
IMFM
Institute of Mathematics, Physics and Mechanics
Jadranska 19, 1000 Ljubljana, Slovenia

Preprint series
Vol. 51 (2013), 1192
ISSN 2232-2094

IMPROVED BOUNDS ON
THE DIFFERENCE

BETWEEN THE SZEGED
INDEX AND THE WIENER

INDEX OF GRAPHS

Sandi Klavžar M. J. Nadjafi-Arani

Ljubljana, October 29, 2013



Improved bounds on the difference between the Szeged

index and the Wiener index of graphs
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Abstract

Let W (G) and Sz(G) be the Wiener index and the Szeged index of a connected
graph G. It is proved that if G is a connected bipartite graph of order n ≥
4, size m ≥ n, and if ` is the length of a longest isometric cycle of G, then
Sz(G) − W (G) ≥ n(m − n + ` − 2) + (`/2)3 − `2 + 2`. It is also proved if G
is a connected graph of order n ≥ 5 and girth g ≥ 5, then Sz(G) − W (G) ≥
PIv(G) − n(n − 1) + (n − g)(g − 3) + P (g), where PIv(G) is the vertex PI index
of G and P is a cubic polynomial. These theorems extend related results from
[Chen, Li, Liu, European J. Combin. 36 (2014) 237–246]. Several lower bounds
on the difference Sz(G) −W (G) for general graphs G are also given without any
condition on the girth.
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1 Introduction

The Wiener index W (cf. the surveys [6, 8]) and the Szeged index Sz (cf. the survey [9])
are among the central graph invariants studied in mathematical chemistry. The Wiener
index is the first such index, it was introduced back in 1947 and extensively investigated
in the last decades. Clearly, the study of the Wiener index is equivalent to the study
of the average distance, cf. [5, 28]. The Szeged index also received a lot of attention.
In particular, it was recently applied for measuring network bipartivity [32] and to
characterize connected graphs G or order n and size m with Sz(G) = mn2/4 as the
connected, bipartite, distance-balanced graphs [1, 15]. It was earlier conjectured in [18]
that these graphs can be characterized as regular bipartite graphs.

The introduction of the Szeged index was in particular motivated by the classical
Wiener algorithm that for a given tree returns its Wiener index. Consequently, the
Wiener index and the Szeged index coincide on trees, hence it is not surprising that
a lot of research has been done on the relation between these two indices on general
graphs. First, Sz(G) ≥ W (G) holds for any connected graph [24], see [19] for an
alternative short proof of this fact. The so-called Szeged-Wiener theorem states that
Sz(G) = W (G) holds if and only if G is a block graph [7]. The theorem was recently
and apparently independently rediscovered in [2]; yet another proof of it, together with
a new characterization of block graphs, can be found in [19]. Very recently, in [23], the
Sz(G) ≥ W (G) result was extended to networks, more precisely, it was proved that
Sz(G,w) ≥ W (G,w) holds for any connected network, where Sz(G,w) and W (G,w)
are the Szeged index and the Wiener index of the network (G,w). An analogous result
holds for vertex-weighted graphs.

In [30, 31] a matrix method was applied in order to classify the graphs G for which
Sz(G) −W (G) ∈ {2, 4, 5}. In addition, it is proved that there exists no graph G for
which Sz(G) −W (G) ∈ {1, 3}, and that for any positive integer n 6= 1, 3 there exists
a graph G with Sz(G) −W (G) = k. In this direction, the computer program Auto-
GraphiX conjectured (as reported at the talk [13]) that for a connected nonbipartite
graph G of order n ≥ 5 and girth g ≥ 5, the inequality Sz(G)−W (G) ≥ 2n− 5 holds.
The same program also conjectured that for a connected bipartite graph G of order
n ≥ 4 and size with m ≥ n, Sz(G) −W (G) ≥ 4n − 8 holds. Very recently Chen, Li,
and Liu [4] proved these two conjectures, see also [3] for an alternative proof in the
bipartite case.

