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Abstract. In the ref. [1–4] four massless families of quarks and leptons before the elec-
troweak break are predicted. Mass matrices of all the family members demonstrate in this
proposal the same symmetry, determined by the family groups. There are scalar fields -
two SU(2) triplets, the gauge fields of the family quantum numbers, and three singlets,
the gauge fields of the three charges ( Q,Q ′ and Y ′)- all doublets with respect to the weak
charge, which determine mass matrices on the tree level and, together with other contri-
butions, also beyond the tree level. The symmetry of mass matrices remains unchanged
for all loop corrections. The three singlets are, in loop corrections also together with other
contributors, responsible for the differences in properties of the family members. Taking
into account by the spin-charge-family theory proposed symmetry of mass matrices for all
the family members and simplifying study by assuming that mass matrices are Hermitian
and real and mixing matrices real, we fit free parameters of mass matrices to experimental
data within the experimental accuracy. Calculations are in progress.

Povzetek. Teorija spina-nabojev-družin napoveduje [1–4], preden se zlomi elektrošibka
simetrija, štiri brezmasne družine kvarkov in leptonov. Masne matrike vseh članov družin
imajo po zlomitvi enako simetrijo, ki jo določajo družinska kvantna števila: Vsak spinor
nosi družinski kvantni števili dveh grup SU(2), nosi pa tudi kvantna števila člana družine.
Pri zlomitvi simetrije sodelujejo skalarna polja, ki so tripletna umeritvena polja bodisi ene
od dveh grup SU(2) (družinska simetrija), ali pa singletna umeritvena polja treh nabojev
(Q,Q ′ in Y ′), ki razlikujejo med člani posamezne družine. Vsa skalarna polja so dubleti
glede na šibki naboj, nosijo pa tudi hiper naboj. Simetrije masnih matrik se ohranjajo v vseh
zančnih popravkih. Trije singleti določajo, v zančnih popravkih skupaj z ostalimi prispevki,
razlike v lastnostih članov družin. Problem poenostavimo s predpostavko, da so masne
matrike hermitske in realne in mešalne matrike realne. Zahtevana simetrija masnih matrik
ima enako število prostih parametrov kot je doslej izmerjenih podatkov (dvakrat po tri
mase in mešalna matrika - za kvarke in leptone). Napake podatkov omogočijo določitev
le intervalov za vrednosti parametrov. Iz masnih matrik določimo lastnosti članov četrte
družine. Računi so v teku.

4.1 Introduction

There are several attempts in the literature to reconstruct mass matrices of quarks
and leptons out of the observed masses and mixing matrices and correspondingly
to learn more about properties of fermion families [8]. The most popular is the
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32 G. Bregar and N.S. Mankoč Borštnik

n × n matrix close to the democratic one, predicting that (n − 1) families must
be very light in comparison with the nth one. Most of attempts treat neutrinos
differently than the other family members, relying on the Majorana part, the Dirac
part and the ”sea-saw” mechanism. Most often are the number of families taken
to be equal to the number of the so far observed families, while symmetries of
mass matrices are chosen in several different ways [9]. Also possibilities with four
families are discussed [12].

In this paper we follow the prediction of the spin-charge-family theory [1–4,7]
that there are four massless families above the electroweak break and that the scalar
fields - the two triplets carrying the family charges in the adjoint representations
and the three singlets carrying the charges of the family members (Q,Q ′ and Y ′) -
all doublets with respect to the weak charge, cause (after getting nonzero vacuum
expectation values) the electroweak break. Assuming that the contributions of all
the scalar (and in loop corrections also of other) fields to mass matrices of fermions
are real and symmetric, we are left with the following symmetry of mass matrices

Mα =


−a1 − a e d b

e −a2 − a b d

d b a2 − a e

b d e a1 − a


α

, (4.1)

the same for all the family members α ∈ {u, d, ν, e}. In appendix 4.5.1 the evalu-
ation of this mass matrix is presented and the symmetry commented. A change
of phases of the left handed and the right handed basis - there are (2n − 1) free
choices - manifests in a change of phases of mass matrices.

The differences in the properties of the family members originate in the
different charges of the family members and correspondingly in the different
couplings to the corresponding scalar and gauge fields.

We fit (sect. 4.3.2) the mass matrix Eq. (4.1) with 6 free parameters of any
family member 6 to the so far observed properties of quarks and leptons within
the experimental accuracy. That is: For a pair of either quarks or leptons, we fit twice 6
free parameters of the two mass matrices to twice three so far measured masses and to the
corresponding mixing matrix. Since we have the same number of free parameters
(two times 6 for each pair, since the mass matrices are assumed to be real) as there
are measured quantities (two times 3masses and 6 angles of the orthogonal mixing
matrix under a simplification that the mixing matrix is real and Hermitian), we
would predict the fourth family masses uniquely, provided that the measured
quantities are accurate. The n − 1 submatrix of any unitary matrix determine
the unitary matrix uniquely for n ≥ 4. The experimental inaccuracy enable to
determine only the interval for the fourth family masses.

If the prediction of the spin-charge-family theory, that there are four families
which manifest in the massless basis the symmetry of Eq. (4.1), is correct, we expect
that enough accurate experimental data for the properties of the so far observed
three families will offer narrow enough intervals for the fourth family masses.

We treat all the family members, the quarks and the leptons, equivalently.
We also estimate the contributions of the fourth family members to the mesons
decays in dependence of the fourth family masses, taking into account also the
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4 Can We Predict the Fourth Family Masses for Quarks and Leptons? 33

estimations of the refs. [15] 1. However, we must admit that our estimations are so
far pretty rough.

In sect. 4.3.1 we check on a toy model how accurate must be the experimental
data that enable the prediction of the fourth family masses: For two ”known”
mass matrices, obeying the symmetry of Eq. (4.1), which lead approximately to
the experimental data, we calculate masses and the mixing matrix. Then, taking
the mixing matrix and twice three lower masses as an input, we look back for the
starting two mass matrices with the required symmetry, allowing for the three
lower families ”experimental” inaccuracy. In the same section we then estimate
the fourth family masses. So far the results are preliminary. Although we spent
quite a lot of efforts to make the results transparent and trustable, the numerical
procedure to take into account the experimental inaccuracy of data is not yet good
enough to allow us to determine the interval of the fourth family masses, even not
for quarks, so that all the results are very preliminary.

