pointers to the start of row subscripts in NZSUB for
each column. This is the con3equence of the key idea of
the Sherman's compressed scheme: some of indices from
NZSUB can be used for presenting nonzero pattems of two
or even more colurans. For exaniple, it is applicable when
columns 17,18,19,20 froni the Figure 2 are considered.

DIAG(J) - DIAG{J) + Z(J)*XA{I)
100 CONTINUE

DO 200 I=ISTART,ISTOP-1
IROW = IA(I)
ZO : Z(IROW)
L = XLNZ(IROW)
KSUB = XNZSUB(IROW)
JBEGIN = 1 + 1
DO 150 J=JBEGIN,ISTOP

125 CONTINUE

IF (NZSUB(KSUB) .EQ. IA(J)) 'ITIEN
LNZ(L) = LNZ(L) + ZO«XA(J)

ELSE
L = L + 1
KSUB = KSUB + 1
GOTO 125

ENDIF
150 CONTINUE
200 CONTINUE

DO 300 I=ISTART,ISTOP
Z(IA(I)) = 0.0

300 CONTINUE
500 CONTINUE

Another ordering algorithm which we have impleraented is
the Reverse Cuthill-McKee algorithm. Its perfoniiance on
our test problem is presented on the following picture.

2 1 2 2 2 1 1 1 1 1 2 1 2 1 1 2 1 2
7 5 5 3 6 0 9 8 7 0 9 8 7 6 5 1 4 4 2 3 1 4 3 1 2 2 6

27
15
25
23
6
20
19
18
17
10
9
8
7
16
5
21
14
4
22
13
11
24
3
1
12
2
26

D X
D X

D X
D

X
X
X
X
D

X
X
X
X
D

X
X
X
X
X
D

X
X
X
X
X
X
D

X
X
X
X
X
X
X
D

•

X
X
X
X
X
X
X
D

X
X
X
X
X
X
X
X
D

X
X
X
X
X
X
X
X
X
D

X
X
X
X
X
X
X
X
X
X
D

X
X
X
X
X
X
X
X
X
X
X
X
D

X
X
X
X
X
X
X
X
X
X
X
X
D

X
X
X
X
X
X
X
X
X
X
D

X
X
X
D

X
X
X
D
D X
D

X
X
X X
X X X
X X X
D X X X

D X X X X
D X X X

D X X
D X X

D X
D

Desoribed data structure is filled et each iteration
after coinputation of ASAf is perfonned. The subsequent
Cl>olesky factorization is perfomied using the same data
structure. An interesting question is what is the best
way to compute ASA^. At first sight row-oriented data
structure foi- niatrix A seems to be more practical and
efficieiit when computation of A8A'' is considered.
However, theoretical argumenta (Duff et al. 1989) and
practical testing convinced us that column-wise storage
of A is inuoh more efficient. The point is in avoiding
operations with zero components of A. Perhaps this c£in
be best explained with our fortran code for computating
ABA'', which follows.

C At this moment LNZ and working vector Z must be
C initialised to zero values.

DO 500 IC0L=1,N
ISTART = CP(IOOL)
ISTOP - CP(I00L+1) - 1
DO 100 I=ISTART, ISTOP

J = IA(I)
Z(J) = XA(I)»THETA(ICOL)

Figure 3. AFIBO - Envelope after ROM algorithm

The storage scheme for envelope methods has a main
storage array ENV which will contain ali entries (zeroes
as well as nonzerc-es) between tlie first nonzero entry in
roK of L (or coluran of L^) and the diagonal, an index
vector XENV whose entries are pointers to the beginnirig
of nonzeroes in each row of L, and a vector DIAG whei-o
diagonal entries are stored.

Our- practical experience with the Reverse Cutliill-McKee
algorithm was quite disappointing. Its corresponding
storage sclieme is usually not as economical as thoso
produced by the minimum degree algorithm. The results
concerning speed of the numerical factorization were
even less competitive. However, it would be interesting
to try otiier profile methods. Some of them produce more
economical storage scheme than the Reverse Cuthill-McKee
algoritm (Billionet, Breteau, 1989). There are also some
other efficient ordering algorithms, for example the
nested dissection ordering algorithm (George, Liu,
1981). Their quantitative and qualitative comparisons
may be an interesting topics for further research.