The main results of this paper are improvements of the above mentioned theorems
from [4]. In Section 2 we prove a lower bound on the difference Sz(G) −W (G) for
bipartite graphs G that involves the order n, the size m, and the length ` of a longest
isometric cycle of G. The new bound extends the 4n − 8 bound as soon as at least
one of the conditions m ≥ n+ 2 and ` ≥ 6 hold. In the remaining small cases explicit
expressions for Sz(G)−W (G) can be given. Then, in Section 3, we extend the 2n− 5
bound for general graphs G of order n ≥ 5 and girth g ≥ 5 with a bound that involves
the order and the girth of G and extends the 2n − 5 bound in all cases. We conclude
the paper with several lower bounds without any condition on the girth and use them
to give a partial answer to a conjecture from [31].
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In the rest of the section we define concepts used in this paper and recall some
known related results.

We consider the usual shortest path distance and write dG(u, v) for the distance in
a graph G between u and v and simplify the notation to d(u, v) when the graph is clear
from the context. A subgraph of a graph is called isometric if the distance between any
two vertices of the subgraph is independent of whether it is computed in the subgraph
or in the entire graph. The Wiener index W (G) of a (connected) graph G is defined
with

W (G) =
∑

{u,v}⊆V (G)

d(u, v) .

If G is a connected graph and e = uv ∈ E(G), then set

Nu(e) = {x ∈ V (G) | d(x, u) < d(x, v)} ,

and
Nv(e) = {x ∈ V (G) | d(x, u) > d(x, v)} .

Let in addition nu(e) = |Nu(e)| and nv(e) = |Nv(e)|. Then the Szeged index of G and
the vertex PI index of G (the latter index being introduced in [17], see also [25] and
references therein) are respectively defined with

Sz(G) =
∑

e=uv∈E(G)

nu(e) · nv(e) ,

and
PIv(G) =

∑
e=uv∈E(G)

nu(e) + nv(e) .

Considering a BFS-tree for each of the vertices of G if follows easily that

PIv(G) ≥ n(n− 1) .

For the class of graphs Xn that attain this bound see [29, Theorem 2].
Finally, we will also make use of the first Zagreb index which is defined as

M1(G) =
∑

v∈V (G)

deg(u)2 ,

where deg(u) is the degree of the vertex u.

2 The bipartite case

For bipartite graphs, Chen, Li, and Liu proved the following result, verifying a conjec-
ture posed by the computer program AutoGraphiX:
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Theorem 2.1 [4, Theorem 3.2] Let G be a connected bipartite graph of order n ≥ 4
and size m ≥ n. Then Sz(G) −W (G) ≥ 4n − 8. Moreover, the equality holds if and
only if G is composed of a cycle C4 on 4 vertices and a tree T on n− 3 vertices sharing
a single vertex.

This result is also proved in [3, Theorem 2.2]. Note that the lower bound involves
the number of vertices but not the number edges. In addition, the family of extremal
graphs is unicyclic with the unique cycle being of length four. These observations
motivated us to search for a lower bound that would involve also the number of edges
and were able to prove:

Theorem 2.2 Let G be a connected bipartite graph of order n ≥ 4 and size m ≥ n. If
` is the length of a longest isometric cycle of G, then

Sz(G)−W (G) ≥ n(m− n+ `− 2) +

(
`

2

)3

− `2 + 2` .

Proof. Let V (G) = {x1, . . . , xn}, E(G) = {e1, . . . , em}, and let Y be an ordered list of
all
(
n
2

)
unordered pairs of vertices of G. Define the matrix A = [aij ] of dimension

(
n
2

)
×m

as follows. Its rows correspond to the elements of Y , its columns to the elements of
E(G). If the row i corresponds to the pair {x, y} and the column j to the edge ej = uv,
then set

aij =


1; {x, y} ∩ {u, v} = ∅ and

(x ∈ Nu(ej) and y ∈ Nv(ej)) or (x ∈ Nv(ej) and y ∈ Nu(ej)) ,
0; otherwise.