Still we can say that the so far obtained support the prediction of the spin-
charge-family theory that there are four families of quarks and leptons, the mass
matrices of which manifest the symmetry determined by the family groups – the
same for all the family members, quarks and leptons. The mass matrices are quite
close to the ”democratic” ones, in particular for leptons.

Since the mass matrices offer an insight into the properties of the scalar fields,
which determine mass matrices (together with other fields), manifesting effectively
as the observed Higgs and the Yukawa couplings, we hope to learn about the
properties of these scalar fields also from the mass matrices of quarks and leptons.

In appendix 4.5 we offer a very brief introduction into the spin-charge-family
theory, which the reader, accepting the proposed symmetry of mass matrices
without knowing the origin of this symmetry, can skip.

In sect. 4.2 the procedure to fit free parameters of mass matrices (Eq. (4.1) to
the experimental data is discussed. We comment our studies in sect. 4.4.

4.2 Procedure used to fit free parameters of mass matrices to
experimental data

Matrices, following from the spin-charge-family theory might not be Hermitian (ap-
pendix 4.6). We, however, simplify our study, presented in this paper, by assuming
that the mass matrix for any family member, that is for the quarks and the leptons,
is real and symmetric. We take the simplest phases up to signs, which depend on
the choice of phases of the basic states, as discussed in appendices 4.5.1 2.

1 M.I.Vysotsky and A.Lenz comment in their very recent papers that the fourth family is
excluded provided that one assumes the standard model with one scalar field (the Higgs)
and extends the number of families from three to four while using loop corrections when
evaluating the decay properties of the Higgs. We have, however, several scalar fields and
first estimates show that the fourth family quarks might have masses close to 1 TeV.

2 In the ref. [17] we made a similar assumption, except that we allow that the symmetry on
the tree level of mass matrices might be changed in loop corrections. We got in that study
dependence of mass matrices and correspondingly mixing matrices for quarks on masses
of the fourth family.
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34 G. Bregar and N.S. Mankoč Borštnik

The matrix elements of mass matrices, with the loop corrections in all orders
taken into account, manifesting the symmetry of Eq. (4.1), are in this paper taken
as free parameters.

Let us first briefly overview properties of mixing matrices, a more detailed
explanation of which can be found in subsection 4.2.1 of this section.

LetMα, α denotes the family member (α = u, d, ν, e), be the mass matrix in
the massless basis (with all loop corrections taken into account). Let Vαβ = SαSβ†,
where α represents either the u-quark and β the d-quark, or α represents the
ν-lepton and β the e-lepton, denotes a (in general unitary) mixing matrix of a
particular pair.

For n× nmatrix (n = 4 in our case) it follows:
i. If a known submatrix (n− 1)× (n− 1) of an unitary matrix n× n with n ≥ 4 is
extended to the whole unitary matrix n×n, the n2 unitarity conditions determine
(2(2(n− 1) + 1)) real unknowns completely. If the submatrix (n− 1)× (n− 1) of
an unitary matrix is made unitary by itself, then we loose the information.
ii. If the mixing matrix is assumed to be orthogonal, then the (n − 1) × (n − 1)

submatrix contains all the information about the n×n orthogonal matrix to which
it belongs and the n(n+1)/2 conditions determine the 2(n−1)+1 real unknowns
completely for any n.
If the submatrix of the orthogonal matrix is made orthogonal by itself, then we
loose the information.

We make in this paper, to simplify the present study, several assumptions [7],
presented already in the introduction. In what follows we present the procedure
used in our study and repeat the assumptions.

1. If the mass matrix Mα is Hermitian, then the unitary matrices Sα and Tα,
introduced in appendix 4.6 to diagonalize a non Hermitian mass matrix, differ
only in phase factors depending on phases of basic vectors and manifesting
in two diagonal matrices, FαS and FαT , corresponding to the left handed and
the right handed basis, respectively. For Hermitian mass matrices we therefore
have: Tα = Sα FαSFαT †. By changing phases of basic vectors we can change
phases of (2n− 1) matrix elements.

2. We take the diagonal matrices Mα
d and the mixing matrices Vαβ from the

available experimental data. The mass matricesMα in Eq. (4.1) have, if they
are Hermitian and real, 6 free real parameters (aα, aα1 , a

α
2 , b

α, eα, dα).
3. We limit the number of free parameters of the mass matrix of each family

member α by taking into account n relations among free parameters, in our
case n = 4, determined by the invariants

Iα1 = −
∑
i=1,4

mαi , Iα2 =
∑

i>j=1,4

mαi m
α
j ,

Iα3 = −
∑

i>j>k=1,4

mαi m
α
j m

α
k , Iα4 = mα1 m

α
2 m

α
3 m

α
4 , (4.2)

which are expressions appearing at powers of λα, λ4α+ λ3αI1+ λ2αI2+ λ1αI3+
λ0αI4 = 0, in the eigenvalue equation. The invariants are fixed, within the ex-
perimental accuracy of the data, by the observed masses of quarks and leptons
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4 Can We Predict the Fourth Family Masses for Quarks and Leptons? 35

and by the fourth family mass, if we make a choice of it. In appendix 4.2.2
we present the relations among the reduced number of free parameters for a
chosenmα4 . There are (6− 4) free parameters left for each mass matrix.

4. The diagonalizing matrices Sα and Sβ, each depending on the reduced number
of free parameters, are for real and symmetric mass matrices orthogonal. They
follow from the procedure

Mα = SαMα
d T

α † , Tα = Sα FαSFαT † ,

Mα
d = (mα1 ,m

α
2 ,m

α
3 ,m

α
4 ) , (4.3)

provided that Sα and Sβ fit the experimentally observed mixing matrices V†αβ
within the experimental accuracy and thatMα andMβ manifest the symmetry
presented in Eq. (4.1). We keep the symmetry of the mass matrices accurate.
One can proceed in two ways.

A. : Sβ = V†αβS
α , B. : Sα = VαβS

β ,

A. : V†αβ S
αMβ

d S
α†Vαβ =Mβ , B. : Vαβ S

βMα
d S

β†V†αβ =Mα .(4.4)

In the case A. one obtains from Eq. (4.3), after requiring that the mass matrix
Mα has the desired symmetry, the matrix Sα and the mass matrix Mα (=
SαMα

d S
α†), from where we get the mass matrix Mβ = V†αβ S

αMβ
d S

α†Vαβ.
In case B. one obtains equivalently the matrix Sβ, from where we get Mα

(= Vαβ SβMα
d S

β†V†αβ). We use both ways iteratively taking into account the
experimental accuracy of masses and mixing matrices.

