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Abstract. This attempt to “derive” space is part of the Random Dynamics project [1]. The
Random Dynamics philosophy is that what we observe at our low energy level can be
interpreted as some Taylor tail of the physics taking place at a higher energy level, and all the
concepts like numbers, space, symmetry, as well as the known physical laws, emerge from
a “fundamental world machinery” being a most general, random mathematical structure.
Here we concentrate on obtaining spacetime in such a Random Dynamics way. Because of
quantum mechanics, we get space identified with about half the dimension of the phase
space of a very extended wave packet, which we call ”the Snake”. In the last section we
also explain locality from diffeomorphism symmetry.

Povzetek. Ta poskus “izpeljave” prostora je del projekta Naključne dinamike [1]. Folozofija
je, da vse kar opazimo pri nizkih energijah lahko razložimo kot Taylorjev ,,rep” dogajanja
pri višjih energijah; vsi poljmi, kot so števila, prostor, simetrija, pa tudi vsi znani fizikalni
zakoni, se porajajo iz “osnovnega stroja sveta”, ki je najbolj splošna, naključna matematična
struktura. V tem prispevku izpeljujemo iz Naključne dinamike prostor-čas. Zaradi kvantne
mehanike idemntificiramo prostor s približno polovično razsežnim faznim prostorom
za zelo razsežen valovni paket, ki mu pravimo “Kača”. V zadnjem razdelku razložimo
lokalnost iz difeomorfnostne simetrije.

12.1 The space manifold

This is an attempt to “derive” space from very general assumptions:
1) First we postulate the existence of a phase space or state space, which is

quite general and abstract. It is so to speak an “existence space”, with very general
properties, and to postulate it is close to assume nothing.

So we start with the quantized phase space of very general analytical mechan-
ics:


q1, q2, ..., qN
p1, p2, ..., pN = i ∂

∂q1
, ..., i ∂

∂qN

H(~q,~p)

whereN is huge. This is (almost) only quantum mechanics of a system with a
classical analogue, which is a very mild assumption.
? e-mail: hbech@nbi.dk
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172 H. B. Nielsen and A. Kleppe

2) For the Hamiltonian H we then examine the statistically expected “random
H(~q,~p)” functional form (random and generic).

3) In the phase space we single out an “important state” and its neighbour-
hood - the “important state” supposedly being the ground state of the system.

The guess is that the “important state” is such that the state of the Universe is
in the neighbourhood of this “important state” - which presumably is the vacuum.

The state we know from astro-
nomical observations is very close to vacuum. According to quantum field theory
this means a state which mainly consists of filled Dirac seas, with only very few
true particles above the Dirac seas, and very few holes. This vacuum is our “im-
portant state”, supposedly given by a wave packet. If the system considered is the
whole Universe, each point in the phase space is a state of the world.

Classically, a state is represented as a point in phase space, but quantum
mechanically, due to Heisenberg, this phase space point extends to a volume hN.
Now assume that this volume is not nicely rounded, but stretched out in some
phase space directions, and compressed in others.

The phase space has 2N dimensions, so a wave packet apriori fills a 2N-
dimensional region. Our assuption is that the vacuum wave packet is narrow in
roughly N of these dimensions. The vacuum state is thus extended to a very long
and narrow surface of dimension N in the phase space (where N is half the phase
space dimension).

The really non-empty information in this assumption is that some of the
widths are much smaller than others. N is moreover enormous, equal to the
number of degrees of freedom of the Universe, so our model is really like a particle
inN dimensions, (q1, q2, ..., qN). The “important state” is one where “the particle”
is in a superposition of being in enormously many places (and velocities).

We envisage the points along the narrow, infinitely thin wave packet as
embedded in the phase space, and that they in reality are our space points. In
relation to this infinitely narrow “snake”, these points are seemingly “big” (one
can imagine the points as almost ’filling up’ the Snake volume in the transversal
direction). In the simplest scheme half of the phase space dimensions are narrow
on this Snake, and the other half are very extended, long dimensions on the Snake.
Along the Snake surface, the “important state” vacuum wave packet, i.e. the
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12 Towards a Derivation of Space 173

wave function Ψ(q1, q2, ..., qN) of the Universe, is supposed to be approximately
constant. With Ψ ≈ constant, reparametrization (once it has been defined) under
continuous reshuffling of the “points” along the long directions of the wave
packet, is a symmetry of the “important state”. The idea is to first parametrize the

N “longitudinal” dimensions so Ψ gets normalized to be 1 all along the Snake. It is
however not Ψ we are most interested in, but the probability of the Universe to be
at x, corresponding to ∫

t

|Ψ(x, y)|2dNt y (12.1)

where t stands for transverse.
With some smoothness assumptions, the longitudinal dimensions will be like

a manifold, i.e. the points given by the longitudinal dimensions constitute a “space
manifold”. Since N is huge, the wave packet extension is probably also huge. And
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174 H. B. Nielsen and A. Kleppe

since there is a huge number of possibilities in phase space, the Snake is most
certainly also very curled.

A wave packet can be perceived as easily excitable displacements of the
transversal directions of the N-dimensional Snake (approximate) manifold. There
are presumably different qi and pi at different points on the manifold, and states
neighbouring to the vacuum (“the important state”) correspond to wave packets
just a tiny bit displaced from the vacuum. Thus the true state is only somewhat
different from the vacuum (there is a topology on the phase space, so “sameness”
and “near sameness” can be meaningfully defined). Corresponding to different
points on the long directions of the wave packet (manifold), “easy” excitations can
then be represented as some combinations

∑
i(αi∆qi + βi∆pi) of the ordered set

(∆q1, ..., ∆qN, ∆p1, ..., ∆pN), where qi and pi are different phase space points of
the N-dimensional manifold. The “easy” degrees of freedom are thus assigned
to points on the manifold, so an “easy” displacement on the Snake is extended
over some region along the Snake, that is, in x. In that sense the “easy” degrees of
freedom can be interpreted as functions of x, φ1(x), φ2(x),...., which actually look
like fields on the manifold (this is just notation, but in some limit it is justified). The
wave packet Ψ consisting of easily excitable displacements, can then be perceived
as superpositions of the φi(x). A field is just degrees of freedom expressed as a
function of x (a field actually has to be a degree of freedom, in the sense that it is
among parameters describing the state of the Universe), and these superpositions
really seem to be fields.

Now, let us make superpositions of such “easy” displacements to form one
only non-zero displacement very locally, this is certainly legitimate. But with the
identification of the Snake with space (or the space manifold), we should require
that changing a field φ(x) only at x0 corresponds to keeping the Snake unchanged,
except at x0.

So far we have identified the “important state” as the “ground state”, i.e.
the classical ground state ≈ Snake. Now consider the classical approximation for
directions transverse to the Snake: In the transverse directions (∼ y), taking H as
function of y at the minimum of the crossing point with the Snake (chosen to be
the origin), the Taylor expansion of H with regard to y near the Snake is given by
(discarding unimportant constants) second order expansions

H ≈ 1
2

∂2

∂yi∂yj
H(y, x)|y=0 · yiyj (12.2)

We now diagonalize, i.e. look for eigenvalues of the matrix (∂2H/∂yi∂yj)ij, where
the “easy modes” correspond to the lowest eigenvalues.

