VOL. 58 [T. 2 LJUBLJANA 2015 ACTA BIOLOGICA SLOVENICA prej/formerly BIOLO[kI VESTNIk ISSN 1408-3671 izdajatelj/publisher UDk 57(497.4) Dru{tvo biologov Slovenije ACTA BIOLOGICA SLOVENICA LJUBLJANA 2015 Vol. 58, [t. 2: 1–98 Acta Biologica Slovenica Glasilo Društva biologov Slovenije – Journal of Biological Society of Slovenia Izdaja – Published by Društvo biologov Slovenije – Biological Society of Slovenia Glavna in odgovorna urednica – Editor in Chief Alenka Gaberščik, e-mail: alenka.gaberscik@bf.uni-lj.si Tehnični urednik – Managing Editor Gregor Zupančič, e-mail: gregor.zupancic@bf.uni-lj.si Uredniški odbor – Editorial Board Robert Zorec (SLO), Matija Gogala (SLO), Alenka Malej (SLO), Livio Poldini (I), Mark Tester (AUS), Nejc Jogan (SLO), Mihael J. Toman (SLO), Franc Janžekovič (SLO), Branko Vreš (SLO), Boris Sket (SLO), Franc Batič (SLO), Hubert Potočnik (SLO), Georg A. Janauer (A), Doekele G. Stavenga (NL) Naslov uredništva – Address of Editorial Office Acta Biologica Slovenica, Večna pot 111, SI-1001 Ljubljana, Slovenija http://bijh.zrc-sazu.si/abs/ Zasnova oblikovanja – Design Žare Vrezec ISSN 1408-3671 UDK 57(497.4) Natisnjeno – Printed on: 2015 Tisk – Print: Tiskarna Pleško d.o.o., Ljubljana Naklada: 400 izvodov Cena letnika (dve številki): 15 € za posameznike, 42 € za ustanove Številka poslovnega računa pri Ljubljanski banki: 02083-142508/30 Publikacijo je sofinancirala Javna agencija za raziskovalno dejavnost Republike Slovenije Acta Biologica Slovenica je indeksirana v – is indexed in: CAB Abstracts, Web of Knowledge – Thomson Reuters ACTA BIOLOGICA SLOVENICA LJUBLJANA 2015 Vol. 58, [t. 2: 3–11 Relationship of nuclear genome size, cell volume and nuclei volume in endosperm of Sorghum bicolor Razmerje velikosti jedrnega genoma, prostornine celic in prostornine jeder v endospermu sirka (Sorghum bicolor) Aleš Kladnik University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, Ljubljana, Slovenia Correspondence: ales.kladnik@bf.uni-lj.si Abstract: Endosperm cells of Sorghum bicolor undergo several rounds of en- doreplication during seed development, resulting in somatic endopolyploidy with cells containing 3 C to 96 C nuclei (1 C represents the amount of DNA in an unreplicated haploid genome). Cells with higher DNA content are larger and contain larger nuclei. The function of large endosperm cells in Sorghum bicolor is storage of starch that will be used in germination. We analysed the ratios of nuclear genome size and volume of nuclei and cells to determine if karyoplasmic ratio is constant in cells of different endopolyploidy levels. Interestingly, the volume of cells and nuclei increases more than can be expected from the increase in genome size alone. Instead, a constant ratio was observed between genome size and surface of cells and nuclei. However, an isometric relationship was found between volume of nuclei and volume of cells, indicating that karyoplasmic ratio is constant in sense of dimensions of cellular compartments, rather than with nuclear genome size alone. Keywords: cell volume, endopolyploidy, endoreplication, endosperm, nuclear genome size Izvleček: Tekom razvoja semena sirka (Sorghum bicolor) v celicah endosperma poteče več ciklov endoreplikacije, kar se kaže v somatski endopoliploidiji tkiva, ki vsebuje celice s 3 C do 96 C jedri (1 C predstavlja količino DNA v nepodvojenem haploidnem genomu). Celice z večjo količino DNA so večje in vsebujejo večja je- dra. Vloga velikih celic v endospermu sirka je shranjevanje založnega škroba, ki bo porabljen med kalitvijo. Analizirali smo razmerje med velikostjo jedrnega genoma in prostornino jeder ter celic, da bi preverili konstantnost karioplazemskega razmerja v celicah z različno stopnjo endopoliploidije. Zanimivo, prostornina celic in jeder se povečuje bolj kot bi pričakovali samo zaradi povečevanja velikosti genoma. Namesto tega smo opazili konstantno razmerje med velikostjo genoma in površino celic in jeder. Poleg tega smo pokazali, da obstaja izometrično razmerje med prostornino jeder in prostornino celic, kar kaže na to, da je karioplazemsko razmerje konstantno v smislu dimenzij celičnih sestavnih delov, ne pa glede na velikost jedrnega genoma. Ključne besede: endopoliploidija, endoreplikacija, endosperm, prostornina celic, velikost jedrnega genoma 4 Acta Biologica Slovenica, 58 (2), 2015 Introduction Polyploidization in cell differentiation to produce large cells is a widespread developmental strategy throughout the animal and plant kingdoms (Orr-Weaver 2015). Endoreplication is a variation of a cell cycle, where DNA replication in the S-phase is not followed by mitotic division and sister chromatids are not separated into daughter cells. Repeated endoreplication cycles generate chromosomes with an exponentially growing number of chromatids (Joubès and Chevalier 2000, Sugimoto-Shirasu and Roberts 2003). Occurrence of endoreplication is common in plants, but is not related to the initial genome size, it is more cor- related to the life strategy and phylogeny of plant groups (Barow and Meister 2003). The significance of endoreplication in organisms may not be due to any specialized function that is supported by endopolyploidy, but rather in the consequences of the endopolyploidy state that makes the polyploid cells different from diploid cells, such as the tissue growth with absence of mitosis, changed surface to volume ratio and differences in gene expression or growth factor gradients (Barlow 1978, Joubès and Chevalier 2000). However, the precise functions of polyploidization is still elusive today (Orr-Weaver 2015). Recently, Bourdon et al. (2012) provided the direct evidence that endopolyploidy increased transcription of rRNA and mRNA on a per-nucleus basis. The positive correlation between ploidy levels and cell size indicates that endopolyploid nuclei might be required for the formation of large cells (Kondorosi et al. 2000), but under certain conditions, the final size of cells and organs can be uncoupled from endoreplication (Cookson et al. 2006). The positive relationship between size of nuclei and size of cells was shown widely throughout the eukaryotes, for example the size of nuclei was correlated to cell volume in yeast (Jor- gensen et al. 2007). The constant ratio of nucleus and cell volume was observed already a century ago and led to the hypothesis of a “karyoplasmic ratio” (Wilson 1925). Closely related observa- tions, but should not be considered equivalent to the volume of nuclei, is that variations in genome size is related to cell size (Cavalier-Smith 2005). Cereal endosperm is a storage tissue that is comprised of cells with different endopolyploidy levels. The function of endosperm cells is ac- cumulation of storage compounds, mainly starch (Kowles et al. 1992). Maize endosperm contains endoreplicated nuclei with at least 192 C DNA content (Vilhar et al. 2002). The endopolyploid state evolved before domestication, since the wild relative of maize, teosinte, contains nuclei with up to 96 C (Dermastia et al. 2009). The initial genome size of maize endosperm cells is 3 C, therefore endoreplication generates 6 C, 12 C, 24 C, etc. cells. The extent of endopolyploidy correlates with the yield of maize grain (Kowles et al. 1992). The aim of this study was to re-evaluate the data measured by Kladnik et al. (2006) to examine the increase in volume of cells and nuclei of Sorghum bicolor with increase in nuclear genome size due to endoreplication and test whether the increase in volume deviates from isometry. Moreover, we examined the ratios of volume and surface of cells and nuclei with nuclear genome size. At last, but not least, we analysed the relationship of nuclear volume with cell volume to test the classical karyoplasmic ratio hypothesis. Materials and methods Tissue sections and staining Developing caryopses of sorghum (Sorghum bicolor (L.) Moench) were sampled 5 to 16 days after pollination, fixed in FAA (3.7 % formalde- hyde, 5 % acetic acid, 50 % ethanol), embedded in Paraplast Plus (Sherwood Medical Co., USA) and sectioned longitudinally to 12-20 µm thick sections as described in detail by Kladnik et al. (2006). Sections were stained for starch using an aqueous solution of 2 % iodine and 3 % potassium iodide (I2/KI). Nuclear DNA was stained with Feulgen reagent according to Dolenc Koce et al. (2003) and Kladnik et al. (2006). The Feulgen reac- tion is quantitative for DNA if the only aldehydes remaining in the cell are those produced from the hydrolysis of DNA (Feulgen and Rossenbeck 1924). Sections were observed on an Axioskop 2 MOT microscope (Carl Zeiss, Germany) and im- ages were acquired with an AxioCam MRc digital camera (Carl Zeiss Vision, Germany). 5Kladnik: Genome size, cell and nuclei volume in sorghum endosperm Measurement of genome size, cell volume and nuclei volume Nuclear genome size was measured on Feulgen stained median longitudinal sections of caryopses at 5, 8, 10, 12 and 16 days after pollination (DAP) in three replicates. The nuclear DNA amount was measured by image densitometry using the interphase-peak method adapted for use with tis- sue sections (Vilhar et al. 2002, Dermastia et al. 2009). Integrated optical density (a measure of relative DNA amount), size and positions of the nuclei were measured in the whole endosperm transect. The amount of nuclear DNA was ex- pressed in C-value units, with 1 C representing the nuclear DNA content of a non-replicated haploid genome. The volume and surface area of a nucleus was estimated as a sphere based on the area of the nucleus section in the acquired image. The size of cells was measured by outlining the cell walls, visible due to their autofluorescence in UV. Volume and surface of cells was estimated as a sphere based on the area of the cell transects in the image. In total, we measured nuclear DNA content and size of cells and nuclei for 995, 1651, 2711, 2470 and 2587 cells in 5, 8, 10, 12 and 16 DAP samples, respectively. Data analysis Data was analysed using R version 3.1.2 (R Core Team 2014) in RStudio version 0.98.1102 and GraphPad Prism version 6.01 for Windows (GraphPad Software, USA). The ratios of nuclear genome size with different cell size parameters were calculated by dividing measured relative DNA amount, normalized to C-units, with re- spective cell size parameter, measured in µm. Variation of volumes and ratios with respect to nuclear genome size was analysed using linear model on logarithmically transformed data in R and calculating R2 value to express the portion of the variance explained by variation in nuclear genome size. The relationship between cell volume, nuclei volume