5. Under the assumption of the present study that the mass matrices are real
and symmetric, the orthogonal diagonalizing matrices Sα and Sβ form the
orthogonal mixing matrix Vαβ, which depends on at most 6 (= n(n−1)

2
) free

real parameters (appendix 4.6). Since, due to what we have explained at the
beginning of this section, the experimentally measured matrix elements of
the 3 × 3 submatrix of the 4 × 4 mixing matrix (if not made orthogonal by
itself) determine the 4× 4mixing matrix - within the experimental accuracy
- completely, also the fourth family masses are determined, again within the
experimental accuracy. We must not forget, however, that the assumption of
the real and symmetric mass matrices, leading to orthogonal mixing matrices,
might not be an acceptable simplification, since we do know that the 3 × 3
submatrix of the mixing matrix has one complex phase, while the unitary 4× 4
has three complex phases. (In the next step of study, with hopefully more
accurate experimental data, we shall relax conditions on hermiticity of mass
matrices and correspondingly on orthogonality of mixing matrices). We expect
that too large experimental inaccuracy leave the fourth family masses in the
present study quite undetermined, in particular for leptons.

6. We study quarks and leptons equivalently. The difference among family mem-
bers originate on the tree level in the eigenvalues of the operators (Qα, Q ′α, Y ′α),
which in loop corrections together with other contributors in all orders con-
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tribute to all mass matrix elements and cause the difference among family
members 3.

Let us conclude. If the mass matrix of a family member obeys the symme-
try required by the spin-charge-family theory, which in a simplified version (as
it is taken in this study) is real and symmetric, the matrix elements of the mix-
ing matrices of quarks and leptons are correspondingly real, each of them with
n(n−1)
2

free parameters. These six parameters of each mixing matrix are, within
the experimental inaccuracy, determined by the three times three experimentally
determined submatrix. After taking into account three so far measured masses
of each family member, the six parameters of each mass matrix reduce to three.
Twice three free parameters are within the experimental accuracy correspondingly
determined by the 3× 3 submatrix of the mixing matrix. The fourth family masses
are correspondingly determined - within the experimental accuracy.

The assumption that the two 3× 3mixing matrices are unitary would lead to
the loss of the information about the 4× 4mixing matrix. This is the case also if
we take the orthogonalized version of the 3× 3mixing matrices.

Since neither the measured masses nor the measured mixing matrices are
determined accurately enough to reproduce the 4 × 4 mixing matrices, we can
expect that the masses and mixing matrix elements of the fourth family will be
determined only within some quite large intervals.

4.2.1 Submatrices and their extensions to unitary and orthogonal matrices

In this appendix well known properties of n×nmatrices, extended from (n−1)×
(n − 1) submatrices are discussed. We make a short overview of the properties,
needed in this paper, although all which will be presented here, is the knowledge
on the level of text books.

Any n × n complex matrix has 2n2 free parameters. The n + 2n(n − 1)/2

unitarity requirements reduce the number of free parameters to n2 (= 2n2 − (n+

2n(n− 1)/2)).
Let us assume a (n − 1) × (n − 1) known submatrix of the unitary matrix.

The submatrix can be extended to the unitary matrix by (2× [2(n− 1) + 1]) real
parameters of the last column and last line. The n2 unitarity conditions on the
whole matrix reduce the number of unknowns to (2(2n − 1) − n2). For n = 4

and higher the (n− 1)× (n− 1) submatrix contains all the information about the
unitary n× nmatrix.
The ref. [6] proposes a possible extension of an (n − 1)× (n − 1) unitary matrix
V(n−1)(n−1) into n× n unitary matrices Vnn.

The choice of phases of the left and the right basic states which determine the
unitary matrix (like this is the case with the mixing matrices of quarks and leptons)
reduces the number of free parameters for (2n−1). Correspondingly is the number
of free parameters of such an unitary matrix equal to n2−(2n−1), which manifests

3 There are also Majorana like terms contributing in higher order loop corrections [3] which
might strongly influence in particular the neutrino mass matrix.
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in 1
2
n(n− 1) real parameters and 1

2
(n− 1)(n− 2) (= n2 − 1

2
n(n− 1) − (2n− 1))

phases (which determine the number of complex parameters).
Any real n×nmatrix has n2 free parameters which the 1

2
n(n+1) orthogonal-

ity conditions reduce to 1
2
n(n−1). The (n−1)×(n−1) submatrix of this orthogonal

matrix can be extended to this n × n orthogonal matrix with [2(n − 1) + 1] real
parameters. The 1

2
n(n+1) orthogonality conditions reduce these [2(n−1)+1] free

parameters to (2n−1− 1
2
n(n+1)), which means that the (n−1)×(n−1) submatrix

of an n×n orthogonal matrix determine properties of its n×n orthogonal matrix
completely. Any (n− 1)× (n− 1) submatrix of an orthogonal matrix contains all
the information about the whole matrix for any n. Making the submatrix of the
orthogonal matrix orthogonal by itself one looses the information about the n× n
orthogonal matrix.

4.2.2 Free parameters of mass matrices after taken into account invariants

It is useful for numerical evaluation purposes to take into account for each family
member its mass matrix invariants (sect. 4.2), expressible with three within the
experimental accuracy known masses, while we keep the fourth one as a free
parameter. We shall make a choice of aα instead of the fourth family mass.

We shall skip in this section the family member index α and introduce new
parameters as follows

a, b , f = d+ e , g = d− e , q =
a1 + a2√

2
, r =

a1 − a2√
2

. (4.5)

After making a choice of a I1
4

, that is of the fourth family mass, four invariants of
Eq. (4.2) reduce the number of free parameters to 2. The four invariants therefore
relate six parameters leaving three of them, the a included as a free parameter,
undetermined. There are for each pair of family members the measured mixing
matrix elements, assumed in this paper to be orthogonal and correspondingly
determined by six parameters, which then fixes these two times 3 parameters. The
(accurately enough) measured 3× 3 submatrix of the (assumed to be orthogonal)
4×4mixing matrix namely determines these 6 parameters within the experimental
accuracy.

Using the starting relation among the invariants and introducing into them
new parameters (a, b, f, g, q, r) from Eq. (4.5) we obtain

a =
I1

4
,

I ′2 = −I2 + 6a
2 − q2 − r2 − 2b2 = f2 + g2 ,

I ′3 = −
1

2b
(I3 − 2aI2 + 4a

2) = f2 − g2 ,

I ′4 = I4 − aI3 + a
2I2 − 3a

4

=
1

4
(q2 − r2)2 + (q2 + r2)b2 +

1

2
(q2 − r2) · (±) · [±] 2gf

+b2(f2 + g2) +
1

4
(2gf)2 .