From smoothness considerations these eigenvalues ω1,ω2, ... can be defined
as continuous and differentiable as functions of x, where x are the coordinates
along the Snake. So, if N>3, we could strictly speaking identify these eigenvalues
by enumeration: The lowest, next lowest, etc., except for crossings. As an example
take a very specific Hamiltonian giving cotecurves of H by choice of coordinates
y, so H ∼ ȳ2, and the commutator [yi, yj] being very complicated.
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12.1.1 The vacuum Snake

Until now, our main assumption is that the world is in a state in the neighbourhood
of “the vacuum Snake”. The true Snake is in reality a state that can be considered
a superposition of a huge number of states that are all needed to be there in the
ground state because there are terms in the Hamiltonian with matrix elements
between these states (of which it is superposed). We could think of these terms
enforcing the superposition for the ground state as some kind of “generalized ex-
change forces.” To go far away from the Snake would be so rare and so expensive
that it in principle doesn’t occur, except at the Big Bang. It is also possible that
the Snake is the result of some Hubble expansion-like development just shortly
after Big Bang. It must in reality be the expansion that has somehow brought the
Universe to be near an effective ground state or vacuum, because we know phe-
nomenologically from usual cosmological models that the very low energy density
reached is due to the Hubble expansion. Thinking of some region following the
Hubble expansion, its space expands but we can nevertheless consider analytical
mechanical systems. Starting with a high energy density state, i.e. rather far from

vacuum, the part of the Snake neighbourhood which is used gets smaller and
smaller after Big Bang. Already very close to the singularity - if there were one -
the only states were near the Snake. We may get away from the “Snake valley”,
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but only at Planck scale energies. And we will probably never have accelerators
bringing the state very far away from the Snake. So far, we have identified “the
Snake” in the phase space of the very general and very complicated analytical
mechanics system quantized.

Aiming at deriving a three-dimensional space, we must have in mind that this
manifold, which is the protospace, has a very high dimension of order N which is
the number of degrees of freedom of the whole universe. If that were what really
showed up as the dimension of space predicted by our picture, then of course our
picture would be immediately killed by comparison with experiment. If there shall
be any hope for ever getting our ideas to fit experiment, then we must at least be
able to speculate or dream that somehow the effective spatial dimension could be
reduced to become 3.

For many different reasons, it seems justified to believe that 3 is the dimension
of space. The naive argument is that we experience space as 3-dimensional, the
number of dimensions is however not to be taken for granted, as we know from e.
g. Kaluza-Klein, and string theory. We shall in the following at least refer to some
older ideas that could make such a reduction possible. For instance one can have
that in some generic equations of motion one gets for the particle only non-zero
velocity in three of the a priori possibly many dimensions.

12.2 The number of space dimensions

In the 1920-ies Paul Ehrenfest [2] argued that for a d =D+1-dimensional spacetime
with D > 3, a planet’s orbit around its sun cannot remain stable, and likewise
for a star’s orbit around the center of its galaxy. About the same time, in 1922,
Hermann Weyl [3] stated that Maxwell’s theory of electromagnetism only works
for d = 3+ 1 , and this fact ”...not only leads to a deeper understanding of Maxwell’s
theory, but also of the fact that the world is four dimensional, which has hitherto always
been accepted as merely ’accidental,’ become intelligible through it.”

The intuition that four dimensions are ’special’ is also supported by mathe-
matician Simon Donaldson [4], whose work from the early 1980-ies on the classifi-
cation topological four-manifolds indicates that the most complex geometry and
topology is found in four dimensions, in that only in four dimensions do exotic
manifolds exist, i.e. 4-dimensional differentiable manifolds which are topologically
but not differentiably equivalent to the standard Euclidean R4.

The existence of such wealth in 4-dimensional complexity is reminiscent of
Leibniz’ idea [5] that God maximizes the variety, diversity and richness of the
world, at the same time as he minimizes the complexity of the set of ideas that
determine the world, namely the laws of nature. Only, Leibniz never told in what
dimensions this should be the case, but according to Donaldson, this wealth of
structure is maximal precisely in a 4-dimensional spacetime manifold.

12.2.1 3+1 dimensions and the Weyl equation

Another way to “derive” 3+ 1 dimensions, is by assigning primacy to the Weyl
equation [6]. The argument is that in a non-Lorentz invariant world, the Weyl
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12 Towards a Derivation of Space 177

equation in d = 3+1 dimensions requires less finetuning than other equations. This
means that in 3+ 1 dimensions the Weyl equation is especially stable, in the sense
that even if general, non-Lorentz invariant terms are added, the Weyl equation
is regained. So in this scheme both 3 + 1 dimensions and Lorentz invariance
eventually emerge.

Before 3+ 1 dimensions there is no geometry. Starting with an abstract math-
ematical space with hermitian operators σ̄ and p̄ψ, and a wave function ψ in a
world without geometry, choose a two-component wave function,

σ̄p̄

(
ψ1
ψ2

)
= p0

(
ψ1
ψ2

)
where p0 is the energy. In vielbein formulation this is Vµaσapµψ = 0, which is the
Weyl equation with hermitian matrices σa that are the Pauli matrices σ1, σ2, σ3.
The vielbeins are really just coefficients coming about because we write the most
general equation. The Weyl equation is Lorentz invariant and the most general
stable equation with a given number of ψ-components, and as a general linear
equation with 2x2 hermitian matrices, it points to 3+ 1 .

In d dimensions the Weyl equation reads

σaeµa
∂ψ

∂xµ
= 0, (12.3)

a=(0,1,2,3), and the metric gµν =
∑
a

ηaae
µ
ae
ν
a is of rank=4. If the dimension d > 4,

there is however degeneracy.
For each fermion, there are generically two Weyl components. If we had a

generic equation with a 3-component ψ, we would in the neighbourhood of a
degeneracy point in momentum space, have infinitely many points with two of
the three being degenerate.