and different ratios with genome size was analysed by calculating medians in all endopolyploidy classes (3 C to 96 C) and perform- ing linear regression in Prism, thus obtaining the slope of the log-log relationship. Results The endosperm of Sorghum bicolor is com- posed of cells with variable sizes, containing nuclei Figure 1: Endosperm of Sorghum bicolor 16 days after pollination. A - Feulgen stained tissue section, showing size of nuclei and cells of different endopolyploidy levels. B - Starch deposition in endosperm cells. Labels: e, endosperm; p, pericarp. Bar represents 100 µm. Slika 1: Endosperm sirka (Sorghum bicolor) 16 dni po oprašitvi. A - Tkivna rezina barvana po Feulgen-u, ki prikazuje velikost jeder in celic različnih endopoliploidnih stopenj. B - Nalaganje škroba v celicah endosperma. Oznake: e, endosperm; p, perikarp. Merilo predstavlja 100 µm. 6 Acta Biologica Slovenica, 58 (2), 2015 with different amounts of DNA that is replicated in multiple endocycles (Fig. 1A). The endosperm cells contain large amounts of starch in the form of starch grains, with exception of the smallest cells in the outermost layer of the endosperm (Fig. 1B). The cells in the sorghum endosperm undergo several rounds of endoreplication, resulting in nuclei with DNA content up to 96 C (Kladnik et al. 2006). We have tested the effects of nuclear genome size variation on variations in volume of cells and nuclei. Duplication of DNA during endoreplica- tion cycles and growth of cells and nuclei are exponential processes by nature, so all relation- ships were plotted on log-log graphs. Scatterplots (Fig. 2) represent all measured data for samples 10 to 16 days after pollination (DAP), where all possible endopolyploidy classes were present (3 C to 96 C). Five and eight DAP samples lacked the highest endopolyploidy levels (Kladnik et al. 2006). The volume of cells increases with increas- ing nuclear genome size (Fig. 2A), with 65 % of variation explained by variation in genome size (R2 = 0.65). Volume of nuclei is tightly related to nuclear DNA amount (Fig. 2B), with 95 % of variation explained by genome size (R2 = 0.95). Furthermore, we examined the ratio of nuclear genome size with cell dimensions. The ratio of genome size with cell volume (Fig. 2C), expressed as C-units per unit of cell volume, shows a slight negative correlation with genome size with only 13 % of its variation explained by genome size (R2 = 0.13). The ratio of genome size with nuclei volume (Fig. 2D), expressed as C-units per unit of nuclei volume, shows a negative correlation, with 64 % of variation accounted for genome size (R2 = 0.64). However, when we calculate a ratio of genome size versus cell surface (Fig. 2E) or nuclei surface (Fig. 2F), the variation in the ratio is no longer dependent on variation in nuclear genome size (R2 = 0.01 and 0.02, respectively). To test if increase in volume of cells and nu- clei, related to increase in genome size, follows a power law (y = bxa), that is if their relationship is allometric, we calculated median values of volumes of cells and nuclei belonging to different endopolyploidy classes, and plotted volume versus C-value on a log-log scale (Fig. 3A). If the relation between both is exponential, the data would be distributed on a straight line. The slope of the fitted line (exponent a in the above equation) indicates the type of allometry (Barow 2006). Both for cell volume and nuclei volume, the slope was larger than 1, indicating positive allometry, 1.44 and 1.34, respectively (Tab. 1). The volume of cells and nuclei increases with a higher rate, than can be attributed to the increase in genome size alone. Maintenance of karyoplasmic ratio can be examined by calculating ratio of nuclear genome size versus cell volume, thus obtaining the amount of genome (C-units) per unit of cell volume (Fig. 3B). The ratio is related to different endoploidy levels; on log-log scale their relationship is linear with a negative slope (Tab. 1), indicating that progressively less genome units are found in a unit of cell volume. Similarly, the ratio of genome size per volume of nuclei also shows a negative linear relationship with increasing ploidy level (Fig. 3B, Tab. 1). However, when calculating the ratio between genome size and surface area of cells or nuclei, and comparing it to ploidy level, the ratio is constant in the whole range of endoploidy lev- els (Fig. 3B). The slope of the linear relationship between genome size to surface area on a log scale is not significantly different from zero (Tab. 1). Finally, if using nuclear genome size only to separate cells into different endoploidy classes, the relationship between volume of nuclei and volume of cells is isometric, with a slope not significantly different from 1 (Fig. 3C, Tab. 1). 7Kladnik: Genome size, cell and nuclei volume in sorghum endosperm Figure 2: Volume of cells and nuclei of different endopolyploidy levels in endosperm of Sorghum bicolor and ratios of nuclear genome size to cell size parameters. A - cell volume, B - nuclei volume, C - ratio of nuclear genome size per cell volume, D - genome size per nuclei volume, E - genome size per cell surface area, F - genome size per nuclei surface area. The range of observed nuclear genome sizes was 3 C to 96 C. Grey line represents a linear fit applied to logarithmically transformed data, R2 value represents the percentage of variation in the examined parameter explained by the variation in nuclear genome size. Slika 2: Prostornina celic in jeder različnih stopenj endopoliploidnosti v endospermu sirka in razmerja med velikostjo genoma in parametri velikosti celic. A - prostornina celic, B - prostornina jeder, C - velikosti genoma na prostornino celic, D - velikost genoma na prostornino jeder, E - velikost genoma na površino celic, F - velikost genoma na površino jeder. Razpon velikosti jedrnega genoma je 3 C do 96 C. Sive črte predstavljajo linearni model na logaritmiranih podatkih, R2 vrednost je delež variance v preučevanem parametru, pojasnjen z endopoliploidijo. 8 Acta Biologica Slovenica, 58 (2), 2015 Figure 3: Relationship between endopolyploidy level and size of cells and nuclei. A - Volume of cells and nuclei of different endopolyploidy levels (3 C to 96 C). B - Ratios of nuclear genome size with cell size pa- rameters (volume of cells and nuclei, surface of cells and nuclei). C - Relationship between volume of nuclei and volume of cells of different endoploidy levels. Data presented are median values calculated for individual endopolyploidy classes. Solid lines represent linear regressions with 95 % confidence intervals (dashed lines). Slika 3: Razmerje med stopnjo endopoliploidnosti in velikostjo celic in jeder. A - Prostornina celic in jeder različnih stopenj endopoliploidnosti (3 C do 96 C). B - Razmerja med velikostjo jedrnega genoma in parametrov velikosti celic (prostornina celic in jeder, površina celic in jeder). C - Razmerje med prostornino jeder in prostornino celic različnih stopenj endopoliploidnosti. Predstavljeni podatki so mediane vrednosti izračunane za posamezne razrede endopoliploidnosti. Polne črte predstavljajo linearno regresijo s 95 % intervalom zaupanja (črtkane črte). 9Kladnik: Genome size, cell and nuclei volume in sorghum endosperm Table 1: Relationship between endopolyploidy and cell size parameters. Slope of log-log relationship calculated from median values for individual endopolyploidy classes (Fig. 3A, B) or log-log relationship between cell volume and nucleus volume (Fig. 3C). Slope = 1 indicates isometry, slope > 1 indicates positive allometry (for volumes), slope = 0 indicates no relationship. Slope error based on 95% confidence intervals, * - de- viation from zero is significant (p < 0.001), ns0, ns1 - deviation from zero or 1 not significant (p > 0.05); R2 value is a portion of variance in the examined parameter explained by endopolyploidy (Fig. 2) or nucleus volume (p < 0.001). Tabela 1: Razmerje med endopoliploidijo in parametri velikosti celic. Naklon log-log razmerja, izračunanega iz medianih vrednosti za posamezne razrede endopoliploidnih celic (Fig. 3A, B) ali log-log razmerja med prostornino celic in prostornino jeder (Fig. 3C). Naklon = 1 pomeni izometrijo, naklon > 1 pomeni pozi- tivno alometrijo (za prostornine), naklon = 0 pomeni, da ni odvisnosti. Napaka naklona izvira iz 95 % intervala zaupanja, ns0, ns1 - odklon od 0 oz. 1 ni statistično značilen (p > 0.05); R2 vrednost je delež variance v preučevanem parametru, pojasnjen z endopoliploidijo (Fig. 2) ali prostornino jedra (p < 0.001). Slope R2 (linear model) Cell volume [µm3] 1.44 ± 0.05 * 0.65 Nuclei volume [µm3] 1.34 ± 0.05 * 0.95 C-units per cell volume [C µm-3] -0.50 ± 0.05 * 0.13 C-units per nuclei volume [C µm-3] -0.42 ± 0.03 * 0.64 C-units per cell surface [C µm-2] -0.02 ± 0.03 ns0 0.01 C-units per nuclei surface [C µm-2] 0.03 ± 0.01 ns0 0.02 Cell volume by nuclei volume 1.07 ± 0.04 ns1 0.68 Discussion The early observations of a constant relation- ship between volume of nuclei and volume of cells led to the “karyoplasmic ratio” hypothesis (Wilson 1925). The exponential nature of this relationship was reported already by Sinnot and Trombetta (1936). Numerous studies reported on a tight re- lationship between volume of cells and nuclei and genome size (Cavalier-Smith 2005, Barow 2006). A clear relationship between nuclear genome size (endopolyploidy level) and volume of nuclei and cells was shown in Sorghum bicolor endosperm. The large endoreplicated endosperm cells are associated with deposition of starch (Kladnik et al. 2006). In the present study, the relationship was further characterized. The volume of cells is increasing by a higher rate than would be propor- tional with doubling of the ploidy level, since the slope of their log-log relationship is higher than 1, indicative of positive allometry (Barow 2006). The volume of cells more than doubles with each endocycle, and this in turn influences the ratio of genome size per cell volume that shows a negative slope in relation to ploidy level, although with a low R2 value. The motivation for calculating a ratio of genome size with cell volume is to express the amount of genome that is in charge of a unit of tissue volume, or simply “genome concentration”. Surprisingly, the volume of nuclei also shows a similar positive allometric relationship with nuclear genome size and a negative slope for the genome size to nuclei volume ratio. This indicates that the volume of nuclei increases with a higher rate as can be expected from the duplication of DNA alone. A similar positive allometry for nuclei has been observed