(4.6)
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We eliminate, using the first two equations, the parameters f and g, expressing
them as functions of I ′2 and I ′3, which depend, for a particular family member,
on the three known masses, the parameter a and the three parameters r, q and b.
We are left with the four free parameters (a, b, q, r) and the below relation among
these parameters

{−
1

2
(q4 + r4) + (−2b2 +

1

2
(−I2 + 6a

2 − 2b2))(q2 + r2)

+ (I ′4 −
1

4
((−I2 + 6a

2 − 2b2)2 + I ′23 ) + b2(−I2 + 6a
2 − 2b2))}2

= −
1

4
(q2 − r2)2((−I2 + 6a

2 − 2b2 − (q2 + r2))2 − I ′23 ) , (4.7)

which reduces the number of free parameters to 3. These 3 free parameters must
be determined, together with the corresponding three parameters of the partner,
from the measured mixing matrix.

We eliminate one of the 4 free parameters in Eq. (4.7) by solving the cubic
equation for, let us make a choice, q2

αq6 + βq4 + γq2 + δ = 0 . (4.8)

Parameter (α,β, γ, δ) depend on the 3 remaining free parameters (a, b, r) and the
three, within experimental accuracy, known masses.

To reduce the number of free parameters from the starting 6 in Eq. (4.1) to
the 3 left after taking into account invariants of each mass matrix, we look for the
solution of Eq (4.8) for all allowed values for (a, b, r). We make a choice for a in
the interval of (amin, amax), determined by the requirement that a, which solves
the equations, is a real number. Allowing only real values for parameters f and g
we end up with the equation

−I2 + 6a
2 − 2b2 − (q2 + r2) > |

I3 + 8a
3 − 2aI2
2b

| , (4.9)

which determines the maximal positive b for q = 0 = r and also the minimal
positive value for b. For each value of the parameter a the interval (bmin, bmax),
as well as the interval (rmin = 0, rmax), follow when taking into account experi-
mental values for the three lower masses.

4.3 Numerical results

Taking into account the assumptions and the procedure explained in sect. 4.2
and in the ref. [7] we are looking for the 4× 4 in this paper taken to be real and
symmetric mass matrices for quarks and leptons, obeying the symmetry of Eq. (4.1)
and manifesting properties – masses and mixing matrices – of the so far observed
three families of quarks and leptons in agreement with the experimental limits
for the appearance of the fourth family masses and mixing matrix elements to the
lower three families, as presented in the refs. [16,15]. We also take into account
our so far made rough estimations of possible contributions of the fourth family
members to the decay of mesons. More detailed estimations are in progress.
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We hope that we shall be able to learn from the mass matrices of quarks and
leptons also about the properties of the scalar fields, which cause masses of quarks
and leptons, manifesting effectively so far as the measured Higgs and Yukawa
couplings.

First we test the predicting power of our model in dependence of the experi-
mental inaccuracy of masses and mixing matrices on a toy model: Starting with
two known mass matrices with the symmetry of Eq. (4.1) we calculate masses and
from the two diagonalizing matrices also the mixing matrix. ¿From the known
masses and mixing matrix, for which we allow ”experimental inaccuracy”, we
check how does the reproducibility of the two starting mass matrices depend
on the ”experimental inaccuracy” and how does the ” experimental inaccuracy”
influence the fourth family masses.

Then we take the 3× 3measured mixing matrices for quarks and leptons and
the measured masses, all with the experimental inaccuracy. Taking into account
that the 3 × 3 submatrix of the unitary 4 × 4 matrix determines, if measured
accurately enough, the 4 × 4 matrix, we look for the twice 4 × 4 mass matrices
with the symmetry of Eq. (4.1), and correspondingly for the fourth family masses,
for quarks and leptons.

When extending the two so far measured 3×3 submatrices of the 4×4mixing
matrices we try to take into account as many experimental data as possible.

4.3.1 Checking on a toy model how much does the symmetry of mass
matrices (Eq. (4.1)) limit the fourth family properties

We check in this subsection on a toy model the reproducibility of the starting two
mass matrices from the known two times three lower masses (saymui ,mdi , i =
(1, 2, 3)) and the 3× 3 submatrix (say (Vud)i,j , i, j = (1, 2, 3)) of the 4× 4 unitary
mixing matrix in dependence of the inaccuracy allowed for mui ,mdi , i = (1, 2, 3)

and (Vud)i,j , i, j = (1, 2, 3).
We take the following two mass matrices, chosen so that they reproduce to

high extent the measured properties of quarks (masses and mixing matrix) for
some experimentally acceptable values for the fourth family masses and also the
corresponding mixing matrix elements.

Mtoyu =


220985. 119365. 120065. 204610.

119365. 218355. 204610. 120065.

120065. 204610. 192956. 119365.

204610. 120065. 119365. 190325.

 ,

Mtoyd =


175825. 174262. 174290. 175709.

174262. 175839. 175709. 174290.

174290. 175709. 175640. 174262.

175709. 174290. 174262. 175654.

 . (4.10)

Diagonalizing these two mass matrices we find the following twice four
masses

Mtoyu
d /MeV/c2 = (1.3, 620., 172000., 650000.) ,

Mtoyd
d /MeV/c2 = (2.9, 55., 2900., 700000.) , (4.11)
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and the mixing matrix

Vtoyud =


−0.97286 −0.22946 −0.02092 0.02134

0.23019 −0.97205 −0.04607 −0.00287

0.00976 0.04965 −0.99872 −0.00045

0.02143 0.00213 −0.00013 0.99977

 . (4.12)

In order to simulate experimental inaccuracies (intervals of values for twice
three lower masses and for the matrix elements of the 3× 3 submatrix of the above
unitary 4 × 4 matrix) and test the influence of these inaccuracies on the fourth
family masses, we change the fourth family massmu4 in the interval ((300−1200))
GeV and check the accuracy with which the matrix elements of the 3×3 submatrix
of the 4× 4 unitary matrix are reproduced. We measure the averaged inaccuracy
in σ’s 4. We keep in Table 4.1 the d4 mass equal to 700 GeV.

mu4/GeV 300 500 600 650 700 800 1200
”exp. inacc”/σ 4.0 1.0 0.29 0.0 0.25 0.66 1.6

Table 4.1. The average inaccuracy in σ of the mixing matrix elements of the 3× 3 submatrix
of the unitary quark mixing matrix (Eq.(4.12)) in dependence of the fourth family mass of
themtoyu4 -quark.mtoyd4 mass is kept equal to 700 GeV.

