
 Informatica 32 (2008) 453–464 453

A Heuristic Search Algorithm for Flow-Shop Scheduling

Joshua Poh-Onn Fan
Graduate School of Business
University of Wollongong, NSW, Australia
E-mail: joshua@uow.edu.au

Graham K. Winley
Faculty of Science and Technology
Assumption University, Bangkok, Thailand
E-mail: gkwinley@scitech.au.edu

Keywords: Admissible heuristic function, dominance, flow-shop scheduling, optimal heuristic search algorithm

Received: October 25, 2007

This article describes the development of a new intelligent heuristic search algorithm (IHSA
*
) which

guarantees an optimal solution for flow-shop problems with an arbitrary number of jobs and machines

provided the job sequence is constrained to be the same on each machine. The development is described

in terms of 3 modifications made to the initial version of IHSA
*
. The first modification concerns the

choice of an admissible heuristic function. The second concerns the calculation of heuristic estimates as

the search for an optimal solution progresses, and the third determines multiple optimal solutions when

they exist. The first 2 modifications improve performance characteristics of the algorithm and

experimental evidence of these improvements is presented as well as instructive examples which

illustrate the use of initial and final versions of IHSA
*
.

Povzetek: Opisan je nov hevristični iskalni algoritem IHSA*.

1 Introduction

The optimal solution to the flow-shop scheduling
problem involving n jobs and m machines determines the
sequence of jobs on each machine in order to complete
all the jobs on all the machines in the minimum total time
(i.e. with minimum makespan) where each job is
processed on machines 1, 2, 3, …, m, in that order. The
number of possible schedules is (n!)m and the general
problem is NP-hard. For this general problem it is known
that there is an optimal solution where the sequence of
jobs is the same on the first two machines and the
sequence of jobs is the same on the last two machines
[4]. Consequently, for the general problem with 2 or 3
machines there is an optimal solution where the jobs are
processed in the same sequence on each machine and the
optimal sequence is among only n! job sequences.
However, in the optimal solution for the general problem
with more than 3 machines the jobs are not necessarily
processed in the same sequence on each machine. This
article is concerned with the development of an
algorithm (IHSA*) which is guaranteed to find an optimal
solution for flow-shop scheduling problems involving an
arbitrary number of jobs and machines where the
problem is constrained so that the same job sequence is
used on each machine.

 Early research on flow-shop problems is based
mainly on Johnson’s theorem, which gives a procedure
for finding an optimal solution with 2 machines, or 3
machines with certain characteristics [20], [21]. Other

approaches for the general problem include integer linear
programming and combinatorial programming, which
use intensive computation to obtain optimal solutions and
are generally not feasible from a computational
standpoint because the number of variables increases
exponentially as the number of machines increases [35].
Branch-and-bound methods use upper or lower bounds to
guide the direction of the search. Depending on the
effectiveness of the heuristic and the search strategy this
method may return only near optimal solutions but with
long computation time [19], [29], [30], [36]. Heuristic
methods have received significant attention [9], [18],
[26], [27], [37], [40], [41], [42]. However, even the most
powerful heuristic method to-date, the NEH heuristic
developed by Nawaz et al. [31] fails to reach solutions
within a reasonable bound of the optimal solution in
some difficult problem cases [47]. A review of
approaches by Zobolas et al. [47] indicates that there has
been strong interest in artificial intelligence optimization
methods referred to as metaheuristics including:
Simulated Annealing [32], [34]; Tabu Search [11];
Genetic Algorithms, which may give an optimal solution
but due to the evolutionary nature of this approach the
computation time is unpredictable [2], [3], [5], [38];
Fuzzy Logic [13], [14], [15], [16], [17]; Ant Colony and
Particle Swarm Optimization [28], [43]; Iterated Local
Search [39]; and Differential Evolution [33]. The strong
interest in metaheuristics generated the development of

454 Informatica 32 (2008) 453–464 J. Fan et al.

hybrid approaches which combine different components
of more than one metaheuristic [1].

 An initial version of a new intelligent heuristic
search algorithm (IHSA*) for flow-shop problems with
an arbitrary number of jobs and machines and subject to
the constraint that the same job sequence is used on each
machine has been proposed in [6], [7], [8]. It is based on
the Search and Learning A* algorithm presented in [44],
[45], [46] which is a modified version of the Learning
Real Time A* algorithm in [24], [25] which is, in turn, a
modified version of the original A* algorithm [10], [12].

 At the start of the search using IHSA* different
methods are considered for computing estimates for the
total time needed to complete all of the jobs on all of the
machines assuming in turn that each of the jobs is placed
first in the job sequence. It is shown that if there are m
machines then there are m different methods that should
be considered. Among the estimates associated with each
method the smallest estimate is referred to as the value of
the heuristic function that is associated with that method
and it identifies the job that would be placed first in the
job sequence at the start of the search if that method is
used. If the value of the heuristic function does not
exceed the minimum makespan for the problem then the
heuristic function is said to be admissible and in such
cases IHSA* is guaranteed to find an optimal solution
provided the job sequence is the same on each machine.
The proof of this result for IHSA* is given in [8] and is
similar to that given in [22] and [23] in relation to the A*
algorithm from which IHSA* is derived. The term
“heuristic” is used in the title of IHSA* because the
optimality of the algorithm and its performance depends
on the selection of an appropriate admissible heuristic
function at the start of the search and this function
continues to guide the search to an optimal solution.

 The purpose of this article is to describe the
development of IHSA* which has occurred since the
initial version was first presented in [6]. For simplicity of
presentation the development is described in terms of
problems involving an arbitrary number of jobs with 3
machines. However, the notations, definitions, proofs,
and concepts presented may be extended to problems
involving more than 3 machines if the job sequence is the
same on each machine and these extensions are noted at
the appropriate places throughout the presentation.
Three significant modifications have been made to the
initial version of IHSA*. The first concerns the choice of
an admissible heuristic function at the start of the search.
The second concerns the calculation of heuristic
estimates as the search progresses, and the third
determines multiple optimal solutions when they exist.

 Following an introduction to the initial version of
IHSA* each of the 3 modifications is presented.
Experimental evidence of improvements in performance
characteristics of the algorithm which result from the
first 2 modifications is provided in the Appendix and
discussed in section 5. Instructive examples are given to
illustrate the initial and final versions of IHSA* and these
have been limited to 3 machines in order to allow
interested readers to familiarize themselves with the
algorithm by reworking the examples by hand. The

proofs of results related to the modifications are
presented in the Appendix.

2 The initial version of IHSA
*

Before presenting the initial version of the algorithm
notations and definitions are introduced and the state
transition process associated with IHSA* is described
together with the features of search path diagrams which
are used to illustrate the development of an optimal job
sequence.

2.1 Notations and definitions

The following notations and definitions are introduced
for a flow-shop problem involving n jobs J1, J2, …, Jn and
3 machines M1, M2, M3.

