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This article describes the development of a new intelligent heuristic search algorithm (IHSA
*
) which 

guarantees an optimal solution for flow-shop problems with an arbitrary number of jobs and machines 

provided the job sequence is constrained to be the same on each machine. The development is described 

in terms of 3 modifications made to the initial version of IHSA
*
. The first modification concerns the 

choice of an admissible heuristic function. The second concerns the calculation of heuristic estimates as 

the search for an optimal solution progresses, and the third determines multiple optimal solutions when 

they exist. The first 2 modifications improve performance characteristics of the algorithm and 

experimental evidence of these improvements is presented as well as instructive examples which 

illustrate the use of initial and final versions of IHSA
*
. 

Povzetek: Opisan je nov hevristični iskalni algoritem IHSA*. 

 

1 Introduction 

The optimal solution to the flow-shop scheduling 
problem involving n jobs and m machines determines the 
sequence of jobs on each machine in order to complete 
all the jobs on all the machines in the minimum total time 
(i.e. with minimum makespan) where each job is 
processed on machines 1, 2, 3, …, m, in that order. The 
number of possible schedules is (n!)m and the general 
problem is NP-hard. For this general problem it is known 
that there is an optimal solution where the sequence of 
jobs is the same on the first two machines and the 
sequence of jobs is the same on the last two machines 
[4]. Consequently, for the general problem with 2 or 3 
machines there is an optimal solution where the jobs are 
processed in the same sequence on each machine and the 
optimal sequence is among only n! job sequences. 
However, in the optimal solution for the general problem 
with more than 3 machines the jobs are not necessarily 
processed in the same sequence on each machine. This 
article is concerned with the development of an 
algorithm (IHSA*) which is guaranteed to find an optimal 
solution for flow-shop scheduling problems involving an 
arbitrary number of jobs and machines where the 
problem is constrained so that the same job sequence is 
used on each machine.  

     Early research on flow-shop problems is based 
mainly on Johnson’s theorem, which gives a procedure 
for finding an optimal solution with 2 machines, or 3 
machines with certain characteristics [20], [21]. Other 

approaches for the general problem include integer linear 
programming and combinatorial programming, which 
use intensive computation to obtain optimal solutions and 
are generally not feasible from a computational 
standpoint because the number of variables increases 
exponentially as the number of machines increases [35]. 
Branch-and-bound methods use upper or lower bounds to 
guide the direction of the search. Depending on the 
effectiveness of the heuristic and the search strategy this 
method may return only near optimal solutions but with 
long computation time [19], [29], [30], [36]. Heuristic 
methods have received significant attention [9], [18], 
[26], [27], [37], [40], [41], [42]. However, even the most 
powerful heuristic method to-date, the NEH heuristic 
developed by Nawaz et al. [31] fails to reach solutions 
within a reasonable bound of the optimal solution in 
some difficult problem cases [47]. A review of 
approaches by Zobolas et al. [47] indicates that there has 
been strong interest in artificial intelligence optimization 
methods referred to as metaheuristics including: 
Simulated Annealing [32], [34]; Tabu Search [11]; 
Genetic Algorithms, which may give an optimal solution 
but due to the evolutionary nature of this approach the 
computation time is unpredictable [2], [3], [5], [38]; 
Fuzzy Logic [13], [14], [15], [16], [17]; Ant Colony and 
Particle Swarm Optimization [28], [43]; Iterated Local 
Search [39]; and Differential Evolution [33]. The strong 
interest in metaheuristics generated the development of 



454 Informatica 32 (2008) 453–464 J. Fan et al.  
 

hybrid approaches which combine different components 
of more than one metaheuristic [1].  

     An initial version of a new intelligent heuristic 
search algorithm (IHSA*) for flow-shop problems with 
an arbitrary number of jobs and machines and subject to 
the constraint that the same job sequence is used on each 
machine has been proposed in [6], [7], [8]. It is based on 
the Search and Learning A* algorithm presented in [44], 
[45], [46] which is a modified version of the Learning 
Real Time A* algorithm in [24], [25] which is, in turn, a 
modified version of the original A* algorithm [10], [12].   

     At the start of the search using IHSA* different 
methods are considered for computing estimates for the 
total time needed to complete all of the jobs on all of the 
machines assuming in turn that each of the jobs is placed 
first in the job sequence. It is shown that if there are m 
machines then there are m different methods that should 
be considered. Among the estimates associated with each 
method the smallest estimate is referred to as the value of 
the heuristic function that is associated with that method 
and it identifies the job that would be placed first in the 
job sequence at the start of the search if that method is 
used. If the value of the heuristic function does not 
exceed the minimum makespan for the problem then the 
heuristic function is said to be admissible and in such 
cases IHSA* is guaranteed to find an optimal solution 
provided the job sequence is the same on each machine. 
The proof of this result for IHSA* is given in [8] and is 
similar to that given in [22] and [23] in relation to the A* 
algorithm from which IHSA* is derived. The term 
“heuristic” is used in the title of IHSA* because the 
optimality of the algorithm and its performance depends 
on the selection of an appropriate admissible heuristic 
function at the start of the search and this function 
continues to guide the search to an optimal solution.  

     The purpose of this article is to describe the 
development of IHSA* which has occurred since the 
initial version was first presented in [6]. For simplicity of 
presentation the development is described in terms of 
problems involving an arbitrary number of jobs with 3 
machines. However, the notations, definitions, proofs, 
and concepts presented may be extended to problems 
involving more than 3 machines if the job sequence is the 
same on each machine and these extensions are noted at 
the appropriate places throughout the presentation.  
Three significant modifications have been made to the 
initial version of IHSA*. The first concerns the choice of 
an admissible heuristic function at the start of the search. 
The second concerns the calculation of heuristic 
estimates as the search progresses, and the third 
determines multiple optimal solutions when they exist. 

