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In this paper, decision tree SVMs architecture is constructed to solve multi-class problems. To maintain 
high generalization ability, the optimal structure of decision tree is determined using statistical 
measures for obtaining class separability. The proposed optimal decision tree SVM (ODT-SVM) takes 
advantage of both the efficient computation of the decision tree architecture and the high classification 
accuracy of SVM. A robust non-parametric test is carried out for statistical comparison of proposed 
ODT-SVM with other classifiers over multiple data sets. Performance is evaluated in terms of 
classification accuracy and computation time. The statistical analysis on UCI repository datasets 
indicate that ten cross validation accuracy of our proposed framework is significantly better than widely 
used multi-class classifiers. Experimental results and statistical tests have shown that the proposed 
ODT-SVM is significantly better in comparison to conventional OvO and OAA in terms of both training 
and testing time. 

Povzetek: Metoda odločitvenega drevesa s SVM dosega signifikantno boljše rezultate kot izvirni SVM. 

1 Introduction 
Support Vector Machine (SVM) has been proved to be a 
successful learning machine in literature, especially for 
classification. SVM is based on statistical learning 
theory developed by Vapnik [6, 25]. Since it was 
originally designed for binary classification [3], it is not 
easy to extend binary SVM to multi-class problem. 
Constructing k-class SVMs (k > 2) is an on-going 
research issue [1, 4]. Two approaches are suggested in 
literature to solve multi-class SVM. One is considering 
all data in one optimization [7]. The other is 
decomposing multi-class into a series of binary SVMs, 
such as "One-Against-All" (OAA) [25] and "One-
versus-One" (OvO) [16]. 
It has been reported in literature that both conventional 
OvO and OAA SVMs suffer from the problem of 
unclassifiable region [19, 24]. To resolve unclassifiable 
region in conventional OvO, decision tree OvO SVM 
formulation is proposed [19]. Takashaki and Abe [24] 
proposed class separability measure i.e. Euclidean 
distance between class centers to construct decision tree 
based OAA SVM to overcome unclassifiable region. In 
literature, other than Euclidean distance a large number 
of distance measures were used to determine the class 
separability, each having its own advantages and 
disadvantages. Few more realistic and effective 
statistical measures used in literature are information 
gain, gini index, chi-square and scatter-matrix-based 
class separability in kernel-induced space for measuring 
class separability. 
In this paper, we evaluate the performance in terms of 
classification accuracy and computation time of 
proposed OvO ODT-SVM [17] and OAA ODT-SVM 

[18]. In both models, class separability is determined 
using statistical measures i.e. information gain, gini 
index, chi-square and scatter-matrix-based class 
separability in kernel-induced space. A robust non-
parametric test is carried out for statistical comparison of 
proposed ODT-SVM with other classifiers over multiple 
data sets. 
In section 2 we briefly describe the basics of SVM. In 
section 3 we discuss decision tree OvO and OAA SVMs 
approach. Section 4 presents our proposed ODT-SVMs 
framework using four statistical class separability 
measures. In section 5, we discuss the theoretical 
analysis and empirical estimation of training and testing 
time of both the proposed schemes. The experimental 
results demonstrate the effectiveness of our ODT-SVMs 
in comparison to conventional OvO and OAA SVMs. 
Section 6 includes the conclusion. 

2 Support vector machines 
Support Vector Machines (SVM) is based on statistical 
learning theory developed by Vapnik [6, 25]. It classifies 
data by determining a set of support vectors, which are 
members of the set of training inputs that outline a 
hyperplane in feature space [15]. 
Let us assume {(x^ yi),...,( xn, yn)} be a training set 
with and is the corresponding target class. 
The basic problem for training an SVM can be 
reformulated as: 
Maximize: / = £ f = 1 at - 1 1 at a ¡y ¡y ¡(x ? , x ¡) 
Subject to Ya=ia i y i = 0 and a ¡>0 ,i = 
1,2 ,...,71 (1) 
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The computation of dot products between vectors 
without explicitly mapping to another space is 
performed by a kernel function K (xi,Xj) . Use of a 
kernel function [22] enables the curse of dimensionality 
to be addressed and the solution implicitly contains 
support vectors that provide a description of the 
significant data for classification. Substituting 
K(Xi,Xj)for (XiT,Xj) in eqn. (1) produces a new 
optimization problem: 
Maximize: 

L (a) = Ya=iOCi~^f= iY.% 1aiajyiyjK(Xi,Xj) 

Subject to 0 < ai < C i,j = 1 , . . ,,n 
a n d YH= i aiyi = 0 

(2) 

Solving it for a gives a decision function of the form 

f 0 0 = s i g a i y i K (xi,Xj) + b) 

(3) ^ 

Whose decision boundary is a hyperplane and translates 
to nonlinear boundaries in the original space. 

3 Decision tree based SVM 
The most common way to build a multi-class SVM is by 
constructing and combining several binary classifiers 
[14]. To solve multi-class classification problems, we 
divide the whole classification problem into a number of 
binary classification problems. The two representative 
ensemble schemes are OvO and OAA [21]. 
Convetional OvO SVM has the problem of 
unclassifiable region. To resolve unclassifiable region 
for OvO SVM, Decision Directed Acyclic graph 
(DDAG) SVM) [19] based on decision tree OvO SVM is 
proposed in literature. They have shown with an 
example three-class problem the existence of 
unclassifiable regions which can lead to degradation of 
generalization ability of classifier. In general, the 
unclassifiable region is visible and generalization ability 
of classifier is not good for k-class problem where k >2. 
In DDAG OvO scheme [19], VC dimension, LOO error 
estimator and Joachim's ^a LOO measures were used 
for estimating the generalization ability of pairwise 
classifier at each level of decision tree. During training 
at the top node, a pair that has the highest 
generalization ability is selected from an initial list of 
classes . Then it generates the two lists 
deleting or from the initial list. If the separated 
classes include the plural classes, at the node connected 
to the top node, the same procedure is repeated for the 
two lists till one class remains in the separated region. 
This means that after only steps just one class 
remains, which therefore becomes the prediction for the 
current test sample. 
Gjorgji et al. [13] proposed binary tree architecture 
(SVM-BDT) that uses SVMs for making binary 
decisions in the nodes which takes advantage of both the 
efficient computation of the tree architecture and high 