Oij is the operation performed on job Ji by machine
Mj and there are 3n operations. For job Ji the processing
times ai, bi, and ci denote the times required to perform
the operations Oi1, Oi2, and Oi3, respectively and these
processing times are assumed to be non negative
integers. If Oij has commenced but has not been
completed then pij represents the additional time required
to complete Oij and at the time when Oij starts pij is one
of the values among ai, bi, or ci. The sequence φst = {Js,
…, Jt} represents a sequence of the n jobs with Js
scheduled first and Jt scheduled last. T(φst) is the
makespan for the job sequence φst and S(φst) is the time at
which all of the jobs in φst are completed on machine M2.

 Using these notations and definitions Figure 1
illustrates the manner in which the operations associated
with the job sequence φst are performed on the 3
machines.

)(stS φ

)(stT φ

i

n

i

a∑
=

≥

1

i

n

i

b∑
=

≥

1

i

n

i

c∑
=

≥

1

 Figure 1: Processing the Job Sequence φst

 A method for calculating an estimate of the total
time to complete all of the n jobs on all of the 3 machines
when job Ji is the first job in the sequence is given by

ai + bi + i

n

i

c∑
=1

. Then the heuristic function associated

with this method is H3 where,
H3 = min [a1 + b1, a2 + b2, …, as + bs, …, an + bn]

 + i

n

i

c∑
=1

. (1)

If min [a1 + b1, a2 + b2, …, as + bs, …, an + bn] =

as + bs then H3 = as + bs + i

n

i

c∑
=1

 and job Js would be

A HEURISTIC SEARCH ALGORITHM FOR... Informatica 32 (2008) 453–464 455

scheduled first in the job sequence. It is seen from Figure
1 and proved in the Appendix that H3 is an admissible
heuristic function and H3 is the heuristic function that
was used in the initial version of the IHSA*.

2.2 The state transition process

The procedure for developing the optimal job sequence
using IHSA* proceeds by selecting an operation which
may be performed next on an available machine. At the
time that selection is made each of the 3n operations is in
only one of 3 states: the not scheduled state; the in-

progress state; or the finished state and the operation
which is selected is among those in the not scheduled
state. Operations not in the finished state are referred to
as incomplete. A state transition occurs when one or
more of the operations move from the in-progress state
to the finished state and at any time the state level is the
number of operations in the finished state.

IHSA* describes the procedure which takes the state
transition process from one state level to the next and the
development of the optimal job sequence is illustrated
graphically using search path diagrams.

2.3 Search path diagrams

A search path diagram consists of nodes drawn at each
state level with one of the nodes connected to nodes at
the next state level. Each node contains 3 cells which are
used to display information about operations on the
machines M1, M2, and M3, respectively. When a state
transition occurs one of the nodes at the current state
level is expanded and it is connected to the nodes at the
next state level where each node represents one of the
different ways of starting operations that are in the not

scheduled state. At each of these nodes a cell is labeled
with Ji to indicate that the operation Oij is either in
progress or is one of the operations that may start on Mj,
and pij which is the time needed to complete Ji on Mj. A
blank cell indicates that no operation can be performed
on that machine at this time.

Near each node the heuristic estimate (h) associated
with the node is recorded. The heuristic estimate is
calculated using the heuristic function chosen in Step 1
of the algorithm in conjunction with the procedure used
in Step 2. It is an estimate of the time required to
complete the operation at the node identified by the
procedure in Step 2 as well as all of the other operations
that are not in the finished state. At each state level the
node selected for expansion is the one which has
associated with it the minimum heuristic estimate among
all of the estimates for the nodes at that state level. Near
this selected node the value of f = h + k is recorded
where the edge cost (k) is the time that has elapsed since
the preceding state transition occurred.

 A comparison is made between f and h’ where h’
is the minimum heuristic estimate at the preceding state
level. Based on that comparison the search path either
backtracks to the node expanded at the preceding state
level or moves forward to the next state level. If
backtracking occurs then the value of h’ is changed to the
current value of f and the search moves back to that

node. If the path moves forward then the value of the
edge cost (k) is recorded below the expanded node. For
convenience of presentation a new search path diagram is
drawn when backtracking in the previous diagram is
completed.

 At state level 0 there are n root nodes
corresponding to the number of jobs. The final search
path diagram represents the optimal solution and traces a
path from one of the root nodes, where the minimum
makespan is the value of h or f, to a terminal node where
h = f = 0. The optimal job sequence can be read by
recording the completed operations along the path from
the root node to the terminal node.

2.4 IHSA
*
 (initial version)

Step 1: At state level 0 expand the node identified by

calculating the value of H3 from (1), and move to the

nodes at state level 1. If more than one node is identified

then break ties randomly.

 For example, if H3 = as + bs + i

n

i

c∑
=1

 then the

node with Js and as recorded in the first cell is the node to
be expanded.
Step 2: At the current state level if the heuristic estimate

of one of the nodes has been updated by backtracking use

the updated value as the heuristic estimate for that node

and proceed to Step 3. Otherwise, calculate a heuristic

estimate for each node at the current state level using

Procedure 1 and proceed to Step 3.

Procedure 1 is described below.
Step 3: At the current state level select the node with the

smallest heuristic estimate. If it is necessary then break

ties randomly.

 The smallest heuristic estimate is admissible and
underestimates the minimum time required to complete
all of the incomplete jobs on all of the machines.
Step 4: Calculate f = h + k where h is the smallest

heuristic estimate found in Step 3 and k (edge cost) is the

time that has elapsed since the preceding state transition

occurred.

Step 5: If f > h
’
, where h

’
 is the minimum heuristic

estimate calculated at the preceding state level, then

backtrack to that preceding state level and increase the

value of h
’
 at that preceding node to the current value of

f and repeat Step 4 at that node.

Step 6: If f ≤ h
’
 then proceed to the next state level and

repeat from Step 2.

Step 7: If f = 0 and h = 0 then Stop.

Procedure 1 is used in Step 2 to calculate a heuristic
estimate for each node at the current state level:
(a) If cell 1 is labelled with Ji then the heuristic estimate
h for the node is based on the operation in cell 1 and is
given by,
h = ai + bi + C1; for Oi1 in the not scheduled state, (2)
 pi1 + bi + ci + C1; for Oi1 in the in-progress state,

where C1 is the sum of the values of ck for all values
of k such that Ok1 is in the not scheduled state.

456 Informatica 32 (2008) 453–464 J. Fan et al.

(b) If cell 1 is blank, and cell 2 is labelled with Ji then the
heuristic estimate h for the node is based on the operation
in cell 2 and is given by,
h = bi + C2; for Oi2 in the not scheduled state, (3)
 pi2 + ci + C2; for Oi2 in the in-progress state,

where C2 is the sum of the values of ck for all values
of k such that Ok2 is in the not scheduled state.
(c) If cell 1 and cell 2 are blank, and cell 3 is labelled
with Ji then the heuristic estimate h for the node is based
on the operation in cell 3 and is given by,
h = C3; for Oi3 in the not scheduled state, (4)
 pi3 + C3; for Oi3 in the in-progress state,

where C3 is the sum of the values of ck for all values
of k such that Ok3 is in the not scheduled state.

 In Procedure 1 the calculation of a heuristic
estimate for a node is based on an operation in only one
of the cells at the node and operations in the other 2 cells
are not taken into account. For example, if cell 1 is not
blank then the estimate is based only on the operation in
cell 1. If cell 1 is blank then the estimate is based only on
the operation in cell 2. An operation in cell 3 is only
considered if the other 2 cells are blank.