in mesocarp cells of Cucumis melo (Kladnik, unpublished observation). Of great interest is an observation that genome size to surface ratio is constant both for cells and nuclei. The possible explanation for both is however different. Nucleus volume increases with increasing endopolyploidy level at a rate higher than 1, but the genome to surface ratio remains constant throughout the endopolyploidy range. This indicates that the surface area of the nucleus (nuclear envelope) is crucial for the function of nucleus. Indeed, increased nucleus surface 10 Acta Biologica Slovenica, 58 (2), 2015 in endopolyploid cells was observed in tomato pericarp, where large endopolyploidy nuclei show deep invaginations (Bourdon et al. 2012). The authors hypothesize that nuclear exchange ability is maintained by keeping the ratio between nuclear envelope area with nuclear volume constant. Another possibility for maintenance of nuclear exchange ability is peripheral distribution of DNA in nuclei of higher endopolyploidy levels, observed in mesocarp of Cucumis melo (Kladnik, unpub- lished observation). In the present analysis, a higher rate of nuclear volume increase in endopolyploid nuclei of sorghum endosperm as can be expected from duplication of DNA, compared to a constant ratio of genome size to nuclear surface, indicates that the nuclear exchange ability is most likely the important factor that needs to be maintained with increase of nuclear genome size in endoreplica- tion. However, the explanation for a higher rate of cell volume growth is not so straightforward. The positive allometric relationship between cell volume and nuclear genome size is seemingly not in accordance with a hypothesis of a constant karyoplasmic ratio. As noted by Edgar et al. (2014), expansion of plant cells is often driven by increas- ing the size of the fluid-filled vacuole and it is not necessarily accompanied by increased mass of proteinaceous cytoplasm. Here, the endopolyploid endosperm cells are filled with starch grains and we could speculate that the volume of cytoplasm is related more to the surface area of the cell than with the volume of the whole cell. On the other hand, we have shown an ideal karyoplasmic ratio if we compare cell volume to the volume of the nucleus, not to the size of the genome it contains. Therefore, we can conclude that in this case, the main factor influencing endosperm cell size is not its DNA content, but rather the nuclear exchange ability that is limiting gene expression and cell metabolism. Summary The data on sorghum endosperm cell volume, nuclei volume and nuclear genome size (Kladnik et al. 2006) was re-evaluated to examine the re- lationship between cell parameters. Endosperm cells contain endoreplicated nuclei with DNA content from 3 C to 96 C and the volume of cells and nuclei is positively correlated with nuclear genome size. The larger cells with higher DNA content are located in the central part of endosperm and accumulate starch. The relationship of cell and nuclei volume with genome size is positively allometric, ie. the volume increases by a higher rate than can be expected from DNA duplication alone. Instead, a constant ratio was observed between genome size and surface of cells and nuclei. Finally, an isometric relationship was shown between the volume of nuclei and volume of cells, indicating that a constant karyoplasmic ratio is related to the volume of nucleus, not to its DNA content. Povzetek Podatke o prostornini celic in jeder, ter velikosti jedrnega genoma v endospermu sirka (Kladnik et al. 2006) smo dodatno analizirali, da bi ovrednotili razmerja med celičnimi parametri. Celice endosperma vsebujejo endoreplicirana jedra, ki vsebujejo 3 C do 96 C DNA. Prostornina celic in jeder je v pozitivni korelaciji z velikostjo jedrnega genoma. Večje celice z višjo vsebnostjo DNA so v osrednjem delu endosperma in kopičijo založni škrob. Razmerje prostornine celic in jeder z velikostjo genoma je pozitivno alometrično, kar pomeni, da se prostornina povečuje hitreje, kot bi pričakovali samo zaradi samega podvajanja DNA. Po drugi strani smo opazili konstantno razmerje med velikostjo genoma in površino celic in jeder. Pokazali smo tudi izometrično razmerje med prostornino jeder in prostornino celic, kar kaže na to, da je konstantno karioplazemsko razmerje povezano s prostornino jedra, ne pa s količino DNA, ki jo le-ta vsebuje. Acknowledgement This work was supported by the Slovenian Research Agency (ARRS) through research pro- gramme Plant Biology P1-0212. 11Kladnik: Genome size, cell and nuclei volume in sorghum endosperm References Barlow, P.W., 1978. Endopolyploidy: towards an understanding of its biological significance. Acta Biotheoretica, 27, 1-18. Barow, M., 2006. Endopolyploidy in seed plants. Bioessays, 28, 271-281. Barow, M., Meister, A., 2003. Endopolyploidy in higher plants is correlated to systematics, life strategy and genome size. Plant Cell and Environment, 26, 571-584. Bourdon, M., Pirrello, J., Cheniclet, C., Coriton, O., Bourge, M., Brown, S., Moïse, A., Peypelut, M., Rouyère, V., Renaudin, J.P., Chevalier, C., Frangne, N., 2012. Evidence for karyoplasmic home- ostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development, 139, 3817-3826. Cavalier-Smith, T., 2005. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany, 95, 147-175. Cookson, S.J., Radziejwoski, A., Granier, C., 2006. Cell and leaf size plasticity in Arabidopsis: what is the role of endoreduplication? Plant, Cell & Environment, 29, 1273-1283. Dermastia, M., Kladnik, A., Koce, J.D., Chourey, P.S., 2009. A cellular study of teosinte Zea mays subsp. parviglumis (Poaceae) caryopsis development showing several processes conserved in maize. American Journal of Botany, 96, 1798-1807. Dolenc Koce, J., Vilhar, B., Bohanec, B., Dermastia, M., 2003. Genome size of Adriatic seagrasses. Aquatic Botany, 77, 17-25. Edgar, B.A., Zielke, N., Gutierrez, C., 2014. Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nature Reviews Molecular Cell Biology, 15, 197-210. Feulgen, R., Rossenbeck, H., 1924. Mikroskopisch-chemischer Nachweis einer Nucleinsäure von Typus der Thymonucleinsäure und die darauf beruhende elective Färbung von Zellkernen in mikroskopischen Präparaten. Hoppe-Seyler’s Zeitschrift fur Physiologische Chemie, 135, 203-248. Jorgensen, P., Edgington, N.P., Schneider, B.L., Rupes, I., Tyers, M., Futcher, B., 2007. The size of the nucleus increases as yeast cells grow. Molecular Biology of the Cell, 18, 3523-3532. Joubès, J., Chevalier, C., 2000. Endoreduplication in higher plants. Plant Molecular Biology, 43, 735-745. Kladnik, A., Chourey, P.S., Pring, D.R., Dermastia, M., 2006. Development of the endosperm of Sor- ghum bicolor during the endoreduplication-associated growth phase. Journal of Cereal Science, 43, 209-215. Kondorosi, E., Roudier, F., Gendreau, E., 2000. Plant cell-size control: growing by ploidy? Current Opinion in Plant Biology, 3, 488-492. Kowles, R.V., McMullen, M.D., Yerk, G., Phillips, R.L., Kraemer, S., Srienc, F., 1992. Endosperm mitotic activity and endoreduplication in maize affected by defective kernel mutations. Genome, 35, 68-77. Orr-Weaver, T.L., 2015. When bigger is better: the role of polyploidy in organogenesis. Trends in Genetics, 31, 307-315. R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. Sinnott, E.W., Trombetta, V.V., 1936. The cytonuclear ratio in plant cells. American Journal of Botany, 23, 602-606. Sugimoto-Shirasu, K., Roberts, K., 2003. ‘Big it up’: endoreduplication and cell-size control in plants. Current Opinion in Plant Biology, 6, 544-553. Vilhar, B., Kladnik, A., Blejec, A., Chourey, P.S., Dermastia, M., 2002. Cytometrical evidence that the loss of seed weight in the miniature1 seed mutant of maize is associated with reduced mitotic activity in the developing endosperm. Plant Physiology, 129, 23-30. Wilson, E.B., 1925. The Cell in Development and Heredity. New York: Macmillan. ACTA BIOLOGICA SLOVENICA LJUBLJANA 2015 Vol. 58, [t. 2: 13–21 Sivi dren (Cornus sericea L.) - nova invazivna vrsta v flori Slovenije Red osier dogwood (Cornus sericea L.) - a new invasive species in Slovenian flora Tinka Bačič*, Simona Strgulc Krajšek, Nejc Jogan Oddelek za biologijo BF UL, Večna pot 111, 1000 Ljubljana *korespondenca: martina.bacic@bf.uni-lj.si Izvleček: Sivi dren (Cornus sericea L.) je priljubljen severnoameriški okrasni grm, ki ga pogosto sadijo tudi v Sloveniji. Subspontano pojavljanje vrste v naših krajih je znano že dve desetletji, a šele v zadnjih letih opažamo, da je vrsta invazivna. Sivi dren uspeva na številnih nahajališčih v Ljubljanski kotlini, znano pa je tudi uspevanje na dveh lokalitetah na Gorenjskem. Pojavlja se v mokriščnih habitatih, posebej v bližini naselij, kjer ga gojijo kot okrasni grm. Da bi omejili njegovo širjenje, predlagamo pravočasne ukrepe. Objavljamo tudi posodobljeni ključ za določanje drenov v Sloveniji. Ključne besede: Cornus sericea, sivi dren, invazivne tujerodne vrste, mokrišča, Slovenija Abstract: The Red osier dogwood (Cornus sericea L.) is a popular North Ameri- can ornamental shrub, often planted also in Slovenia. Subspontaneous occurrence of the species in Slovenia is known for two decades, but only in recent years, we can recognize it as an invasive species. The Red osier dogwood is currently known from numerous localities in the wider city area of Ljubljana and also from two sites in the Gorenjska region. It occurs in wetland habitats, particularly in the vicinity of settle- ments, where the shrub is planted for ornamental purposes. To limit the invasion of the Red osier dogwood, timely measures should be taken. We also publish the updated determination key for the genus Cornus in Slovenia. Key words: Cornus sericea, The Red osier dogwood, invasive alien species, wetlands, Slovenia Uvod Namen raziskave Sivi dren (Cornus sericea L.) je priljubljen okrasni grm, ki ga v naših krajih pogosto sadijo v parkih in vrtovih. Posebej je grm dekorativen pozimi, ko pridejo do izraza koralno rdeči ali živorumenozeleni odtenki lubja mladih poganjkov. Vrsta izhaja iz vzhodnega dela Severne Amerike (Fischer et al. 2008). Zaenkrat jo slovenska zbirna floristična dela (Martinčič et al. 2007, Jogan et al. 2001) ne navajajo, naša najdba je bila prvič omenjena v prilogi poročila projekta Neobiota z oceno starosti prvega pojavljanja »2000« in oceno invazivnosti »naturaliziran« (Jogan et al. 14 Acta Biologica Slovenica, 58 (2), 2015 2012). Avtorji opažamo subspontano pojavljanje drena v Sloveniji že dve desetletji, vendar šele v zadnjih letih brez dvoma lahko trdimo, da se vrsta pri nas pojavlja ne le prehodno