Let us add that the accuracy, with which the 3×3 submatrix of the 4×4mixing
matrix is reproduced, depends much less on mtoyd4 than it does on mtoyu4 in
this toy model case.

We use this experience when evaluating intervals, within which the fourth
family masses appear when taking into account the inaccuracies of the experimen-
tal data.

4.3.2 Numerical results for the observed quarks and leptons with mass
matrices obeying Eq. (4.1)

We take for the quark and lepton masses the experimental values [16], recalculated
to the Z boson mass scale. We take from [16] also the experimentally declared
inaccuracies for the so far measured 3×3mixing matrices, taken in our calculations
as submatrices of the 4 × 4 unitary mixing matrices and pay attention on the
experimentally allowed values for the fourth family masses and other limitations
presented in refs. [15]. We also have started to make our own rough estimations
for limitations which follow from the meson decays to which the fourth family
members participate. Our estimations are in progress.

The numerical procedure, tested in the toy model and working well in this
case, must still be adapted to take experimental inaccuracies into account in a way
to be able to see which values within the experimentally allowed ones are the

4 We define σ as the difference of the reproduced mixing matrix elements and the exact
matrix elements, following from the starting two mass matrices.
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most trustable from the point of view of the symmetries of the 4× 4mass matrices
predicted by the spin-charge-family theory.

Although the accurate enough mixing matrices and masses of quarks and
leptons are essential for the prediction of the fourth family members masses, we
still hope that even with the present accuracy of the experimental data the intervals
for the fourth family masses shall not be too large, in particular not for quarks,
for which the data are much more accurate than for leptons. Let us point out that
from so far obtained results we are not yet able to predict the fourth family mass
intervals, which would be reliable enough.

We therefore present some preliminary results. Let us point out that all the
mass matrices manifest within a factor less then 2 the ”democratic” view. This
is, as expected, more and more the case, the higher might be the fourth family
masses, and in particular is true for the leptons.

• For quarks we take [16]:
1. The quark mixing matrix [16] Vud = Su Sd †

|Vud| =


0.97425± 0.00022 0.2252± 0.0009 0.00415± 0.00049 |Vu1d4 |
0.230± 0.011 1.006± 0.023 0.0409± 0.0011 |Vu2d4 |

0.0084± 0.0006 0.0429± 0.0026 0.89± 0.07 |Vu3d4 |

|Vu4d1 | |Vu4d2 | |Vu4d3 | |Vu4d4 |

 ,

(4.13)
determining for each assumed and experimentally allowed set of values for
the mixing matrix elements of the 3×3 submatrix the corresponding fourth
family mixing matrix elements (|Vuid4 | and |Vu4dj |) from the unitarity
condition for the 4× 4mixing matrix.

2. The masses of quarks are taken at the energy scale ofMZ, while we take
the fourth family masses as free parameters. We allow the values from
300 GeV up to more than TeV to see the influence of the experimental
inaccuracy on the fourth family masses.

Mu
d/MeV/c2 = (1.27+ 0.50− 0.42, 619± 84, 171 700.± 3 000.,

mu4 > 335 000.) ,

Md
d/MeV/c2 = (2.90+ 1.24− 1.19, 55+ 16− 15, 2 890.± 90.,

md4 > 300 000.) . (4.14)

• For leptons we take [16]:
1. We evaluate 3× 3matrix elements from the data [16]

7.05 · 10−17 ≤ ∆(m21/MeV/c2)2 ≤ 8.34 · 10−17 ,
2.07 · 10−15 ≤ ∆(m(31),(32)/MeV/c2)2 ≤ 2.75 · 10−15 ,
0.25 ≤ sin2 θ12 ≤ 0.37 , 0.36 ≤ sin2 θ23 ≤ 0.67 ,
sin2 θ13 < 0.035(0.056) , sin2 2θ13 = 0.098± 0.013 , (4.15)

which means that π
4
− π
10
≤ θ23 ≤ π

4
+ π
10

, π
5.4

− π
10
≤ θ12 ≤ π

4
+ π
10

,
θ13 <

π
13

.
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This reflects in the lepton mixing matrix Vνe = Sν Se †

|Vνe| =


0.8224 0.5200 0.1552 |Vν1e4 |

0.3249 0.7239 0.6014 |Vν2e4 |

0.4455 0.4498 0.7704 |Vν3e4 |

|Vν4e1 | |Vν4e2 | |Vν4e3 | |Vν4e4 |

 , (4.16)

determining for each assumed value for any mixing matrix element within
the experimentally allowed inaccuracy the corresponding fourth family
mixing matrix elements (|Vνie4 | and |Vν4ej |) from the unitarity condition
for the 4× 4mixing matrix.

2. The masses of leptons are taken from [16] while we take the fourth family
masses as free parameters, checking how much does the experimental
inaccuracy influence a possible prediction for the fourth family leptons
masses and how does this prediction agree with experimentally allowed
values [16,15] for the fourth family lepton masses.

Mν
d/MeV/c2 = (1 · 10−9, 9 · 10−9, 5 · 10−8, mν4 > 90 000.) ,

Me
d/MeV/c2 = (0.486 570 161± 0.000 000 042,
102.718 135 9± 0.000 009 2, 1746.24± 0.20,me4 > 102 000 ) . (4.17)

Following the procedure explained in sect. 4.2 we look for the mass matrices
for the u-quarks and the d-quarks and the ν-leptons and the e-leptons by requiring
that the mass matrices reproduce experimental data while manifesting symmetry
of Eq. (4.1), predicted by the spin-charge-family theory.

We look for several properties of the obtained mass matrices: i. We test the
influence of the experimentally declared inaccuracy of the 3× 3 submatrices of the
4× 4mixing matrices and of the twice 3measured masses on the prediction of the
fourth family masses. ii. We look for how could different choices for the masses of
the fourth family members limit the inaccuracy of particular matrix elements of
the mixing matrices or the inaccuracy of the three lower masses of family members.
iii. We test how close to a democratic mass matrix are the obtained mass matrices
in dependence of the fourth family masses.

The numerical procedure, used in this contribution, is designed for quarks
and leptons.

In the two next subsections 4.3.2, 4.3.2 we present some preliminary results
for 4× 4mass matrices as they follow from the spin-charge-family theory for quarks
and leptons, respectively.