     Following an introduction to the initial version of 
IHSA* each of the 3 modifications is presented. 
Experimental evidence of improvements in performance 
characteristics of the algorithm which result from the 
first 2 modifications is provided in the Appendix and 
discussed in section 5. Instructive examples are given to 
illustrate the initial and final versions of IHSA* and these 
have been limited to 3 machines in order to allow 
interested readers to familiarize themselves with the 
algorithm by reworking the examples by hand. The 

proofs of results related to the modifications are 
presented in the Appendix.  

2 The initial version of IHSA
*
 

Before presenting the initial version of the algorithm 
notations and definitions are introduced and the state 
transition process associated with IHSA* is described 
together with the features of search path diagrams which 
are used to illustrate the development of an optimal job 
sequence.  

2.1 Notations and definitions 

The following notations and definitions are introduced 
for a flow-shop problem involving n jobs J1, J2, …, Jn and 
3 machines M1, M2, M3.  

Oij is the operation performed on job Ji by machine 
Mj and there are 3n operations. For job Ji the processing 
times ai, bi, and ci denote the times required to perform 
the operations Oi1, Oi2, and Oi3, respectively and these 
processing times are assumed to be non negative 
integers. If Oij has commenced but has not been 
completed then pij represents the additional time required 
to complete Oij and at the time when Oij starts pij is one 
of the values among ai, bi, or ci. The sequence φst = {Js, 
…, Jt} represents a sequence of the n jobs with Js 
scheduled first and Jt scheduled last. T(φst) is the 
makespan for the job sequence φst and S(φst) is the time at 
which all of the jobs in φst are completed on machine M2. 

     Using these notations and definitions Figure 1 
illustrates the manner in which the operations associated 
with the job sequence φst are performed on the 3 
machines. 
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 Figure 1: Processing the Job Sequence φst 

     A method for calculating an estimate of the total 
time to complete all of the n jobs on all of the 3 machines 
when job Ji is the first job in the sequence is given by  

ai + bi + i

n

i

c∑
=1

. Then the heuristic function associated 

with this method is H3 where, 
H3 = min [a1 + b1, a2 + b2, …, as + bs, …, an + bn]  
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n

i
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.                                                           (1) 

If min [a1 + b1, a2 + b2, …, as + bs, …, an + bn] =  

as + bs then H3 = as + bs + i

n

i
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 and job Js would be 
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scheduled first in the job sequence. It is seen from Figure 
1 and proved in the Appendix that H3 is an admissible 
heuristic function and H3 is the heuristic function that 
was used in the initial version of the IHSA*.      

2.2 The state transition process  

The procedure for developing the optimal job sequence 
using IHSA* proceeds by selecting an operation which 
may be performed next on an available machine. At the 
time that selection is made each of the 3n operations is in 
only one of 3 states: the not scheduled state; the in-

progress state; or the finished state and the operation 
which is selected is among those in the not scheduled 
state. Operations not in the finished state are referred to 
as incomplete. A state transition occurs when one or 
more of the operations move from the in-progress state 
to the finished state and at any time the state level is the 
number of operations in the finished state.  

IHSA* describes the procedure which takes the state 
transition process from one state level to the next and the 
development of the optimal job sequence is illustrated 
graphically using search path diagrams.  

2.3 Search path diagrams 

A search path diagram consists of nodes drawn at each 
state level with one of the nodes connected to nodes at 
the next state level. Each node contains 3 cells which are 
used to display information about operations on the 
machines M1, M2, and M3, respectively. When a state 
transition occurs one of the nodes at the current state 
level is expanded and it is connected to the nodes at the 
next state level where each node represents one of the 
different ways of starting operations that are in the not 

scheduled state. At each of these nodes a cell is labeled 
with Ji to indicate that the operation Oij is either in 
progress or is one of the operations that may start on Mj, 
and pij which is the time needed to complete Ji on Mj. A 
blank cell indicates that no operation can be performed 
on that machine at this time.  

Near each node the heuristic estimate (h) associated 
with the node is recorded. The heuristic estimate is 
calculated using the heuristic function chosen in Step 1 
of the algorithm in conjunction with the procedure used 
in Step 2. It is an estimate of the time required to 
complete the operation at the node identified by the 
procedure in Step 2 as well as all of the other operations 
that are not in the finished state. At each state level the 
node selected for expansion is the one which has 
associated with it the minimum heuristic estimate among 
all of the estimates for the nodes at that state level. Near 
this selected node the value of f = h + k is recorded 
where the edge cost (k) is the time that has elapsed since 
the preceding state transition occurred.  

     A comparison is made between f and h’ where h’ 
is the minimum heuristic estimate at the preceding state 
level. Based on that comparison the search path either 
backtracks to the node expanded at the preceding state 
level or moves forward to the next state level. If 
backtracking occurs then the value of h’ is changed to the 
current value of f and the search moves back to that 

node. If the path moves forward then the value of the 
edge cost (k) is recorded below the expanded node. For 
convenience of presentation a new search path diagram is 
drawn when backtracking in the previous diagram is 
completed.  

     At state level 0 there are n root nodes 
corresponding to the number of jobs. The final search 
path diagram represents the optimal solution and traces a 
path from one of the root nodes, where the minimum 
makespan is the value of h or f, to a terminal node where 
h = f = 0. The optimal job sequence can be read by 
recording the completed operations along the path from 
the root node to the terminal node. 