accuracy of SVMs. The hierarchy of binary decision 
subtasks using SVMs is designed with clustering 
algorithms. In proposed scheme SVM-BDT, the classes 
are divided in two disjoint groups gi and g2 using 
Euclidian distance as distance measure. The two disjoint 
groups so obtained are then used to train a SVM 
classifier in the root node of the decision tree. The 
classes from first and second clustering group are being 
assigned to left and right subtree respectively. This 
process continues recursively until there is only one 
class is left in a group which defines a leaf in the 
decision tree. 
Takashaki and Abe [24] proposed OAA SVM based 
decision tree formulation in literature to overcome the 
problem of unclassifiable region to improve 
generalization ability of SVM. They have shown with an 
example of unclassifiable regions for a three-class 
problem which can lead to degradation of generalization 
ability of classifier. In general, the unclassifiable region 
is visible and generalization ability of classifier is not 
good for k-class problem where . 
In Takashaki and Abe [24] proposed scheme, the 
hyperplane is determined that separates a class from 
others during training at the top node. If the separated 
classes include the plural classes, at the node connected 
to the top node, the hyperplane is determined that 
separates the classes. This process is repeated until one 
class remains in the separated region. This can resolve 
the problem of unclassifiable regions that exist in OAA 
SVM. They proposed different types of decision trees 
based on class separability measure i.e. Euclidean 
distance between class centers. 

4 Proposed decision tree SVMs 
framework using statistical 
measures 

Euclidean distance measure used in the construction of 
decision tree (i.e. OvO SVM-BDT and Takashaki and 
Abe [24] OAA SVM formulation) does not take into 
account within class variability of patterns. Hence, it 
may not be suitable for measuring class separability 
between two different classes of patterns. To understand 
better picture of the overlap of the subspaces occupied 
by individual classes, statistical distance measures are 
employed by pattern recognition community which 
constitutes a natural concept of measuring class 
separability. 

4.1 Statistical class separability measures 
Among statistical measures information gain (I G ) [20] is 
a measure based on entropy [23] which indicates degree 
of disorder of a system. It measures reduction in 
weighted average impurity of the partitions compared 
with the impurity of the complete set of samples when 
we know the value of a specific attribute. Thus, the value 
of IG signifies how the whole system is related to an 
attribute. IG is calculated using: 

IG ( C\E) = H ( C)-H (C\E) 
(4) 
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where / G( C|£) is the information gain of the label C for 
a given attribute E, H(C) is the system's entropy 
and H ( C |£") is the system's relative entropy when the 
value of the attribute E is known. 
The system's entropy indicates its degree of disorder and 
is given by the following formula 

k 

H ( C ) = - ( C) 1 og (p ( Q) ) 
i=1 

(5) 

where is the probability of class . The relative 
entropy is calculated as 

/ k \ 
H (C|£) = ^ p ( e ,)( - ^ P ( C¡|e7-)logp(C £| e,-) ) 

i=1 V i=l ' 
(6) 

Where p ( e,) is the probability of value j for attribute e, 
and p(C j |e,) is the probability of C ¿ with a given 
The optimal binary SVM model is selected on the 
basis of maximum value of / G that signifies more 
separability between patterns belonging to two 
different classes. for a given independent binary 
SVM containing n,- elements of C, and % elements of 
Cj can be calculated as 
/ G ( ¿J) = H ( Cj, C,) 

- [p ( Cj) H( t p , / p ) + p( C,)H (/„, t„) ] 

(7) 

where H f r r t = - M Zog ^ - | y | Zog ^ 
(8) 

p ( C j ^ c ^ a n d p ( 

(9) 

where , , , and denote number of true P' J p' n> i n 

positive, false positive, true negative and false 
negative data points respectively. 
The higher value of signifies less overlap or more 
distance between two different classes of data points. 
Hence, / G can be a natural measure to determine class 
separability of different classes of data points. 
Similarly for every independent binary OAA SVM, 
assume there are two classes of dataset, and and 
training set D contains n j elements of C j and n, 
elements of class C, ̂  j. / G for a given OAA SVM model 
i can be calculated as 
IG(i) = 

( ) [ ( ) ( ) ] 
(10) 

Gini index is another popular measure for feature 
selection in the field of data mining proposed by 
Breiman et al. [5]. It measures the impurity of given set 
of training data D and can be calculated as 

2 

G ¿n ¿ (D) = 1 - ^ (p (C j) ) 2 

i=1 
(11) 

For a binary split, a weighted sum of the impurity of 
each resulting partition is computed. The reduction in 
impurity that would be incurred by a particular binary 
split in binary SVM between two classes C j and C, is 
calculated as 

AGini(\,]) = Gini{D) — Giniij(D) 
(12) , 

where [ ( ) ] 
(13) , 

Where Gini(L) is the Gini Index on the left side of the 
hyperplane and Gini(R) is that on the right side. OvO 
SVM model between class pair ( ¿ k j k ) that maximizes 
the reduction in impurity (i.e. Gini index) is selected as 
splitting node in decision tree SVM at a particular level 
Similarly for every independent binary OAA model 
assume there are two classes of dataset, C j and C, ̂  j. The 
reduction in impurity that would be incurred by a 
particular binary split is given by 

A Gini(i) = Gini{D) — Gini^D) 
(14) 

where G ¿n¿¿ ( d ) = [p ̂ ¿ ) G ¿m ( i ) + (c ; -^ )g ¿m ( ? ) ] 
(15) 