Mass matrices for quarks Searching for mass matrices with the symmetries
of Eq. (4.1) to determine the interval for the fourth family quark masses in de-
pendence of the values of the mixing matrix elements within the experimental
inaccuracy, we have not yet found a trustable way to extract which experimental
inaccuracies of the mixing matrix elements should be taken more and which less
”seriously”. We also need to evaluate more accurately the experimental limitations
for the fourth family masses, originating in decay properties of mesons and other
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experiments. Although in the toy model case the ”inaccuracy” of the matrix el-
ements leads very clearly to the right fourth family masses, this is not the case
when the experimental data for the 3×3mixing matrix elements are known within
the accuracy from 0.02% to 12%. The so far obtained results can not yet make the
choice among less or more trustable experimental values: We can not yet make
more accurate choice for those data which have large experimental inaccuracies.

We are still trying to improve our the procedure of searching for the masses
of the fourth family quarks.

Let us still present two cases to demonstrate how do quark mass matrices
change with respect to the fourth family masses: The first two mass matrices lead
to the fourth family massesmu4 = 300 GeV andmd4 = 700 GeV, while the second
two lead to the fourth family massesmu4 = 1 200 GeV andmd4 = 700 GeV.

•

Mu =


402673. 256848. 267632. 329419.

256848. 402393. 329419. 267632.

267632. 329419. 283918. 256848.

329419. 267632. 256848. 283638.

 ,

Md =


176784. 174262. 174524. 175473.

174262. 176816. 175473. 174524.

174524. 175473. 174663. 174262.

175473. 174524. 174262. 174695.

 , (4.18)

Vud =


0.97365 0.22296 0.00225 −0.04782

0.22276 −0.97412 0.03818 −0.00444

0.01071 −0.03671 −0.99927 −0.0001

0.04761 0.00634 0.00018 0.99885

 . (4.19)

The corresponding masses are

Mu
d/MeV/c2 = (1.29957, 620.002, 172 000., 300 000.) ,

Md
d/MeV/c2 = (2.88508, 55.024, 2 899.99, 700 000.) . (4.20)

•

Mu =


351427. 256907. 257179. 342730.

256907. 342353. 342730. 257179.

257179. 342730. 343958. 256907.

342730. 257179. 256907. 334884.

 ,

Md =


175762. 174263. 174289. 175708.

174263. 175581. 175708. 174289.

174289. 175708. 175898. 174263.

175708. 174289. 174263. 175717.

 , (4.21)

Vud =


−0.9743 0.22521 −0.00366 0.00383

0.22515 0.97325 −0.04567 0.00299

−0.00672 −0.04532 −0.99895 −0.00019

0.00305 −0.00378 −0.00004 0.99999

 . (4.22)
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The corresponding masses are

Mu
d/MeV/c2 = (1.29957, 620.002, 172 000., 1 200 000.) ,

Md
d/MeV/c2 = (2.88508, 55.024, 2 899.99, 700 000.) . (4.23)

We notice:
i. In both cases the required symmetry, Eq. (4.1), is (on purpose) kept very accurate.
ii. In both cases the mass matrices of quarks look quite close to the ”democratic”
matrix, in the second case slightly more than in the first case.
iii. The mixing matrix elements are in the second case much closer (within the
experimental values are V11, V12, V13 and V32, almost within the experimental
values are V21, V22 and V33) to the experimentally allowed values, than in the first
case (almost within the experimentally allowed values are only V21, V22 and V23).

These results suggest that the fourth family masses mu4 = 1 200 GeV and
md4 = 700 GeV are much more trustable than mu4 = 300 GeV and md4 = 700

GeV.

Mass matrices for leptons We present here results for leptons, manifesting prop-
erties of the lepton mass matrices. These results are less informative than those
for quarks, since the experimental results are for leptons mixing matrix much less
accurate than in the case of quarks and also masses are known less accurately.

We have

Mν =


14 021. 14 968. 14 968. −14 021.

14 968. 15 979. 15 979. −14 968.

14 968. 15 979. 15 979 −14 968.

−14 021. −14 968. −14 968. 14 021.

 ,

Me =


28 933. 30 057. 29 762. −27 207.

30 057. 32 009. 31 958. −29 762.

29 762. 31 958. 32 009. −30 057.

−27 207. −29 762. −30 057. 28 933.

 , (4.24)

which leads to the mixing matrix Vνe

Vνe1 =


0.82363 0.54671 −0.15082 0.

−0.50263 0.58049 −0.64062 0.

−0.26268 0.60344 0.75290 0.

0. 0. 0. 0.

 , (4.25)

and the masses

Mν
d/MeV/c2 = (5 · 10−9 , 1 · 10−8 , 4.9 · 10−8 , 60 000.) ,

Me
d/MeV/c2 = (0.510999 , 105.658 , 1 776.82 120 000) . (4.26)

We did not adapt lepton masses toZm mass scale. Zeros (0.) for the matrix elements
concerning the fourth family members means that the values are less than 10−5.

We notice:
i. The required symmetry, Eq. (4.1), is kept very accurate.
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ii. The mass matrices of leptons are very close to the ”democratic” matrix.
iii. The mixing matrix elements among the first three and the fourth family mem-
bers are very small, what is due to our choice, since the matrix elements of the
3 × 3 submatrix of the 4 × 4 unitary matrix, predicted by the spin-charge-family
theory are very inaccurately known.

4.4 Discussions and conclusions

One of the most interesting open questions in the elementary particle physics is:
Where do the family originate? Explaining the origin of families would answer
the question about the number of families possibly observable at the low energy
regime, about the origin of the scalar field(s) and Yukawa couplings and would
also explain differences in the fermions properties - the differences in masses and
mixing matrices among family members – quarks and leptons.

Assuming that the prediction of the spin-charge-family theory that there are
four rather than so far observed three coupled families, the mass matrices of which
demonstrate in the massless basis the SU(2) × SU(2) symmetry of Eq. (4.1), the
same for all the family members - the quarks and the leptons - we look in this
paper for:
i. The origin of differences in the properties of the family members - quarks and
leptons.
ii. The allowed intervals for the fourth family masses.
iii. The matrix elements in the mixing matrices among the fourth family members
and the three already measured ones.

Our calculations presented here are preliminary and in progress.
Let us tell that there are two kinds of the scalar fields in the spin-charge-

family theory, responsible for the masses and mixing matrices of quarks and
leptons (and consequently also for the masses of the weak gauge fields): The
ones which distinguish among the family members and the other ones which
distinguish among the families. The differences between quarks and leptons and
between u and d quarks and between ν and e leptons originate in the first kind
of the scalar fields, which carry Q,Q ′ (the two charges which, like in the standard
model, originate in the weak and hyper charge) and Y ′ (which originates in the
hypercharge and in the fermion quantum number, similarly as in the SO(10)
models).