2.4 IHSA
*
 (initial version)  

Step 1: At state level 0 expand the node identified by 

calculating the value of H3 from (1), and move to the 

nodes at state level 1. If more than one node is identified 

then break ties randomly. 

     For example, if H3 = as + bs + i

n

i

c∑
=1

 then the 

node with Js and as recorded in the first cell is the node to 
be expanded. 
Step 2: At the current state level if the heuristic estimate 

of one of the nodes has been updated by backtracking use 

the updated value as the heuristic estimate for that node 

and proceed to Step 3. Otherwise, calculate a heuristic 

estimate for each node at the current state level using 

Procedure 1 and proceed to Step 3. 

Procedure 1 is described below.   
Step 3: At the current state level select the node with the 

smallest heuristic estimate. If it is necessary then break 

ties randomly. 

     The smallest heuristic estimate is admissible and 
underestimates the minimum time required to complete 
all of the incomplete jobs on all of the machines.   
Step 4: Calculate f = h + k where h is the smallest 

heuristic estimate found in Step 3 and k (edge cost) is the 

time that has elapsed since the preceding state transition 

occurred. 

Step 5: If f > h
’
, where h

’
 is the minimum heuristic 

estimate calculated at the preceding state level, then 

backtrack to that preceding state level and increase the 

value of h
’
 at that preceding node to the current value of 

f and repeat Step 4 at that node. 

Step 6: If f ≤ h
’
 then proceed to the next state level and 

repeat from Step 2. 

Step 7: If f = 0 and h = 0 then Stop. 

Procedure 1 is used in Step 2 to calculate a heuristic 
estimate for each node at the current state level: 
(a) If cell 1 is labelled with Ji then the heuristic estimate 
h for the node is based on the operation in cell 1 and is 
given by, 
h =    ai + bi + C1; for Oi1 in the not scheduled state,    (2) 
         pi1 + bi + ci + C1; for Oi1 in the in-progress state, 

where C1 is the sum of the values of ck for all values 
of k such that Ok1 is in the not scheduled state. 



456 Informatica 32 (2008) 453–464 J. Fan et al.  
 

(b) If cell 1 is blank, and cell 2 is labelled with Ji then the 
heuristic estimate h for the node is based on the operation 
in cell 2 and is given by, 
h =     bi + C2; for Oi2 in the not scheduled state,          (3)                                
          pi2 + ci + C2; for Oi2 in the in-progress state,                                    

where C2 is the sum of the values of ck for all values 
of k such that Ok2 is in the not scheduled state.     
(c) If cell 1 and cell 2 are blank, and cell 3 is labelled 
with Ji then the heuristic estimate h for the node is based 
on the operation in cell 3 and is given by, 
h =    C3; for Oi3 in the not scheduled state,                  (4)                                      
          pi3 + C3; for Oi3 in the in-progress state,                                          

where C3 is the sum of the values of ck for all values 
of k such that Ok3 is in the not scheduled state. 

     In Procedure 1 the calculation of a heuristic 
estimate for a node is based on an operation in only one 
of the cells at the node and operations in the other 2 cells 
are not taken into account. For example, if cell 1 is not 
blank then the estimate is based only on the operation in 
cell 1. If cell 1 is blank then the estimate is based only on 
the operation in cell 2. An operation in cell 3 is only 
considered if the other 2 cells are blank.  

     The following example illustrates the use of the 
initial version of IHSA* to solve the flow-shop problem 
given in Table 1. For instructional purposes the problem 
is deliberately simple with only 3 machines and 3 jobs 
because it is intended to provide readers with an 
opportunity to become familiar with the algorithm using 
an example that can be reworked easily by hand. 

Table 1:  Example of a Flow-shop Problem 

Jobs/Machines M1   M2    M3 
J1 
J2 
J3 

  2      1     10 
  4      6       5 
  3      2       8 

 
For illustrative purposes only the first search path 
diagram is presented in Figure 2. 

At the start of the search H3 = 26. In total 5 search 
path diagrams are required to find the optimal sequence 
J1J2J3 with a minimum makespan of 26. Twenty nodes 
are expanded, 16 backtracking steps are required, and 43 
steps of the algorithm are executed. 

3 Modifications to the initial version 

of IHSA
*
 

The first modification determines the best heuristic 
function to use for a given problem and affects Step 1 of 
the algorithm. The second modification affects Procedure 
1 used in Step 2 and the third modification affects Step 7 
and enables multiple optimal solutions to be found when 
they exist.  

3.1 A modification to step 1 

In the Appendix a set of 6 heuristic functions are 
derived for the case of 3 machines and proofs of the 
admissibility of these functions are presented. It is shown 
that among this set of 6 heuristic functions the one which 

Figure 2: The First Search Path Diagram Using the Initial 
Version of IHSA* 

 
is admissible and has a value which is closest to the 
minimum makespan will be the one among H1, H2, and 
H3 which has the largest value where,  

H1 = min[b1 + c1, b2 + c2, …, bn +  cn] + i

n

i

a∑
=1

,   

H2 = min[a1 + u1, a2 + u2, …, an + un]  + i

n

i

b∑
=1

,         (5) 

H3 = min[a1 + b1, a2 + b2, …, an + bn] + i

n

i

c∑
=1

, 

where: u1 = min[c2, c3, …, cn]; uk = min[c1, c2, …,  
ck-1, ck+1, …, cn], for 2 ≤ k ≤ n – 1; and un = min[c1, c2, c3, 
…, cn-1].  