 The following example illustrates the use of the
initial version of IHSA* to solve the flow-shop problem
given in Table 1. For instructional purposes the problem
is deliberately simple with only 3 machines and 3 jobs
because it is intended to provide readers with an
opportunity to become familiar with the algorithm using
an example that can be reworked easily by hand.

Table 1: Example of a Flow-shop Problem

Jobs/Machines M1 M2 M3
J1
J2
J3

 2 1 10
 4 6 5
 3 2 8

For illustrative purposes only the first search path
diagram is presented in Figure 2.

At the start of the search H3 = 26. In total 5 search
path diagrams are required to find the optimal sequence
J1J2J3 with a minimum makespan of 26. Twenty nodes
are expanded, 16 backtracking steps are required, and 43
steps of the algorithm are executed.

3 Modifications to the initial version

of IHSA
*

The first modification determines the best heuristic
function to use for a given problem and affects Step 1 of
the algorithm. The second modification affects Procedure
1 used in Step 2 and the third modification affects Step 7
and enables multiple optimal solutions to be found when
they exist.

3.1 A modification to step 1

In the Appendix a set of 6 heuristic functions are
derived for the case of 3 machines and proofs of the
admissibility of these functions are presented. It is shown
that among this set of 6 heuristic functions the one which

Figure 2: The First Search Path Diagram Using the Initial
Version of IHSA*

is admissible and has a value which is closest to the
minimum makespan will be the one among H1, H2, and
H3 which has the largest value where,

H1 = min[b1 + c1, b2 + c2, …, bn + cn] + i

n

i

a∑
=1

,

H2 = min[a1 + u1, a2 + u2, …, an + un] + i

n

i

b∑
=1

, (5)

H3 = min[a1 + b1, a2 + b2, …, an + bn] + i

n

i

c∑
=1

,

where: u1 = min[c2, c3, …, cn]; uk = min[c1, c2, …,
ck-1, ck+1, …, cn], for 2 ≤ k ≤ n – 1; and un = min[c1, c2, c3,
…, cn-1].

Choosing the admissible heuristic function among
H1, H2, and H3 with the largest value in the first step of
the algorithm ensures that the search begins with an
estimate of the minimum makespan that is not greater
than it but is the closest to it. This choice is expected to
reduce the need for backtracking at a subsequent stage of

A HEURISTIC SEARCH ALGORITHM FOR... Informatica 32 (2008) 453–464 457

the search since backtracking takes the search back to a
previous node and increases the heuristic estimate at that
node to a value which is admissible but closer to the
minimum time required to complete all of the incomplete
jobs on all of the machines.

 Consequently, Step 1 in the initial version of
IHSA* is modified and becomes:
Step1: At state level 0, from (5), choose the admissible

heuristic function among H1, H2, and H3 which has the

largest value and if necessary break ties randomly. In the

case where machine Mj dominates the other machines

select Hj. Expand the node identified by the chosen

admissible heuristic function and move to the nodes at

state level 1. If more than one node is identified then

break ties randomly.

 The example in section 4 below illustrates the use
of the modification to Step 1 in a simple problem which
enables the reader to rework the example by hand. In the
Appendix it is shown that in the particular case where
machine Mj dominates the other machines then the best
admissible heuristic function among H1, H2, and H3 is Hj
and it has a value which is greater than the value of either
of the other two functions by at least (n – 1)(n – 2) where
n is the number of jobs. Thus in the case of a dominant
machine in the first step of the algorithm there is no need
to calculate each of the values of H1, H2, and H3 in order
to choose the one with the largest value. Instead, it is
known that it will be Hj if machine Mj is the dominant
machine.

In the case where there are m machines and m > 3 it
is shown in the Appendix that the best admissible
heuristic function to use in the first step of the algorithm
is the one among F1, F2, …, Fm which has the largest
value and if m = 3 then F1 = H1, F2 = H2, and F3 = H3.
Experimental evidence of improvements in performance
characteristics of the algorithm which result from using
the modification to Step 1 is presented in the Appendix
Table A1 and is discussed below in section 5.

3.2 A modification to step 2

The second modification to the initial version of
IHSA* concerns the calculation of heuristic estimates at
nodes on the search path when the search has
commenced. It is based on the principle that when
heuristic estimates for the nodes at the same state level
are being calculated in Step 2 it is desirable to obtain the
largest possible estimate at each of these nodes before
selecting the node with the smallest estimate as the node
to be expanded. The larger the value of this smallest
estimate then the less likely it is that the search will need
to backtrack and this is expected to improve the
performance characteristics of the algorithm. As noted
above, the use of Procedure 1 in Step 2 in the initial
version of IHSA* gives a heuristic estimate for a node
based on an operation in only one of the cells while
operations in the other 2 cells are not taken into account.

The second modification affects Procedure 1 and
involves calculating heuristic estimates h1, h2, and h3 at a
node for cells 1, 2, and 3, respectively. Then max[h1, h2,
h3] is used as the heuristic estimate (h) for the node. This

is done for each node at the current state level and then,
as before, in Step 3 the minimum estimate among these
estimates identifies the node to be expanded.
Consequently, Procedure 1 is replaced by the following
Procedure 2:

In Step 2 of the algorithm for a node at the current
state level,
(a) For cell 1: If the cell is blank then h1 = 0.
 Otherwise, h1 is given by (2).
(b) For cell 2: If the cell is blank then h2 = 0. (6)
 Otherwise, h2 is given by (3).
(c) For cell 3: If the cell is blank then h3 = 0.
 Otherwise, h3 is given by (4).

 Procedure 2 refers to calculations specified in
Procedure 1 which incorporate currently the heuristic
function H3. However, (2), (3), and (4) are easily
changed to incorporate H1 or H2 for problems where one
of these functions has been selected using the
modification to Step 1 of the algorithm. For example, if
H2 is used then (3) and (4) are not changed but (2)
becomes,

 h =
ai + wi + B1; for Oi1 in the not scheduled state,
pi1 + wi + bi + B1; for Oi1 in the in-progress state,

 where, B1 is the sum of the values of bk for all values of
k ≠ i such that Ok1 is in the not scheduled state and wi is
the smallest value of ck for all values of k ≠ i such that
Ok1 is in the not scheduled state.

 Procedure 2 produces the same heuristic estimate
as Procedure 1 if and only if one of the following 3
conditions is satisfied: h1 = max[h1, h2, h3]; h2 = max[h1,
h2, h3] and cell 1 is blank; or h3 = max[h1, h2, h3] and
cells 1 and 2 are blank. Under any other conditions
Procedure 2 will produce a heuristic estimate at a node
which is larger than the estimate given by Procedure 1.
Consequently, using Procedure 2 will never produce an
estimate that is less than the estimate produced by
Procedure 1 and in practice the estimate using Procedure
2 is usually larger and leads to a reduction in
backtracking.

Using Procedure 2 in the initial version of IHSA*
modifies Step 2 and it becomes:
Step 2: At the current state level if the heuristic estimate

of one of the nodes has been updated by backtracking use

the updated value as the heuristic estimate for that node

and proceed to Step 3. Otherwise, at each node use

Procedure 2 to calculate h1, h2, h3 and use max[h1, h2,

h3] as the heuristic estimate for the node.