Chi-square [9] another criterion used for binary split in 
data mining and machine learning, is a statistical test in 
which the sampling distribution of the test statistic is a 
chi-square distribution when the null hypothesis is true. 
We are interested in determining whether a particular 
decision rule is useful or informative. In this case, the 
null hypothesis is a random rule that would place tp data 
points from C¿ and fp data points from C;- independently 
in the left branch of decision tree and the remainder in 
the right branch of decision tree respectively. The 
candidate decision rule would differ significantly from 
the random rule if the proportions differed significantly 
from those given by the random rule. The chi-square 
statistic will be given by 

z 2 = g ( tp, ( tp + /p)p (c j) ) + g(/„, (/„ + t „ ) p (c j) ) 

+ g ( / p , ( tp + y p M c ) ) 

+ g ( t„, (/„ +1„) p ( c , ) ) 
(16) 

i . .>. (count—expect)2 

where g ( co un t, exp e ct) = e x p e c t 

The higher the value of , the less likely is that the null 
hypothesis is true. Thus, for a sufficiently high x 2 , a 
difference between the expected and the observed 
distributions is statistically significant; one can reject the 
null hypothesis and can consider candidate rule is 
informative. Hence OvO SVM model for class pair 
( ¿ k, A ) or OAA SVM model ¿ that maximizes x 2 is 
selected as splitting node in ODT-SVM at a particular 
level. 
To measure class variability of patterns, the ratio of 
interclass and intra class scatters in kernel-induced 
feature space can also be used which better depicts the 
physical relationship of data in input space and thereby 
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providing high generalization ability of classifier based 
on decision tree. The scatter-matrix based measure (S) of 
training set D in original space [10] is defined as 
s _ tr(Sb) 

tr(Sw) 
(17) 

where S, is the between class scatter matrix and Sw is 
the within class scatter matrix, defined as 
Sb = (mi - mj )(ml - mj )T 

w h e r e m ; = 6 C)x and m = — £xgc, x 

(18) 

and represents mean vector of data from class 
and class respectively. 

(19) 
Sw = Qt + Qj 

where and are given as 

= - Y ( x -
n, £—i 

(20) 

(21) 

xECi 

= — — Y ( * -71 — 71; ¿—I 
m• ) (x — mi )7 

x<£ Cj 

Using kernel trick [7], data points from C; and C. are 

implicitly mapped from to a high dimension feature 
space K . Let 0 ( • ) : Rd — K denote the mapping and 
/cg(x(,x.) = (0 ( x ¿) , 0 ( x.) ) denote the kernel 
function, where is the set of kernel parameters and 
( • , • ) is the inner product. K denotes the kernel matrix 
and .. is defined as fcg (x ; , x.). Let KA, B be kernel 
matrix computed with the data points from A and B 
which denote two subsets of training sample set D. Let 

and denotes the between class scatter matrix and 
within class scatter matrix in , respectively and 
defined as follows 

2 

S 0 = £ n ; ( m 0 - m 0 ) ( m 0 - m 0 ) r 

(22) 
i = i 

S® = Z Z ( 0 ( x ) - m 0 ) ( 0 ( x ) - m 0 7 
(=1 xEDt 

(23) 
where denotes the mean of training data points from 

and is the mean of all the training data points in 
K . 
let F is vector whose elements are all "1". Its size will be 
decided by the context. Then 

m f ' m f =nr*.FTKHDiF 
(24) 

m0 rm® = n~2 • FTKDpDF 

(25) 

0 T 0 m ; m ; 1 y ( ) 
(26) 

t r (S 0 ) = tr 

(27) 

t r(S0) = t r 

^ n £ (m 0 - m 0 ) ( m 0 - m 0 ) 7 

^K^F | FTKdjJ>jF FtKdpF 

0 (x) - m 0 ) ( 0 (x) - m0)7 

¿ = 1 XE Di 
FTKDi,DiF FTKDpDjF 

(28) 

Now the class separability (SC) in a feature space K is 
obtained as 

tr(S0) 
SC = 

(29) 
t r (S0) 

4.2 Algorithm for construction of ODT-
SVM 

For the construction of Optimal Decision Tree SVM 
model (ODT-SVM), we can use one of the class 
separabilty measures to determine the structure of 
decision tree. Here for illustration purpose, we consider 
information gain in proposed optimal decision tree 
algorithm The outline for OvO ODT-SVM using IG 
class separability measure for &-class is given below: 

1 Generate the initial list { Cx , . . ., Cfc] 
2 Calculate / / ( Q ,C, ) using eqn. (8) for 

and 
3 Calculate ( ), , p( ), and 

p( ) using eqn. (8) and eqn. (9) respectively. 
4 Compute using eqn. (7). 
5 Determine class pair ( for which 

takes maximum value from the list. If data 
points belong to class then delete from 
the list else delete class . 

6 If the remaining classes are more than one, 
repeat Steps 2-5 otherwise terminate the 
algorithm. 

Similar computational steps are followed for other three 
measures to determine the structure of OvO ODT-SVM. 
Similarly, the outline for OAA ODT-SVM using IG 
class separability measure for &-class is given below: 

1 Generate the initial list { C v ..., Cfc). 
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2 Calculate H ( Q , ^ ¡) using eqn. (8) for 
and . 

3 Calculate H( tp , / p ), H ( / - , t„ ) , p( Ci) and 
p( ), using eqn. (8) and eqn. (9) respectively. 

4 Compute / G ( i ) using eqn. (10). 
5 Determine model for which takes 

maximum value from the list. 
6 If j is multi-class, repeat steps 2-5. Otherwise, 

terminate the algorithm. 
Similar computational steps are followed for other three 
measures to determine the structure of OAA ODT-SVM. 