Note that the sum of the entries of the jth column is equal (nu(ej) − 1)(nv(ej) − 1).
Hence

(n2)∑
i=1

m∑
j=1

aij =

m∑
j=1

(nu(ej)− 1)(nv(ej)− 1)

=
m∑
j=1

nu(ej)nv(ej)−
m∑
j=1

(nu(ej) + nv(ej)) +m

= Sz(G)− PIv(G) +m, (1)

= Sz(G)−m(n− 1) , (2)

where we have used the fact that since G is bipartite, PIv(G) = mn holds.
Let µx,y be the sum of the entries of the row of A corresponding to the pair {x, y},

so that
∑(n2)

i=1

∑m
j=1 aij =

∑
{x,y} µx,y. Set

µ′x,y =

{
µx,y − d(x, y) + 2; d(x, y) ≥ 2,
µx,y; otherwise.
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Then we have ∑
{x,y}∈(V (G)

2 )

µx,y =
∑
{x,y}

xy/∈E(G)

µx,y +
∑
{x,y}

xy∈E(G)

µx,y

=
∑
{x,y}

xy/∈E(G)

(µ′x,y + d(x, y)− 2) +
∑
{x,y}

xy∈E(G)

µ′x,y

=
∑
{x,y}

µ′x,y + (W (G)−m)− 2

((
n

2

)
−m

)
=

∑
{x,y}

µ′x,y +W (G) +m− n(n− 1) . (3)

Combining (2) with (3) we obtain

Sz(G)−W (G) =
∑
{x,y}

µ′x,y + n(m− n+ 1) . (4)

Let C = u1u2 . . . u`u1 be a longest isometric cycle of G and set ` = 2k. Such a cycle
exists since G contains cycles (because m ≥ n) and since a shortest cycle of a graph is
always isometric, cf. [12, Proposition 3.3]. Let xy be an edge of C and let e′ = x′y′ be the
antipodal edge of xy on C, where d(x, x′) < d(x, y′). Then x ∈ nx′(e′) and y ∈ ny′(e′),
hence µ′x,y ≥ 1. Therefore,

∑
{x,y},xy∈E(C) µ

′
x,y ≥ `. Similarly, if x, y ∈ V (C) and

d(x, y) = 2 with z a common neighbor of x and y on C, then considering the antipodal
edges to xz and zy we infer that µ′x,y ≥ 2. Since there are ` pairs of vertices at distance
2 on C, we thus have

∑
{x,y},x,y∈V (C),d(x,y)=2 µ

′
x,y ≥ 2`. Proceeding analogously we find

out that
∑
{x,y},x,y∈V (C),d(x,y)=r µ

′
x,y ≥ r` holds for r ≤ k − 1. Finally, there exist k

pairs of vertices at distance k on C, and we infer that for any such pair, µ′x,y ≥ k − 2.
Putting this together we obtain:

∑
{x,y}

x,y∈V (C)

µ′x,y ≥ ` ·
k−1∑
i=1

i+ k(k − 2) = k(k2 − 2) =
`

2

(
(`/2)2 − 2

)
. (5)

Let next y be an arbitrary vertex from V (G) \ V (C). Let z be a vertex from C
such that d(y, z) = d(y, C). (There can be more than one such vertex but we select
and fix one of them.) We may assume without loss of generality that z = u1. Let
x ∈ V (C), x 6= z. Let P be a shortest x, y-path and let P ′ 6= P be a x, y-path that is
shortest among all x, y-paths different from P . (So P ′ actually need not be a shortest
x, y-path.) Note that P ′ exists because the cycle C guarantees that there exist at least
two x, y-paths. If there are more selections for P ′ we select one that has most common
vertices with P . Then P4P ′ is a cycle, denote it C ′. Let x′ be the vertex of C ′∩P ∩P ′
closest to x and let y′ be the vertex of C ′ ∩ P ∩ P ′ closest to y.

Suppose first that |C ′| > 4. If e = uv is an edge of C ′ ∩ P , then for its opposite
edge e′ = u′v′ ∈ C ′ ∩ P ′ we can use the same argument as in the proof of [4, Lemma
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2.4] that x ∈ N ′u(e′) and y ∈ N ′v(e′) (or vice versa). As |C ′| > 4, at least one of these
edges is incident to neither x nor y, hence µ′x,y ≥ 1. Assume now that |C ′| = 4. If
d(x′, y′) = 1 then consider the edge of C ′ opposite to x′y′ to reach the same conclusion,
that is, µ′x,y ≥ 1. If d(x′, y′) = 2, then P ′ is also a shortest x, y-path. Now, if x 6= x′

then we consider the edge x′t such that t ∈ P ′ ∩ C ′. In this case x ∈ N ′x(x′t) and
y ∈ Nt(x

′t). The case when y 6= y′ is treated analogously. It means that µ′x,y ≥ 1 holds
also in this case.