If there are m machines and m > 3 then there are m
cells at each node and an estimate is calculated for each
cell by extending (6) and (2), (3), (4) to accommodate the
heuristic function Fj (see Appendix) used in Step 1 of the
algorithm.

 The example in section 4 below illustrates the use
of the modification to Step 2 in a simple problem which
enables the reader to rework the example by hand.
Experimental evidence of additional improvements in
performance characteristics of the algorithm from using
the modifications to Steps 1 and 2 together is presented
in the Appendix Table A1 and is discussed below in
section 5.

458 Informatica 32 (2008) 453–464 J. Fan et al.

3.3 A modification to step 7

For some problems there are multiple optimal
solutions and it is often important in practical situations
to be able to find all of the optimal solutions since it may
be required to find an optimal solution that also satisfies
other criteria. For example, an optimal solution may be
sought which also has the least waiting time for jobs that
are queuing to be processed.

 When IHSA* is implemented there are 2
situations which indicate the possible existence of
multiple optimal solutions. The first situation occurs
when there is more than 1 node at a state level with the
smallest heuristic estimate. In this case the ties are
broken randomly and one of the nodes is selected for
expansion and the search continues and produces an
optimal solution. At the completion of the search
returning to that state level and selecting for expansion
one of the other nodes which were not selected when the
ties were broken may lead to a different optimal solution.
The second situation occurs when at the completion of
the search for an optimal solution one or more of the
nodes at state level 0 has a heuristic estimate that is less
than or equal to the minimum makespan. In this case
returning to those nodes and beginning the search again
may produce different optimal solutions.

The modification to the initial version of IHSA* that
enables multiple optimal solutions to be determined
affects Step 7. This modification is different from the
previous 2 modifications in that it does not improve the
performance characteristics of the algorithm but instead
it is intended to find multiple optimal solutions if they
exist.

 Consequently, Step 7 becomes:
Step 7: If f = 0 and h = 0 then an optimal solution has

been found. If along the path representing the optimal

solution there is a node which was selected for expansion

by breaking ties randomly among nodes at the same state

level with the same minimum heuristic estimate then

return to that state level and repeat from Step 2 ignoring

any node that was selected previously for expansion as a

result of breaking ties. If any of the values of h at root

nodes (state level 0) is less than or equal to the minimum

makespan then return to state level 0 and repeat from

Step 2 ignoring root nodes that lead to a previous

optimal solution. Otherwise, Stop.

4 The final version of IHSA
*

The final version of IHSA* incorporates each of the
3 modifications:
Step1: At state level 0, from (5), choose the admissible

heuristic function among H1, H2, and H3 which has the

largest value and if necessary break ties randomly. In the

case where machine Mj dominates the other machines

select Hj. Expand the node identified by the chosen

admissible heuristic function and move to the nodes at

state level 1. If more than one node is identified then

break ties randomly.

Step 2: At the current state level if the heuristic estimate

of one of the nodes has been updated by backtracking use

the updated value as the heuristic estimate for that node

and proceed to Step 3. Otherwise, at each node use

Procedure 2 to calculate h1, h2, h3 and use max[h1, h2,

h3] as the heuristic estimate for the node.

Step 3: At the current state level select the node with the

smallest heuristic estimate. If it is necessary then break

ties randomly.

Step 4: Calculate f = h + k where h is the smallest

heuristic estimate found in Step 3 and k (edge cost) is the

time that has elapsed since the preceding state transition

occurred.

Step 5: If f > h
’
, where h

’
 is the minimum heuristic

estimate calculated at the preceding state level, then

backtrack to that preceding state level and increase the

value of h
’
 at that preceding node to the current value of

f and repeat Step 4 at that node.

Step 6: If f ≤ h
’
 then proceed to the next state level and

repeat from Step 2.

Step 7: If f = 0 and h = 0 then an optimal solution has

been found. If along the path representing the optimal

solution there is a node which was selected for expansion

by breaking ties randomly among nodes at the same state

level with the same minimum heuristic estimate then

return to that state level and repeat from Step 2 ignoring

any node that was selected previously for expansion as a

result of breaking ties. If any of the values of h at root

nodes (state level 0) is less than or equal to the minimum

makespan then return to state level 0 and repeat from

Step 2 ignoring root nodes that lead to a previous

optimal solution. Otherwise, Stop.

If there are m machines and m > 3 then Steps 1 and
Step 2 need to be modified in accordance with the
discussion of this case presented in sections 3.1 and 3.2
above.

The simple instructive example which was used to
illustrate the initial version of IHSA* (see Table 1) is
used again to illustrate the final version of IHSA*. For
this problem, from (5), H3 = 26 > H1 = 19 > H2 = 16 and
using the modification to Step 1 of the algorithm H3 is
used in Step 1 of the algorithm. Since no backtracking is
necessary an optimal solution for the problem requires
only 1 search path diagram which is shown in Figure 3
where the optimal solution has a minimum makespan of
26 and a job sequence J1, J2, J3. At each node the search
path diagram shows the estimates h1, h2, h3 and the
heuristic estimate for the node h = max[h1, h2, h3] which
result from the use of the modification to Step 2 of the
algorithm.

It is noted that the minimum heuristic estimate at
state level 1 is 24 at both of the nodes at that state level.
In Step 3 of the algorithm the tie was broken randomly
and the node at which job J2 is scheduled on machine M1
was selected for expansion. In Step 7, although for
simplicity a second search path diagram has not been
drawn, the search returns to state level 1 and instead the

A HEURISTIC SEARCH ALGORITHM FOR... Informatica 32 (2008) 453–464 459

 Figure 3: Search Path Diagram Using the Final Version
of IHSA*

node at which job J3 is scheduled on machine M1 is
expanded. This gives a second optimal solution where
the job sequence is J1, J3, J2.

5 Experimental evidence of

improvements in performance

Experimental evidence of improvements in performance
characteristics of IHSA* using the modifications to Steps
1 and 2 is presented in Appendix Table A1. The
characteristics considered are: the number of nodes
expanded; the number of backtracking steps required;
and the number of steps of the algorithm executed.

In total 14 problems are considered involving: 3, 5
and 10 machines; and 3, 4, 10, 15, and 40 jobs. Each
problem involving 3 machines was solved using the
heuristic functions H1, H2, and H3 in (5) which are the
same as F1, F2, and F3, respectively, when m = 3.
Problems involving 5 and 10 machines were solved using
their corresponding heuristic functions F1, F2, F3, F4, F5
and F1, F2, F3, …, F10, respectively. The solutions
enabled improvements in the performance characteristics
resulting from the use of only the modification to Step 1
to be assessed. In addition, for each problem the solution
was obtained using the modification to Step 1 together
with the modification to Step 2. The performance

characteristics associated with each of these solutions
enabled an assessment of any further improvements in
performance characteristics resulting from the inclusion
of the modification to Step 2.

From Table A1 it is seen that for each problem
regardless of the number of jobs and machines the
modification to Step 1, which involves using the heuristic
function with the largest value in Step 1, leads to
improvements in all of the performance characteristics.
Furthermore, in each problem using the modification to
Step 1 together with the modification to Step 2, which
affects the calculation of heuristic estimates as the search
progresses, leads to further improvements in the
performance characteristics.