Choosing the admissible heuristic function among 
H1, H2, and H3 with the largest value in the first step of 
the algorithm ensures that the search begins with an 
estimate of the minimum makespan that is not greater 
than it but is the closest to it. This choice is expected to 
reduce the need for backtracking at a subsequent stage of 
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the search since backtracking takes the search back to a 
previous node and increases the heuristic estimate at that 
node to a value which is admissible but closer to the 
minimum time required to complete all of the incomplete 
jobs on all of the machines.  

     Consequently, Step 1 in the initial version of 
IHSA* is modified and becomes: 
Step1: At state level 0, from (5), choose the admissible 

heuristic function among H1, H2, and H3 which has the 

largest value and if necessary break ties randomly. In the 

case where machine Mj dominates the other machines 

select Hj. Expand the node identified by the chosen 

admissible heuristic function and move to the nodes at 

state level 1. If more than one node is identified then 

break ties randomly. 

     The example in section 4 below illustrates the use 
of the modification to Step 1 in a simple problem which 
enables the reader to rework the example by hand. In the 
Appendix it is shown that in the particular case where 
machine Mj dominates the other machines then the best 
admissible heuristic function among H1, H2, and H3 is Hj 
and it has a value which is greater than the value of either 
of the other two functions by at least (n – 1)(n – 2) where 
n is the number of jobs. Thus in the case of a dominant 
machine in the first step of the algorithm there is no need 
to calculate each of the values of H1, H2, and H3 in order 
to choose the one with the largest value. Instead, it is 
known that it will be Hj if machine Mj is the dominant 
machine.  

In the case where there are m machines and m > 3 it 
is shown in the Appendix that the best admissible 
heuristic function to use in the first step of the algorithm 
is the one among F1, F2, …, Fm  which has the largest 
value and if m = 3 then F1 = H1, F2 = H2, and F3 = H3. 
Experimental evidence of improvements in performance 
characteristics of the algorithm which result from using 
the modification to Step 1 is presented in the Appendix 
Table A1 and is discussed below in section 5. 

3.2 A modification to step 2  

The second modification to the initial version of 
IHSA* concerns the calculation of heuristic estimates at 
nodes on the search path when the search has 
commenced. It is based on the principle that when 
heuristic estimates for the nodes at the same state level 
are being calculated in Step 2 it is desirable to obtain the 
largest possible estimate at each of these nodes before 
selecting the node with the smallest estimate as the node 
to be expanded. The larger the value of this smallest 
estimate then the less likely it is that the search will need 
to backtrack and this is expected to improve the 
performance characteristics of the algorithm. As noted 
above, the use of Procedure 1 in Step 2 in the initial 
version of IHSA* gives a heuristic estimate for a node 
based on an operation in only one of the cells while 
operations in the other 2 cells are not taken into account. 

The second modification affects Procedure 1 and 
involves calculating heuristic estimates h1, h2, and h3 at a 
node for cells 1, 2, and 3, respectively. Then max[h1, h2, 
h3] is used as the heuristic estimate (h) for the node. This 

is done for each node at the current state level and then, 
as before, in Step 3 the minimum estimate among these 
estimates identifies the node to be expanded. 
Consequently, Procedure 1 is replaced by the following 
Procedure 2:  

In Step 2 of the algorithm for a node at the current 
state level, 
(a) For cell 1: If the cell is blank then h1 = 0.  
     Otherwise, h1 is given by (2).  
(b) For cell 2: If the cell is blank then h2 = 0.                (6) 
     Otherwise, h2 is given by (3).   
(c) For cell 3: If the cell is blank then h3 = 0.  
     Otherwise, h3 is given by (4).      

     Procedure 2 refers to calculations specified in 
Procedure 1 which incorporate currently the heuristic 
function H3. However, (2), (3), and (4) are easily 
changed to incorporate H1 or H2 for problems where one 
of these functions has been selected using the 
modification to Step 1 of the algorithm. For example, if 
H2 is used then (3) and (4) are not changed but (2) 
becomes,                                    

 h =        
ai + wi + B1; for Oi1 in the not scheduled state, 
pi1 + wi + bi + B1; for Oi1 in the in-progress state, 

   where, B1 is the sum of the values of bk for all values of 
k ≠ i such that Ok1 is in the not scheduled state and wi is 
the smallest value of ck for all values of k ≠ i such that 
Ok1 is in the not scheduled state.  

     Procedure 2 produces the same heuristic estimate 
as Procedure 1 if and only if one of the following 3 
conditions is satisfied: h1 = max[h1, h2, h3]; h2 = max[h1, 
h2, h3] and cell 1 is blank; or h3 = max[h1, h2, h3] and 
cells 1 and 2 are blank. Under any other conditions 
Procedure 2 will produce a heuristic estimate at a node 
which is larger than the estimate given by Procedure 1. 
Consequently, using Procedure 2 will never produce an 
estimate that is less than the estimate produced by 
Procedure 1 and in practice the estimate using Procedure 
2 is usually larger and leads to a reduction in 
backtracking. 

Using Procedure 2 in the initial version of IHSA* 
modifies Step 2 and it becomes:  
Step 2:  At the current state level if the heuristic estimate 

of one of the nodes has been updated by backtracking use 

the updated value as the heuristic estimate for that node 

and proceed to Step 3. Otherwise, at each node use 

Procedure 2 to calculate h1, h2, h3 and use max[h1, h2, 

h3] as the heuristic estimate for the node. 

If there are m machines and m > 3 then there are m 
cells at each node and an estimate is calculated for each 
cell by extending (6) and (2), (3), (4) to accommodate the 
heuristic function Fj (see Appendix) used in Step 1 of the 
algorithm.  