podivjano, pač pa kot invazivna vrsta, ki lokalno s popolno prevlado v grmovni plasti vegetacije predstavlja grožnjo domačim vrstam. Posebej problematično je, da se vrsta ne pojavlja le na ruderalnih rastiščih, na katerih se pot naturalizacije tujerodnih vrst pogosto začne, pač pa tudi v naravi, in sicer v mokriščnih habitatih gozdnih obronkov. Širjenje sivega drena smo v zadnjih letih opazovali v Ljubljani v jelševih grezih ob Večni poti ter ob Koseškem bajerju, pri sistematičnem popisovanju flore v Ljubljani pa smo zabeležili še več nahajališč. Namen članka je opozoriti botanično javnost na prisotnost sivega drena kot invazivne tujerodne vrste, predstaviti podatke o njeni razširjenosti v Sloveniji ter podati oceno invazivnosti vrste in perspektive. Predlagano slovensko ime »sivi« dren, ki je že uporabljeno med drugim v omenjenem poročilu (ibid.), je zaradi razločno sivkaste spodnje strani listnih ploskev ustreznejše od drugega, ki ga prav tako zasledimo ponekod v vrtnarski literaturi: svilnati dren. Pri slednjem gre namreč za neroden prevod latinskega imena »sericeus«, ki pomeni svilnat, a je rabljeno lahko v smislu svilnate dlakavosti (gosta poraslost s prileglimi, vzporedno ležečimi dlakami) ali svetlo sive barve naravne svile. Ker noben del rastline sivega drena nima značilne svilnate dlakavosti, je torej smiseln prevod v slovenščino »sivi« in ne »svilnati«. Stanje invazivnosti v sosednjih deželah in v svetu Sivi dren je bil kot ena od izbranih vrst za presojo potencialne invazivnosti za Srednjo Evropo ocenjena kot zelo invazivna (Weber et Gut 2004). Dva mednarodna spletna portala o tujerodnih vrstah prikazujeta pojavljanje sivega drena po skoraj vsej zahodni (DAISIE: http://www.europe-aliens.org) in srednji ter severni Evropi (NOBANIS: www. nobanis.org) z izjemo južnejših predelov, vendar pa do izrecnih podatkov o pojavljanju v posamezni državi ni vedno lahko priti. Po omenjenih dveh zbirnih bazah naj bi bil sivi dren invaziven v Belgiji, Latviji, na Norveškem in Poljskem, potencialno invaziven na Nizozemskem in Irskem, naturaliziran pa še na Češkem, v Nemčiji, v evropskem delu Rusije, v Veliki Britaniji in Švici, medtem ko za Francijo, Nemčijo, Avstrijo, Madžarsko in Češko tu ni natančnejših podatkov o statusu tujerodne vrste. Prve navedbe o pojavljanju te vrste v posa- meznih evropskih državah so s konca 19. stoletja (Avstrija, Češka, Belgija, Norveška, po www. nobanis.org). Na Irskem so sivi dren sadili v vlažne habitate kot okrasni grm, vendar se je dren začel na mnogih mestih širiti in predstavlja grožnjo mokriščnim gozdovom (Kelly 1990). V Veliki Britaniji je pogosto naturaliziran po nižinah, širil naj bi se predvsem vegetativno (Stace 1991). V Franciji se navaja za nekaj območij na severu kot natural- izirana vrsta v širjenju (Tison et al. 2014), v Švici pa kot naturalizirana (Wittenberg et al. 2006). Na Češkem ga obravnavajo kot mestoma podivjano vrsto vlažnih gozdov v nižini, kjer se pojavlja v vegetaciji zveze Alno-Ulmion in reda Salicetea purpureae (Holub 1997). Po drugi svetovni vojni je več podatkov o pojavljanju v Avstriji, danes velja tam za naturalizirano vrsto na območjih Dunaja, Spodnje Avstrije in okoli Gradca, vendar z izraženo domnevo o pojavljanju tudi drugod (Walter et al. 2002) oziroma se omenja kot lokalno natural- iziran na območjih Zgornje Avstrije, Koroške, Solnograške in Severne Tirolske (Fischer et al. 2008). Pri tem je zanimiva neusklajenost navedb v dveh pomembnih monografskih obdelavah. Podobna neusklajenost se v zvezi s pojavljanjem te vrste kaže večkrat, kar po eni strani kaže na hitro zastarevanje podatkov o tujerodnih invazivnih vrstah, po drugi strani na prezrtost vrste, ki je zelo podobna nekaterim avtohtonim. Zelo verjetno se zdi, da je bila naturalizacija vrste marsikje po Ev- ropi prezrta zaradi navidezne podobnosti z rdečim drenom, ki je izredno variabilna avtohtona vrsta. Ekologija in razširjenost vrste v njeni domovini Naravno območje razširjenosti vrste C. sericea je Severna Amerika: od Mehike na jugu do Kanade in Aljaske na severu (USDA, NRCS 2015). Uspeva na nadmorskih višinah do 2500 m n. m., na z dušikom bogatih tleh, ki so vsaj del leta namočena, kot na primer bregovi jezer in tekočih voda, ter na zamočvirjenih območjih. Zelo dobro prenaša mraz. Razmnožuje se vegeta- tivno z ukoreninjanjem odlomljenih poganjkov in spontanim grebeničenjem ter spolno s semeni. 15Bačič et al.: Sivi dren - nova invazivna vrsta v flori Slovenije V Severni Ameriki se s plodovi hranijo mnoge vrste ptic in sesalcev, ki tako razširjajo semena (USDA, NRCS 2006). Tudi v neposredni soseščini primarnega areala, npr. v južnem Quebecu, velja za invazivno vrsto, ki ima dve strategiji invazivnosti: v senčnih razmerah se razrašča bolj horizontalno in se poganjki zakore- ninjajo ter ne cvetijo, v bolj presvetljenih razmerah pa bujno požene pokončne cvetoče poganjke, ki z zasenčenjem postopno izpodrinejo konkurenčne vrste, poleg tega pa razvijajo še plodove, ki jih ptice širijo dalje (Charles-Dominique et al. 2010). V ZDA in Kanadi C. sericea uporabljajo za zaščito rečnih bregov pred erozijo, saj koreninski sistem dobro zadržuje prst (https://en.wikipedia. org/wiki/Cornus_sericea, Walsh 2012). Sadijo ga tudi na območja, ki jih je prizadel vetrolom (USDA, NRCS 2006). Materiali in metode Podatke smo zbrali iz štirih virov: pregled herbarija LJU na Oddelku za biologijo Biotehniške fakultete, sistematično kartiranje flore Ljubljane v okviru projekta Mestne občine Ljubljana »Popis flore znotraj obvoznice mesta Ljubljana s poudarkom na tujerodnih invazivnih rastlinskih vrstah« v letu 2015, lastna terenska opažanja av- torjev in podatkovna zbirka Centra za kartografijo favne in flore (CKFF). Sistematično kartiranje flore Ljubljane je potekalo v vegetacijski sezoni 2015 tako, da je bilo območje razdeljeno na kvadrate velikosti 1 km2, s tem je bilo 70 km2 mestne občine solidno skartirano z vsaj dvema terenskima dnevoma na kvadrat, kar za vrste, ki so vse leto prepoznavne, da dobre rezultate. Vrsto smo določili s pomočjo določevalnih ključev Fitschen (2002), Fischer et al. (2008) in Lauber et Wagner (2007). Razlikovalne znake smo preverjali na svežem in suhem materialu. Rezultati z diskusijo Prepoznavanje in določanje vrste Vrsta je lahko prepoznavna, tako med rastno sezono kot tudi pozimi, ko listi odpadejo. Od domorodnih vrst ji je po videzu vej, socvetja in listov ter po ekologiji še najbolj podoben rdeči dren (C. sanguinea). V rastni sezoni je sivi dren že od daleč opazen in prepoznaven po velikih listih (8 – 12 cm), pose- bej na enoletnih vejah (tudi čez 10 cm), njihovi jajčastosuličasti obliki (Sl. 1) in sivozeleni spodnji strani. Posebej naj poudarimo, da k sivozeleni obarvanosti spodnje površine listov ne prispeva svilnata dlakavost, kot bi pričakovali glede na ime »svilnati« oz. »sericea« in kot jo srečamo na primer pri beli vrbi. Laski so sicer prisotni, a so redki in po obliki izključno kompasni, podobno kot pri C. sanguinea ssp. australis. Plodovi so beli do svetlosivomodrikasti in torej zelo drugačni od črnovijoličnih plodov rdečega drena (Sl. 2). Pozno jeseni in pozimi, ko listi odpadejo, sivi dren najlažje ločimo od rdečega po prisotnosti lenticel na lubju mladih poganjkov (Sl. 3) in po razrasti. Slika 1: List sivega drena (Cornus sericea). Foto: N. Jogan Figure 1: Leaf of the red osier dogwood (Cornus sericea). Photo: N. Jogan 16 Acta Biologica Slovenica, 58 (2), 2015 Na tem mestu podajamo ključ za razlikovanje vrst znotraj rodu Cornus, prirejen po Martinčič (2007) in Fischer et. al. (2008): 1 Venec rumen, cvetovi v kobulih, razvijejo se pred cvetenjem, listi zgoraj bolj ali manj bleščeči, spodaj v kotičkih žil s šopi dlačic; luskolista pri dnu enoletnega poganjka zelo obstojna, srpasto ukriv- ljena, poganjki vsaj pri vrhu razločno četverorobi. Plodovi viseči, podolgastojajčasti (približno 2x tako dolgi kot široki), viseči (»drnulje«), zreli temnordeči do skoraj črni. Cornus mas L. 1* Venec bel, cvetovi v češuljah, razvijejo se po olistanju, listi zgoraj niso bleščeči, spodaj v žilnih kotih niso dlakavi; luskolisti zgodaj odpadejo, poganjki v prerezu okrogli. Plodovi pokončni, kroglasti, zreli črnovijolični, beli ali svetlosivo- modrikasti. 2 2 Listi po obeh straneh zeleni, s 3 – 4 pari stranskih žil, pri vrhu naglo zoženi v topo konico, po spodnji strani z dvokrakimi laski, ki imajo navadno vsaj en krak štrleč in ukrivljen; lubje mlajših vej brez lenticel; zrel plod črnovijoličen. Grebeničenja ni. C. sanguinea L. 2* Listi zgoraj zeleni, spodaj sivi do sivozeleni, torej zgoraj in spodaj različne barve, s 5 – 7 pari žil, pri vrhu postopno zoženi v konico, po spodnji strani s prileglimi dvokrakimi laski (»kompasni« laski), veje z lenticelami, zrel plod bel do svetlo- sivomodrikast. Rastlina s številnimi olesenelimi pritlikami, spontano grebeničenje predvsem v senčnih razmerah. C. sericea L. Sivemu drenu je podoben beli ali tatarski dren (Cornus alba L.), ki ga prav tako gojijo kot okrasni grm, izhaja pa iz severne Azije. Beli dren ima manjše, kratko koničaste liste (listi 4 – 8 cm dolgi), mladi poganjki pa imajo modrikast poprh (Fischer et al. 2008). V preteklosti razlikovanje med vrstama ni bilo vedno jasno, tako je eden od sinonimov za sivi dren tudi C. alba auct. Razširjenost sivega drena v Sloveniji Herbarijski material iz LJU: 9852/4 Slovenija: Ljubljana: Brod, ob mostu gorenjske avtoceste čez reko Savo, desni breg Save, mejica. Leg. & det. S. Strgulc Krajšek, 28. 9. 2011 (LJU1014162) 9953/2 Slovenija: Ljubljana: Zalog, vznožje Debnega vrha, pri prvem podhodu pod železnico, od table konec Ljubljane, v smeri iz Ljubljane. Leg. B. Podvršič, 1. 6. 2000, det. N. Jogan, l. 2000 (LJU10015631) Slika 2: Plodovi sivega drena (Cornus sericea). Foto: S. Strgulc Krajšek Figure 2: Fruits of the red osier dogwood (Cornus sericea). Photo: S. Strgulc Krajšek Slika 3: Primerjava vejic rdečega (C. sanguinea, zgoraj) in sivega drena (C. sericea, spodaj) (črtica predstavlja 1 cm). Figure 3: The comparison of twigs in C. sanguinea (up) and C. sericea (down) (the line represents 1 cm). 17Bačič et al.: Sivi dren - nova invazivna vrsta v flori Slovenije 9651/4 Slovenija: Gorenjska: okolica Tržiča, na desni strani ceste, za vasjo Golnik, ob cesti, rob gozda. 520 m. n. m., leg. & det. U. Bidovec, 20. 6. 1995 (LJU10015630) 9749/1 Slovenija: Gorenjska, Bohinjsko jezero, ob vzhodnem bregu, podivjano. Leg. B. Pipan, det. N. Jogan, 1995 (LJU10015628) V podatkovni zbirki CKFF (dostop: oktober 2015) je en sam podatek o domnevno spontanem pojavljanju te vrste, in sicer podatek Špele Štrekelj iz leta 1998 za Ljubljano (Šiška, kvadrant 9952/2; zbirka: Študentski herbariji). Ta podatek je dokumentiran s primerkom v herbariju LJU (LJU10015629), vendar je iz etikete razvidno, da gre za kultiviran grm (»Ljubljana - Šiška: 1,5 m visok grm, ki tvori živo mejo pri hiši ob Celovški cesti, 300 m. n. m., leg. Š. Štrekelj, 24. 