Consider finally the case x = x′, y = y′, |C ′| = 4 and d(x, y) = 2. Then |P | =
|P ′| = 2. We may without loss of generality assume that P does not pass the edge
e = u1u2. Since G is bipartite and C is isometric, ui ∈ Nu2(e) and y ∈ Nu1(e) holds
for i = 3, . . . , k + 1. Consequently, µ′ui,y ≥ 1 holds for i = 3, . . . , k + 1. Using a
parallel argument for the edge f = u1u` we also find out that µ′ui,y ≥ 1 holds for
i = k + 2, . . . , `− 1.

In conclusion, for any of the (n − `) vertices y not on C there are ` − 3 vertices x
on C such that µ′x,y ≥ 1, therefore,∑

{x,y}
x∈C,y/∈C

µ′x,y ≥ (n− `)(`− 3). (6)

Plugging (6) and (5) into (4) we get

Sz(G)−W (G) ≥ `

2

(
(`/2)2 − 2

)
+ (n− `)(`− 3) + n(m− n+ 1) ,

which is equivalent to the claimed result. �

Note that the bound of Theorem 2.2 extends the bound of Theorem 2.1 as soon as
at least one of the conditions m ≥ n + 2 and ` ≥ 6 hold. For instance, if ` = 6, then
Theorem 2.2 reduces to Sz(G)−W (G) ≥ mn−n2+4n+3, while if ` = 4 and m = n+2,
then the theorem asserts Sz(G)−W (G) ≥ 4n. In the small cases in which Theorem 2.2
does not extend the bound of Theorem 2.1, exact expressions for the difference between
the Szeged and the Wiener index can be stated (and so there is no need to give a bound
on the difference.) Let’s have a brief look to these cases.

Suppose that m = n and ` = 4. In other words, suppose that G is a connected
unicyclic graph whose only cycle is a 4-cycle u1u2u3u4. Then G isometrically embeds
into a hypercube and hence the cut method (see [20, 22] for more on the method) applies
for the Szeged index [10] as well as for the Wiener index [21]. More precisely, let n′ be
the number of vertices in one of the connected components of G−{u1u2, u3u4} and let
n′′ be the number of vertices in one of the connected components of G− {u1u4, u2u3}.
Then it readily follows from the main theorems of [10] and [21] that Sz(G)−W (G) =
n′(n−n′)+n′′(n−n′′) = W (G) and hence Sz(G) = 2W (G). This fact was also noticed
in [16] for unicyclic graph with even cycles, while the expression for Sz(G)−W (G) in
arbitrary unicyclic graph is given in [11, Eq. (8)].

Assume now that m = n+ 1 and ` = 4. Then G contains (at least) two 4-cycles C ′

and C ′′. If C ′ and C ′′ are in different blocks of G or if they share exactly one edge, then
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G again embeds isometrically into a hypercube and hence the main theorems of [10]
and [21] can be applied once more to obtain an explicit expression for Sz(G)−W (G).
Finally, if C ′ and C ′′ share two edges, then G consists of a K2,3 with trees attached to
each of its vertices. Then it is not difficult to express Sz(G) −W (G) as a function of
the orders of the trees attached to each of the vertices of K2,3. We omit the details.

We conclude the section with the following remarks.

Remark 2.3 One could replace the length of a longest isometric cycle in G in the
statement of Theorem 2.2 with a more common girth of G. In this way a weaker
bound would be obtained with a more common invariant involved. However, no such
replacement is needed because also from the practical point of view the length of a
longest isometric cycle is not an obstruction. The reason is that Lokshtanov [27] proved
an appealing result that one can find a longest isometric cycle in a graph in polynomial
time.

Remark 2.4 Let Sz∗(G) be the so-called revised Szeged index. This graph invariant
was introduced in [33] (under the name revised Wiener index) and named revised Szeged
index in [32], see also [26, 34]. Since Sz∗(G) = Sz(G) holds for any bipartite graph G,
the results of this section apply to the difference Sz∗(G)−W (G).