     The example in section 4 below illustrates the use 
of the modification to Step 2 in a simple problem which 
enables the reader to rework the example by hand. 
Experimental evidence of additional improvements in 
performance characteristics of the algorithm from using 
the modifications to Steps 1 and 2 together is presented 
in the Appendix Table A1 and is discussed below in 
section 5. 
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3.3 A modification to step 7  

For some problems there are multiple optimal 
solutions and it is often important in practical situations 
to be able to find all of the optimal solutions since it may 
be required to find an optimal solution that also satisfies 
other criteria. For example, an optimal solution may be 
sought which also has the least waiting time for jobs that 
are queuing to be processed.  

     When IHSA* is implemented there are 2 
situations which indicate the possible existence of 
multiple optimal solutions. The first situation occurs 
when there is more than 1 node at a state level with the 
smallest heuristic estimate. In this case the ties are 
broken randomly and one of the nodes is selected for 
expansion and the search continues and produces an 
optimal solution. At the completion of the search 
returning to that state level and selecting for expansion 
one of the other nodes which were not selected when the 
ties were broken may lead to a different optimal solution. 
The second situation occurs when at the completion of 
the search for an optimal solution one or more of the 
nodes at state level 0 has a heuristic estimate that is less 
than or equal to the minimum makespan. In this case 
returning to those nodes and beginning the search again 
may produce different optimal solutions. 

The modification to the initial version of IHSA* that 
enables multiple optimal solutions to be determined 
affects Step 7. This modification is different from the 
previous 2 modifications in that it does not improve the 
performance characteristics of the algorithm but instead 
it is intended to find multiple optimal solutions if they 
exist. 

     Consequently, Step 7 becomes:   
Step 7: If f = 0 and h = 0 then an optimal solution has 

been found. If along the path representing the optimal 

solution there is a node which was selected for expansion 

by breaking ties randomly among nodes at the same state 

level with the same minimum heuristic estimate then 

return to that state level and repeat from Step 2 ignoring 

any node that was selected previously for expansion as a 

result of breaking ties. If any of the values of h at root 

nodes (state level 0) is less than or equal to the minimum 

makespan then return to state level 0 and repeat from 

Step 2 ignoring root nodes that lead to a previous 

optimal solution. Otherwise, Stop.  

4 The final version of IHSA
*
 

The final version of IHSA* incorporates each of the 
3 modifications:  
Step1: At state level 0, from (5), choose the admissible 

heuristic function among H1, H2, and H3 which has the 

largest value and if necessary break ties randomly. In the 

case where machine Mj dominates the other machines 

select Hj. Expand the node identified by the chosen 

admissible heuristic function and move to the nodes at 

state level 1. If more than one node is identified then 

break ties randomly. 

Step 2:  At the current state level if the heuristic estimate 

of one of the nodes has been updated by backtracking use 

the updated value as the heuristic estimate for that node 

and proceed to Step 3. Otherwise, at each node use 

Procedure 2 to calculate h1, h2, h3 and use max[h1, h2, 

h3] as the heuristic estimate for the node. 

Step 3: At the current state level select the node with the 

smallest heuristic estimate. If it is necessary then break 

ties randomly. 

Step 4: Calculate f = h + k where h is the smallest 

heuristic estimate found in Step 3 and k (edge cost) is the 

time that has elapsed since the preceding state transition 

occurred. 

Step 5: If f > h
’
, where h

’
 is the minimum heuristic 

estimate calculated at the preceding state level, then 

backtrack to that preceding state level and increase the 

value of h
’
 at that preceding node to the current value of 

f and repeat Step 4 at that node. 

Step 6: If f ≤ h
’
 then proceed to the next state level and 

repeat from Step 2. 

Step 7: If f = 0 and h = 0 then an optimal solution has 

been found. If along the path representing the optimal 

solution there is a node which was selected for expansion 

by breaking ties randomly among nodes at the same state 

level with the same minimum heuristic estimate then 

return to that state level and repeat from Step 2 ignoring 

any node that was selected previously for expansion as a 

result of breaking ties. If any of the values of h at root 

nodes (state level 0) is less than or equal to the minimum 

makespan then return to state level 0 and repeat from 

Step 2 ignoring root nodes that lead to a previous 

optimal solution. Otherwise, Stop.  

If there are m machines and m > 3 then Steps 1 and 
Step 2 need to be modified in accordance with the 
discussion of this case presented in sections 3.1 and 3.2 
above. 

The simple instructive example which was used to 
illustrate the initial version of IHSA* (see Table 1) is 
used again to illustrate the final version of IHSA*. For 
this problem, from (5), H3 = 26 > H1 = 19 > H2 = 16 and 
using the modification to Step 1 of the algorithm H3 is 
used in Step 1 of the algorithm. Since no backtracking is 
necessary an optimal solution for the problem requires 
only 1 search path diagram which is shown in Figure 3 
where the optimal solution has a minimum makespan of 
26 and a job sequence J1, J2, J3. At each node the search 
path diagram shows the estimates h1, h2, h3 and the 
heuristic estimate for the node h = max[h1, h2, h3] which 
result from the use of the modification to Step 2 of the 
algorithm. 

It is noted that the minimum heuristic estimate at 
state level 1 is 24 at both of the nodes at that state level. 
In Step 3 of the algorithm the tie was broken randomly 
and the node at which job J2 is scheduled on machine M1 
was selected for expansion. In Step 7, although for 
simplicity a second search path diagram has not been 
drawn, the search returns to state level 1 and instead the  
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 Figure 3: Search Path Diagram Using the Final Version 
of IHSA* 

 
node at which job J3 is scheduled on machine M1 is 
expanded. This gives a second optimal solution where 
the job sequence is J1, J3, J2. 