The existence of four coupled families seems almost unavoidable for the
explanation of the properties of the neutrino families if all the family members
should start from the massless basis in an equivalent way: The 4× 4mass matrix,
very close to a democratic one, offers three almost massless (in comparison with
the observed quarks and charged leptons masses) families and a very massive
one.

Taking the symmetry of, to simplify the calculations assumed to be real and
symmetric, 4 × 4 mass matrices, we determine 6 free parameters of any of the
mass matrices by requiring that the mass matrices lead to the observed properties
of quarks and leptons. In both cases the 2 times three masses and the (in this
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simplified study) orthogonal mixing matrix with 6 parameters, determine the 2×6
parameters (as required by the spin-charge-family theory) of the two mass matrices
within the experimental accuracy.

The same procedure is used to study either quarks or leptons. Expected results are
not only the mass matrices, but also the intervals within which masses of the
fourth families should be observed and the corresponding mixing matrices.

We developed a special procedure to extract the dependence of the fourth
family masses on the experimental inaccuracy of masses and mixing matrices.
Our test of this procedure on a toy model, in which we first postulate two mass
matrices (leading to masses and mixing matrices very close to those of quarks),
calculate the masses and the mixing matrix, and then from three lowest masses
and the 3 × 3 sub matrix of the unitary 4 × 4 mixing matrix calculate back the
starting mass matrices and the fourth family masses, showed that the procedure
leads very accurately to the starting mass matrices.

When we use the same procedure to extract the properties of the fourth family
members from the experimental data within the experimental inaccuracies, the
procedure was not selective enough to make useful predictions. We are improving
the procedure to be able to extract the intervals of the fourth family masses in
dependence of the accuracy of particular data. Yet the here presented preliminary
results show, that the masses of the fourth families quarks withmu4 > 1TeV lead to the
mixing matrix much closer to the experimental data than doesmu4 ≈ 300GeV.

Let us conclude this report by pointing out that even if we shall not be able
to limit the mass intervals for the fourth family members strongly enough to be
predictive, yet the accurate enough data for the 3 × 3 submatrix of the unitary
mass matrix will sooner or later determine the 4 × 4 unitary matrix so that the
predictions will be accurate enough.

4.5 APPENDIX: A brief presentation of the spin-charge-family
theory

We present in this section a very brief introduction into the spin-charge family
theory [1–4]. The reader can skip this appendix taking by the spin-charge family
theory required symmetry of mass matrices of Eq. (4.1) as an input to the study
of properties of the 4× 4mass matrices – with the parameters which depend on
charges of the family members – and can come to this part of the paper, if and
when would like to learn where do families and scalar fields possibly originate
from.

Let us start by directing attention of the reader to one of the most open
questions in the elementary particle physics and cosmology: Why do we have
families, where do they originate and correspondingly where do scalar fields,
manifesting as Higgs and Yukawa couplings, originate? The spin-charge-family
theory is offering a possible explanation for the origin of families and scalar fields,
and in addition for the so far observed charges and the corresponding gauge fields.

There are, namely, two (only two) kinds of the Clifford algebra objects: One
kind, the Dirac γa, takes care of the spin in d = (3 + 1), while the spin in d ≥ 4
(rather than the total angular momentum) manifests in d = (3 + 1) in the low
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energy regime as the charges. In this part the spin-charge family theory is like the
Kaluza-Klein theory, unifying spin (in the low energy regime, otherwise the total
angular momentum) and charges, and offering a possible answer to the question
about the origin of the so far observed charges and correspondingly also about
the so far observed gauge fields. The second kind of the Clifford algebra objects,
forming the equivalent representations with respect to the Dirac kind, recognized
by one of the authors (SNMB), is responsible for the appearance of families of
fermions.

There are correspondingly also two kinds of gauge fields, which appear to
manifest in d = (3 + 1) as the so far observed vector gauge fields (the number
of - obviously non yet observed - gauge fields grows with the dimension) and
as the scalar gauge fields. The scalar fields are responsible, after gaining nonzero
vacuum expectation values, for the appearance of masses of fermions and gauge
bosons. They manifest as the so far observed Higgs [5] and the Yukawa couplings.

All the properties of fermions and bosons in the low energy regime originate
in the spin-charge-family theory in a simple starting action for massless fields in
d = [1 + (d − 1)]. Fermions interact with the vielbeins fαa and correspondingly
with the two kinds of the spin connection fields: with ωabc = fαcωabα which
are the gauge fields of Sab = i

4
(γaγb − γbγa) and with ω̃abc = fαc ω̃abα which

are the gauge fields of S̃ab = i
4
(γ̃aγ̃b − γ̃bγ̃a). α,β, . . . is the Einstein index and

a, b, . . . is the flat index. The starting action is the simplest one

S =

∫
ddx E Lf +

∫
ddx E (αR+ α̃ R̃) ,

Lf =
1

2
(ψ̄ γap0aψ) + h.c.

p0a = fαa p0α +
1

2E
{pα, Ef

α
a}− ,

p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα ,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
fα[afβb] (ω̃abα,β − ω̃caαω̃

c
bβ) + h.c. . (4.27)

Fermions, coupled to the vielbeins and the two kinds of the spin connection
fields, manifest (after several breaks of the starting symmetries) before the electroweak
break four massless families of quarks and leptons, the left handed fermions are weak
charged and the right handed ones are weak chargeless. The vielbeins and the
two kinds of the spin connection fields manifest effectively as the observed gauge
fields and (those with the scalar indices in d = (1 + 3)) as several scalar fields.
The mass matrices of the four family members (quarks and leptons) are after the
electroweak break expressible on a tree level by the vacuum expectation values of
the two kinds of the spin connection fields and the corresponding vielbeins with
the scalar indices ([4,13]):
i. One kind originates in the scalar fields ω̃abc , manifesting as the two SU(2)
triplets – ÃÑL is , i = (1, 2, 3) , s = (7, 8); Ã1̃ is , i = (1, 2, 3) , s = (7, 8); – and one
singlet – Ã4̃s , s = (7, 8) – contributing equally to all the family members.
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ii. The second kind originates in the scalar fields ωabc, manifesting as three
singlets –AQs , A

Q ′

s , A
Y ′ , s = (7, 8) – contributing the same values to all the families

and distinguishing among family members. Q and Q ′ are the quantum numbers
from the standard model, Y ′ originates in the second SU(2) (a kind of a right handed
”weak”) charge.