5. 1998, det. N. Jogan«). Nekaj nadaljnjih podatkov v omenjeni bazi se nanaša na sivi dren kot gostiteljsko rastlino nekaterih nevretenčarjev, v teh primerih pa gre pogosto ali izključno tudi za gojene rastline, tako da jih v zvezi s subspontanim širjenjem sivega drena ne moremo upoštevati. Podatki iz sistematičnega kartiranja flore Lju- bljane v okviru projekta Mestne občine Ljubljana v letu 2015 in lastna terenska opažanja avtorjev: 9952/2 Slovenija: Ljubljana, Koseze, Koseški bajer z vlažnim gozdom proti Mostecu. Območje MOL: 96. Leg. Katarina Šoln, 18. junij 2015 9952/2 Slovenija: Ljubljana, med Dravljami in Podutikom, urbano in gozdni rob. Območje MOL: 77. Leg. Barbara Nemec, 6. maj 2015 9952/2 Slovenija: Ljubljana, Podutik, močvirno območje med cerkvijo in Krivcem. Območje MOL: 77. Leg. Nejc Jogan, 28. september 2015 9952/2 Slovenija: Ljubljana, pri Podutiku med Pržancem in Glinščico, rob travnika. Območje MOL: 95. Leg. Simona Strgulc Krajšek, 25. maj 2015 9952/2 Slovenija: Ljubljana, Rožna dolina, Večna pot, okolica BF, rob vlažnega gozda. Območje MOL: 129. Leg. Nejc Jogan, 15. junij 2015 9952/2 Slovenija: Ljubljana, Šiška, Dravlje, gr- movje ob cesti pri nadvozu nad obvoznico. Območje MOL: 78. Leg. Nejc Jogan, 29. september 2015 9952/2 Slovenija: Ljubljana, Šiška, ob cesti Pod hribom, obronki Šišenskega hriba, rob gozda. Območje MOL: 97. Leg. Nejc Jogan, 11. septem- ber 2015 9952/2 Slovenija: Ljubljana, Zgornja Šiška, zapuščeno gradbišče blizu obvoznice. Območje MOL: 79. Leg. Nejc Jogan, 21. september 2015 9952/4 Slovenija: Ljubljana, Brdo-Bokalce. Območje MOL: 127. Leg.: Tinka Bačič & Simona Strgulc Krajšek, 29. september 2015 9952/4 Slovenija: Ljubljana, Brdo. Območje MOL: 128. Leg.: Nejc Jogan, 20. september 2015 9952/4 Slovenija: Ljubljana, Kolezija, urbani mozaik. Območje MOL: 148. Leg. Filip Küzmič, 14. julij 2015 9952/4 Slovenija: Ljubljana, Vič-Murgle, urbano okolje. Območje MOL: 147. Leg. Teja Bizjak, 15. junij 2015 9953/1 Slovenija: Ljubljana, Bežigrad, Savlje, okolica Mercator EMBA. Območje MOL: 65. Leg. Nejc Jogan, 5. oktober 2015. 9953/1 Slovenija: Ljubljana, Savsko naselje, urbano okolje ob glavnih cestah in urbani gozdiček. Območje MOL: 100. Leg. Teja Bizjak, 5. septem- ber 2015 9953/1 Slovenija: Ljubljana, Štepanjsko naselje-Nove Fužine. Območje MOL: 118. Leg.: Aljaž Jakob, 9. september 2015 9953/1 Slovenija: Ljubljana, Stožice, BS3, mejice med travniki. Območje MOL: 82. Leg. Nejc Jogan, 3. junij 2015 9953/3 Slovenija: Ljubljana, južno od TC Rudnik. Območje MOL: 195. Leg.: Tinka Bačič & Simona Strgulc Krajšek, 1. september 2015 9953/3 Slovenija: Ljubljana, opuščena nasipališča TC Rudnik. Območje MOL: 183. Leg.: Nejc Jogan, 12. oktober 2015 9953/3 Slovenija: Ljubljana, Rakova Jelša- Ilovica. Območje MOL: 166. Leg.: Nejc Jogan, 1. oktober 2015 9953/3 Slovenija: Ljubljana, Sibirija-Rakova Jelša. Območje MOL: 165. Leg.: Nejc Jogan, 26. julij 2015 9953/3 Slovenija: Ljubljana, Sp. Hrušica, vznožje Golovca. Območje MOL: 152. Leg.: Nejc Jogan, 11. oktober 2015 9953/3 Slovenija: Ljubljana, Trnovo-Galjevica, ob Hladnikovi. Območje MOL: 149. Leg. Filip Küzmič, 11. junij 2015 9953/3 Slovenija: Ljubljana, Zgornja Hrušica, opuščena drevesnica podjetja Rast. Območje MOL: 135. Leg. Aljaž Jakob, 18. junij 2015 18 Acta Biologica Slovenica, 58 (2), 2015 Vrsta je zaenkrat znana iz Ljubljanske kot- line in Gorenjske (Sl. 4), iz 8 MTB kvadrantov. Slika 5 prikazuje natančnejšo razširjenost vrste v Ljubljani (območje MOL znotraj obvoznice). Prepričani smo, da je nahajališč še mnogo več, a je pojavljanje prezrto. Vrsto pričakujemo vzdolž rek, npr. Save, Ljubljanice, in različnih mokriščnih habitatov v bližini naselij, kjer vrsto sadijo v okrasne namene. Na vrsto je treba biti še posebej pozoren na zavarovanih območjih, kjer jo je v začetni fazi invazije mogoče brez velikih stroškov uspešno odstraniti in s tem preprečiti ogrožanje avtohtonih mokriščnih vrst. Načini širjenja vrste, njena invazivnost, načini odstranjevanja Vrsta se širi vegetativno s pritlikami (kar nam pove tudi njegov sinonim C. stolonifera Michx.), s semeni pa se razširja s pomočjo ptičev. Na terenu smo opažali, da divjerastoči grmi uspevajo precej razmaknjeno eden od drugega, tako da ne gre le za poleganje in zakoreninjanje poganjkov. Kelly (1990) piše, naj bi se grm na Irskem razširjal le vegetativno, a ne le s poleganjem poganjkov in nji- hovim vkoreninjanjem (spontanim grebeničenjem), pač pa tudi z raznašanjem odlomljenih vej, ki se lahko vkoreninijo na oddaljenem mestu. Menimo, da se pri nas grm razširja prav na slednji način. Sajene grme redno obrezujejo, odrezane kose vej pa lahko zanese tudi v bližnje naravne habitate, kjer se nekateri uspejo vkoreniniti. Grme sivega drena najdemo pri nas tudi v podrasti živih mej, kar pa bi morda lahko nakazovalo, da se grm vendarle širi tudi s semeni, s pomočjo ptičev, ki se radi zadržujejo v gostem grmovju. Zanesljive potrditve o razširjanju s semeni v Sloveniji zaen- krat nimamo. Tako v njeni domovini kot tudi na tujem vrsti ustrezajo težka, vlažna, namočena oz. zamočvirjena tla, vrsta se zato pojavlja podivjano v različnih tipih obrežne vegetacije, v močvirjih, jelševih grezih in v podobnih vlagoljubnih združbah. Na takšnih rastiščih sivi dren s svojim agresivnim vegetativnim razraščanjem in senčenjem škodi domorodnim vrstam in s tem predstavlja grožnjo biodiverziteti teh habitatnih tipov, ki so naravo- varstveno pomembni, saj v njih najdemo mnoge ogrožene in ranljive vlagoljubne vrste. Iz tega razloga moramo sivi dren pri nas obravnavati kot invazivno vrsto na začetku širjenja in načrtovati ukrepe za odstranjevanje. Zavedamo se, da bo težko o tem prepričati javnost, saj vrsta človeku ni neposredno škodljiva, tako kot sta na primer pelinolistna žvrklja ali orjaški dežen. Grme sivega drena bi bilo treba mehansko odstranjevati iz naravnih združb, saj uporaba her- bicidov ob vodah ni dopustna. Pomemben ukrep proti širjenju pa je previdno ravnanje z odrezanimi vejami sivega drena. Odložene morajo biti na ustrezno mesto, po možnosti uničene in vsekakor ne smejo biti puščene vnemar. Summary The Red osier dogwood (Cornus sericea L.) is a popular North American ornamental shrub, which in Slovenia is often planted in parks and gardens. Subspontaneous occurrence of the species in Slovenia is known for two decades, but only in recent years, we can reliable characterize it as an invasive species. The purpose of this article is to point out Cornus sericea as a new invasive species in Slovenian flora, to present its distributional data and discuss its invasiveness. According to two major international web portals on alien species (DAISIE: http://www. europe-aliens.org, NOBANIS: www.nobanis.org), the Red osier dogwood occurs practically through- out Western, Central and Northern Europe, with the exception of southern areas. It is considered invasive in Belgium, Latvia, Norway, Poland, potentially invasive in the Netherlands and Ireland, naturalized in the Czech Republic, Germany, in the European part of Russia, the UK and Switzerland, while in France, Germany, Austria, Hungary and the Czech Republic, there is no accurate data on the status of this alien species. To collect distributional data for Slovenia, we used four sources: Herbarium LJU in the De- partment of Biology at the Biotechnical Faculty (University of Ljubljana), data, collected during the systematical mapping the flora of Ljubljana in 2015, our own field observations, and the data from the biodiversity database of the Centre for Cartography of Fauna and Flora (CKFF). The distribution map was prepared and an updated determination key for Cornus in Slovenia was compiled. 19Bačič et al.: Sivi dren - nova invazivna vrsta v flori Slovenije Slika 4: Znana razširjenost sivega drena (Cornus sericea) v Sloveniji. Figure 4: Known distribution of Red osier dogwood (Cornus sericea) in Slovenia. Slika 5: Znana razširjenost vrste v Ljubljani. Figure 5: Known distribution of Red osier dogwood (Cornus sericea) in Ljubljana. 20 Acta Biologica Slovenica, 58 (2), 2015 Our results show, that the species is widely distributed in the Ljubljana basin and is also known from two localities in Gorenjska region. The spe- cies prefers heavy, wet, marshy ground, so it can be found in various types of riparian vegetation, marshes and alder stands. The species is expected along the rivers, for example Sava, Ljubljanica and in various wetland habitats in the vicinity of settle- ments, where the shrub is planted for ornamental purposes. In our opinion, the Red osier dogwood is much more widespread than shown by the map, but its occurrence has probably been overlooked. The species spreads vegetatively by rooting of horizontal branches and its seeds are disseminated through birds. Humans also accidentally take part in the spread of the species: when ornamental shrubs are pruned, the cut branches are dispersed in the nearby natural habitats, where some of the branches manage to grow roots. The dogwood’s aggressive vegetative tillering and shading other plants can have damaging effect on the native vegetation. To limit the invasion of the Red osier dogwood, timely measures should be taken. Shrubs should be removed from natural communities mechani- cally, since the use of herbicides in wet habitats is unacceptable. As an important measure against the dispersal of the plants, we suggest carefull handling with cut branches of the ornamental shrubs. They should be destroyed or deposited ad- equately. Special attention should be paid towards presence of the Red osier dogwood in protected areas, from where in the early stages of invasion can be successfully removed without large costs. Zahvala Avtorji se zahvaljujemo vsem študentom, ki so pomagali kartirati floro Mestne občine Ljubljana v letu 2015, MOL, ki se je odločila podpreti projekt »Popis flore znotraj obvoznice mesta Ljubljana s poudarkom na tujerodnih invazivnih rastlinskih vrstah«, kot tudi botanikom, ki so prispevali svoje herbarijske pole v herbarij LJU. Zahvala velja tudi dr. Igorju Dakskoblerju za koristne informacije pri zbiranju podatkov pri pripravi tega članka. Viri Charles-Dominique, T., Edelin, C., Bouchard, A., 2010. Architectural strategies of Cornus sericea, a native but invasive shrub of southern Quebec, Canada, under an open or a closed canopy. Annals of Botany, 105 (2), 205–220. Fischer, M.A., Oswald, K., Adler, W., 2008. Exkursionsflora. Österreich, Liechtenstein, Suedtirol, 3. Aufl. Biologiezentrum der Oberoesterreichischen Landesmuseen, Linz, 1391 pp. Fitschen, J., 2002. Gehölzflora, 11. Aufl. Quelle Meyer Verlag, Wiebelsheim, 902 pp. Holub, J., 1997. Cornaceae Dumort. - drinovite. In: B. Slavik (ed.): Kvetena Česke Republiky 5. Academia, Praha, pp. 252-265 Jogan, N., Bačič, M., Strgulc Krajšek, S. (eds.), 2012. Neobiota Slovenije, končno poročilo projekta. Oddelek za biologijo BF UL, Ljubljana, 272 pp. Jogan, N., Bačič, T., Frajman, B., Leskovar, I., Naglič, D., Podobnik, A., Rozman, B., Strgulc Krajšek, S., Trčak, B., 2001. Gradivo za Atlas flore Slovenije. Center za kartografijo favne in flore, Miklavž na Dravskem polju, 443 pp. Kelly, D.L., 1990. Cornus sericea L. in Ireland: an incipient weed of wetlands. Watsonia, 18, 33-36. Lauber, K., Wagner, G. 2007. Flora Helvetica. Verlag Paul Haupt, Bern-Stuttgart-Wien, pp. 686 - 687. Martinčič, A., 2007. Cornaceae - Drenovke. In: Martinčič, A., Wraber, T., Jogan, N. et al.: Mala flora Slovenije, ključ za določanje praprotnic in semenk 4., dopolnjena in spremenjena izd. Tehniška založba Slovenije, Ljubljana, pp. 482 - 483. Stace, C.A., 1991. New Flora of the British Isles. CUP, Cambridge, 1226 pp. Tison, J.