Handling of dense colunms

The problem is what to do if one or more columns of A
are dense vectors. In such cases coraputation of A6A''
leada to a very dense matrix eind therefore should be
avoided, if it is possible. This situation can be
overcome by first dividing columns of A into dense and
sparse subinatrices:

A = [Aa;A<j] and consequently 6 = [eslBd]

and then performing incomplete Cholesky factorization:

LLT = AaSs

After this is done several approaches are possible. One
ajiiong them is to use the incomplete Cholesky factors as
preconditioner for a so called conjugate greidient
algorithiii (Adler et al. 1989). Another way is to use a
niethod which deals with "dense windows" (Andersen et al.
1990). Tliis method solves equation AeA''y = q by
lx:rfoniiing the following operations:

Compute

Set up

]AJ

VT

V = Ad6<i

-V

I

y

6

q

0

Solve for 6 by dense Cholesky factorization:

[I + VT(LLT)-iV]6 = -VT(LLT)->q

Compute y = (LL^)-i (q+V6)

It is obvious that typically there are only a few dense
columns in A Eind therefore coraputing and storing dense
Cholesky factorization is a trivial task.

Unfortunately, it was pointed out (Lustig et al., 1989)
that reraoving dense columns can severely exacerbate the
problem of ill-conditioning on badly conditioned
probleras. For this reason a search of reliable methods
for handling dense columns remains an open reseajrch
problem. One among possible approaches is to exploit
fact that LP problem generally can be fonnulated in many
different but equivalent wayB. For exainple, it is
possible to split dense column into two or more new
columns which may result in sparser A9A''(Gondzio, 1991).
Just to give impression about that approach, we note
tliat tlie following two matrices represent two different
but equivalent formulations:

1
2
3
4
5
6

1

X
X
X
X
X
X

2

X
X

3

X

4

X

5

X

6 7

X

X X

1
2
3

> 4
5
6
7

lA

X
X
X

1

IB

X
X
X
-1

2

X
X

3

X

4

X

5 6 7

X

X

X X

Figure 4. Column splitting

The first formulation will lead to completely dense
ASAT, while this is not so for the second one.

Computational results

In this section, we report the computational results of
running our iraplementation of a primal-dual interior
point method on a set of LP test problema available
through NETLIB (Gay, 1985). NETLIB is a aystem designed
to provide efficient distribution of public dtanain
software to the scientific coimiunity through different

Computer networks. We considered in our tests ali 53
problems which are currently available to us. However,
3 of tliem (CZPROB, 80BAU3 and PILOTS) we were not able
to read from the input file due to insufficient
generality of our subroutine for reading LP data wi'itten
in MPS format. Therefore we have used only 50 problems
in our tests. Some quantitative data related to their
size and storage consumption (when the minimum degree
algorithra is used) are presented in the following table.

Problem:

25FV47
ADLITTLE
AFIRO
BANDM
BEACONFD
B0RE3D
BRANDY
CAPRI
E226
ETAMACRO
FFFFF800
GANGES
GFRDPNC
GR0W15
GHOW22
GROW7
ISRAEL
NESM
PIL0T4
PILOTJA
PIL0TWE
RECIPE
SC205
SCAGR25
SCAGR7
SCFXM1
SCFXM2
SCFXM3
SCORPION
SCRS8
SCSDl
SCSD6
SCSD8
SCTAPl
SCTAP2
SCTAP3
SEBA
SHAREIB
SHARE2B
SHELL
SHIP04L
SHIP04S
SHIP08L
SHIP08S
SHIP12L
SHIP12S
SIEREJA
STAIR
STANDATA
VTPBASE

No:

45
2
1
19
24
9
14
U
20
16
34
35
23
32
38
18
15
47
29
49
40
6
3
12
4
17
30
36
10
26
22
31
46
13
37
43
27
8
5
28
39
33
50
42
51
44
41
25
21
7

m:

820
56
27
305
173
233
193
271
223
400
524
1309
616
300
440
140
174
662
410
924
722
87
205
471
129
330
660
990
388
490
77
147
397
300
1090
1480
515
117
96
536
360
360
712
712
1042
1042
1222
356
359
198

n:

1876
138
51
472
295
333
303
480
472
734
1028
1706
1160
645
946
301
316

2930
1181
2044
2930
178
317
671
185
600
1200
1800
466
1275
760
1350
2750
660
2500
3340
1036
253
162

1527
2166
1506
4363
2467
5533
2869
2715
538
1258
329

n2(A):

10705
424
102

2494
3408
1446
2202
1933
2768
2188
6401
6937
2445
5620
8252
2612
2443
13260
7242
13339
9537
652
665
1725
465