5 Experimental evidence of 

improvements in performance  

Experimental evidence of improvements in performance 
characteristics of IHSA* using the modifications to Steps 
1 and 2 is presented in Appendix Table A1. The 
characteristics considered are: the number of nodes 
expanded; the number of backtracking steps required; 
and the number of steps of the algorithm executed.  

In total 14 problems are considered involving: 3, 5 
and 10 machines; and 3, 4, 10, 15, and 40 jobs. Each 
problem involving 3 machines was solved using the 
heuristic functions H1, H2, and H3 in (5) which are the 
same as F1, F2, and F3, respectively, when m = 3. 
Problems involving 5 and 10 machines were solved using 
their corresponding heuristic functions F1, F2, F3, F4, F5 
and F1, F2, F3, …, F10, respectively. The solutions 
enabled improvements in the performance characteristics 
resulting from the use of only the modification to Step 1 
to be assessed. In addition, for each problem the solution 
was obtained using the modification to Step 1 together 
with the modification to Step 2. The performance 

characteristics associated with each of these solutions 
enabled an assessment of any further improvements in 
performance characteristics resulting from the inclusion 
of the modification to Step 2.  

From Table A1 it is seen that for each problem 
regardless of the number of jobs and machines the 
modification to Step 1, which involves using the heuristic 
function with the largest value in Step 1, leads to 
improvements in all of the performance characteristics. 
Furthermore, in each problem using the modification to 
Step 1 together with the modification to Step 2, which 
affects the calculation of heuristic estimates as the search 
progresses, leads to further improvements in the 
performance characteristics. 

6 Conclusion 

Three modifications to the initial version of a new 
intelligent heuristic search algorithm (IHSA*) have been 
described. The algorithm guarantees an optimal solution 
for flow-shop problems involving an arbitrary number of 
jobs and machines provided the job sequence is the same 
on all of the machines.   

     The first modification affects Step 1 of the 
algorithm and concerns the choice of an admissible 
heuristic function which is as close as possible to the 
minimum makespan for the problem. For problems with 
an arbitrary number of jobs and 3 machines (M1, M2, M3) 
a set of 6 possible functions is derived (H1, H2, …, H6) 
and their admissibility is proved. It is shown that the 
function which has a value that is closest to the minimum 
makespan and is the best function to use in Step 1 of the 
algorithm is the function among H1, H2, and H3 which 
has the largest value. In the particular case where one of 
the machines (Mj) dominates the other 2 machines the 
best function is Hj and there is no need to calculate the 
values of the other 2 functions. Furthermore, its value is 
greater than the value of either of the other 2 functions by 
at least O(n2) where n is the number of jobs. More 
generally, for problems with more than 3 machines (M1, 
M2, …, Mm) the best admissible heuristic function to use 
is the one among F1, F2, …, Fm with largest value and if 
machine Mj dominates the other machines then Fj is the 
best heuristic function. The proofs of these more general 
results may be obtained following the methods used in 
the proofs presented in the Appendix of the 
corresponding results for H1, H2, and H3.  

     The second modification changes the procedure 
used in Step 2 of the initial version of the algorithm to 
determine heuristic estimates at nodes on the search path. 
The initial version determines a heuristic estimate at a 
node by considering an operation in only one of the cells 
at the node while operations in the other cells are not 
taken into account. The modified procedure determines a 
heuristic estimate at a node by selecting the largest of the 
separate estimates calculated for each cell at the node. 
The modified procedure never produces an estimate for a 
node that is smaller than the estimate produced by the 
procedure used in the initial version of the algorithm and 
in many cases it will be larger.  
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     The first and second modifications ensure that at 
the start of the search and as the search progresses 
heuristic estimates are admissible and are as close as 
possible to the minimum time needed to complete all of 
the incomplete operations on all of the machines. This 
reduces the chance that the search will backtrack and 
improves the performance characteristics of the 
algorithm. Experimental evidence from problems 
involving various numbers of machines and jobs 
indicates that although the first modification produces 
improvements in performance characteristics of the 
algorithm these improvements are enhanced when the 
second modification is included.      

     The third modification relates to Step 7 of the 
algorithm and concerns problems where there are 
multiple optimal solutions. It enables all of the optimal 
solutions to be found and this is convenient for situations 
where additional criteria may need to be satisfied by an 
optimal solution.  

     This article has focussed on describing the 
development of the final version of IHSA*. However, 
there are several areas for future investigation including a 
comparison of the performance of the algorithm with 
other methods such as branch- and-bound methods and 
methods for pruning the search tree in order to improve 
memory management during implementation. 
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Appendix  

Derivation of heuristic functions 

The purpose is to develop heuristic functions suitable 
for use in IHSA*. In each case the objective is to develop 
a function which underestimates the minimum makespan 
(i.e. admissible). Six functions are developed and the 
proof of their admissibility is presented in the next 
section.   

From Figure 1, S(φst ) ≥ max [bt +, as + i

n

i

b∑
=1

] and  

T(φst ) ≥ max [S(φst ) + ct , as + bs + i

n

i

c∑
=1

] which 

means that:            

T(φst ) ≥ as + bs + i

n

i

c∑
=1

 or,                                      (A1) 

T(φst ) ≥ S(φst ) + ct  ≥ bt + ct + i

n

i

a∑
=1

 or,                 (A2) 

T(φst ) ≥ as + ct + i

n

i

b∑
=1

.                                           (A3)                                               

     From (A1) two heuristic functions H3 and H6 are 
proposed:  

H3 = min[a1 + b1, a2 + b2, …, an + bn] + i

n

i

c∑
=1

 and  

H6 = min[a1, a2, …, an] + min[b1, b2, …, bn] + i

n

i

c∑
=1

.  