-M., de Foucault, B. (eds.), 2014: Flora Gallica. Biotope Editions, Meze, 1196 pp. USDA, NRCS., 2006. Plant Guide. Redosier dogwood Cornus sericea L. (http://plants.usda.gov/ plantguide/pdf/cs_cose16.pdf, datum dostopa: 2. 10. 2015) 21Bačič et al.: Sivi dren - nova invazivna vrsta v flori Slovenije 21Bačič al.: Sivi dren - nova invazivna vrsta v flori Slovenije USDA, NRCS., 2015. The PLANTS Database. National Plant Data Team, Greensboro, NC 27401- 4901 USA. (http://plants.usda.gov, datum dostopa: 2. 10. 2015) Walsh D., 2012. Bloomingdale council funds PRC work on Bailey Brook. (http://www.northjersey.com/ news/boro-decides-to-fund-prc-bank-stabilization-project-1.844353, datum dostopa: 2. 10. 2015) Walter, J., Essl, F., Niklfeld, H. Fischer, M.A., 2002. Pflanzen und Pilze. In: F. Essl, W. Rabitsch (eds.): Neobiota in Oesterreich. Umveltbundesamt, Wien, pp. 46-195. Weber, E. Gut, D., 2004. Assessing the risk of potentially invasive plant species in central Europe. Journal for Nature Conservation, 12 (3), 171–179. Wittenberg, R., Kenis, M., Blick, Th., Haenggi, A., Gassmann, A., Weber, E., 2006. Invasive alien species in Switzerland Federal Office for the Environment FOEN, 155 pp. Presence and abundance of macrophytes in Lake Slivniško jezero Prisotnost in pogostost makrofitov v Slivniškem jezeru Aleksandra Golob, Alenka Gaberščik, Mateja Germ Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia *correspondence: mateja.germ@bf.uni-lj.si Abstract: Macrophytes are an important part of the lake biota. They are also bioindicators of environmental conditions. The goal of the present research was to determine species richness and abundance as well as longitudinal and depth distribution of macrophytes in Lake Slivniško jezero. A survey of macrophytes in the whole lake littoral was made, the minimum and maximum depth of taxa were measured and their abundance was estimated as well. We also assessed selected environmental parameters of the littoral and catchment. 22 macrophyte taxa: 9 emergent, 9 submerged and 4 natant macrophytes were determined. The most frequent species were Phragmites australis, Najas marina, Myriophyllum spicatum and Potamogeton nodosus. The maximum depth of colonisation was achieved by Nymphaea alba (to 2.4 m), while M. spicatum and N. marina grown to the depth of 1.9 m. According to CCA the distribution of macro- phytes was significantly influenced by exposition, bottom slope, sediment type, slope of riparian zone, macroalgae abundance, type of riparian vegetation, completeness of riparian zone, land-use beyond the riparian zone and water turbidity. Key words: macrophytes, Lake Slivniško jezero, species composition, environ- mental assessment Izvleček: Makrofiti igrajo pomembno vlogo pri kroženju snovi in pretoku ener- gije v jezerskih ekosistemih. Že dolgo je znano, da so pokazatelj stanja okolja, kjer uspevajo. Cilj raziskave je bil ugotoviti vrstno zastopanost, razporeditev, pogostost in globino uspevanja makrofitov v litoralu Slivniškega jezera. Na posameznih odsekih smo ocenili določene značilnosti litorala in zaledja Slivniškega jezera. Popisali smo 22 taksonov: 9 emerznih, 9 submerznih in 4 natantne. Najpogosteje zastopane vrste so bile Phragmites australis, Najas marina, Myriophyllum spicatum in Potamogeton nodosus. Najglobje je uspevala vrsta Nymphaea alba (povprečno do 2,4 m), do globine 1,9 m sta rastli tudi vrsti M. spicatum in N. marina. CCA analiza je pokazala, da na razporeditev makrofitov statistično značilno vplivajo naslednji okoljski dejavniki: osončenost, naklon dna, tip sedimenta, naklon brega nad vodo, prisotnost makroalg, vegetacija obrežnega pasu, sklenjenost z lesnatimi ali močvirskimi rastlinami poraslega obrežnega pasu, izraba tal v zaledju in kalnost vode. Ključne besede: makrofiti, Slivniško jezero, okoljska ocena, vrstna sestava ACTA BIOLOGICA SLOVENICA LJUBLJANA 2015 Vol. 58, [t. 2: 23–34 24 Acta Biologica Slovenica, 58 (2), 2015 Introduction Macrophytes present a base of aquatic food- chains and services in freshwater ecosystems (Scheffer and Jeppesen 2007, Smith 2011). Their basic structural and physiological characteristics are in accordance with the ecological conditions and resources of the aquatic environment (Vukov et al. 2012). Aquatic macrophytes also act as im- portant bioindicators of environmental conditions and long-term ecological changes in water quality (Solimini et al. 2006, Pall and Moser 2009, Dar et al. 2014). It is known that macrophytes can be successfully used as indicators of changes in freshwaters at narrow and wider scales, as they integrate temporal, spatial, chemical, physical and biological qualities of the ecosystem (Balaži et al. 2014). Macrophyte communities in aquatic habitats are characterized by a high spatial and temporal variation of species composition, rich- ness and environmental conditions (Hrivnak et al. 2012). Due to the lower self-purification ability the standing inland waters are more vulnerable to pollution as running waters. The state of each lake or reservoir depends on the hydrological and morphological characteristics, especially on the input of various substances (Remec Rekar 2003). Water storage and flood protection reservoirs have been built worldwide for at least 4000 years in countries without large water bodies (Krolova et al. 2013). Artificial water bodies are mostly built for water supply, to increase flood safety, for the hydro-power generation, and for recreation. Res- ervoirs differ from natural lakes however studies show that there are also similarities in the operation of the two types of water bodies (Wetzel 2001). Compared to natural lakes, reservoirs have a low residence time and regular water level fluctua- tions (Alaoui et al. 2013). Problems of reservoirs are communal and industrial waste water and the run-off of nutrients from agricultural areas. Discharge is also very important for the reservoir characteristics and depends on the management of the reservoir. Presence of aquatic macrophytes in a pond alters the physicochemical environment of water (Reddy 1982). On the other hand, water level fluctuations also strongly affect macrophyte growth through erosion and degradation of the substrate due to the washing out of fine particles and nutrient-rich substances (Furey et al. 2004). The aim of our study was (1) to examine the presence and abundance of different macrophyte taxa, as well as their longitudinal and depth distribution in Lake Slivniško jezero, and (2) to describe prevail- ing abiotic habitat characteristics of macrophytes. Materials and methods Study area Lake Slivniško jezero was created by damming the Ločnica watercourse by Tratna in 1976, mainly due to protection against flooding of the town Celje and the need for technological water for Ironworks Štore (Štraus 2006). It is eutrophic reservoir and its great advantage over other reservoirs in central and eastern Slovenia is that it is overgrown with seed plants (ARSO 2005). The lake is located southeast from Šentjur at the altitude of 294 m. It is surrounded by hills Rakitovec, Lipovški hrib, Požgani hrib, Gradišce and damm Tratna. Inflows into the lakes are Ločnica and Tratna streams and outflow is Voglajna River. The surface of the reservoir comprises 0.84 km2, and it accumulates cca 4 million m3 of water. Maximum depth is 14.5 m, while the average is about 4.8 m (ARSO 2005). The coast around the lake is 7.5 km long, and the size of the catchment areas is estimated to 30 km2. The length of the lake is cca 5 km, while its width is from 250 to 500 m (Štraus 2006). Because of the accumulation of silt due to riparian zone overgrown with the macrophytes and due to leaching of soil into the reservoir due to erosion and landslides banks of the lake in recent years, the depth of the reservoir is decreasing (Gobec 2001, Videc 2010). Lake Slivniško jezero is a popular place of sport fishing because it is very rich in fish populations. Fish, found in the lake, are carp, catfish, roach, pike, perch, tench, nose carp, asp, chub and others. As much as 112 species of birds nest at the lake, mostly wild ducks. In 1992, 35 ha wetland area of the lake was protected (Štraus 2006). Trans- parency of the lake, water is low, the average value being around 1.1 m. The survey of macrophytes was carried out in entire littoral (Fig. 1). The surveys were per- formed from a boat using a rake with hooks to sample plants. Macrophyte species abundance 25Golob et al.: Macrophytes of Lake Slivniško jezero was estimated using a five-degree scale: 1 = very rare; 2 = infrequent; 3 = common; 4 = frequent; 5 = abundant, predominant (Kohler 1978, Kohler and Janauer 1995) and the relative abundance as well as abundance indices were calculated fol- lowing the methodology proposed by Pall and Janauer (1995). Environment assessment The environmental condition of the lake was assessed in the same segments as macrophytes. We assessed 6 parameters, each describing 4 levels of environmental quality gradient. The parameters included bank structure, slope of riparian zone, its width and completeness and land-use type beyond the riparian zone. The parameter “Bank structure” includes the following categories: no modifications (1), modifications by wood (2), modifications by stones (3) and modifications by concrete (4). Slope of the littoral can be gentle (1), a medium steep (2), a very steep (3), or rectangular or hardened (4). Vegetation of the riparian zone can be forest or wetland species (1), pioneer woody vegeta- tion (2), herbaceous plants (3) no vegetation (4). Width of the riparian can be more than 30 m (1), between 5 and 30 m (2), less than 5 m an without riparian vegetation (4). The parameter “Complete- ness of the riparian zone” includes the following categories: without disturbances (1), disturbances every 50 m (2), riparian cone strongly disturbed in all surveyed length of the shore (3) riparian cone without woody or wetland vegetation (4). The parameter “Land use” includes the following categories: catchment is overgrown with forests or wetlands (1), mosaics mown meadows/pasture with a little arable land (2), catchment dominated by arable land, individual houses (3), urban area (houses, factories) (4). In addition we examined the slope of the bank above water surface, slope of the littoral bottom, reach exposition, the pres- ence of filamentous algae and water transparency. Statistical analysis Canonical correspondence analysis (CCA) was used to assess the relationship between plant species composition and abundance and environ- mental parameters. Environmental parameters were coded numerically from 1 to 4. Forward selection Fig. 1: Examined segments of Lake Slivniško jezero (source: Dragan Abram). Fig.1. Tloris Slivniškega jezera z označenimi odseki (vir: Dragan Abram). 