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Abstract. A resonance offers a testing ground for few-body dynamics. Two types of reso-
nances are discussed in detail. One is very narrow Hoyle resonance in 12C that plays a cru-
cial role in producing that element in stars. The other includes broad high-lying negative-
parity resonances in A = 4 nuclei, 4H, 4He, 4Li. The former is dominated by the Coulomb
force of three-α particles at large distances, while the latter are by short-ranged nuclear
forces. The structure of these resonances is described by different approaches, adiabatic
hyperspherical method and correlated Gaussians used for strength function calculations.
The localization of the resonance is successfully realized by a complex absorbing potential
and a complex scaling method, respectively.

1 Hoyle resonance

The synthesis of 12C is essential to 12C-based life and its process at low tempera-
tures is sequential via a narrow resonance of 8Be:

α+ α→ 8Be, α+ 8Be→ 12C + γ. (1)

As predicted by Hoyle, however, an existence of a very narrow resonance at
around Ex =7.7 MeV is vital to explain the abundance of 12C element. The reso-
nance is found to be just 0.38 MeV above 3α threshold with its width of 8.5 eV.

Since nobody has ever succeeded in reproducing the Hoyle resonance width,
we have undertaken to tackle this problem in the adiabatic hyperspherical
method [1, 2]. This study has further been motivated by the fact that there ex-
ists huge discrepancy in the rate of triple-α reactions, α + α + α → 12C + γ,
calculated by several authors [3–5].

In contrast to two-body resonances, the Hoyle resonance is characterized
by the followings: (1) 3α particles interact via long-ranged Coulomb force even
at large distances. (2) no asymptotic wave function is known. (3) 2α subsystem
forms a sharp resonance, which causes successive avoided crossings with three-
particle continuum states.

The detail of our approach is given in Refs. [1, 2]. The three-body system is
completely specified by six coordinates excluding the center-of-mass coordinate.
Among six coordinates one is chosen to be the hyperradius of length dimension,
and other five coordinates are hyperangles. Among the five angle coordinates
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three are Euler angles and two are used to specify the geometry of the three body
system. By changing the geometry as much as possible, we can study the adia-
batic potential curve of the three-body system as a function of the hyperradius.
A resonance can be confined by introducing a complex absorbing potential [6]
at large distances of the hyperradius. This method works excellently for quan-
titatively reproducing the very narrow width of the Hoyle resonance as well as
predicting the triple-α reaction rate at low temperatures without relying on any
ambiguous ansatz.

2 Resonances in A = 4 nuclei
4He nucleus is doubly magic and its 0+ ground state is strongly bound. The first
excited state of 4He is not a negative-party but again 0+. The negative-parity
excited states appear above the 3He+p threshold. Seven negative-parity states are
known and some of them have very broad widths. There exist isobar resonances
in 4H and 4Li that are also very broad. Most of these resonances are identified by
R-matrix phenomenology.

These resonances offer typical four-body resonances governed by the nuclear
force. The decay channels include not only two-body but three-body systems. To
describe the resonance we have employed correlated Gaussians [7,8] that provide
us with efficient and accurate performance as few-body basis functions. A general
form of the correlated Gaussians is

[θL × χS]JM exp
[
−
∑
i<j

aij(ri − rj)
2
]
ηTMT

, (2)

where θL, χS, ηT stand for the functions of orbital angular momentum, spin, isospin
parts. aij are variational parameters that control the spatial configuration of the
system. See also Ref. [9] for recent review on the correlated Gaussians.

The negative-parity resonances may be studied by analyzing strength func-
tions for electromagnetic excitations from the ground state of 4He. Actually we
have considered the spin-dipole operator specified by type p and λµ tensor
(λ=0,1,2)

Opλµ =

4∑
i=1

[(ri − R)× σi]λµTpi (3)

where the center-of-mass coordinate of A = 4 nucleus, R, is subtracted from the
position coordinate ri to make sure excitations of intrinsic motion only and Tpi
distinguishes different types of isospin operators (tx, ty, tz)

Tpi =

{ 1 Isoscalar
2tz(i) Isovector

tx(i)± ity(i) Charge − exchange
(4)

We calculate the strength function Spλ(E) corresponding to the response of
the 4He ground state Ψ0 induced by Opλµ

Spλ(E) = Sµf|〈Ψf|O
p
λµ|Ψ0〉|2δ(Ef − E0 − E), (5)
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where Sµf denotes a sum over all possible final states This strength function can
be computed by using the complex scaling method. The important thing for ac-
curate evaluation of Spλ(E) is to span possible final configurations as much as
possible.

We have studied three negative-parity states with isospin 0 in 4He and four
negative-parity states with isospin1 in 4He, 4H, 4Li [10–12]. Some of the reso-
nance widths are very broad, and thus it is hard to identify their resonance pa-
rameters on the complex plane. However, the strength functions calculated above
clearly indicate peaks near the resonance energies. We have confirmed that even
the broad resonance can be identified with this calculation.
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