Assume thatψ hasN components,ψ = (ψ1, ...., ψN). Consider aC-dimensional
subspace of the ψ-space spanned by the ψ-components ψ1, ..., ψC, with N ≥ C,
and at the “C-degenerate point”, there is a C-dimensional subspace in ψ-space
(N-dim) for which Hψ = ωψ, with only oneω for the whole C-dimensional sub-
space (degenerate eigenvalue ω with degeneracy C - the eigenvalue ω is constant
in the entire C-dimensional subspace). In the neighbourhood we generically have
p̄γ̄ extra in H, where

H(p̄) = H(p̄degenerate) + p̄0γ̄ (12.4)

for which Hψ = ωψ. There are lower degeneracy points in the neighbour-
hood (meaning pµ-combinations with more than one polarization), where in the
situation with two polarizations. In the above figure A represents the 2-generate
point and the curves outside of A represent the situation where only one eigenvec-
tor in ψ-space is not degenerate. In the neighbourhood of a “generic” 3-degenerate
(or more) point there are also 2-degenerate points. But the crux is the filling of
the Dirac-sea. Think of the dispersion relation as a topological space: Can we
divide this topological space into two pieces, one “filled” and one “unfilled” so
that the border surface ∂‘‘unfilled ′′ = ∂‘‘filled ′′ only consists of degenerate
states/dispersion points? If not, we have a “metal”.
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The question is whether there is a no-metal theorem. To begin with, we can for-
mulate one almost trivial theorem: If the border ∂‘‘unfilled ′′ contains a more than
3-degenerate point, we generally either have a metal or else 2-degenerate points
on this border. There is also the disconnected dispersion relation, corresponding
to an insulator.

Counter example: Imagine a 6-dimensional Weyl equation. In this case, the
border ∂‘‘filled ′′ has only one point in the 6-dimensional Weyl, so there is only a
4-degenerate point and no 2-degenerate points on the border. The statement about

the stability of the Weyl equation in 3+ 1 dimensions would thus be false if the
6-dim Weyl were “generic”. But it is not, so there is no problem.

In d dimensions the number of (1+γ5)γµ matrices is d (where (1+γ5) project
to Weyl, i.e. the handedness), and the Weyl ψ has 2d/2−1 components. That means
that there are 2d−2 matrix elements in each (1+ γ5) projected γµ. Assuming that
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12 Towards a Derivation of Space 179

the dimension d is even, normal matrices γµ (i.e. Dirac gamma matrices) have 2
d
2

matrix elements in each γµ.
Now, for 2d−2 > d, one can form matrices which on the one hand act on

the Weyl field ψ (with its 2
d
2
−1 components), but on the other hand are not in the

space spanned by the projected γµ-matrices. One could in other words change
the Weyl equation by adding some of these matrices, thus for 2d−2 > d the Weyl
equation is not stable under addition of further terms. So the Weyl equation is not
“generic” for 2d−2 > d, i. e. it so to speak has zero measure (in the sense that if you
write down a random equation of the form [

∑
a

paM
a(nxn)]ψ = 0 in d dimensions,

where n is the number of ψ-components and 2d−2 > d, the probability that it is
the Weyl equation is zero). It is on the other hand impossible to have d linearly
independent projected γµ-matrices if 2d−2 < d, for even dimension d.

Looking at different number of dimensions d, we conclude that for d = 4,
2d−2 = d, seemingly confirming the “experimental” number of dimensions 4 =
3+ 1, i.e. there is genericness: It seems like the 4-dimensional Weyl equation is just
the most general stable equation with a given number of ψ-components.

d 2d−2

0 1/4
1 1/2
2 1
3 2
4 4 - equality!
5 8
6 16

So on the one hand the experienced number of dimension is 4 = 3+ 1 , and on the
other hand, in d = 4 the Weyl equation is stable under small modifications (so here
the Weyl equation is “generic”).

12.2.2 Bosons and fermions

Arguing that space has 3+ 1 dimensions, we however run into the old story that
we get 3+1 dimensions and Lorentz invariance separately for each type of particle.

From one perspective, fermions should however not exist at a fundamental
level, since they violate locality,

[ψ(x̄), ψ(ȳ)] 6= 0 (12.5)

One way out could be to get effective fermions from bosons, à la the relation in
1+1 dimensions,

ψ ∼def e
iφ (12.6)

where φ is a boson field. If there are Nf fermion components and Nb boson
components, then moreover [7]

Nf

Nb
≈ 2d−1

2d−1 − 1
(12.7)
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A bosonic counterpart to the Weyl equation would be of the form

Kµba∂µψa = 0, gµν = KµbaK
ν
cdΠ

bacd (12.8)

where e.g. Πbacd=δbaδcd, and K0 = δab for a = b, and Kiba = iεiab, H =

1/2
∑
ψ̃2a(p̄)→ δabψ̃aψ̃b.

In the game for gauge bosons or Weyl fermions, we look for a mechanism of
aligning the metrics for the different species of particles. We want to generalize
the coherent state concept and show that the states on the manifold can be called
generalized coherent state. Coherent states are usually given from harmonic oscil-
lators with q ′s and p ′s. So we must locally (in the phase space) approximate the
system by harmonic oscillators, then seek to extract q ′s and p ′s as operators, and
so we might have proven the quantized analytical mechanics model.

Define a generalized coherent state A(q, p)qop + iB(q, p)pop, such states are
given by points on a manifold. Differentiating with respect to a coordinate on the
manifold should give p or q acting on the state,

(Aqop + iBpop)|q
′, p ′ >= (Aq ′ + iBp ′)|q ′, p ′ > (12.9)

One thing is to have a manifold of rays, another is to have one of state vectors
(in the Hilbert space) |λ >= eλa

†
|0 >,

d

dλ
|λ >≈ a†|λ > (12.10)

a† = αq+ ip

As point of departure, we use gauge particles at low energy. There come
metrics out of it, one for each gauge boson. The equation of motion we get is

∂t

φ1φ2
φ3

 = i

 0 A12 A13
−A12 0 A23
−A13 −A23 0

φ1φ2
φ3

 (12.11)

where
A ≈ p̄ and φi = Bi + iEi ' Fjkε

jk
i + iF0i.

Together with C. Froggatt, one of us has shown [8] that looking at the very
low energy behavior of a (rather) generic system of bosons, one may arrive at an
approximate equation of motion for three of the fields of the form (12.11). However,
typically for Random Dynamics, we should argue that the coefficients the A’s here
are dynamical. These A’s are (essentially) the same as the K’s in equation (12.8)
and we have already written that a metric tensor comes out of them. Of course
all fields are basically of the form of some combination of the φi(x)’s, since they
make up at least all the “important” degrees of freedom. This is also true for the
A’s, or equivalently the K’s, thus in the end the metric tensor comes to depend on
the φ’s.

12.3 Reparametrization

If a space has N dimensions, the phase space dimension is 2N, and the Hilbert
space can be perceived as a sumH =

∑
⊕HN. N is not a constant of the motion,
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so we need some term in the Hamiltonian going from one N to another. So let us
imagine an only quantum mechanically describable term with matrix elements
between wave packets connected to the phase space for one N, and the wave
functions connected to another of the N values (another phase space so to speak).

The full Snake must then be imagined as really a superposition of one (or
more) snakes in each or at least several of the phase spaces corresponding to the
various N values. Hereby the snakes in the different N-value phase spaces get
locked together, but they will somehow be locked so as to follow each other - due
to the quantum matrix elements connecting the different N-value phase spaces -
and we effectively have only one snake.