2732
5469
8206
1534
3288
2388
4316
8584
1872
7334
9734
4360
1179
777

3058
6380
4400
12882
7194
16276
8284
7951
3831
3173
945

nz(AAT)

11894
384
90

3724
2842
2424
2734
3112
2823
2771
10615
8965
1451
3430
5040
1590

11227
4743
6743
14174
5547
582
656
2393
629
3233
6486
9739
2101
2198
1133
2099
4280
1686
6595
8866
51915
1001
871
1991
4588
3272
9224
5440
11715
6387
6118
6653
1758
1773

nz(L):

34590
355
80

4355
2727
2860
3236
5569
3416
11186
18520
29359
1537
5790
8590
2590
11259
21283
14273
50793
15422
584
986
2510
636

4400
8977
13631
2086
6117
1315
2398
5482
2261
13729
17156
53695
1345
925

3556
4428
3252
8948
5464
11193
6289
11665
15281
2726
2217

nz(ind);

8925
171
46

1913
1783
1331
1306
2628
1390
4016
6601
7080
1270
5372
8039
2324
1373
8604
6781
12560
6109
153
701
1521
417
1797
3673
5556
937

2791
464
960
1682
1430
6719
8636
6176
526
350

2099
1608
1198
3224
2160
4742
2063
5742
6263
1505
974

Table 1. Ouantitative data about LP problems

Numbers in the second column are related to the sequence
of problems ordered by the number of nonzeroes. The last
two columns show numbers of used entries in LNZ and
NZSUB resceptively. On the one hand these data shoK that
usage of compressed storage scheme is very efficient,
but on the other hand indicate that density of
triangular Cholesky factor can be a serious problem. In
general, storage consumption of our iraplementation can
be estimated using the following approxiiiiate formula:

real numbers (REAL«8)..
integers

6n + 4m + nz(A+c+u) + nz(L)
n + 4m + nz(A+c+u) + nz(ind)

where nz(A+c+u) is the number of nontrivial eleraents in
A,C and u together. It must be noted that interior point
methods generally consume more storage than simplex
based methods. Nevertheless, use of the above formula

10

sliows that about 40 out of 50 probleins can be solved on
a stondai-d PC with no more than 640 KB meinory.
Oui- coraputational testing was performed on a VAX8550
Computer. The operating 8ystein wa3 VMS, version 5.2, and
the VMS FDRTRAN compiler, version 5.2, was used with the
default options. The algorithm was uaed with default
paraiiietors QO =0.9995, r=0.1 and 6=10-'. Computed optijnal
objective value emd number of iterations were conipared
with those obtained using OBl (Lustig et al. 1989).

Problem: I ter.
(Lustig)

Computed
opt. value

Relative Opt. value
d. gap Lustig et al.

25FV47
ADLITTLE
AFIRO
BANDM
BEACONFD
B0Rlt3D
BIiANDY
CAPRI
E226
tTAMACl«
FIT-TFSOO
aUJG£S
GFlffiPNC
0K0W15
a[!OW22
Gi<0W7
ISRAEL
NESM
PIL0T4
P l L a r j A
PILOIVE
RECIPE
SC205
SCAGR25
SCkORl
SGFXM1
SCFXM2
SCEXM3
SCORPION
SCRS8
SCSDl
SCSD6
SCSD8
SCTAPl
SCTAP2
SCTAP3
SEBA
SHAREIB
3IiyiE2B
SHELL
SH1P04L
SHIP04S
SHIP08L
SH1P08S
SH1P12L
SHIP12S
SIERRA
STAIR
STANDATA
VTPBASE

48 (48)
21 (17)
14 (13)
31 (28)
25 (21)
28 (25)
34 (27)
40 (37)
34 (31)
51 (52)
66 (59)
41 (33)
30 (26)
34 (25)
32 (30)
30 (22)
47 (47)
70 (66)
58 (56)
67 (67)
74 (71)
18 (1 6)
22 (16)
28 (24)
22 (22)
38 (31)
38 (37)
41 (39)
21 (1 8)
51 (50)
14 (12)
15 (15)
14 (15)
22 (22)
23 (23)
27 (26)
32 (29)
42 (40)
20 (17)
39 (37)
26 (22)
22 (21)
26 (2 4)
25 (23)
29 (27)
29 (27)
30 (26)
27 (25)
34 (28)
28 (24)

5 5 0 1 . 8 4 5 9
2 2 5 4 9 4 . 9 6

- 4 6 4 . 7 5 3 1 4
- 1 5 8 . 6 2 8 0 2

33592 .486
1373.0804
1518 .5100
2 6 9 0 . 0 1 6 5

- 1 8 . 7 5 1 9 2 9
- 7 5 5 . 7 1 5 2 3

555679 .61
- 1 0 9 5 8 5 . 7 4

6 9 0 2 2 3 6 . 0
-1.0687094e+8
-1.6083431e+8
-47787812.
-896644.82
14076037.