26 Acta Biologica Slovenica, 58 (2), 2015 Table 1: The list of the macrophytes in Lake Slivniško jezero and their growth forms. Preglednica 1: Seznam v Slivniškem jezeru najdenih makrofitov in njihove rastne oblike. Latin name Abbreviation Growth form Alisma plantago-aquatica L. Ali pla he Caltha palustris L. Cal pal he Ceratophyllum demersum L. Cer dem sp Eleocharis palustris (L.) Roem et Schult Ele pal he Equisetum palustre L. Equ pal he Iris pseudacorus L. Iri pse he Lamprothamnium longifolium Lam lon sa Lemna minor L. Lem min ap Lysimachia nummularia L. Lys num he Mentha aquatica L. Men aqu he Myriophyllum spicatum L. Myr spi sa Najas marina L. Naj mar sa Najas minor All. Naj min sa Nymphaea alba L. Nym alb fl Phragmites australis (Cav.) Trin ex Steud. Phr aus he Potamogeton berchtoldii Fieber. Pot ber sa Potamogeton nodosus Poir. Pot nod fl Potamogeton pectinatus L. Pot pec sa Trapa natans L. Tra nat fl Typha latifolia L. Typ lat he Utricularia australis R. Br. Utr aus sa Utricularia vulgaris L. Utr aus sa Legend: he - helophytes, sp - submerged unrooted macrophytes, sa - submerged rooted macrophytes, ap – natant unrooted macrophytes, fl- natant rooted macrophytes, am - amphibian plants Legenda: he - helofiti, sp - potopljeni neukoreninjeni makrofiti, sa - potopljeni ukoreninjeni makrofiti, ap - plavajoči neukoreninjeni makrofiti, fl- plavajoči, ukoreninjeni makrofiti, am - amfibijske rastline was used to determine the contribution of each parameter to the variance in species composition. The statistical significance of environmental param- eters was tested by the Monte Carlo permutation test. Analyses were performed using Canoco for Windows Version 4.5. Results On the whole littoral of Lake Slivniško jezero we recorded 22 taxa of macrophytes of different growth forms (Table 1). In the most sections we found a high number of macrophytes. A small number of species was determined in the sections where the bank of the water drops sharply and the steepness of the lake bottom is high (segments 2, 4, 6, 82, 83, 84). In sections 51, 52 and 53, we found only one taxa of the macrophyte with high abundance (Phragmites australis). The greatest abundance to the majority of sections was given to species Myriophyllum spicatum, Potamogeton nodosus and Najas marina (Figures 2 and 3). 27Golob et al.: Macrophytes of Lake Slivniško jezero Figure 2: Distribution and abundance of macrophytes in the littoral of Lake Slivniško jezero from the 1st to 96th reach. Slika 2: Razporeditev in pogostost makrofitov v litoralu Slivniškega jezera od 1. do 96. odseka. Figure 3: Relative abundance of macrophytes in Lake Slivniško jezero. Slika 3: Relativna zastopanost makrofitov v Slivniškem jezeru. 0 5 10 15 20 25 Ph r a us Na j m ar My r s pi Po t n od Tra na t Ce r d em Ty p l at Me n a qu Ali pl a Ly s n um Ut r a us Ele pa l Po t b er Iri ps e Ny m alb Na j m in Po t p ec Ut r v ul Eq u p al La m lon Le m mi n Ca l p al RP M (% ) 28 Acta Biologica Slovenica, 58 (2), 2015 The highest relative abundance (RPM) was reached by Phragmites australis, and the lowest by Caltha palustris. High RPM was reached also by Najas marina, Myriophyllum spicatum and Potamogeton nodosus (Figure 3). Myriophyllum spicatum thrived on a larger share of littoral (d = 0.89), followed by Pota- mogeton nodosus (d = 0.74) and Najas marina (d = 0.73) (Figure 4). On about 50% of the length of the littoral we also found species Ceratophyl- lum demersum, Trapa natans and Typha latifolia. Lamprothamnium longifolium, Caltha palustris and Lemna minor had the lowest values of d, which means that they occupied the lowest proportion of the length of the littoral (Fig. 4). Average depth of the macrophytes growth The highest average maximum depth reached Nymphaea alba (2.4 m), which had also the highest average minimum depth of growing (1.6 m). A very wide range of depth of thriving had Myriophyllum spicatum (av. min. depth 0.5 m, av. max. depth 1.9 m), Najas marina (av. min. depth 0.4 m, av. max depth 1. 9 m) and Potamogeton nodosus (av. min. depth 0.4 m, av. max. depth 1.5 m). Helophytes grew on average to the maximum depth to 0.5 m (Phragmites australis). Smaller rooted, sub- merged macrophyte species, such as Potamogeton berchtoldii and P. pectinatus, thrived on average depth from 0.2 m to 0.4 m, and Najas minor even deeper (up to 0.6 m). Submerged rooted species Utricularia australis and U. vulgaris grew to an average depth of 0.2 m. Environmental assessment of littoral and the catchment of Lake Slivniško jezero The proportion of the littoral, presented by certain status of selected parameter of a wider ecological assessment of the Lake Slivniško jezero is presented in Table 3. A 99% of the length of the lake shore is in natural state. Shore of the lake is mostly with gentle (42.5%) or medium slope (36.9%). At 40.8%, which is approximately 2960 meters long, the riparian zone is covered by forest or wetland plants. 33.2% (2412 m) of riparian zone is grown by pioneer woody vegetation. More than 50 m wide riparian zone with woody or wetland plants extends to 36.9% (2681 m) length of the lake. From 5 to 30 m wide riparian zone with woody or wetland plants extends to 28.6% (2077 m) length of the lake. At 49.9% (3625 m) length of the entire riparian zone with forest or wetland vegetation is 0 0,5 1 Myr spi Pot nod Men aqu Naj mar Cer dem Tra nat Ali pla Typ lat Phr aus Naj min Ele pal Nym alb Lys num Iri pse Pot ber Equ pal Utr aus Lam lon Utr vul Lem min Pot pec Cal pal d Figure 4: Ratio between relative abundance of single macrophyte per littoral reaches with this species and relative abundance of single macrophyte species per whole littoral length (d) in Lake Slivniško jezero. Slika 4: Razmerje med relativno zastopanostjo posa- mezne vrste makrofitov v odsekih z vrsto in njeno relativno zastopanostjo glede na vse odseke (d) v Slivniškem jezeru. 29Golob et al.: Macrophytes of Lake Slivniško jezero complete without disturbances. 53.3% of the land beyond the riparian zone overgrown with forests or wetlands. At 31.5%, the mosaics mown meadows/pasture with a little arable land is spread, 15.2% is agricultural land, where there is arable land and few individual houses. Table 3: The proportion of different quality classes (%) of the environmetal parameters along the entire littoral in Lake Slivniško jezero. Tabela 3: Delež litorala, ki predstavlja posamezne kakovostne razrede določenega ekološkega dejavnika Slivniškega jezera. Parameter / Quality class % of the whole length of the littoral belt 1 2 3 4 Bank structure 99.0 0.3 0.7 0 The slope of riparian zone 42.5 36.9 19 1.6 Vegetation of the riparian zone 40.8 33.2 24.8 1.2 Width of the riparian zone 36.9 28.6 12.3 22.2 -0.4 1.0 -0 .8 1. 0 RZ_wid Sed Trans Bank_sl Exp Bot_sl Algae 1 2 3 45 6 7 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2728 29 30 31 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 5253 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 7273 74 75 76 77 78 79 80 81 82 83 84 85 86 87 8889 9091 92 93 94 95 96 Figure 5: CCA ordination plot showing the relationship between environmental parameters and locations of littoral in Lake Slivniško jezero. Slika 5: CCA ordinacijski diagram, ki prikazuje razmerje med okoljskimi parametri in lokacijami litorala v Slivniškem jezeru. 30 Acta Biologica Slovenica, 58 (2), 2015 -0.4 1.0 -0 .6 1. 0 Myr spiPot nod Men aqu Naj mar Cer dem Tra nat Ali pla Typ lat Phr ausNaj min Ele pal Nym alb Lys num Iri pse Pot ber Equ pal Utr aus Lam lon Utr vul Lem min Pot pec Cal pal RZ_wid Sed Trans Bank_sl Exp Bot_sl Algae Figure 6: CCA ordination plot showing the relationship between environmental parameters and the distribution and abundance of macrophytes in Lake Slivniško jezero. Slika 6: CCA ordinacijski diagram, ki prikazuje odnos med okoljskimi parametri ter razširjenostjo in številčnosti makrofitov v Slivniškem jezeru. Completeness of the riparian zone 49.9 15.4 12.5 22.2 Land use 53.3 31.5 15.2 0 The effect of environmental factors on the distribution of macrophytes Table 4: The percentage of variance, explained by each environmental parameter, using canonical correspond- ence analysis (CCA). Tabela 4: Odstotek pojasnjene variance s posameznimi okoljskimi parametri s pomočjo kanonične korespondenčne analize (CCA). Environmental parameter Abbreviation Explained variance p value Sediment Sed 7. 