4.3 Time complexity 
In order to compute the time complexity of training 
phase of OvO SVM, we assume without loss of any 
generality that the number of data points in each class is 

n 
approximately same i.e. - . To solve k-class problem 

k 
k(k-l) 

using conventional OvO, —-— binary SVM classifiers 
are developed. Assuming the time complexity of 
building a SVM with n data points and d features 
is , it can be shown that training time of 
conventional OvO, , is In worst case 
the decision tree generated in SVM-BDT is skewed if 
classes in two groups at every level is divided into 
uneven size. Under the assumption that group gi contain 
only one class and group g2 contain remaining classes or 
vice versa, the decision tree so generated will be of 
depth (k - 1 ) for k-class problem. Hence, the training 
time of SVM-BDT will be given by 

1 SVM-BDT-worst 
n(k - 1) 

k (D' 
= (n2dk 

(30) 

In SVM-BDT approach under best case, the class in two 
groups at every level is divided into approximately same 
size. The decision tree so generated will be almost height 
balanced of maximum depth \/o g(k) ]. The number of 
nodes in decision tree at depth i is 2'-1, each containing 

n 

data points. Hence, the training time for SVM-BDT 
in best case is given by 
TSVM - SDT - b es t = n ^ + V ^ J ^ + ... 

+ 

(31) 

2 ̂  ' f e i ^ 
= (n2d) 

However, in general the structure of OvO decision tree 
generated using statistical measures is almost height 
balanced of maximum depth \l o g ( k) 1. There are 2'-1 

th ( 2 n \ nodes at i level and each node uses I— J data points. 
Hence, the training time for OvO ODT-SVM using 
statistical measure is 
retrain 
1 OvO-ODT-SVM 

(11) 

fc(fc-l) 
During testing phase of the conventional OvO, —-— 
decision functions are to be evaluated. Also the majority 

k(k-1) 
voting is computed with —-— operation. Hence, the 

testing time for each sample is given by 
k(k-1) ~ , N 

. In worst case the depth of SVM-BDT is ( k - 1 ) 

which requires testing time for each sample. However, 
in best case the depth of SVM-BDT is \ I o g ( k) 1 which 
requires \/o g ( k) 1 testing time for each sample. Since, 
the maximum depth of OvO ODT-SVM is \Zo g (k) 1, the 
testing time requires \ Io g ( k) 1 operations. According to 
the above analysis it is evident that the training and 
testing time for OvO ODT-SVM will always take less 
computation time in comparison to conventional OvO 
SVM and SVM-BDT. 
For k-class problem, (k-1) hyperplanes are to be 
calculated in case of OAA ODT-SVM, whereas k times 
SVM model is developed in case of conventional OAA 
SVM approach which is more than number of SVM 
models required in decision tree OAA SVM. Assuming 
the time complexity of building a SVM model is given 
by where n is the number of data points and d is 
number of attributes. The overall time complexity of 
training SVM using conventional OAA approach is 
proportional to . In order to compute training 
time required by OAA ODT-SVM, we 
assume that the number of data points in each class is 

n 

approximately same i.e. -. At first level of OAA ODT-

SVM model will take time proportional to (n 2 d) . While 

at the second stage SVM model will have I n - n ) 

number of data points. It can be shown that at it stage, «n ( i - l ) \ 2 \ 

n 1—J ^J. 
Time, required for decision tree based 
SVM is given by 

/ U\2 
T train o . / \ 1 n 'OAA-ODT-SVM = n2 d + (n — — ) d 

n(k - 2) 

(33) 

+ ( n —-

+ ... 
2 

d 

Under the above assumption the time required for 
training an OAA ODT-SVM is approximately three 
times lesser than the conventional OAA. While in testing 
phase, the values of all the hyperplanes need to be 
determined in case of OAA formulation whereas in 
OAA ODT-SVM, the value of all the hyperplanes need 
not be computed in general. Hence the time complexity 
of testing will also be less in case of OAA ODT-SVM in 
comparison to conventional OAA. 

5 Experimental results 
To evaluate the performance of our proposed ODT-SVM 
framework using information gain, gini index, chi-
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square and scatter-matrix-based class separability in 
kernel-induced space, we have performed experiments 
on publically available UCI [2] benchmark datasets. 
Table 1 describes the datasets used in our experiments. 
In yeast dataset in actual ten classes are given. We have 
merged data of six classes into one class to make it a five 
class problem. The kernel functions used in experiments 
are given in Table 2. 
Performance of classifiers is evaluated in terms of 
classification accuracy, training time and testing time 
measures on each data set. We have applied Friedman 
test [11],[12] which is a non-parametric test for 
statistical comparison of multiple classifiers over 
multiple data sets. For each dataset, we rank competing 
algorithms. The one that attains the best performance is 
ranked 1; the second best is ranked 2, and so forth. A 
method's mean rank is obtained by averaging its ranks 
across all datasets. Compared to mean value, mean rank 
can reduce the susceptibility to outliers [8]. As 
recommended by Demsar [8], the Friedman test is 
effective for comparing multiple algorithms across 
multiple datasets. It compares the mean ranks of 
approaches to decide whether to reject the null 
hypothesis, which states that all the approaches are 
equivalent and, so, their ranks should be equal. If the 
Friedman test rejects its null hypothesis, we can proceed 
with a post hoc test, the Nemenyi test. It can be applied 
to mean ranks of competing approaches and indicate 
whose performances have statistically differences. 

Table 1: Description of datasets. 

To see the effectiveness of our proposed OvO ODT-
SVM and OAA ODT-SVM, we compared our methods 
with conventional OvO, SVM-BDT, and conventional 
OAA SVMs respectively. We have used five kernel 
functions with value of C = 1000 and y = [2-11, 2-10, 2-9... 
20]. The classification accuracy is determined using ten 
cross-validations. For a given kernel function and C, we 
determine the value of y for which the maximum 
classification accuracy is achieved. 
Table 3 and Table 4 show the comparison of maximum 
classification accuracy between conventional OvO and 
OvO ODT-SVM, and conventional OAA and OAA 
ODT-SVMs respectively. 