All the scalar fields manifest, transforming the right handed quarks and lep-
tons into the corresponding left handed ones 5 and contributing also to the masses
of the weak bosons, as doublets with respect to the weak charge. Loop corrections,
to which all the scalar and also gauge vector fields contribute coherently, change
contributions of the off-diagonal and diagonal elements on the tree level, keeping
the tree level symmetry of mass matrices unchanged 6.

4.5.1 Mass matrices on the tree level and beyond which manifest
SU(2) × SU(2) symmetry

Let us make a choice of a massless basis ψi, i = (1, 2, 3, 4), for a particular family
memeber α. And let us take into account the two kinds of the operators, which
transform the basis vectors into one another

ÑiL , i = (1, 2, 3) , τ̃iL , i = (1, 2, 3) , (4.28)

with the properties

Ñ3L (ψ1, ψ2, ψ3, ψ4) =
1

2
(−ψ1, ψ2,−ψ3, ψ4) ,

Ñ+
L (ψ1, ψ2, ψ3, ψ4) = (ψ2, 0, ψ4, 0) ,

Ñ−
L (ψ1, ψ2, ψ3, ψ4) = (0 ,ψ1, 0, ψ3) ,

τ̃3 (ψ1, ψ2, ψ3, ψ4) =
1

2
(−ψ1,−ψ2, ψ3, ψ4) ,

τ̃+ (ψ1, ψ2, ψ3, ψ4) = (ψ3, ψ4, 0, 0) ,

τ̃− (ψ1, ψ2, ψ3, ψ4) = ( 0, 0,ψ1, ψ2) . (4.29)

This is indeed what the two SU(2) operators in the spin-charge-family theory do. The
gauge scalar fields of these operators determine, together with the corresponding
coupling constants, the off diagonal and diagonal matrix elements on the tree
level. In addition to these two kinds of SU(2) scalars there are three U(1) scalars,
which distinguish among the family members, contributing on the tree level the
same diagonal matrix elements for all the families. In loop corrections in all orders
the symmetry of mass matrices remains unchanged, while the three U(1) scalars,

5 It is the term γ0γs φAis , where φAis , with s = (7, 8) denotes any of the scalar fields, which
transforms the right handed fermions into the corresponding left handed partner [3,4,13].
This mass term originates in ψ̄ γap0aψ of the action Eq.(4.27), with a = s = (7, 8) and
p0s = f

σ
s (pσ − 1

2
S̃abω̃abσ − 1

2
Sstωstσ).

6 It can be seen that all the loop corrections keep the starting symmetry of the mass matrices
unchanged. We have also started [3,14] with the evaluation of the loop corrections to the
tree level values. This estimation has been done so far [14] only up to the first order and
partly to the second order.
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contributing coherently with the two kinds of SU(2) scalars and all the massive
fields to all the matrix elements, manifest in off diagonal elements as well. All the
scalars are doublets with respect to the weak charge, contributing to the weak and
the hypercharge of the fermions so that they transform the right handed members
into the left handed onces.

With the above (Eq. (4.29) presented choices of phases of the left and the
right handed basic states in the massless basis the mass matrices of all the family
members manifest the symmetry, presented in Eq. (4.1). One easily checks that a
change of the phases of the left and the right handed members, there are (2n− 1)

possibilities, causes changes in phases of matrix elements in Eq. (4.1).

4.6 APPENDIX: Properties of non Hermitian mass matrices

This pedagogic presentation of well known properties of non Hermitian matrices
can be found in many textbooks, for example [18]. We repeat this topic here only
to make our discussions transparent.

Let us take a non Hermitian mass matrix Mα as it follows from the spin-
charge-family theory, α denotes a family member (index ± used in the main text is
dropped).

We always can diagonalize a non HermitianMα with two unitary matrices,
Sα (Sα † Sα = I) and Tα (Tα † Tα = I)

Sα †Mα Tα = Mα
d = (mα1 . . .m

α
i . . .m

α
n). (4.30)

The proof is added below.
Changing phases of the basic states, those of the left handed one and those of

the right handed one, the new unitary matrices S ′α = Sα FαS and T ′α = Tα FαT
change the phase of the elements of diagonalized mass matrices Mα

d

S ′α †Mα T ′α = F†αSMα
d FαT =

diag(mα1 e
i(φαS1 −φαT1 ) . . .mαi e

i(φαSi −φαTi ) , . . .mαn e
i(φαSn −φαTn )) ,

FαS = diag(e−iφ
αS
1 , . . . , e−iφ

αS
i , . . . , e−iφ

αS
n ) ,

FαT = diag(e−iφ
αT
1 , . . . , e−iφ

αT
i , . . . , e−iφ

αT
n ) . (4.31)

In the case that the mass matrix is Hermitian Tα can be replaced by Sα, but
only up to phases originating in the phases of the two basis, the left handed one
and the right handed one, since they remain independent.

One can diagonalize the non Hermitian mass matrices in two ways, that is
either one diagonalizesMαMα † orMα†Mα

(Sα†MαTα)(Sα†MαTα)† = Sα†MαMα †Sα = Mα2
dS ,

(Sα†MαTα)†(Sα†MαTα) = Tα†Mα †MαTα = Mα2
dT ,

Mα †
dS = Mα

dS , Mα †
dT = Mα

dT . (4.32)
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One can prove that Mα
dS = Mα

dT . The proof proceeds as follows. Let us define two
Hermitian (HαS , HαT ) and two unitary matrices (UαS , HαT )

HαS = SαMα
dSS

α † , HαT = TαMα†
dTT

α † ,

UαS = Hα−1S Mα , UαT = Hα−1T Mα † , (4.33)

It is easy to show that Hα †S = HαS , Hα †T = HαT , UαS U
α †
S = I and UαT U

α †
T = I. Then

it follows

Sα†HαS S
α = Mα

dS = Mα †
dS = Sα†MαUα−1

S Sα = Sα†Mα Tα ,

Tα†HαT T
α = Mα

dT = Mα †
dT = Tα†Mα †Uα−1

T Tα = Tα†Mα† Sα , (4.34)

where we recognized Uα−1
S Sα = Tα and Uα−1

T Tα = Sα. Taking into account
Eq. (4.31) the starting basis can be chosen so, that all diagonal masses are real and
positive.

References
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