6 Conclusion

Three modifications to the initial version of a new
intelligent heuristic search algorithm (IHSA*) have been
described. The algorithm guarantees an optimal solution
for flow-shop problems involving an arbitrary number of
jobs and machines provided the job sequence is the same
on all of the machines.

 The first modification affects Step 1 of the
algorithm and concerns the choice of an admissible
heuristic function which is as close as possible to the
minimum makespan for the problem. For problems with
an arbitrary number of jobs and 3 machines (M1, M2, M3)
a set of 6 possible functions is derived (H1, H2, …, H6)
and their admissibility is proved. It is shown that the
function which has a value that is closest to the minimum
makespan and is the best function to use in Step 1 of the
algorithm is the function among H1, H2, and H3 which
has the largest value. In the particular case where one of
the machines (Mj) dominates the other 2 machines the
best function is Hj and there is no need to calculate the
values of the other 2 functions. Furthermore, its value is
greater than the value of either of the other 2 functions by
at least O(n2) where n is the number of jobs. More
generally, for problems with more than 3 machines (M1,
M2, …, Mm) the best admissible heuristic function to use
is the one among F1, F2, …, Fm with largest value and if
machine Mj dominates the other machines then Fj is the
best heuristic function. The proofs of these more general
results may be obtained following the methods used in
the proofs presented in the Appendix of the
corresponding results for H1, H2, and H3.

 The second modification changes the procedure
used in Step 2 of the initial version of the algorithm to
determine heuristic estimates at nodes on the search path.
The initial version determines a heuristic estimate at a
node by considering an operation in only one of the cells
at the node while operations in the other cells are not
taken into account. The modified procedure determines a
heuristic estimate at a node by selecting the largest of the
separate estimates calculated for each cell at the node.
The modified procedure never produces an estimate for a
node that is smaller than the estimate produced by the
procedure used in the initial version of the algorithm and
in many cases it will be larger.

460 Informatica 32 (2008) 453–464 J. Fan et al.

 The first and second modifications ensure that at
the start of the search and as the search progresses
heuristic estimates are admissible and are as close as
possible to the minimum time needed to complete all of
the incomplete operations on all of the machines. This
reduces the chance that the search will backtrack and
improves the performance characteristics of the
algorithm. Experimental evidence from problems
involving various numbers of machines and jobs
indicates that although the first modification produces
improvements in performance characteristics of the
algorithm these improvements are enhanced when the
second modification is included.

 The third modification relates to Step 7 of the
algorithm and concerns problems where there are
multiple optimal solutions. It enables all of the optimal
solutions to be found and this is convenient for situations
where additional criteria may need to be satisfied by an
optimal solution.

 This article has focussed on describing the
development of the final version of IHSA*. However,
there are several areas for future investigation including a
comparison of the performance of the algorithm with
other methods such as branch- and-bound methods and
methods for pruning the search tree in order to improve
memory management during implementation.

References

[1] Blum, C., Roli, A. “Metaheuristics in combinatorial
optimization: overview and conceptual
comparison,” ACM Comput. Surv., 35, 2003, 268-
308.

[2] Chen, C.L., Neppalli, R.V., Aljaber, N. “Genetic
algorithms applied to the continuous flow shop
problem,” Computers and Industrial Engineering
30: (4), 1996, 919-929.

[3] Cleveland, G.A., Smith, S.F. “Using genetic
algorithms to schedule flow shop,” Proceedings of
3rd Conference on Genetic Algorithms, Schaffer,
D.(ed.), San Mateo: Morgan Kaufmann Publishing,
1989, 160-169.

[4] Conway, R.W., Maxwell, W.L., Miller, L.W.
Theory of scheduling, Addison-Wesley, Reading
Massachusetts, 1967.

[5] Eitler, O., Toklu, B., Atak, M., Wilson,J. “A genetic
algorithm for flowshop scheduling problems,” J.
Oper. Res. Soc., 55, 2004, 830-835.

[6] Fan, J.P.-O. “The development of a heuristic search
strategy for solving the flow-shop scheduling
problem,” Proceedings of the IASTED International
Conference on Applied Informatics, Innsbruck,
Austria, 1999, 516-518.

[7] Fan, J.P.-O. “An intelligent search strategy for
solving the flow-shop scheduling problem,”
Proceedings of the IASTED International
Conference on Software Engineering, Scottsdale,
Arizona, USA, 1999, 99-103.

[8] Fan, J.P.-O. An intelligent heuristic search method
for flow-shop problems, doctoral dissertation,
University of Wollongong, Australia, 2002.

[9] Framinan, J.M, Ruiz-Usano, R., Leisten, R.
“Sequencing CONWIP flow-shops: analysis and
heuristic,” Int. J. Prod. Res., 39, 2001, 2735-2749.

[10] Gheoweth, S.V., Davis, H.W. “High performance
A* search using rapidly growing heuristics,”
Proceedings of the International Joint Conference
on Artificial Intelligence, Sydney, Australia, 1991,
198-203.

[11] Grabowski, J., Wodecki, M. “A very fast tabu search
algorithm for the permutation flowshop problem
with makespan criterion,” Comput. Oper. Res., 31,
2004, 1891-1909.

[12] Hart, P.E., Nilsson, N.J., Raphael, B. “A formal
basis for the heuristic determination of minimum
cost paths,” IEEE Transactions on Systems Science
and Cybernetics, Vol. SSC-4: (2), 1968, 100-107.

[13] Hong, T.P., Chuang, T.N. “Fuzzy scheduling on
two-machine flow shop,” Journal of Intelligent &
Fuzzy Systems, 6: (4), 1998, 471-481.

[14] Hong, T.P., Chuang, T.N. “Fuzzy CDS scheduling
for flow shops with more than two machines,”
Journal of Intelligent & Fuzzy Systems, 6: (4),
1998, 471-481.

[15] Hong, T.P., Chuang, T.N. “Fuzzy Palmer scheduling
for flow shops with more than two machines,”
Journal of Information Science and Engineering,
Vol.15, 1999, 397-406.

[16] Hong, T.P., Wang, T.T. “A heuristic Palmer-based
fuzzy flexible flow-shop scheduling algorithm,”
Proceedings of the IEEE International Conference
on Fuzzy Systems, Vol. 3, 1999, 1493-1497.

[17] Hong, T.P., Huang, C.M., Yu, K.M. “LPT
scheduling for fuzzy tasks,” Fuzzy Sets and
Systems, Vol. 97, 1998, 277-286.

[18] Hong, T.P., Wang, C.L., Wang, S.L. “A heuristic
Gupta-based flexible flow-shop scheduling
algorithm,” Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, Vol.
1, 2000, 319-322.

[19] Ignall, E., Schrage, L.E. “Application of the branch
and bound technique to some flow shops scheduling
problems,” Operations Research, Vol. 13: (3), 1965,
400-412.

[20] Johnson, S.M. “Optimal two- and three-stage
production schedules with setup times included,”
Naval Research Logistics Quarterly, 1: (1), 1954,
61-68.

[21] Kamburowski, J. “The nature of simplicity of
Johnson’s algorithm,” Omega-International Journal
of Management Science, 25: (5), 1997, 581-584.