Table 2: Kernel functions. 

Table 5 shows comparison of maximum classification 
accuracy between both models of ODT-SVM, 
conventional OvO, conventional OAA and commonly 
used multi-class classifiers in literature i.e. C45, Multi 
Layer Perceptron (MLP). C4.5 and MLP implemented in 
WEKA machine learning environment [26] are used in 
our experiments with their default values of parameters. 
The best classification accuracy for each dataset is 
shown in bold. When we apply the Friedman test, with 7 
algorithms and 11 datasets, F f is distributed according to 
the F distribution with (7-1) x ( 1 1-1 ) = 60 degrees of 
freedom. The critical value of F(6,10) at the 0.05 critical 
level is 2.25. F f calculated from the mean ranks is 12.31. 
Since 12.31 > 2.25, we can reject the null hypothesis and 
infer that there exists a significant difference among 
adversary classifiers. 

Dataset Kernel Choice 
OvO 

OvO ODT-SVMs Dataset Kernel Choice 
OvO ED SC IG Gini Chi-squared 

Iris Gaussian 98 98 98 98 98 98 Iris 
Laplace 96 96 96 96 96 96 

Iris 

Cauchy 98 98 98 98 98 98 

Iris 

Hypersecant 98 98 98 98 98 98 

Iris 

Square sync 95.33 94.67 97.45 98 97.99 98 
Satimage Gaussian 89.43 88.87 92.89 89.66 89.57 91.99 Satimage 

Laplace 91.21 90.76 92.41 91.23 91.42 91.12 
Satimage 

Cauchy 90.46 90.61 92.78 89.34 92.98 90.89 

Satimage 

Hypersecant 89.71 90.09 93.78 91.34 91.98 93.98 

Satimage 

Square sync 74.51 76.43 77.87 78.86 77.8 76.76 

Wine Gaussian 82.58 98.98 96.32 96.65 97.98 97.52 Wine 
Laplace 82.58 92.23 92.67 95.55 93.58 91.58 

Wine 

Cauchy 82.02 82.02 82.02 82.62 82.87 82.02 

Wine 

Hypersecant 93.26 93.36 93.26 94.26 92.13 93.26 

Problem #train #test #class #attributes 
Iris 150 11 3 4 

Wine 178 0 3 13 

Vehicle 846 0 4 18 

Glass 214 0 6 9 

Segmentation 210 0 7 19 

Ecoli 336 0 8 7 

Satimage 4435 2000 6 36 

New_Thyroid 215 0 3 5 

Yeast 1484 0 5 8 

Movement_Libra 360 0 15 90 

HeartDisease_Cleveland 303 0 5 13 

Kernel Function K (.X, x ) for y > 0 
Gaussian 

e x p ( - y 1 x x- 1 ) 
Laplace 

exp(-y | x - xt |) 
Cauchy 

(1/(1 + y | X— x- | 2 ) ) 

Hypersecant 
2/ (exp(y | X— x- |) + exp(—y | x— x t |)) 

Square sync 
sin2 (y | x— x, | ) / ( y | x— x, |)2 
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Square sync 75.28 76.89 76.97 77.97 75.28 76.97 

Vehicle Gaussian 76.83 79.95 84.45 84.82 85.24 85.24 Vehicle 
Laplace 77.42 78.3 80.61 81.61 80.74 80.24 

Vehicle 

Cauchy 76.48 82.85 84.52 84.52 84.58 85.65 

Vehicle 

Hypersecant 83.33 81.59 84.28 84.28 84.98 84.98 

Vehicle 

Square sync 71.51 80.57 81.32 81.32 81.99 81.56 

Glass Gaussian 72.43 62.9 71.5 71.21 69.63 75.43 Glass 
Laplace 75.70 76.17 76.64 74.64 75.7 77.57 

Glass 

Cauchy 72.90 72.21 72.43 71.03 68.92 73.36 

Glass 

Hypersecant 71.96 72.90 71.5 70.09 69.16 71.03 

Glass 

Square sync 66.36 64.2 64.78 62.62 62.62 56.07 

Segmentation Gaussian 84.76 87.85 89.24 89.29 88.87 87.43 Segmentation 
Laplace 87.14 88.19 89.62 89.67 89.87 90.87 

Segmentation 

Cauchy 86.19 91 89.87 89.69 89.71 89.99 

Segmentation 

Hypersecant 90 89.14 90.87 89.52 92.05 91.95 

Segmentation 

Square sync 81.9 79.05 79.52 80.13 80.95 79.05 

Ecoli Gaussian 85.42 84.98 85.42 86.01 84.79 86.14 Ecoli 
Laplace 86.97 87.2 86.99 86.9 86.99 87.9 

Ecoli 

Cauchy 85.42 85.42 86.98 84.82 86.52 85.71 

Ecoli 

Hypersecant 85.42 85.42 88.45 88.82 85.42 85.74 

Ecoli 

Square sync 85.12 84.23 87.65 85.12 87.85 86.15 

New_Thyroid Gaussian 97.21 97.21 97.21 100 98.21 97.21 New_Thyroid 
Laplace 96.74 96.74 100 96.89 96.89 96.74 

New_Thyroid 

Cauchy 96.74 96.84 100 96.89 96.89 97.74 

New_Thyroid 

Hypersecant 97.67 100 98.67 98.89 100 100 

New_Thyroid 

Square sync 94.88 94.88 96.49 96.49 96.49 96.49 
Yeast Gaussian 58.43 59.92 62.40 60.32 63.95 61.92 Yeast 