-2581.1378
-6113.1349
-2.7201067e+6
-266.61600
-52.202061
-14753433.
-2331389.8
18416.759
36660.263
54901.255
1878.1250
904.29696
8.6666667
50.500000
905.00001
1412.2500
1724.8071
1424.0000
15711.600

-76589.318
-415.73224
1.2088253e+9
1793324.5
1798714
1909055
1920098
1470187
1489236
15394362.

-251.26695
1257.6995
129831.46

.321e-06
,447e-07
.249e-08
.579e-07
.427e-07
.184e-08
.412e-07
.443e-05

0.371e-07
0.132e-07
0.869e-06
0.670e-08
0.896e-07
0.105e-07
0.347e-06
0.519e-08
0.593e-07
0.218e-04
.779e-06
.155e-06
.728e-06
.867e-08
.785e-07
.132e-06
.316e-07
.192e-06
.149e-06
.194e-06
.141e-06

0.453e-07
0.320e-07
0.638e-08
0.998e-08
0.643e-10
.809e-08
.150e-08
.470e-07
.254e-07
.778e-07 ,
.116e-06
.161e-06
.124e-06
.llle-06

0.856e-07
0.139e-06
0.161e-06
0.140e-06
0.187e-06
0.295e-07
0.414e-08

5501.8459
225494.96

-464,75314
-158.62802
33592.486
1373.0804
1518,5099
2690.0127

-18.751929
-755.71523
555679.56

-109585.74
6902236.0

-1.0687094e+8
-l,6083434e+8
-47787812.
-896644.82
14076036.

-2581.1405
-6113.1365
-2.7201075e+6
-266.61600
-52.202061
-14753433.
-2331389.8
18416.759
36660.262
54901.255
1878.1248
904.29695
8.6666667
50.500000
905.00000
1412.2500
1724.8071
1424.0000
15711.600

-76589.319
-415.73224
1.2088253e+9
1793324.5
1798714.
1909055.
1920098.
1470187.
1489236.
15394362.

-251.26695
1257,6995
129831,46

Table 2. Coraputational results

Our testing was therefore successful in a sense that we
liave solved ali 50 probleras with reasonable accuracy.
Houever, we have experienced numerical troubles (such as
floating overflow or underflow) on some probleras:

1) To solve problem SCFXM1 we had to use ao=0.95.
2) To solve probleins PILar4, PILOTWE and PILOTJA, which

are lmown to be very ill-conditioned, we had to use
ao=0.95 again and also to change initial x to value
r=0.001.

Although we liave eventually solved above probleins after
some experiuientation with algorithm parameters, a sound
solution would be to use some kind of scaling. This
means tliat instead of ABA'"', in some cases it is better
to Koik with the matrix RAOATR, where R is a suitable

chosen diagonal matrix.

On the whole, we were not able to obtain such quality of
solution as it was reported for OBl, neither in tenns of
number of iterations, nor in teiins of obtained relutive
duality gap. This is easily explainable by the fact that
niany fine details and important options, which are
present in OBl, 8u~e not yet implemented in our code.

We have performed also some other types of eouiputational
testing, just to check validity of sorae assuniptions
about interior point methods. For exainple:
- A good siraplex code usually outperfomis interior point
methods on small problems.

- Some pi-obleiiis, which are supposed to be difficult for
aimplex based methods, can be easily (and mueh fastor)
solved if some interior point luethod is used. B'or
example, this is the čase uith problem 251'\'47.

- Coraputational work within a step of interior ix)iiit
methods ia dominated by sparse CholesUy factorizalion
of ASA^" . Its share on bigger problems is 60% to 90% of
overall tirne.