3 The general case

For general graphs, Chen, Li, and Liu proved the following result, again verifying a
conjecture posed by AutoGraphiX:

Theorem 3.1 [4, Theorem 3.1] If G is a connected, nonbipartite graph of order n ≥ 5
and girth g ≥ 5, then Sz(G) −W (G) ≥ 2n − 5. Moreover, equality holds if and only
if G is composed of C5 and one tree rooted at a vertex of the cycle C5 or two trees,
respectively, rooted at two adjacent vertices of the cycle C5.

For an integer t set

P (t) =

{
t
2

(
(t/2)2 − 2

)
; t even ,

t
2( t−12 )(g−32 ); t odd .

We now extend Theorem 3.1 as follows:

Theorem 3.2 If G is a connected graph of order n ≥ 5 and girth g ≥ 5, then

Sz(G)−W (G) ≥ PIv(G)− n(n− 1) + (n− g)(g − 3) + P (g) .

Proof. Define the matrix A = [aij ] in the same way as in the proof of Theorem 2.2.
Then Equations (1) and (3) hold for arbitrary graphs (that is, not only for bipartite)
and give us

Sz(G)−W (G) ≥ PIv(G)− n(n− 1) +
∑
x,y

µ′x,y . (7)
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Let C = u0u1 . . . ug−1u0 be a shortest cycle of G. Then C is an isometric cycle. If g is
even and x, y ∈ C, then by analogous argument as in the proof of Theorem 2.2 we see
that ∑

x,y∈C
µ′x,y ≥

g

2

(
(g/2)2 − 2

)
. (8)

Suppose next that C is odd and let g = 2k + 1. If x, y ∈ V (C) and d(x, y) = 2 with
z a common neighbor of x and y, then, since C is an isometric odd cycle, for the edge
e = uv that is antipodal to z on C we have d(z, u) = d(z, v). Therefore, x ∈ Nu(e)
and y ∈ Nv(e) (or the other way around), thus µ′x,y ≥ 1. When d(x, y) = i ≥ 3, the
same reasoning yields µ′x,y ≥ i− 1. Since there are g pairs of vertices of C that are at
distance i, we conclude that

∑
x,y∈C

µ′x,y ≥ g
k∑

i=2

(i− 1) =
g

2

(
g − 1

2

)(
g − 3

2

)
. (9)

Next, suppose that x ∈ V (C) and y /∈ V (C). Let z be a vertex from C such that
d(y, z) = d(y, C). We may without loss of generality assume that z = u0. Suppose that
P is a shortest x, y-path and let P ′ be an x, y-path that is shortest among all other
paths. Among all possible such paths select P ′ such that it has the largest possible
number of common vertices with P . Then C ′ = P 4 P ′ is a cycle. Let x′ (resp. y′)
be the vertex of C ′ ∩ P ∩ P ′ closest to x (resp. y). Then dC′(x

′, v) = dG(x′, v) (resp.
(dC′(y

′, v) = dG(y′, v)) holds for any vertex v ∈ C ′.

Case 1. C ′ is an even cycle.
Suppose that e ∈ P ∩ C ′ and f = ab ∈ C ′ is the edge opposite to e. By [4, Lemma
2.4 (1)], x ∈ Na(f) and y ∈ Nb(f) (or the other way around). Since g ≥ 5 we get that
µ′x,y ≥ 1.

Case 2. C ′ is an odd cycle.
By [4, Lemma 2.4 (2)], if |E(P ) ∩ V (C ′)| ≥ 2, then µ′x,y ≥ 1. We now claim that if
x = ui, where i 6= 0, 1, g− 1, then |E(P )∩E(C ′)| ≥ 2. Assume on the contrary that P
and C ′ share only one edge. Set m = d(x, y) and t = d(y, z). Then since |C ′| ≥ g, we
have |P ′| ≥ m + g − 2. On the other hand (recalling that x = ui, i 6= 0, 1, g − 1), we
observe that |P ′| ≤ t+ g− 2. It follows that m+ g− 2 ≤ |P ′| ≤ t+ g− 2. Since clearly
t ≤ m, we conclude that t = m and |P ′| = t+ g − 2. Consider now the path Q from y
to x = ui that is a concatenation of a shortest y, z-path and a shortest z, x-path on C.
Since t = m and d(y, C) = t, the path P uses no edge of C. It follows that Q 6= P . But
since |Q| ≤ t+(g−1)/2 we have a contradiction because Q is shorter than P ′ (which is
a second shortest y, x-path). This proves the claim which in turn implies that µ′ui,y ≥ 1
holds for any i 6= 0, 1, g − 1. It follows that∑

{x,y}
x∈C,y/∈C

µ′x,y ≥ (n− g)(g − 3) . (10)

The theorem now follows by combining Equations (7), (8), (9), and (10). �
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As we have already observed, PIv(G) ≥ n(n− 1) holds for any graph G. Hence the
bound of Theorem 3.2 is better than the bound of Theorem 3.1 for any graph G.