We let x enumerate the points along the Snake, i.e. in the “longitudinal direc-
tion”, x is chosen by convention. We can just as well choose again, now choosing it
to be x’=x’(x), it should not matter. The crux is whether the action is independent
on these choices, i.e. whether S(ψi(x), ...) and S ′(ψi(x ′), ...) are of the same form,
supposedly something like

S =

∫
(
∑
i

q̇ipi −H)dt, (12.12)

presumably they are not. That means that reparametrization invariance is not
automatically given, but must be derived.

In General Relativity we have S =
∫
R
√
gd4x. If we put x ′µ = x ′µ(xρ) into

S, and transform gµνthe conventional way, g ′µν(x ′)=g ′µν(x ′)(..), we get S = S ′

from the constructed form (of Einstein and Hilbert). But since we have no a priori
reparametrization invariance, we cannot state that the action is independent in
this way. So far, our Snake model doesn’t even have translational invariance. It
needs to be derived, and we also need to derive diffeomorphism invariance.

Following the scheme of Lehto-Nielsen-Ninomiya [9], the diffeomorphism
invariance should be achieved by quantum fluctuations, in the sense that quan-
tum fluctuations should produce translational invariance and in the end even
reparametrization invariance.

We do this by relating points on the Snake to points ’on’ the metric (assuming
that the effects of going along the string on the effective parameters that are being
averaged are bounded, so that the average at least converge): Consider a point
given by computation using the gµν, which quantum fluctuates. These fluctuations
so to speak smear out the differences between points chosen on the Snake, thus
ensuring translational invariance (and diffeomorphism invariance).

In this way we can always formally get diffeomorphism invariance, but we
risk to have some absolute coordinates functioning as “Guendelman variables”
[10]. To show practical reparametrization invariance then depends on how we get
rid of these absolute coordinates, or rather how their effects are washed away.

12.3.1 Procedure

1. We have the Snake in the phase space of the very general and very complicated
analytical mechanics system quantized. We get the fields φj corresponding to the
small displacements in transverse directions in which the frequencies of vibrations
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are “small” at the position x, telling where in phase space we are in the longitudinal
directions of the Snake.

2. We assume (or show) that there are some fields (essentially among the
φj(x)’s or related to their development), a set of “upper index metric fields”
gµν(x).

As a matrix, this metric should have rank 4, and we expect to find one gµν

for each species of particles. Here we first think of gauge particles, postponing the
fermions.

That is to say, we get some equations of motion for three effectively relevant
fields φm (m=1,2,3) for each gauge particle species.

With equation (12.8) in mind, we consider the form

K0mnφ̃n − Kjmnpjφ̃n = 0 (12.13)

or just Kµmnpµφ̃n = 0, where the pµ stands for pµ − pµ0 , and pµ = i∂/∂xµ.

K0mn = δmn and Kimn = iεimn (12.14)

But at first we only have

Kµmn = Kµ∗nm (hermiticity) and K0mn = δmn (essentially definition)
(12.15)

because we have chosen the simple Hamiltonian

H =

∫
(
∑
m

φ̃2m(~p))dd−1~p (12.16)

to be δmnφ̃nφ̃m, and Kimn = −Kinm, because we let all the Kimn come from the
Poisson bracket (commutator)

[φ̃m(~p), φ̃n(~p)] = K
i
mn(p

′
i − pi0) (12.17)

near the zero point in ~p-space. From this Kµmn one then constructs the defining
relation

gµν = KµmnK
ν
opδ

moδnp (12.18)

for the rank 4 metric with upper indices gµν.
3. Assume (this must be true) that what we conceive as a point in space is

calculated by using a metric gµν (we may have the problem of getting too many
matrices gµν, i. e. gµν1 (x), gµν2 (x), gµν3 (x), ...) integrating it roughly up to calculate
where we have a point with given coordinates.



i
i

“proc13” — 2013/12/11 — 20:10 — page 183 — #195 i
i

i
i

i
i

12 Towards a Derivation of Space 183

4. The formulation we shall use is by construction diffeomorphism invariant
for the coordinate set x enumerating the points along the Snake. But that does not
mean that we have a diffeomorphic symmetric Hamiltonian H or action S. We
can namely have an underlying absolute coordinate system - or “Guendelman
variables”. We could indeed imagine that we at first describe the longitudinal
manifold along the Snake by a set of coordinates ξ, as many ξ as there are x-
coordinates, of course. When introducing the diffeomorphism transformable x, we
perceive ξ(x) as some (scalar) fields which are functions of x. But all the special
structure of the phase space or analytical mechanics system as it varies along the
Snake, appears as explicitly dependent on H, or S on the ξ’s taking specific values.
There is so to speak no translational invariance in ξ, but there is trivially in x, since
translation is (apart from boundary problem) just a special diffeomorphism. Since
in the “vacuum” it could at first seem that the ξ’s have in x varying values as one
goes along in x, the presence of these ξ (expectation) values even in “vacuum”
means a spontaneous breakdown of translational invariance, and even more a
spontaneous breakdown of diffeomorphism symmetry.

At first glance, it thus looks like the “Guendelman” ξ-fields imply a sponta-
neous breakdown of translational and diffeomorphism invariance. So to prove
that we do indeed have diffeomorphism invariance for say the Hamiltonian H,
we must show that the practical effects of the “Guendelman fields” or original
absolute coordinates ξ, wash out. Under the conditions which we shall consider,
the ξ-dependent effects in practice average out. We shall argue that if we (as hu-
mans or physicists) count our position by integrating up some of the gµν obtained
from gµν (or some average of gµν1 , g

µν
2 , g

µν
3 , ..), we fluctuate around relative to the

ξ-coordinates (which are fixed in phase space along the Snake). These fluctuations
were assumed under 3.

5. Now we need the assumption that the potentials, or more generally the
Hamiltonian contributions depending on ξ (and thus via the spontaneous break-
down violating the translational invariance), are bounded or at least as effectively
bounded as fluctuations of ξ, so the averages over large regions in ξ become
(approximate) constants.

By taking this boundedness of the ξ-dependent part of the Hamiltonian as a
reasonable assumption, the ξ-dependent contributions to the Hamiltonian wash
completely out to nothing, the reason being the integrated up metric becomes
integrated up over regions in x-space of the order of the size of the Universe,
whereby the fluctuations become enormous.

If that is so, we have shown that for “us” situated in a place determined
from the metric tensor fields gµνi or rather their inverse gµν by long distance
integration, the diffeomorphism invariance has been (effectively) (re)stored. In
this way the formally introduced diffeomorphism invariance - just by thinking of
x as an arbitrary set of variables - has become a good symmetry because of the ξ’s
representing the lack of diffeomorphism symmetry by spontaneously breaking it,
have gone practically out of the game.

It should be noticed that by this argumentation we have argued for diffeo-
morphism symmetry in the whole x-space of dimensions suspected to be 3, even
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if the metric tensor only has (because, say, of inheriting from Kµmn) rank 4, thus
delivering an effective spacetime of dimension 3+ 1 .