The rationale for the development of H3 is: select the job 
that will be finished on M2 at the earliest possible time if 
it is placed first in the job sequence. When this job is 
finished on M2 min[a1 + b1, a2 + b2, …, an + bn] units of 
time have elapsed and the additional time needed to 
complete all of the jobs on all of the machines will be at 
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least i

n

i

c∑
=1

units of time. Since min[a1 + b1, a2 + b2, …, 

an + bn] ≥  min[a1, a2, …, an] + min[b1, b2, …, bn] it 
follows that H3 ≥ H6, which is therefore also a plausible 
heuristic function.   

     H1 and H5 are derived from (A2): 

H1 = min[b1 + c1, b2 + c2, …, bn +  cn] + i

n

i

a∑
=1

 and  

H5 = min[b1, b2, …, bn] + min[c1, c2, …, cn] + i

n

i

a∑
=1

. 

The rationale for the development of H1 is: select the job 
which requires the least total amount of time on 
machines M2 and M3 (i.e. min[b1 + c1, b2 + c2, …, bn +  
cn] units of time) and suppose that it is placed last in the 
job sequence which means that the earliest time that it 

can start on M2 is after i

n

i

a∑
=1

units of time. Since 

min[b1 + c1, b2 + c2, …, bn + cn] ≥ min[b1, b2, …, bn] + 
min[c1, c2, …, cn] it follows that H1 ≥ H5, which is 
therefore also a plausible heuristic function.   
     H2 and H4 are derived from (A3):  

H2 = min[a1 + u1, a2 + u2, …, an + un] + i

n

i

b∑
=1

and  

H4 = min[a1, a2, …, an] + min[c1, c2, …, cn] + i

n

i

b∑
=1

, 

where: u1 = min[c2, c3, …, cn];  uk = min[c1, c2, …, ck-1, 
ck+1, …, cn] for 2 ≤ k ≤ n – 1; and un = min[c1, c2, c3, …, 
cn-1]. The rationale for the development of H2 is: consider 
each job in turn and suppose that it is placed first in the 
job sequence and then from among all of the other jobs 
select the one which requires the least amount of time on 
M3. Now for each pair of jobs selected in this manner 
determine the pair that gives the least total time on M1 
and M3. This total time plus the minimum total time 
required to finish all of the jobs on M2 is the value of H2. 
Also, min[a1 + u1, a2 + u2, …, an + un] ≥ min[a1, a2, …, 
an] + min[u1, u2, …, un] = min[a1, a2, …, an] + min[c1, c2, 
…, cn] and it follows that H2 ≥ H4, which is therefore also 
a plausible heuristic function.  
Admissibility 

Results and selected proofs related to the admissibility of 
the heuristic functions H1, 
H2, H3, H4, H5, and H6 are presented: 
R1. H3 ≥ H6 and both are admissible. 
R2. H2 ≥ H4 and both are admissible.                                                                          
R3. H1 ≥ H5 and both are admissible. 
     Only a proof for R2 is given since the remaining 
proofs may be constructed in the same manner. 

     From (A3), T(φst) ≥ as + ct + i

n

i

b∑
=1

 for s, t = 1, 2, …, 

n with s ≠ t and so in particular, T(φ1t) ≥ a1 + ct + 

i

n

i

b∑
=1

, T(φ2t) ≥ a2 + ct + i

n

i

b∑
=1

, …, T(φnt) ≥ an + ct + 

i

n

i

b∑
=1

. 

     Hence, if T*(φst) denotes the earliest time at which any 
job sequence which starts with job Js is completed on M3 

then T*(φ1t) ≥ min[a1 + c2, a1 + c3, …, a1 + cn] + i

n

i

b∑
=1

, 

T*(φ2t) ≥ min[a2 + c1, a2 + c3, …, a2 + cn] + i

n

i

b∑
=1

, …, 

T*(φnt) ≥ min[an + c1, an + c2, …, an + cn-1, …, an + cn ] + 

i

n

i

b∑
=1

 and the minimum makespan T* = min[T*(φ1t), 

T*(φ2t), …, T*(φnt)] ≥ min[a1 +u1, a2 + u2, …, an + un] + 

i

n

i

b∑
=1

 = H2 ≥ min[a1, a2, …, an] + min[c1, c2, …, cn] + 

i

n

i

b∑
=1

 = H4. Consequently, H2 ≥ H4 and both are 

admissible. 
From the results R1, R2, and R3 it is seen that the 
heuristic functions H1, H2, H3, H4, H5, and H6 are all 
admissible. However, in order to select the heuristic 
function among these that is the closest in value to the 
minimum makespan (i.e. the best to use in Step1 of 
IHSA*) the choice should be made from among only H1, 
H2, and H3 because the function among these 3 which has 
the largest value is admissible and has a value which is 
larger than any of the other 5 admissible functions. 
Consequently, in Step1 of IHSA* the values of H1, H2, 
and H3 are calculated and the function with the largest 
value is selected for use.  
Dominance 