[22] Korf, R.E. “Depth-first iterative-deepening: an
optimal admissible tree search,” Artificial
Intelligence, Vol. 27, 1985, 97-109.

[23] Korf, R.E. “Iterative-deepening A*: an optimal
admissible tree search,” Proceeding of the 9th
International Joint Conference on Artificial
Intelligence, Los Angeles, California, 1985, 1034-
1036.

[24] Korf, R.E. “Real-time heuristic search,” Artificial
Intelligence, Vol. 42, 1990, 189-211.

A HEURISTIC SEARCH ALGORITHM FOR... Informatica 32 (2008) 453–464 461

[25] Korf, R.E. “Linear-space best-first search,” Artificial
Intelligence, 62: (1), 1993, 41-78.

[26] Lai, T.C. “A note on heuristics of flow-shop
scheduling,” Operations Research, 44: (6), 1996,
648-652.

[27] Lee, G.C., Kim, Y.D., Choi, S. W. “Bottleneck-
focused scheduling for a hybrid flow-shop,” Int. J.
Prod. Res., 42, 2004, 165-181.

[28] Liu, B., Wang, L., Jin, Y-H. “An effective PSO-
based memetic algorithm for flow shop scheduling,
“IEEE T. Syst. Man. CY. B.,” 37, 2007, 18-27.

[29] Lomnicki, Z. “A branch and bound algorithm for the
exact solution of three machine scheduling
problem,” Operational Research Quarterly, 16: (1),
1965, 89-100.

[30] McMahon, C.B., Burton, P.G. “Flow-shop
scheduling with the branch and bound method,”
Operations Research, 15: (3), 1967, 473-481.

[31] Nawaz, M., Enscore Jr. E., Ham, I. “A heuristic
algorithm for the m-machine, n-job flow-shop
sequencing problem,” Omega-Int. J. Manage. S., 11,
1983, 91-95.

[32] Ogbu, F.A., Smith, D.K. “The application of the
simulated annealing algorithm to the solution of the
n/m/Cmax flowshop problem,” Comput. Oper. Res.,
17, 1990, 243-253.

[33] Onwubolu, G.C., Davendra, D. “Scheduling flow-
shops using differential evolution algorithm,” Eur. J.
Oper. Res., 171, 2006, 674-692.

[34] Osman, I., Potts, C. “Simulated annealing for
permutation flow shop scheduling,” OMEGA, 17,
1989, 551-557.

[35] Pan, C.H. “A study of integer programming
formulations for scheduling problems,”
International Journal of System Science, 28: (1),
1997, 33-41.

[36] Pan, C.H., Chen, J.S. “Scheduling alternative
operations in two-machine flow-shops,” Journal of
the Operational Research Society, 48: (5), 1997,
533-540.

[37] Ravendran, C. “Heuristic for scheduling in flowshop
with multiple objectives,” Eur. J. Oper. Res., 82,
1995, 540-555.

[38] Ruiz, R., Maroto, C., Alcaraz, J. “Two new robust
genetic algorithms for the flowshop scheduling
problem,” Omega-Int. J. Manage. S., 34, 2006, 461-
476.

[39] Stutzle, T. “Applying iterated local search to the
permutation flowshop problem,” AIDA-98-04, TU
Darmstadt, FG Intellektik, 1998.

[40] Taillard, E. “Some efficient heuristic methods for the
flow shop sequencing problem,” Eur. J. Oper. Res.,
47, 1990, 65-74.

[41] Taillard, E. “Benchmarks for basic scheduling
problems,” Eur. J. Oper. Res., 64, 1993, 278-285.

[42] Wang, C.G., Chu, C.B., Proth, J.M. “Efficient
heuristic and optimal approaches for N/2/F/SIGMA-
C-I scheduling problems,” International Journal of
Production Economics, 44: (3), 1996, 225-237.

[43] Ying, K.C., Liao, C.J. “An ant colony system for
permutation flow-shop sequencing,” Comput. Oper.
Res., 31, 2004, 791-801.

[44] Zamani, M.R., Shue, L.Y. “Developing an optimal
learning search method for networks,” Scientia
Iranica, 2: (3), 1995, 197-206.

[45] Zamani, R., Shue, L.Y. “Solving project scheduling
problems with a heuristic learning algorithm,”
Journal of the Operational Research Society, 49: (7),
1998, 709-716.

[46] Zamani, M.R. “A high performance exact method
for the resource-constrained project scheduling
problem,” Computers and Operations Research, 28,
2001, 1387-14.

[47] Zobolas, G.I., Tarantilis, C.D., Ioannou, G.
“Minimizing makespan in Permutation Flow Shop
scheduling problems using a hybrid metaheuristic
algorithm,” Computers and Operations Research,
2008, doi:10.1016/j.cor.2008.01.007.

Appendix

Derivation of heuristic functions

The purpose is to develop heuristic functions suitable
for use in IHSA*. In each case the objective is to develop
a function which underestimates the minimum makespan
(i.e. admissible). Six functions are developed and the
proof of their admissibility is presented in the next
section.

From Figure 1, S(φst) ≥ max [bt +, as + i

n

i

b∑
=1

] and

T(φst) ≥ max [S(φst) + ct , as + bs + i

n

i

c∑
=1

] which

means that:

T(φst) ≥ as + bs + i

n

i

c∑
=1

 or, (A1)

T(φst) ≥ S(φst) + ct ≥ bt + ct + i

n

i

a∑
=1

 or, (A2)

T(φst) ≥ as + ct + i

n

i

b∑
=1

. (A3)

 From (A1) two heuristic functions H3 and H6 are
proposed:

H3 = min[a1 + b1, a2 + b2, …, an + bn] + i

n

i

c∑
=1

 and

H6 = min[a1, a2, …, an] + min[b1, b2, …, bn] + i

n

i

c∑
=1

.

The rationale for the development of H3 is: select the job
that will be finished on M2 at the earliest possible time if
it is placed first in the job sequence. When this job is
finished on M2 min[a1 + b1, a2 + b2, …, an + bn] units of
time have elapsed and the additional time needed to
complete all of the jobs on all of the machines will be at

462 Informatica 32 (2008) 453–464 J. Fan et al.

least i

n

i

c∑
=1

units of time. Since min[a1 + b1, a2 + b2, …,

an + bn] ≥ min[a1, a2, …, an] + min[b1, b2, …, bn] it
follows that H3 ≥ H6, which is therefore also a plausible
heuristic function.

 H1 and H5 are derived from (A2):

H1 = min[b1 + c1, b2 + c2, …, bn + cn] + i

n

i

a∑
=1

 and

H5 = min[b1, b2, …, bn] + min[c1, c2, …, cn] + i

n

i

a∑
=1

.