Laplace 59.56 60.31 62.43 63.32 65.17 61.86 

Yeast 

Cauchy 61.54 62.37 64.17 65.41 66.54 62.54 

Yeast 

Hypersecant 59.45 67.76 67.65 67.54 65.56 64.76 

Yeast 

Square sync 57.98 57.32 58.68 59.45 60.12 58.98 

Movement_Libra Gaussian 74.45 79.94 81.91 78.94 77.74 76.94 Movement_Libra 
Laplace 81.73 83.77 85.77 85.87 87.97 82.77 

Movement_Libra 

Cauchy 76.45 78.13 79.89 78.54 76.89 78.89 

Movement_Libra 

Hypersecant 72.23 78.64 77.65 73.64 77.18 76.64 

Movement_Libra 

Square sync 42.22 42.22 42.22 42.22 42.22 42.22 
HeartDisease_Cleveland Gaussian 43.56 41.23 34.87 42.27 12.54 43.56 HeartDisease_Cleveland 

Laplace 22.11 23.43 23.91 32.31 11.88 22.11 

HeartDisease_Cleveland 

Cauchy 15.23 34.38 17.47 13.45 12.21 15.18 

HeartDisease_Cleveland 

Hypersecant 22.44 24.34 25.32 25.41 12.21 22.44 

HeartDisease_Cleveland 

Square sync 12.78 15.38 12.23 11.23 13.43 12.09 

Table 3: Classification accuracy of conventional OvO Vs OvO ODT-SVMs [%]. 

Dataset Kernel 
Choice 

OAA OAA ODT-SVM Dataset Kernel 
Choice 

OAA 
ED SC IG Gini Chi-

Iris Gaussian 96 98 98 98 98 98 Iris 
Laplace 96 96 96 96.44 96 96 

Iris 

Cauchy 96 98 98 98 98 98 

Iris 

Hypersecant 98 98 98 98 98 98 

Iris 

Square sinc 96 94.67 98 98 98 98 
Satimage Gaussian 89.43 88.87 92.89 89.66 89.57 91.99 Satimage 

Laplace 89.95 90.76 92.41 91.23 91.42 91.12 

Satimage 

Cauchy 89.46 90.61 92.78 89.34 92.98 90.89 

Satimage 

Hypersecant 89.71 90.09 93.78 91.34 91.98 93.98 

Satimage 

Square sinc 74.51 76.43 77.87 78.86 77.8 76.76 

Wine Gaussian 82.01 98.98 96.32 96.65 97.98 97.52 Wine 
Laplace 82.58 92.23 92.67 95.55 93.58 91.58 

Wine 

Cauchy 82.15 82.02 82.02 82.62 82.87 82.02 

Wine 

Hypersecant 93.82 93.36 93.26 94.26 92.13 93.26 

Wine 

Square sinc 74.72 76.89 76.97 77.97 75.28 76.97 

Vehicle Gaussian 84.63 79.95 84.45 84.82 85.24 85.24 
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Laplace 80.61 78.3 80.61 81.61 80.74 80.24 

Cauchy 84.52 82.85 84.52 84.52 84.58 85.65 
Hypersecant 84.87 81.59 84.28 84.28 84.98 84.98 
Square sinc 78.45 80.57 81.32 81.32 81.99 81.56 

Glass Gaussian 60.75 62.9 71.5 71.21 69.63 75.43 Glass 
Laplace 76.17 76.17 76.64 74.64 75.7 77.57 

Glass 

Cauchy 68.69 72.21 72.43 71.03 68.92 73.36 

Glass 

Hypersecant 63.55 72.9 71.5 70.09 69.16 71.03 

Glass 

Square sinc 61.21 64.2 64.78 62.62 62.62 56.07 

Segmentation Gaussian 84.36 87.85 89.24 89.29 88.87 87.43 Segmentation 
Laplace 86.19 88.19 89.62 89.67 89.87 90.87 

Segmentation 

Cauchy 85.71 91 89.87 89.69 89.71 89.99 

Segmentation 

Hypersecant 88.57 89.14 90.87 89.52 92.05 91.95 

Segmentation 

Square sinc 80.48 79.05 79.52 80.13 80.95 79.05 

Ecoli Gaussian 84.01 84.98 85.42 86.01 84.79 86.14 Ecoli 
Laplace 86.90 87.2 86.99 86.9 86.99 87.9 

Ecoli 

Cauchy 86.90 85.42 86.98 84.82 86.52 85.71 

Ecoli 

Hypersecant 82.74 85.42 88.45 88.82 85.42 85.74 

Ecoli 

Square sinc 82.74 84.23 87.65 85.12 87.85 86.15 

New_Thyroid Gaussian 95.45 97.98 97.54 100 98.21 97.89 New_Thyroid 
Laplace 96.78 98.89 100 98.52 96.89 98.49 

New_Thyroid 

Cauchy 97.34 97.65 98.94 97.89 100 97.96 

New_Thyroid 

Hypersecant 96.38 100 98.99 98.89 98.90 98.99 

New_Thyroid 

Square sinc 93.54 95.56 96.49 96.78 98.67 97.45 

Yeast Gaussian 59.65 59.92 63.90 61.54 66.65 62.32 Yeast 
Laplace 61.26 61.43 64.77 65.54 67.65 64.23 

Yeast 

Cauchy 59.46 63.23 64.17 67.41 66.54 65.43 

Yeast 

Hypersecant 59.99 68.72 68.65 65.54 65.56 61.34 

Yeast 

Square sinc 56.54 58.32 58.68 59.45 60.12 59.98 

Movement_Libra Gaussian 73.44 77.76 85.21 82.61 76.41 76.34 Movement_Libra 
Laplace 82.48 84.43 84.67 84.42 85.54 83.75 

Movement_Libra 

Cauchy 76.14 78.93 74.71 85.54 78.65 78.89 

Movement_Libra 

Hypersecant 73.43 77.84 78.45 77.61 78.65 74.64 

Movement_Libra 

Square sinc 42.2 42.22 42.22 42.22 42.22 42.22 
HeartDisease_Cleveland Gaussian 43.43 42.36 44.54 42.51 12.21 43.53 HeartDisease_Cleveland 

Laplace 29.13 43.03 23.34 31.43 16.78 24.12 

HeartDisease_Cleveland 

Cauchy 45.73 49.38 27.47 43.45 22.35 25.38 

HeartDisease_Cleveland 

Hypersecant 22.44 24.64 27.62 25.32 13.61 21.45 

HeartDisease_Cleveland 

Square sync 12.78 15.48 13.61 11.23 12.43 14.37 

Table 4: Classification accuracy of conventional OAA Vs OAA ODT-SVMs [%]. 