Systeni design and implementation

Iraplementations of interior- point raetliod wei'e done in a
form of highly portable fortran inodules IjPEhTV and LPMDG.
The former ušes the Reverse Cuthill-McKee algorithm, tlie
latter ušes the minimum degree algorithm. l'l-iey are stili
in the phase of testing and development, for which we
are using mainly VAX/VMS computer system, although the
same code is running also on the PC. Our ultimate goal
is to create reliable, portable and user-friendly LP
software package based on the interior point algoritlmis,
whioh is to be called LPINT. In our opinion such Itind of
system must contain portable full screen usei' interface
and also subroutines foi' graphical display of different
LP inatrices (Alvarado, 1990). It is also very important
to allow user to include his/her subroutines into the
package. Data exchange between a user pi-ograra ajid IĴ INT
may be done with the usage of some type of communioation
region (CR) , An overall LPINT systera arciiitecture can be
ilustrated witli the following picture:

external fiJes

configurat ion
profile
basis
solution

<—> iteration log
MPS data
IJvalues data
problem file
messages
reports

LPINT

Interactive
interface;

windows
pop-up menus
pull-down
menus

CR
optimizer

(LPENV or LFMDG)

GRAPHICAL
Subroutine
Library

Figure 5. LPINT system architecture

Concluslons

Generally we can say that the interior point methods are
getting more and more reliable and sophisticated aa
well. Moreover, interior point methods had greatlv
influenced algoritliraic and experimental work in the
field of linear prograinraing. Houever, it is not likely
that interior point methods can completely rcplace tlie
simplex method in future. In our opinion rfjasons foi-
this are mainly in simplex method ability to produce
optimal basic solution. The knowledge of basic status of
variables is very important, especially when postoptimal
einalysis or solution of mixed integer programs are
considered. Ch the other hand, when one wish to solve
big LP problem for the first time, it is advisable to
start with some interior point based package. It is a

11

fast, reliable and robust way to obtain the firat
Information about LP model.

A primal-dual interior point method can be implemented
in a rather easy and straightforward way. This fact, as
well as method's efficiency Eind mathematical elegance,
can be a big step toward deeper understanding of
interior point methods in general.

References

1. Adler, I., Karmarkar, N., Resende. M. and Veiga, G.
(1989), "An Implementation of Kaniiarkar's Algorithm
for Linear Programraing", Mathematical Progranming,
Vol. 44, pp. 297-335.

2. Alvarado, F.L. (1990), "Manipulation and
visualization of sparse matrices", ORSA Journal on
Computing, Vol. 2, pp. 187-207.

3. Andersen, J., Levkovitz, R., Mitra, G. and Tamiz, M.
(1990), "Adopting Interior Point Algorithm for the
Solution of LPs on Serial, Coarse Grain Psu:-allel
Computers". Presented at the International Sympo3ium
on Interior Point Methods for Linear Programming:
Theory and Practice, January 18-19, 1990, Europe
Hotel, Scheveningen, Netherlands.

4. Billionnet, A. and Breteau, J.F. (1990), "A
Comparison of Three Algorithms for Reducing the
Profile of a Sparse Matrix", Recherche
Operationnelle, Vol. 23, pp. 289-302.

5. Carolan, W. , Hill, J., Kennington, J., Niemi, S. and
Witchnian S. (1990), "An Empirical Evaluation of the
KORBX Algorithms for Military Airlift Applications",
Operations Research, Vol. 38, pp. 240-248.

6. Choi, C , Monma, C.L. and Shanno, D.F. (1990),
"Further Development of a Primal-Dual Interior Point
Method", ORSA Joumal on Computing, Vol. 2, pp- 304-
311.

7. Duff, I.S., Erisman, A.M. and Reid, J.K. (1989),
Direct Methods for Sparse Matrices, Clarendon Press,
CSiford.

8. Gay, D.M. (1985), "Electronic Mail Distribution of
Linear Programming Test Probleras", Mathematical
Programming Society COAL Newsletter, Vol. 13, pp.
10-12.

9. George, J.A. and Liu, J.W. (1981), Computer Solution
of Large Sparse Positive Definite Systems, Prentice
Hali, Englewood Cliffs.

10. Gondzio, J. (1991), "A Method for Handling Dense
Columns of Linear Programs in the Interior Point
Algorithm", Presented at the International Sympo3ium
"Applied Mathematical Prograinming and Modelling",
London.

11. Karmarkar, N.K. (1984), "A New Polinomial-Time
Algorithm for Linear Progi^amming", Combinatorica,
Vol. 4, pp. 373-395.

12. Lustig, I.J., Marsten, R.E. and Shanno, D.F. (1989),
"Computational Experience with a Priraal-Dual
Interior Point Method For Linear Programraing",
Teclmical Report SOR 89-17, School of Industrial
Engineering and Operations Research, Georgia
Institut of Technology, Atlanta.