The rationale for the development of H1 is: select the job
which requires the least total amount of time on
machines M2 and M3 (i.e. min[b1 + c1, b2 + c2, …, bn +
cn] units of time) and suppose that it is placed last in the
job sequence which means that the earliest time that it

can start on M2 is after i

n

i

a∑
=1

units of time. Since

min[b1 + c1, b2 + c2, …, bn + cn] ≥ min[b1, b2, …, bn] +
min[c1, c2, …, cn] it follows that H1 ≥ H5, which is
therefore also a plausible heuristic function.
 H2 and H4 are derived from (A3):

H2 = min[a1 + u1, a2 + u2, …, an + un] + i

n

i

b∑
=1

and

H4 = min[a1, a2, …, an] + min[c1, c2, …, cn] + i

n

i

b∑
=1

,

where: u1 = min[c2, c3, …, cn]; uk = min[c1, c2, …, ck-1,
ck+1, …, cn] for 2 ≤ k ≤ n – 1; and un = min[c1, c2, c3, …,
cn-1]. The rationale for the development of H2 is: consider
each job in turn and suppose that it is placed first in the
job sequence and then from among all of the other jobs
select the one which requires the least amount of time on
M3. Now for each pair of jobs selected in this manner
determine the pair that gives the least total time on M1
and M3. This total time plus the minimum total time
required to finish all of the jobs on M2 is the value of H2.
Also, min[a1 + u1, a2 + u2, …, an + un] ≥ min[a1, a2, …,
an] + min[u1, u2, …, un] = min[a1, a2, …, an] + min[c1, c2,
…, cn] and it follows that H2 ≥ H4, which is therefore also
a plausible heuristic function.
Admissibility

Results and selected proofs related to the admissibility of
the heuristic functions H1,
H2, H3, H4, H5, and H6 are presented:
R1. H3 ≥ H6 and both are admissible.
R2. H2 ≥ H4 and both are admissible.
R3. H1 ≥ H5 and both are admissible.
 Only a proof for R2 is given since the remaining
proofs may be constructed in the same manner.

 From (A3), T(φst) ≥ as + ct + i

n

i

b∑
=1

 for s, t = 1, 2, …,

n with s ≠ t and so in particular, T(φ1t) ≥ a1 + ct +

i

n

i

b∑
=1

, T(φ2t) ≥ a2 + ct + i

n

i

b∑
=1

, …, T(φnt) ≥ an + ct +

i

n

i

b∑
=1

.

 Hence, if T*(φst) denotes the earliest time at which any
job sequence which starts with job Js is completed on M3

then T*(φ1t) ≥ min[a1 + c2, a1 + c3, …, a1 + cn] + i

n

i

b∑
=1

,

T*(φ2t) ≥ min[a2 + c1, a2 + c3, …, a2 + cn] + i

n

i

b∑
=1

, …,

T*(φnt) ≥ min[an + c1, an + c2, …, an + cn-1, …, an + cn] +

i

n

i

b∑
=1

 and the minimum makespan T* = min[T*(φ1t),

T*(φ2t), …, T*(φnt)] ≥ min[a1 +u1, a2 + u2, …, an + un] +

i

n

i

b∑
=1

 = H2 ≥ min[a1, a2, …, an] + min[c1, c2, …, cn] +

i

n

i

b∑
=1

 = H4. Consequently, H2 ≥ H4 and both are

admissible.
From the results R1, R2, and R3 it is seen that the
heuristic functions H1, H2, H3, H4, H5, and H6 are all
admissible. However, in order to select the heuristic
function among these that is the closest in value to the
minimum makespan (i.e. the best to use in Step1 of
IHSA*) the choice should be made from among only H1,
H2, and H3 because the function among these 3 which has
the largest value is admissible and has a value which is
larger than any of the other 5 admissible functions.
Consequently, in Step1 of IHSA* the values of H1, H2,
and H3 are calculated and the function with the largest
value is selected for use.
Dominance

Machine M1 dominates the other 2 machines if min[a1,
a2, …, an] ≥ max[b1, b2, …, bn] and min[a1, a2, …, an] ≥
max[c1, c2, …, cn] and similar definitions apply if
machine M2 or machine M3 is dominant.
In the case of a dominant machine results R5, R6, and R7
identify immediately which heuristic function among H1,
H2, and H3 has the largest value and is the best to use in
IHSA*. Also, from R8 it is seen that the best heuristic
function has a value which is greater than the value of
either of the other functions by O(n2) where n is the
number of jobs.
R5. If machine M1 dominates then H1 is the heuristic
function with the largest value,
R6. If machine M2 dominates then H2 is the heuristic
function with the largest value,
R7. If machine M3 dominates then H3 is the heuristic
function with the largest value.
R8. If a machine is dominant then the best heuristic
function has a value which is greater than the value of
either of the other 2 functions by at least (n – 1)(n – 2)
where n is the number of jobs and n ≥ 3.

A HEURISTIC SEARCH ALGORITHM FOR... Informatica 32 (2008) 453–464 463

 The proofs for R5 and R8 are given noting that proofs
for the other results may be constructed in the same
manner. Throughout these proofs min(ai) = min[a1, a2,
…, an], min(bi) = min[b1, b2, …, bn], min(ci) = min[c1, c2,
…, cn], max(ai) = max[a1, a2, …, an], max(bi) = max[b1,
b2, …, bn], and max(ci) = max[c1, c2, …, cn].
 Suppose machine M1 dominates and for i = 1, 2, 3, …,
n: ai ∈ [r1, r1 + w –1]; bi ∈ [s1, s1 + l –1]; and ci ∈ [t1, t1 +
d –1] are distinct non negative integers from intervals of
widths w, l, and d, respectively, each greater than or
equal to n (the number of jobs).

It follows that the minimum values of i

n

i

a∑
=1

, i

n

i

b∑
=1

,

i

n

i

c∑
=1

are nr1 + 0.5n(n – 1), ns1 + 0.5n(n – 1), and nt1 +

0.5n(n – 1), respectively, and when these minimum
values are attained min(ai) = r1, min(bi) = s1, min(ci) = t1,
max(ai) = r1 + n – 1, max(bi) = s1 + n – 1, and max(ci) = t1
+ n –1 for i = 1, 2, 3, …, n.

 Also, the maximum values of i

n

i

a∑
=1

, i

n

i

b∑
=1

,

i

n

i

c∑
=1

are n(r1 + w) – 0.5n(n + 1), n(s1 + l) – 0.5n(n +

1), and n(t1 + d) – 0.5n(n + 1), respectively, and when
these maximum values are attained min(ai) = r1 + w – n,
min(bi) = s1 + l – n, min(ci) = t1 + d – n, max(ai) = r1 + w
– 1, max(bi) = s1 + l – 1, max(ci) = t1 + d – 1.

Now, H1 = min[b1 + c1, b2 + c2, …, bn + cn] + i

n

i

a∑
=1

 ≥ min(bi) + min(ci) + min(i

n

i

a∑
=1

) (A4)

and similarly,

H2 ≤ max(ai) + max(ci) + max(i

n

i

b∑
=1

) (A5)

and H3 ≤ max(ai) + max(bi) + max(i

n

i

c∑
=1

). (A6)

 If (A4), (A5), (A6) are all true then,
H1 ≥ s1 + l – n + t1 + d – n + nr1 + 0.5n(n – 1), (A7)
H2 ≤ r1 + n – 1 + t1 + d – 1 + n(s1 + l) – 0.5n(n + 1), (A8)
H3 ≤ r1 + n – 1 + s1 + l – 1 + n(t1 + d) – 0.5n(n + 1). (A9)
 From (A7) and (A8),
s1 + l – n + t1 + d – n + nr1 + 0.5n(n – 1) – r1 – n + 1 – t1 –
d +1 – n(s1 + 1) + 0.5n(n + 1) = s1 – ns1 + l – nl + nr1 – r1

+ n2 – 3n + 2 = (n – 1)[r1 – (s1 + l) + n – 2] ≥ (n – 1)(n –
2) ≥ 0 , for n ≥ 2, and so H1 is greater than H2 by a value
which is at least (n – 1)(n – 2), for n ≥ 3.
 In a similar manner it follows from (A7) and (A9) that
H1 is greater than H3 by a value which is at least (n – 1)(n
– 2), for n ≥ 3 and this completes the proof of R5 and R8.