The point is that even though the single gµν(x) has only rank 4 = 3 + 1 , it
can fluctuate so all the fluctuation values of gµν(x) are included, and all directions
in x-space covered. One may imagine the 3-dimensional space as a 3-dimensional
submanifold embedded in the much higher dimensional x-space (the longitudinal
space on the Snake). Then this submanifold not only fluctuates by extending and
contracting in its own 3-dimensional directions, but also fluctuates around its
transverse directions inside the x-space. Thus by quantum fluctuations (integrated
up), the 3-space submanifold floats around (almost) all over the Snake in its
longitudinal space.

For each fixed configuration of gµν(x) one has a whole “fibration” of 3-spaces
lying parallel to each other in the x-space. Then the whole fibration fluctuates
around in x-space. Accepting the above, we arrive at an approximate Hamiltonian
(or an approximate action S) being exactly diffeomorphism invariant, whereby we
can deduce locality. After having derived locality that way, we get a picture very
close to a model with gauge bosons and a dynamical metric, seemingly with 3
space dimensions. It looks rather like what we see phenomenologically, but there
are a few weak points:

• The problem of each particle species, here each gauge particle species, having
its own Kµmn(x), and thus it own gµν(x).

• We have in some sense much more than 3 spatial dimensions because we have
as many as has the longitudinal direction on the Snake.

These problems may not be very severe: Calculating our position from the gµν as
if space were 3-dimensional, we obtain what we use as position. Then it does not
matter so much that relative to the Snake, the ξ-absolute coordinates fluctuate both
in the 3 and the many other coordinates. Since the ξ’s are supposedly bounded
- and thus relatively easy to average out to a constant - it will just become even
easier to get them averaged out over the bigger region where the position of “us”
fluctuates.

We should however have in mind that signals going along the 3-dimensional
surfaces along which the quanta can move, for every fixed imagined position of
the 3-manifold inside the much higher dimensional x-space, will only be able to
move along that 3-surface. However, when this surface fluctuates wildly, also the
signals running on it get swept along in much more than three directions. That will
however not be noticed by the physicist using the point-concept resulting from
integrating up the metric gµν, or what we consider the more genuinely existing
(∴ a bit more fundamental) gµν. The physicist can only get motions in the three
dimensions, simply because he only evaluates three coordinates in his position
calculations.

So this problem is not so severe.
We however need to resolve the problem that each particle species has its own

metric. A plausible solution goes in the direction that the metrics are in some way
“dynamical”, and interact with each other in such a way that they finally align,
thus behaving as if they were all proportional to each other. We would hope that
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e.g. the metric determining the gluon propagation would by interaction with the
metric tensor (similarly related to say the W’s and determining their propagation)
bring them in the lowest energy situation to become aligned, where this aligning
then really should stand for that they become proportional to each other.

It should be noted that our theory is a priori not Lorentz invariant, at least not
in the metric degrees of freedom, the Lorentz invariance supposed to be derived
subsequently. Considering that our Snake is in its ground state, there are no ghosts,
the question is how the different metrics behave. To begin with, we ask how one

metric gµν can avoid having ghosts.

12.3.2 Idea of Attracting Metric Tensors

The basic idea in getting dynamical metrics which are adjusted to be paral-
lel/proportional is not so difficult. Multi-metric gravity is however complicated
by the (Boulware-Deser) ghosts [11] that threaten to appear as one of the gravitons
becomes massive. Indeed lets us give the main hope:

1. For each type of particle, initially meaning each type of gauge particle
(but if we add fermions we could also have a metric tensor for each type of Weyl
particle) there is a characteristic metric tensor gµν (with upper indices, prepared
for being contracted with a derivative ∂µ w.r.t. to the coordinates xµ). So we shall
strictly speaking attach a particle species name to each of these metrics, e.g. gµν(W)

for the metric assigned to theW gauge boson.
2. we argue that this metric is “dynamical” and even a field. Thus, it is not

just a constant metric, but such that it

• can vary with initial conditions and fluctuate quantum mechanically,
• can vary in time,
• and even in space, since we take it as a field (we anyway have no translational

invariance yet). The coefficients in the time development of the fields which are
going to be interpreted as the gauge boson fields, will nevertheless depend on
the precise position of the Snake near the place to which the fields in question
are assigned. The point of view that the coefficients which give rise to the
metric tensor are fields should be unavoidable.

3. Taking seriously the Random Dynamics assumption that everything that is
allowed to interact also does interact, we deduce that the different metric tensors
associated with different particle species will indeed interact.

4. We introduce the symmetries restricting the interactions between the vari-
ous fields, paying attention to the metric tensor fields associated with the different
particle species. At some point we get reparametrization from diffeomorphism
invariance, which then restricts the way these metrics (which transform as upper
index tensors) interact. Do not forget that by taking the inverse of the upper index
matrix we can get one with lower indices instead (were it not for the problem that
the metric only has rank 3 +1 and thus canot be inverted).

5. These restrictions from diffeomorphism or other symmetries, also mean
that the equations between the fields (resulting from the minimum energy state
for the system w.r.t. to, say, the metric tensors) also share these symmetries. This
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gives hope that the metric tensors will come to be proportional (or even equal) to
each other.

6. Now, if the metric tensors for the different species of particles indeed get
proportional, it really means that the Lagrangian terms or equations of motions
for the different particle species can be written with the same metric and just some
overall factors in addition. This in its turn means that in the end, there are no
effectively different metrics.

If you have several different metrics, this is what supposedly happens:

• You get bigravity or multigravity, meaning that you get a model with several
spin=2 particles [12] [13].

• We can (after some partial gauge fixing) interpret the massless graviton as a
Nambu-Goldstone particle for diffeomorphism symmetry, and we expect that
even after getting several metric tensors we should only have one massless
graviton if the diffeomorphism symmetry remains [14]. So we expect one
massless graviton and several massive spin 2 particles, namely the number of
metric tensors minus one.
The graviton becomes a real Nambu-Goldstone particle due to a linearly
varying gauge function. Simple shift by adding a constant to a coordinate,
perceived as a reparametrization/gauge transformation, is not spontaneously
broken in Einstein gravity. It’s only the linear variation of ε with x, that makes
the metric tensor field spontaneously breaking the transformation.

• Then our “poor physicist thinking” means that we guess that all particle
species which don’t have a reason for being massless (or almost massless),
have so big masses that they are in practice not present (it is so to speak the
Universe after the very first singularity (supposing there was one), which is so
cold that massive particles do not occur even if they exist in the sense that they
could in principle be produced in some enormously expensive accelerator).
This means that all the heavy graviton field degrees of freedom are in their
no-excitation state. If these fields are the metrics, or better some linear com-
bination of metrics for the different particles, the non-excitation of the ma-
jority of these linear combinations leaves only one excitable combination∑
aig

µν
i = aWg

µν
W + agluong

µν
gluon + ... of the various metrics, namely the

massless combination. This means that the various metric fields are forced
to follow each other. They will namely all follow the massless graviton field,
simply being equal to this massless metric multiplied by some constant.