Machine M1 dominates the other 2 machines if min[a1, 
a2, …, an] ≥ max[b1, b2, …, bn] and min[a1, a2, …, an] ≥ 
max[c1, c2, …, cn] and similar definitions apply if 
machine M2 or machine M3 is dominant. 
In the case of a dominant machine results R5, R6, and R7 
identify immediately which heuristic function among H1, 
H2, and H3 has the largest value and is the best to use in 
IHSA*. Also, from R8 it is seen that the best heuristic 
function has a value which is greater than the value of 
either of the other functions by O(n2) where n is the 
number of jobs.    
R5. If machine M1 dominates then H1 is the heuristic 
function with the largest value, 
R6. If machine M2 dominates then H2 is the heuristic 
function with the largest value, 
R7. If machine M3 dominates then H3 is the heuristic 
function with the largest value. 
R8. If a machine is dominant then the best heuristic 
function has a value which is greater than the value of 
either of the other 2 functions by at least (n – 1)(n – 2) 
where n is the number of jobs and n ≥ 3. 
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     The proofs for R5 and R8 are given noting that proofs 
for the other results may be constructed in the same 
manner. Throughout these proofs min(ai) = min[a1, a2, 
…, an], min(bi) = min[b1, b2, …, bn], min(ci) = min[c1, c2, 
…, cn], max(ai) = max[a1, a2, …, an], max(bi) = max[b1, 
b2, …, bn], and max(ci) = max[c1, c2, …, cn]. 
     Suppose machine M1 dominates and for i = 1, 2, 3, …, 
n: ai ∈ [r1, r1 + w –1]; bi ∈ [s1, s1 + l –1]; and ci ∈ [t1, t1 + 
d –1] are distinct non negative integers from intervals of 
widths w, l, and d, respectively, each greater than or 
equal to n (the number of jobs). 

It follows that the minimum values of  i

n

i

a∑
=1

, i

n

i

b∑
=1

, 

i

n

i

c∑
=1

are nr1 + 0.5n(n – 1), ns1 + 0.5n(n – 1), and nt1 + 

0.5n(n – 1), respectively, and when these minimum 
values are attained min(ai) = r1, min(bi) = s1, min(ci) = t1, 
max(ai) = r1 + n – 1, max(bi) = s1 + n – 1, and max(ci) = t1 
+ n –1 for i = 1, 2, 3, …, n. 

     Also, the maximum values of i

n

i

a∑
=1

, i

n

i

b∑
=1

, 

i

n

i

c∑
=1

are n(r1 + w) – 0.5n(n + 1), n(s1 + l) – 0.5n(n + 

1), and n(t1 + d) – 0.5n(n + 1), respectively, and when 
these maximum values are attained min(ai) = r1 + w – n, 
min(bi) = s1 + l – n, min(ci) = t1 + d – n, max(ai) = r1 + w 
– 1, max(bi) = s1 + l – 1, max(ci) = t1 + d – 1. 
      

Now, H1 = min[b1 + c1, b2 + c2, …, bn +  cn] + i

n

i

a∑
=1

  

               ≥ min(bi) + min(ci) + min( i

n

i

a∑
=1

)             (A4) 

and similarly,  

H2 ≤ max(ai) + max(ci) + max( i

n

i

b∑
=1

)                     (A5)  

and H3 ≤ max(ai) + max(bi) + max( i

n

i

c∑
=1

).             (A6)   

     If (A4), (A5), (A6) are all true then, 
H1 ≥ s1 + l – n + t1 + d – n + nr1 + 0.5n(n – 1),           (A7)                                                 
H2 ≤ r1 + n – 1 + t1 + d – 1 + n(s1 + l) – 0.5n(n + 1),  (A8)     
H3 ≤ r1 + n – 1 + s1 + l – 1 + n(t1 + d) – 0.5n(n + 1).  (A9)                                      
     From (A7) and (A8), 
s1 + l – n + t1 + d – n + nr1 + 0.5n(n – 1) – r1 – n + 1 – t1 – 
d +1 – n(s1 + 1) + 0.5n(n + 1) = s1 – ns1 + l – nl + nr1 – r1 

+ n2 – 3n + 2 = (n – 1)[r1 – (s1 + l) + n – 2] ≥ (n – 1)(n – 
2) ≥ 0 , for  n ≥ 2, and so H1 is greater than H2  by a value 
which is at least (n – 1)(n – 2), for n ≥ 3. 
     In a similar manner it follows from (A7) and (A9) that 
H1 is greater than H3 by a value which is at least (n – 1)(n 
– 2), for n ≥ 3 and this completes the proof of R5 and R8. 

The best admissible heuristic function for an 

arbitrary number of machines  

For the case where there are more than 3 machines there 
is a need to change the notation used previously to 
represent the time that each operation Oi,j requires on 
each machine so that ti,j is the number of units of time 
required by job Ji on machine Mj.  
     If there are m machines then the best admissible 
heuristic function will be the one with the largest value 
among the set of m functions F1, F2, F3, …, Fm where, 
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and um,k = 0, for k = 1, 2, 3, …, n. 
For a problem with m machines where m > 3 and the job 
sequence is the same on each machine the function 
among F1, F2, F3, …, Fm with the largest value is selected 
in Step 1 of IHSA*.  
     If m = 3 then using t1,i = ai, t2,i = bi, and t3,i = ci for i = 
1, 2, 3, …, n and  representing uj,1, uj,k, and uj,n simply by 
u1, uk, and un, respectively, the 3 admissible heuristic 
functions H1, H2, and H3 in (5) which have been used 
throughout the description of the development of  IHSA* 
are given by F1, F2, and F3, respectively. 
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Experimental evidence of improvements in 

performance characteristics  

Table A1: Performance of IHSA*: Modification to Step 1 
compared to Modifications to Steps 1 and 2. 
 

Note: For each problem: (a) the highlighted first row, 
associated with the use of the modification to Step 1, 
indicates the performance characteristics using the best 
heuristic function; (b) the highlighted last row, associated 
with the use of modifications to Steps 1 & 2, indicates 
the performance characteristics when the best heuristic 
function is used together with the modification to Step 2. 
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