The best admissible heuristic function for an

arbitrary number of machines

For the case where there are more than 3 machines there
is a need to change the notation used previously to
represent the time that each operation Oi,j requires on
each machine so that ti,j is the number of units of time
required by job Ji on machine Mj.
 If there are m machines then the best admissible
heuristic function will be the one with the largest value
among the set of m functions F1, F2, F3, …, Fm where,

Fj = min[
i

m

i

t ,1
2
∑

=

,
i

m

i

t ,2
2
∑

=

, …,
in

m

i

t ,
2
∑

=

] +
1,

1
i

n

i

t∑
=

, for j=1,

 min[
1,,1

1

1
ji

j

i

ut +∑
−

=

,
2,,2

1

1
ji

j

i

ut +∑
−

=

, …,
njin

j

i

ut ,,

1

1

+∑
−

=

]

 +
ji

n

i

t ,
1
∑

=

, for 2 ≤ j ≤ m,

where, for 2 ≤ j ≤ m – 1,

 min[
i

m

ji

t ,2
1

∑
+=

,
i

m

ji

t ,3
1

∑
+=

 , …,
in

m

ji

t ,
1

∑
+=

], for k = 1,

uj,k = min[
i

m

ji

t ,1
1

∑
+=

,
i

m

ji

t ,2
1

∑
+=

, …,
ik

m

ji

t ,1
1

−

+=

∑ ,
ik

m

ji

t ,1
1

+

+=

∑ , …,

 in

m

ji

t ,
1

∑
+=

], for 2 ≤ k ≤ n – 1,

 min[
i

m

ji

t ,1
1

∑
+=

,
i

m

ji

t ,2
1

∑
+=

, …,
in

m

ji

t ,1
1

−

+=

∑], for k = n,

and um,k = 0, for k = 1, 2, 3, …, n.
For a problem with m machines where m > 3 and the job
sequence is the same on each machine the function
among F1, F2, F3, …, Fm with the largest value is selected
in Step 1 of IHSA*.
 If m = 3 then using t1,i = ai, t2,i = bi, and t3,i = ci for i =
1, 2, 3, …, n and representing uj,1, uj,k, and uj,n simply by
u1, uk, and un, respectively, the 3 admissible heuristic
functions H1, H2, and H3 in (5) which have been used
throughout the description of the development of IHSA*
are given by F1, F2, and F3, respectively.

464 Informatica 32 (2008) 453–464 J. Fan et al.

Experimental evidence of improvements in

performance characteristics

Table A1: Performance of IHSA*: Modification to Step 1
compared to Modifications to Steps 1 and 2.

Note: For each problem: (a) the highlighted first row,
associated with the use of the modification to Step 1,
indicates the performance characteristics using the best
heuristic function; (b) the highlighted last row, associated
with the use of modifications to Steps 1 & 2, indicates
the performance characteristics when the best heuristic
function is used together with the modification to Step 2.

N
o

.
o

f
M

a
c
h

in
e
s

N
u

m
b

e
r
 o

f
J

o
b

s

P
r
o

b
le

m

M
o

d
if

ic
a

ti
o

n
 U

s
e
d

H
e
u

r
is

ti
c
 F

u
n

c
ti

o
n

V
a

lu
e
 o

f
H

e
u

r
is

ti
c

F
u

n
c
ti

o
n

Performance

Characteristics

M
in

im
u

m

M
a

k
e
s
p

a
n

N
o

d
e
s

E
x

p
a

n
d

e
d

B
a
c
k

tr
a
c
k

s

A
lg

o
r
it

h
m

S
te

p
s

3

3

1
1

H1

H3
H2

17

10
9

13

22
21

0

11
12

10

33
34 17

1&
2

H1 17 10 0 7

2
1

H2

H3
H1

24

15
13

13

36
36

6

39
37

22

88
84 24

1&
2

H2 24 8 2 17

3
1

H3

H2
H1

28

20
18

16

17
17

1

3
3

14

16
16 28

1&
2

H3 28 13 0 10

4

4
1

H1

H3
H2

23

19
14

35

50
57

20

30
37

52

72
82 25

1&
2

H1 23 35 15 42

5
1

H2

H3
H1

22

19
15

32

79
80

27

70
79

66

152
170 23

1&
2

H2 22 31 21 54

6
1

H3

H2
H1

24

21
20

66

69
71

53

63
64

109

138
140 27

1&
2

H3 24 63 43 96

15

7
1

H1

H3
H2

26

18
16

20

24
26

2

10
15

22

30
36 28

1&
2

H1 26 18 0 10

8
1

H2

H3
H1

28

20
16

20

38
40

9

40
45

38

90
98 31

1&
2

H2 28 16 4 25

9
1

H3

H2
H1

29

20
19

19

22
25

2

4
4

22

28
29 30

1&
2

H3 29 16 0 18

40 10 1
H1

H3
H2

43

38
35

50

53
70

12

30
38

70

105
113

45

N
o

.
o

f
M

a
c
h

in
e
s

N
u

m
b

e
r
 o

f
J

o
b

s

P
r
o

b
le

m

M
o

d
if

ic
a

ti
o

n
 U

s
e
d

H
e
u

r
is

ti
c
 F

u
n

c
ti

o
n

V
a

lu
e
 o

f
H

e
u

r
is

ti
c

F
u

n
c
ti

o
n

Performance

Characteristics

M
in

im
u

m

M
a

k
e
s
p

a
n

N
o

d
e
s

E
x

p
a

n
d

e
d

B
a
c
k

tr
a
c
k

s

A
lg

o
r
it

h
m

S
te

p
s

1&
2

H1 43 44 6 55

11
1

H2

H3
H1

42

40
37

49

50
66

30

32
45

60

85
115 43

1&
2

H2 42 32 18 52

12
1

H3

H2
H1

45

38
35

68

77
90

46

58
93

115

152
205 50

1&
2

H3 45 54 30 84

5 15
1
3

1

F1

F2
F3
F4
F5

37

30
27
25
23

42

60
72
82
97

12

15
18
25
32

65

93
104
126
150

39

1&
2

F1 37 30 5 50

10 10
1
4

1

F3

F2
F4
F1
F6
F5
F9
F7
F8

F10

50

48
46
45
42
40
38
32
32
30

35

37
41
43
45
52
60
69
72
81

20

23
28
30
33
34
40
45
48
51

63

83
89
91
95

107
123
135
137
151

52

1&
2

F3 50 30 2 40

Table A1: Performance of IHSA*