If indeed a massive spin two graviton would appear, there will no longer be any
proportional metrics. But that would be rare, and we would interpret the effect
of having different metrics for different species as effects of interaction with this
heavy graviton.

So once we have argued that the metric tenors are dynamical and interacting,
there is really good hope for getting rid of the old problem in Random Dynamics,
that different species have different metric tensors. The crux of the matter is that
the different metrics have the chance to dynamically influence each other, and
thereby for symmetry reason become (apart from some extra factors) the same
metric.
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12.3.3 General Ghost Problems

Making theories with one or several massive gravitons, i.e. bigravity, is highly
non-trivial due to the ghost-problem of Boulware and Deser. The problem is that
if you essentially randomly create theories for spin 2 particles, you are very likely
to run into the problem of unstable modes of vibration. We here think of classical
fields, and

for the theory to be stable - i.e. have a bottom in the Hamiltonian - all modes
of vibration should be like harmonic oscillators rather than like inverted harmonic
oscillators. It is, however, rather an art to avoid getting such ghosts or unstable
vibrations, if one seeks a massive spin two. Thereby it becomes a problem also for
making an interacting bigravity or multigravity. We argued that we expected only
one massless graviton. If we have several, it is most likely that one or more are
heavy gravitons, which then in turn brings their ghost-problem.

Hassan and Rosen [15] argue that they have got the only bigravity without
ghosts. A characteristic of this two metric theory (= bigravity) is that the interac-
tion, apart from the usual factor

√
−detg, is a function only of a kind of ratio of

the interacting metrics fµν and gµν, formally written
√
g−1f. This means that it

depends on a constructed metric γµν defined by the equation

γµνγ
ν
ρ = gµρfρν. (12.19)

In fact the interaction part of the Lagrangian density is written as a sum with
coefficients βn of symmetrized products of eigenvalues of the matrix γµν.

There is as a side remark for us who have a theory in which the metric tensor
appears as a product of two matrices: We may construct the square root matrix γµν
directly from the matrices that must essentially be squared to obtain the metric, i.e.
our original variables from which we construct the metric are already a kind of
square roots of the metric.

Concerning the Bouleware-Deser ghosts or unstable modes, for the purpose
of our machinery for obtaining relativity and space, we may think as follows:

If we have chosen to consider states around a ground state which has the
lowest possible energy, there cannot be any vibration modes unless the vibration
leads to positive or at least non-negative energy. That means that all the vibrations
around our ground state - the ground state of the Snake - must be of the type
of a positive frequency and energy, i.e. ordinary rather than inverted harmonic
oscillator. So from our a priori very general model one deduces a good behavior
of the resulting particle field equations. There shall be no unstable modes of
vibration in the effective field theory resulting from our Snake model. We logically
allow a type of bigravity or massive gravity which avoids the ghosts, and if it is
claimed that there is no alternative to a certain special type of models to avoid
the instabilities (that would mean that the bottom falls out of the Hamiltonian,
so some states would have energy less than the state assumed to have the lowest
energy around which we expand) we should be formally allowed to conclude that
this type of model is effectively realized in our Snake model. It’s only once we
manage to get dynamical metrics that the discussion of bigravity type theories
becomes relevant, but we at least get some coefficient-fields which we strongly
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expect to become dynamical variables. Surely there will to these fields, which if
dynamical, formally correspond to some “metric tensors”.

In the spirit that all allowed terms should be there, the speculation that
these metric fields must obtain some kind of kinetic term in our very general
model, seems very well supported. This is essentially just the Random Dynamics
assumption that the coupling parameters can be considered random, so they
cannot be in any (simple) special value system that would have measure zero.
Thus the possible kinetic terms must be allowed, and the sign(s) can only be as
needed for the already discussed ground state to indeed be the ground state.

We take this argumentation to mean that we must expect our very general
analytical mechanical system treated as the Snake to be approximated by the
matter gauge fields (and Weyl fermions if we allowed), in addition to a say in the
two gauge boson case (for simplicity) the bi-gravity of Hassan and Rosen, cleverly
adjusted to have no instabilities (∴ no ghosts). This Hassan Rosen model should
apart from possible modifications of the kinetic energy have an action like

S =M2
p

∫
d4x

[
√
−g

(
R+ 2m2

4∑
n=0

βnen(
√
g−1f)

)
+M2

pf

√
−f

]
(12.20)

which is equation (2.1) in [15] with a kinetic term ∝ Rf for the fµν. This equation
looks a bit less symmetric than it will be in the end. The notation is that we have
two metric tensors gµν and fµν and R denotes the usual Einstein Hilbert action
scalar curvature calculated from gµν in the usual way. The symbols g and f are
of course the determinants of the two metric fields, but the symbol

√
g−1f is not

related to the determinants but rather it means a matrix γµν determined as the
square root from the condition:

γµνγ
ν
ρ = gµνfνρ (12.21)

Notice the natural use of g−1 for gµν which is of course the inverse of the gmatrix
gµν as the metric with upper indices always is.

The symbols en(γµν) for n running from 0 to 4 are the symmetrized eigenval-
ues of the matrix γµν. That is to say

e0(
√
g−1f) = 1

e1(
√
g−1f) = λ1 + λ2 + λ3 + λ4 (12.22)

e2(
√
g−1f) = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

. . . . . . (12.23)

12.4 Locality and nonlocality

Once we have established the diffeomorphism symmetry of our model, the next
step is to derive locality.

According the Random Dynamics philosophy nature is inherently nonlocal,
in field theory locality is however taken for granted, meaning that every degree
of freedom is assigned a spatio-temporal site, i.e. that all interactions take place
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in one spacetime point. This implies that there is a system for assigning one site
to each degree of freedom, and in a local theory the action can then be factorized.
The partition function of the Universe then has the form

Z =

∫
Dψe(iS+sources)

where S = S1+S2+ ..., and each contribution only depends on the fields in limited
regions of spacetime, corresponding to S =

∫
L(x)d4x in the continuum limit.

Nonlocality would then mean that a degree of freedom is a function of more
than one spacetime point. An example of nonlocality is microcanonical ensemble,
which in a formal sense is nonlocal - to approximate it to a canonical ensemble
would from this perspective be analogous to approximating nonlocality with local-
ity. In the microcanonical ensemble it is a constraint that gives rise to nonlocality,
and this (omnipresent) nonlocality can be viewed as due to the presence of fixed
extensive quantities, in a manner reminiscent of a microcanonical ensemble. This
would then be a nonlocality inherent in nature, as opposed to one emerging from
dynamical effects, i.e. not to the same as the “nonlocality” which refers to quantum
nonlocality in the sense of non-separability, which occurs as nonlocal correlations
which occur in settings such as the one discussed by Einstein, Podolsky and Rosen.

12.4.1 Fundamental nonlocality

Since there are no instances in quantum mechanics of signals propagating faster
than light, from the Random Dynamics point of view, quantum mechanics is not
really nonlocal. In the Random Dynamics scenario it is nonlocality that is taken
for granted, locality appearing as a result of reparametrization invariance, i.e. as a
result of diffeormorphism symmetry.