Dataset OvO OAA SVM_BDT OvO ODT-SVM OAA ODT-SVM C4.5 MLP 
Iris 98 98 98 98 98 96 97.33 

Satimage 91.21 89.95 91.65 93.61 93.98 85.7 88.12 

Wine 93.26 96.45 92.63 96.76 98.98 90.96 92.51 

Vehicle 83.33 84.87 82.98 84.95 85.65 71.83 81.98 

Glass 75.7 76.17 72.69 76.17 77.57 67.61 63.08 

Segmentation 90 90 90 93.78 92.05 86.6 90.48 

Ecoli 87.97 86.9 85.78 89.98 88.82 85.08 84.34 

New_Thyroid 97.67 97.34 100 100 100 91.59 95.33 

Yeast 61.54 61.26 68.59 67.65 68.65 56.71 61.43 

Movement_Libra 81.73 82.48 87.45 87.97 85.54 67.13 80.78 

HeartDisease_Cleveland 43.56 45.73 49.43 43.56 49.38 50.33 52.65 

Table 5: Comparison of best average classification accuracy of ODT-SVMs with other multi-class classifiers. 

To determine which classifiers are significantly 
different, we carried out Nemenyi test whose results are 
illustrated in Figure 1. In this figure, the mean rank of 
each classifier is pointed by a circle. The horizontal bar 
across each circle indicates the „critical difference". The 

performance of two methods is significantly different if 
their corresponding mean ranks differ by atleast the 
critical difference i.e. their horizontal bars are not 
overlapping. Figure 1 reveals that OvO ODT-SVM is 
significantly different from C4.5 and MLP but not 
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significantly different from conventional OvO, 
conventional OAA, SVM-BDT, OAA ODT-SVM in 
terms of classification accuracy. Rather we can say that 
the proposed scheme is comparable with all the variants 
of SVM. 
Table 6 and Table 7 shows the computation time of 

OvO ODT-SVM for training and testing phase 
respectively for Gaussian kernel with y = 2-11 and 
C=1000.Table 6 and Table 7 shows that the time 
required for training and testing of OvO ODT-SVM is 
significantly less in comparison to conventional OvO 
SVM and SVM-BDT approach. Similarly, Table 8 and 
Table 9 shows that that the time required for training and 
testing of OAA ODT-SVM is significantly less in 
comparison to conventional OAA SVM. 
The Friedman test indicates that there exist significant 
differences among OvO classifiers on both training and 
testing time. 
Figure 2 and Figure 3 illustrate the results of the 
Nemenyi test to reveal what those differences are among 
OvO classifiers on training and testing time respectively. 
Consistent with our time complexity analysis, all 
variants of OvO ODT-SVM scheme other that Gini 
measure, are most efficient in terms of training time in 

comparison to conventional OvO and SVM-BDT. 
Figure 3 shows that OvO ODT-SVM using Gini is 
ranked best and is significantly better than conventional 
OvO and SVM-BDT. All the variants of OvO ODT-
SVM schemes are not significantly different from each 
other in terms of both training and testing time. 
Similarly, the Friedman test indicates that there exist 
significant differences among OAA schemes on both 
training and testing time. Figure 4 and Figure 5 
illustrate the results of the Nemenyi test to reveal what 
those differences are among OAA schemes on training 
and testing time respectively. Again consistent with our 
time complexity analysis, all variants of OAA ODT-
SVM scheme other that gini measure, are most efficient 
in terms of training time in comparison to conventional 
OAA. Figure 5 shows that OAA ODT-SVM using IG is 
ranked best and is significantly better than conventional 
OAA. Similar to OvO schemes, all the variants of OAA 
ODT-SVM schemes are not significantly different from 
each other in terms of both training and testing time 
Among four measures employed for determining the 
structure of decision tree, neither of them is clear winner 
over other in terms of computation time for training and 
testing. 

OvO 

OAA 

SVM-BDT 

OvO ODT-SVM 

OAA ODT-SVM 

C4.5 

MLP 

0 1 2 3 4 5 6 7 8 
Mean rank of classification accuracy 

Figure 1: Apply the Nemenyi test to mean ranks of classification accuracy of various classifiers. 

Dataset OvO SVM-BDT OvO ODT-SVM Dataset OvO SVM-BDT 
ED SC IG Gini Chi-square 

Iris 2.84 5.18 2.15 2.13 2.19 2.17 2.79 

Satimage 1065.06 2852.82 867.71 864.77 873.48 958.32 871.47 

Wine 2.15 3.53 1.96 2.08 2.11 2.13 2.05 

Vehicle 189.96 508.81 154.76 154.24 155.79 170.92 155.43 

Glass 12.31 16.89 8.93 8.60 9.05 10.06 8.99 

Segmentation 3.00 5.26 2.20 2.52 2.49 2.45 2.39 

Ecoli 26.48 45.90 17.28 24.09 20.07 21.97 17.55 

New_Thyroid 5.31 8.54 3.93 3.13 2.99 3.23 3.58 
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Yeast 245.87 675.43 178.62 176.32 173.34 198.14 189.54 

Movement_Libra 534.78 1432.76 433.56 437.76 446.34 476.73 436.42 

HeartDisease_Oeveland 8.42 13.23 4.67 6.87 5.43 6.48 6.65 

Table 6: Training time OvO ODT-SVM Vs OvO and SVM-BDT [sec]. 