Note that in the proof of Theorem 3.2 we did not use the assumption on girth in
order to obtain Equations (7), (8), and (9). Since in addition n ≥ g clearly holds, the
following result holds for arbitrary graphs:

Corollary 3.3 If G is a connected graph of order n and girth g, then

Sz(G)−W (G) ≥ PIv(G)− n(n− 1) + P (g) .

Modifying the arguments from the proof of Theorem 3.2 to general graphs we also
get:

Corollary 3.4 If G is a connected graph of order n and girth g, then

Sz(G)−W (G) ≥ (n− g)(g − 3) + P (g) .

Proof. Define the matrix B = [bij ] as follows:

bij =

{
1; (x ∈ Nu(ej) and y ∈ Nv(ej)) or (x ∈ Nv(ej) and y ∈ Nu(ej)) ,
0; otherwise.

Then the sum of the entries of the column ej is nu(ej)nv(ej) and the sum of the entries
from the row which corresponds to the pair {x, y} is the number of edges e = uv
such that x and y respectively belong to Nu(e) and Nv(e). Let γx,y be the row sum
corresponding to the pair {x, y}. Setting γ′x,y = γx,y − d(x, y) we find that

Sz(G) =
∑
ej

nu(ej)nv(ej) =
∑
x,y

γx,y =
∑
x,y

γ′x,y +W (G) . (11)

As already mentioned, to obtain Equations (8) and (9) we do not need the girth as-
sumption, that is, ∑

x,y∈V (C)

γ′x,y ≥ P (g) .

Let next x ∈ V (C) and y /∈ V (C). If C is an even cycle, then γ′x,y ≥ 1 holds by [4,
Lemma 2.4 (1)], and if C is odd, then by an argument similar to Case 2 in the proof of
Theorem 3.2 we get that γ′ui,y ≥ 1 holds for each i 6= 0, 1, g − 1. It follows that∑

x∈V (C),y /∈V (C)

γ′x,y ≥ (n− g)(g − 3) .

Plugging the above inequalities into (11) the result follows. �

For a graph G, let t(G) denote the number of triangles of G. Then we also have:
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Corollary 3.5 If G is a connected graph of order n ≥ 5 and girth g ≥ 5, then

Sz(G)−W (G) ≥M1(G)− n(n− 1) + (n− g)(g − 3) + P (g) .

In particular, if G is a k-regular, then

Sz(G)−W (G) ≥ n(k2 − n+ 1) + (n− g)(g − 3) + P (g) .

Proof. Combine Theorem 3.2 with the fact proved in [14] that PIv(G) ≥M1(G)−6t(G)
holds for any connected graph G. Since g ≥ 5, we have t(G) = 0 as desired. The
assertion for regular graphs then follows because M1(G) = nk2 when G is k-regular. �

For the cases g = 3 and g = 4 weaker bounds can be obtained using Corollary 3.3.
We conclude the paper with some comments on the following conjecture from [31].

Conjecture 3.6 Let G be a graph of order n and let B1, . . . , Bk be blocks of G, none
of them being complete. Let |V (Bi)| = ni, 1 ≤ i ≤ k. Then Sz(G) − W (G) ≥∑k

i=1(2ni − 6) = 2n− 8k + 2.

The conjecture was proved in [31] for chordal graphs. Using Theorems 2.2 and 3.2 it
is easy to see that the conjecture is true when G is bipartite or g ≥ 5. Also if g = 4 and
δ(G) is the minimum degree of G, then Corollaries 3.3 and 3.5 together with a simple
calculation yield the validity of Conjecture 3.6 for graphs G with δ(G) >

√
|V (G)|+ 1.
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