Our basic assumptions are as follows:

• Locality only makes sense when you have a spacetime, or at least a mani-
fold, so our starting point is a fundamental, differentiable manifoldM. To
grant reparametrization invariance, we cannot do with simple Minkowski
space, we also need general relativity. A reparametrization invariant formula-
tion demands that also gµν gets transformed, since gµν = ηµν would violate
reparametrization invariance. So if gµν is perceived as nothing but a field
(i.e. in reality 10 fields), there is only a manifold. Our manifold is moreover
4-dimensional, and it is only gµν that determines whether this means 4+0-
dimensional, or 3+ 1 - or 2+ 2-dimensional.

• Some fundamental fields ψk(x), Akµ(x), ..., Kkµν(x),... defined on the mani-
foldM. We also want to have a gµν with contravariant, upper indices. Indices
are important since upper and lower indices transform differently under
reparametrization mappings, and if we were to include fermions, we should
have vierbeins as well, presumeably with upper curved index. Assume that the
chiral theory is formulated in terms of the Weyl equation, then we need vier-
beins eµa which transform as four-vectors with upper index, whileψ transforms
as a scalar under the curved index and thus reparametrization. In addition
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there is flat index transformation under which ψ transforms as a spinor, eµa as
a four-vector, and gµν as a scalar.
In higher dimensional theories you usually assume locality in the high di-
mensional space, for example in the case D=14,

∫
L4d4x is local in higher

dimensions. In an apriori arbitrary parametrization of the formR4xR14−4, we
get
∫
L4d4x, where

L4d4x =
∫
L(x, y)d14−4y (12.24)

and L4d4x only depends on x, while
∫
L(x, y)d14−4y only depends on “in-

finitesimal” neighbourhood in (x,y); and in this sense the lower dimensions
’inherit’ locality from the higher dimensions.
Even if y→∞ is non-compact far away, this argument is valid. That is, even
in the case of non-compact extra dimensions, 4-locality is there.

• Diffeomorphism symmetry, i.e. invariance under reparametrization mappings.
Initially we however have a somewhat weaker assumption, demanding in-
variance only under x⇒ x ′(x) = x+ ε(x), for det (∂x ′µ/∂xν) = 1.
• We need some “smoothness assumptions”, expecting Taylor expandability.

When deriving locality we obviously don’t start with a local action, so our
starting function is just some generic action S[gµν, ψ,φ], where ψ(x), φ(x) are
defined in four-dimensional spacetime represented by x, the reparametrization
invariance implying that S[ψ ′] = S[ψ].

For this action S[gµν, ψ, ...] we formulate some theorems:

Theorem I :

With our assumptions, the “action” S[gµν, ψ, ...] becomes a function of a basis
for all the integrals you can form in a reparametrization invariant way from
polynomials and mononomials in the fields and the derivatives at a single point x
integrated over

∫
...d4x (i. e. the whole manifold).

We assume the manifold to be finite (compact), as a kind of infrared cutoff. Note
that theorem I only implies a mild locality, i. e. an action of the form

S = S(

∫
L1d4x,

∫
L2d4x, ...). (12.25)

We derive something like a Lagrangian form, because we have many Lj, and a
complicated functional form.

Theorem II :

When an action is of the form S(
∫
L1d4x,

∫
L2d4x, ...), called “mild” locality,

then inside a small region of the manifold (a neighbourhood), and for a single field
development, gµνactual, ψactual, the “Euler-Lagrange equations”

δS

δψ(y)
|ψ=ψactual,gµν=g

µν
actual

= 0 (12.26)

are as if the action were of the form S =
∫
L(x)d4x where L(x) is a linear combina-

tion of the Lj(x) ′swith coefficients only depending on gµνactual and ψactual, but
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in such a way that these coefficients depend only very little on gµνactual, ψactual in
the small local region considered.

According to Theorem II these “coefficients” do indeed exist, but it is apriori
not certain that they are Taylor expandable. Actually there is a function-Taylor
expansion for the function coming out of Theorem I.

ψk(x)→ ψk(x)new = ψk(x) ◦ x ′ (12.27)

for each fixed k, i.e. ψk(x)new = ψk(x ′(x)) = ψk(x), and

Akµnew(x
′(x)) = Akν(x)

∂x ′µ

∂xν
and Kkρσnew(x

′(x)) = Kkµν(x)
∂x ′ρ

∂xµ
∂x ′σ

∂xν
. (12.28)

Proof of theorem I: When we want to derive locality, we have to consider the
“locality postulates”. The first locality postulate is that the Lagrangian L depends
on an infinitesimal neighbourhood, i.e.

∫
Ld4x is used for minimizing. An evi-

dently local action is then S =
∫
Ld4x, with L = L(ψ, ∂ψ/∂x, ...); the goal being to

formulate an action such that the reparametrized action is a functional of the type

S(ψ ′) = F(
∫
L1(x)d4x,

∫
L2(x)d4x, ...,

∫
Ln(x)d4x) (12.29)

We also make the “weak assumption” that S is functional expandable,

S[ψ] =∞∑
k=0

∫ ∫ ∫
...ψ(x(1))ψ(x(2))...ψ(x(k))

δS

δψ(x(1))δψ(x(2))...δψ(x(k))
d4x(1)...d4x(k)

(12.30)

The diffeomorphism symmetry implies that S[ψ◦x ′] = S[ψ], whereψ ′ = ψ◦x ′,
ψ ′(x) = ψ(x ′) = ψ(x ′(x)), the invariance meaning that S[ψ ′] = S[ψ] In the Taylor
expansion, one has to pay attention to that

δψ ′(x)

δψ(y)
= δ(x ′(x) − y), (12.31)

thus

δS[ψ ′]

δψ(y)
=
δS[ψ(x ′(x))]

δψ(y)
=

∫
S[ψ]

δψ(y)
δ(x ′ − y)d4x = det()

δS[ψ]

δψ(x ′−1(y))

where we in the first round choose det() = 1. Generalized:

δS[ψ ′]

δψ(y(1))...ψ(y(k))
= det()

δS[ψ]

δψ(x ′−1(y(1)))...δψ(x ′−1(y(k)))
(12.32)

We want to choose x ′ in such a way that x ′−1(y(1)) = z(1), x ′−1(y(2)) = z(2), ..,
but with the demand that z(j) 6= y(k) for all j 6= k. If all z(j) are all different
among themselves, and likewise the y(j) are all different among themselves, the
functional derivative is a constant, but if we have a situation where some points
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are the same, e.g. z3 = z4 = z5, the functional derivative will depend precisely
on which points are not identical (under the reparametrizarion mapping that
brings z3 = z4 = z5 onto the points y3, y4, y5, implying that y3 = y4 = y5), i.e.
δS[ψ]/δψ(y(1))...δψ(y(k)) only depends on how many in each group are identical.
All aberrances belong to a null set, and if we ignore this null set, we have

δS[ψ]

δψ(y(1))...δψ(y(k))
= fk (12.33)

which is independent of the y(j)’s. We then have

S[ψ] =

∞∑
k=0

1

k!