Dataset OvO SVM-BDT OvO ODT-SVM Dataset OvO SVM-BDT 
ED SC IG Gini Chi-square 

Iris 0.03 0.03 0.03 0.01 0.02 0.02 0.02 

Satimage 10.44 18.53 9.96 9.32 9.07 7.79 8.53 

Wine 0.03 0.06 0.03 0.03 0.03 0.03 0.03 
Vehicle 0.44 0. 79 0.43 0. 44 0.43 0. 33 0. 36 

Glass 0.04 0.06 0.02 0.04 0.02 0.03 0.02 
Segmentation 0.05 0.07 0.04 0.05 0.04 0.05 0.04 
Ecoli 0.05 0.06 0.06 0.04 0.04 0.04 0.04 
New_Thyroid 0.07 0.09 0.06 0.05 0.06 0.05 0.05 
Yeast 0.98 1.79 0.86 0.89 0.86 0.69 0.78 

Movement_Libra 5.89 9.89 4.96 4.89 4.43 3.86 4.54 

HeartDisease_Cleveland 0.09 0.10 0.05 0.05 0.04 0.05 0.06 

Table 7: Testing time OvO ODT-SVM Vs OvO and SVM-BDT [sec]. 

OvO 

S V M B D T 

ED 

SC 

IG 

Gini 

Chi-square 

0 1 2 3 4 5 6 7 8 9 
Mean rank of training time of OvO based classifiers 

Figure 2: Apply the Nemenyi test to mean ranks of training time of OvO schemes. 
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OvO 

SVM-BDT 

ED 

SC 

IG 

Gini 

Ch-square 

1 2 3 4 5 6 7 8 
Mean rank of testing time of OvO based classifiers 

Figure 3: Apply the Nemenyi test to mean ranks of testing time of OvO classifiers. 

Dataset OAA OAA ODT-SVM Dataset OAA 
ED SC IG Gini Chi-square 

Iris 28.09 12.13 21.65 12.07 15.95 15.75 
Satimage 3451.82 858.09 945.91 940.30 989.37 989.43 

Wine 5.20 2.95 2.53 2.51 2.52 2.52 

Vehicle 615.65 153.04 168.71 167.71 176.46 453.63 

Glass 135.60 22.85 27.18 27.18 69.02 21.34 
Segmentation 6.70 2.17 2.53 2.51 4.80 4.82 

Ecoli 80.68 23.34 30.02 31.02 78.42 79.80 

New_Thyroid 10.34 4.54 4.23 5.67 5.13 5.67 

Yeast 1278.76 306.98 367.87 306.76 359.54 567.87 

Movement_Libra 1734.41 428.87 472.87 478.24 478.91 456.69 

HeartDisease_Cleveland 102.34 24.76 23.43 21.23 32.23 24.54 

Table 8: Training time OAA Vs OAA ODT-SVM [sec]. 

Dataset OAA OAA ODT-SVM Dataset OAA 
ED SC IG Gini Chi-square 

Iris 0.02 0.03 0.01 0.01 0.01 0.01 
Satimage 13.95 7.72 9.07 7.59 9.05 7.87 

Wine 0.03 0.02 0.02 0.02 0.02 0.02 
Vehicle 0.59 0.33 0.39 0.32 0.38 0.33 

Glass 0.05 0.02 0.04 0.04 0.03 0.03 

Segmentation 0.05 0.04 0.03 0.03 0.04 0.04 

Ecoli 0.05 0.04 0.04 0.03 0.04 0.03 
New_Thyroid 0.07 0.05 0.05 0.04 0.04 0.05 

Yeast 1.28 0.76 0.89 0.66 0.78 0.69 

Movement_Libra 6.89 3.78 4.57 3.87 4.56 4.08 

HeartDisease_Cleveland 0.05 0.04 0.03 0.04 0.02 0.03 

Table 9: Testing time OAA Vs OAA ODT-SVM [sec]. 
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OAA -

Gini 

Chi-square -

1 2 3 4 5 6 7 
Mean rank of training time of OAA based classifiers 

Figure 4: Apply the Nemenyi test to mean ranks of training time of OAA classifiers. 

OAA -

Gini 

Chi-square -

1 2 3 4 5 6 7 
Mean rank of testing time of OAA based classifiers 

Figure 5: Apply the Nemenyi test to mean ranks of testing time of OAA classifiers 

6 Conclusion 
In this paper, we evaluate the performance in terms of 
classification accuracy and computation time of proposed 
OvO ODT-SVM and OAA ODT-SVM using the 
statistical measures i.e. information gain, gini index, chi-
square and scatter-matrix-based class separability in 
kernel-induced space. We have also shown theoretically 
that the computation time of training and testing of both 
the ODT-SVMs using statistical measures is better in 
comparison to conventional SVMs. A robust non-
parametric test is carried out for statistical comparison of 
classifiers over multiple data sets. 

The results of the experiment on UCI repository datasets 
indicate that accuracy of our proposed framework are 
significantly better than conventional OvO SVM, 
conventional OAA SVM and two widely used multi-class 
classifiers such as C4.5 and MLP for most of the 
datasets. Our experimental results also demonstrate that 
the computation time of proposed ODT-SVMs 
formulation is significantly less in comparison to 
conventional SVM and SVM-BDT models. 
Statistical test performed over multiple classifiers also 
shows that the performance of ODT-SVM model is 
significantly better in comparison to other natural multi-
class classifiers like C4.5 and MLP. Among four 
measures employed for determining the structure of 
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decision tree, neither of them is clear winner over other 
in terms of computation time for training and testing. 
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