∫
· · ·
∫

δkS

δψ(y(1) · · · δψ(y(k))
ψ(y(1) · · ·ψ(y(k)d4y(1) · · ·d4y(k) =

=
∑ fk

k!

∫
· · ·
∫
ψ(y(1) · · ·ψ(y(k)d4y(1) · · ·d4y(k)

(12.34)

and ∞∑
k=0

f(k)

k!
(

∫
ψ(y)d4y)k = F(

∫
ψ(y)d4y), (12.35)

so we got “mild” locality of the form (12.25), i.e. some function of usual action-like
terms (in reality “mild” super local where super stands for no derivatives).
Now, if the null set argument is incorrect, consider that

δS

δψ(y(1))δψ(y(2))
= const.+ δ4(y(1) − y(2)) (12.36)

and
δS

δψ(y(1))δψ(y(2))...δψ(y(k))
=

C1 + C2

k∑
j,l

δ(y(j) − y(k)) + C3
∑

δ(y(j) − y(k))
∑

δ(y(i) − y(l)) (12.37)

where Cj are constants. Here we integrate over all points, whereby the same points
might reappear several times. The resulting action is of the form

S = F(

∫
ψ(x)d4x,

∫
ψ(x)2d4x,

∫
ψ(x)3d4x, ...) (12.38)

Now, what does such an action look like locally?
We can Taylor expand S:

δS[ψ]

δψ(y)
|ψ=ψa =

∑
χ=1

∂F

∂(
∫
ψ(x)χd4x)

χψ(x)χ−1 = f(ψ(x))

where ∂F/∂(
∫
ψ(x)χd4x)χψ(x)χ−1 can be locally approximated with a constant,

and f(ψ(x)) depends on what happens in the entire universe.
We now have a situation where S ≈

∫
h(ψ(x))d4x (where the function h is

defined so that h ′(ψ) = f(ψ) i.e. it is the stem function of f), corresponding to a
super local Lagrangian.
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12.4.2 An exercise

As an exercise we will consider a theory with ψ and Aµ (a contravariant vector
field), keeping in mind that Aµ and Aµ transform differently under diffeomor-
phisms.

Taylor expanding the functional S[ψ,Aµ]:

S[ψ,Aµ] =∞∑
k=0

∫ ∫
δkS

δψ(y(1))
δψ(y(2))...δAµk(y(k))ψ(y(1))...Aµk(y(k))

1

k!
d4y(1)...d4y(k)

(12.39)

and consider
1

1!

∫
δS

δAµ
(y(1))d4y(1) (12.40)

where δS/δAµ(y(1)) is forced to be zero under reperametrization transformations.
But if we only include boundary terms,

δS

δAµ(y(1))
∼

∫
∂µδ(y

(1) − x)d4x ≈ only boundary terms (12.41)

where the normal to the boundary ηµ ∼ ∂f/∂xµ, and∫
∂V4

ηµA
µd3x =

∫
Aµ[dx]µ, (12.42)

the reparametrization invariance implies that

δS

δAµ
= ηµ on the boundary, and 0 on the inside of V4. (12.43)



i
i

“proc13” — 2013/12/11 — 20:10 — page 194 — #206 i
i

i
i

i
i

194 H. B. Nielsen and A. Kleppe

We want to have∫
δS

δAµ
Aµ(y)d4y =

∫
∂S

const.Aµηµd3y|boundary (12.44)

This is integrated with Aµ as a variable, to

CδµAµd4x = C
∫
Aµηd3x (12.45)

where C is a constant, and ηd3x represents the boundary. Now the action is

S = F(

∫
ψ(x)d4x,

∫
ψ(x)2d4x, ...,

∫
∂µA

µd4x,
∫
ψ(x)∂µA

µd4x, ...) (12.46)

We now take all reparametrization invariant Lagrange density suggestions and let

S = F(

∫
L1d4x,

∫
L2d4x, ...) (12.47)

where we have remarked that the various integrands occuring (49), i.e.ψ(x),ψ(x)2

, ..., ∂µAµ(x), ψ(x)∂µAµ(x),... are easily seen to be just those integrands which
ensures reparametrization invariance (under our (simplifying) assumption of the
determinant in the reparametrization x ′(x) being unity.). We have therefore hereby
finished the proof (or at least argument for) our above theorem I.

The theorem II is shown by arguing that, if we think of only investigating
say the equations of motion in a small subregion of the whole spacetime region
in which the universe have existed and will exist, then the integrals occurring in
the function F(

∫
L1(x)d4x, (

∫
L2(x)d4x, ...) will only obtain a relatively very little

part of their contribution for this very small local region. Thus these integrals as
a whole will practically independent of the fields ψ(x) etc. in the small region
(where we live, and which is considered of interest). So indeed the statement of
theorem II is true and we consider theorem II proven.

The final point is that we hereby have argue for that we for practical purposes got
locality from assuming mainly diffeomorphism or reparametrization invariance
for practical purposes, in the sense that we only investigate it in an in space and
time relative to the spacetime volume of the full existence of the universe small
region. Further it were based on Taylor expandability of the very general a priori
non-local action S[ψ,Aµ, ...].

This “derivation” of locality were initiated in collaboration with Don Bennett.

12.5 Conclusion

We have in this article sought to provide some - perhaps a bit speculative - ideas for
how to “derive” spacetime from very general starting conditions, namely a quan-
tized analytical mechanical system. From a few and very reasonable assumptions,
spacetime almost unavoidably appears, with the empirical properties of 3+1 di-
mensionality, reparametrization symmetry - and thereby translational invariance,
existence of fields, and practical locality (though not avoiding the nonlocalities
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due to quantum mechanics). Our initial assumption was that the states of the
world were very close to a ground state, which in the phase space was argued to
typically extend very far in N dimensions, while only very shortly in the N other
dimensions. Here the number of degrees of freedom were called N and thus the
dimension of the phase 2N. This picture of the ground state in the phase space we
called the Snake, because of its elongation in some, but not all directions. The long
directions of the Snake becomes the protospace in our picture. The translation and
diffeomorphism symmetry are supposed to come about by first being formally
introduced, but spontaneously broken by some “Guendelmann fields ξ”. It is then
argued that this spontaneous breaking is “fluctuated away” by quantum fluctua-
tions, so that the symmetry truly appears, in the spirit of Lehto-Ninomiya-Nielsen.
At the end we argued that once having gotten diffeomorphism symmetry, local-
ity follows from simple Taylor expansion of the action and the diffeomorphism
symmetry.

We consider this article as a very significant guide for how the project of
Random Dynamics - of deriving all the known physical laws - could be performed
in the range from having quantum mechanics and some smoothness assumptions
to obtaining a useful spacetime manifold.
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