5 0.001 Presence of filamentous algae Algae 3.0 0.008 The slope of the littoral bottom Bot_sl 3.4 0.001 Exposition Exp 2.6 0.003 Transparency Trans 3.4 0.024 The slope of the bank Bank_sl 0.4 0.009 Width of riparian zone RZ_wid 0.2 0.005 31Golob et al.: Macrophytes of Lake Slivniško jezero Fig. 5 shows the extent to which selected environmental factors explain the variability of the occurrence and distribution of taxa in Lake Slivniško jezero while Fig. 6 shows the locations in relation to quality gradients of environmental parameters. The proportion of explained variance of species presence and abundance is presented in the Table 4. Environmental factors with the greatest impact on the presence and abundance of macrophyte were type of the sediment, the pres- ence of filamentous algae, the slope of the bottom, exposition and water transparency. In addition, the width of riparian zone and the slope of the bank in littoral also had an impact on the presence and abundance of macrophytes. The taxa that were grouped in the plot occurred at sites with similar environmental conditions. The majority of spe- cies were distributed around the center therefore they occupied moderate values of environmental parameters. Potamogeton pectinatus, Utricularia vulgaris and Lamprothamnium longifolium thrived better in places where riparian zone with woody or wetland vegetation was disturbed, while Nym- phaea alba grew in places with complete riparian vegetation without disturbances. Lemna minor occurred more often in places overgrown with dense mass of filamentous algae. Discussion In Lake Slivniško jezero 22 species of mac- rophytes were found, namely nine species of submerged macrophytes, four natant species and nine species of emergent plants. From emergent macrophytes Phragmites aus- tralis was dominated regarding relative abundance (Fig. 3). It grew mainly on the eastern part of the lake. Reed stands are among the most productive stands filtering nutrients and other substances before they reach the lake water or sediment (Wetzel 2001). Typha latifolia was found in areas not exposed to the winds (Hutchinson 1975). We found this species in places where the shoreline was protected by woody vegetation, or in places with steep bank. The species Najas marina and Myriophillum spicatum achieved the highest relative abundance among submerged and natant species (Fig. 4). Both species occurred evenly throughout the littoral of the lake, and were found in more than 73% of the lake litoral. Unlike most macrophytes Najas marina successfully colonizes soft and unstable substrates (Germ et al. 2008). Soft, sometimes muddy bottom of the Lake Slivniško jezero provides favorable conditions for the growth of this species. M. spi- catum is a very competitive and successful species and in many lakes it forms monospecific stands (Mazej and Germ 2008). It grows in turbid water, because it has low light compensation point and has the ability to utilize bicarbonate. It often reaches high biomass in waters rich with nitrates and in sites where the sediment is rich in organic matter (Ali and Soltan 2006). These conditions prevailed also in Lake Slivniško jezero. The coexistence of these two species is usually in favour of M. spicatum over N. marina (Ali and Soltan 2006). In Lake Slivniško jezero the two species are the most common and co-exist in most segments. On the other hand Mazej and Germ (2008) report that N. marina replaced the previously dense stands of M. spicatum and Potamogeton crispus in the lake Velenjsko jezero within a few years. The results suggest that the success of a species in a given aquatic ecosystem depends on the physical, chemical and geo-morphological characteristics of the water and the life strategies of the single species (Mazej and Germ 2008). High relative abundance was also observed in Potamogeton nodosus (Fig. 4), which is typical species for eutrophic water bodies (Preston 2003). Two representatives of the genus Potamogeton in Lake Slivniško jezero were also found, namely P. berchtoldii and P. pectinatus. (Figs. 2 and 3). Both can tolerate high concentrations of phosphorus and nitrogen (Germ et al. 2008). Lehmann et al. (1997) suggest that the P. pectinatus grows better in shallow water bodies with muddy, organically rich sediment, which has been shown also in our research. In the stands of M. spicatum, N. marina and P. nodosus we often find Ceratophyllum demersum, which grows well in turbid water with a lot of nutrients and where the flow is slow (Šraj-Kržič 2007). About twenty years ago Trapa natans ex- panded to the whole lake (Gobec 2001). Local policy managers regulated the water level and in a few years its abundance declined. Species was evenly distributed throughout the lake and did not form large monospecific stands. 32 Acta Biologica Slovenica, 58 (2), 2015 During our study, we found two carnivorous species Utricularia australis and U. vulgaris. The appearance of these two species reflected occa- sional nutrient depletion in the water column due to the intensive growth of other plant species. Both species were found mainly among dense stands of other macrophytes where carnivory can bring competitive advantage, due to the low amount of nutrients in the water column (Horvat et al. 2008). Depth distribution of macrophytes Zonation of macrophytes in Lake Slivniško jezero reflects the differences between the species. Emergent species grow on average to a depth of 25 cm. An exception is Phragmites australis that colonized littoral to the depth about 45 cm. The zone of submerged rooted species such as P. pectinatus, P. berchtoldii, Najas minor mixed with individual specimens of C. demersum, M. spicatum, N. marina and P. nodosus reached the depth of thriving at about 50 cm. On deeper part of the litoral thrived frequently represented species in Lake Slivniško jezero namely M. spicatum, N. marina and P. nodosus. Average maximum depth of thriving of their distribution was up to 2 m. Some specimens of M. spicatum and N. marina were found at a depth of 3 m, N. alba even at 4 m. However in general, the water transparency in Lake Slivniško jezero was very low, preventing a colonization of macrophytes to the deeper parts of the lake. The maximum depth of the growth of macrophytes is mostly consequence of the water transparency (Wetzel 2001). The impact of environmental factors on macrophytes in Lake Slivniško jezero CCA analysis showed that the distribution of macrophytes was significantly affected by the following environmental factors: insolation, the slope of the bottom, the type of the sediment, the slope of riparian zone, the presence of macroalgae in water and vegetation in the riparian zone, the completeness of woody or wetland vegetation in riparian zone, the land use beyond the riparian zone and the turbidity of water (Fig. 6). Bank structure and width of woody or wetland vegeta- tion, did not significantly affect the distribution of macrophytes. In their macrophytes study Balaži et al. (2014) found out that water temperature, dissolved oxygen, chemical oxygen demand, and phosphorus were the main environmental vari- ables influencing the composition of macrophyte assemblages. Hrivnak et al. (2012) also studied the effect of environmental variables on species richness of macrophytes in 39 Slovak streams. The strongest effects was exerted by the portion of artificial banks, shading by woody vegetation, flexuosity of stream course and the portion of natural land cover in the contact zone of the stream. Conclusions The littoral of the Lake Slivniško jezero was overgrown with aquatic plants. Reach and dense stand of plants in Lake Slivniško jezero is great ad- vantage over other reservoirs in central and eastern Slovenia since the plants take up a large amount of nutrients. The highest relative abundance in Lake Slivniško jezero was reached by Phragmites australis, Myriophyllum spicatum, Najas marina and Potamogeton nodosus. The latter three were more or less evenly distributed throughout littoral. P. australis formed a huge stands at the eastern part of the lake, in other places it occurred only in small patches. The maximum average depth of macrophytes distribution in Lake Slivniško jezero was limited to about 2 m, due the low transparency of lake water. Distribution of macrophytes was significantly affected by insolation, the slope of the bottom, the type of the sediment, the slope of riparian zone, the presence of macroalgae, the type of vegetation in the riparian zone, the completeness of woody or wetland vegetation in riparian zone, the land use beyond the riparian zone and the turbidity of water. Povzetek Slivniško jezero je nastalo z zajezitvijo Ločnice pri Tratni leta 1976 zaradi zaščite Celja pred poplavami in za potrebe po tehnološki vodi za Železarno Štore. Na podlagi OECD kriterijev je jezero uvrščeno med evtrofne zadrževalnike. Namen raziskave je bil ugotoviti, kateri makrofiti uspevajo v Slivniškem jezeru in kakšna je njihova pogostost in njihova razporeditev po 33Golob et al.: Macrophytes of Lake Slivniško jezero celotnem litoralu jezera. Ugotavljali smo tudi, kateri okoljski dejavniki vplivajo na pojavljanje, pogostost in razporeditev makrofitov v jezeru. Litoral jezera smo razdelili na 96 odsekov na podlagi razlik v vrstni sestavi ali na podlagi sprememb okoljskih dejavnikov. Na posameznih odsekih, kjer smo popisali prisotnost in pogostost vrst, smo ocenjevali tudi okoljske dejavnike. Slivniško jezero je na večinskem delu litorala močno poraščeno z vodnimi rastlinami. Našli smo 22 taksonov makrofitov od tega 9 submerznih vrst, 9 emerznih vrst in 4 natantne vrste. Največjo relativno zastopanost so dosegle vrste Phragmites australis, Myriophyllum spicatum, Najas marina in Potamogeton nodosus. M. spicatum, N. marina in P. nodosusso poleg vrste Nymphaea alba dosegle tudi največjo globino uspevanja. CCA analiza je pokazala, da osončenost, naklon dna, vrsta sedimenta, naklon brega nad vodo, prisotnost makroalg, vegetacija obrežnega pasu, sklenjenost z lesnatimi ali močvirskimi rastlinami poraščenega obrežnega pasu, izraba tal v zaledju in kalnost vode, statistično značilno vplivajo na pojavljanje makrofitov v Slivniškem jezeru. Acknowledgments This research was financed by the Ministry of Education, Science and Sport, Republic of Slovenia, through the programme “Biology of plants” (P1-0212). References Alaoui, K.S., Galoux, D., Rosillon, F., 2014. Macrophytes: Limitations of using themto assess reservoir status accordingto the water framework directive. International Journal of Water Sciences, 3, 1-11. Ali, M.M., Soltan, M.A., 2006. Expansion of Myriophyllum spicatum (Eurasian water milfoil) into Lake Nasser, Egipt: Invasive capacity and habitat stability. Aquatic Botany, 84, 239-244. ARSO (Environmental Agency, Agencija Republike Slovenije za okolje), 2005. Poročilo o kakovosti jezer v letu 2005. Ljubljana, Ministrstvo za okolje in prostor http://www.arso.gov.si/vode/jezera/ jezera_2005.pdf [9.12.2010] Balaži, P., Hrivn, R., Oťheová, H., 2014. The relationship between macrophyte assemblages and se- lected environmental variables in reservoirs of Slovakia examined for the purpose of ecological assessment. Polish Journal of Ecology, 62(3), 541-556. Dar, N.A., Pandit, A.K., Ganai, B.A., 2014. Factors affecting the distribution patterns of aquatic macrophytes. Limnological Review, 14Fa,2ct: o7r5s -a8f1fe. Furey, P.C., Nordin, R.N., Mazumder, A., 2004. Water level drawdown affects physical and bioge- ochemical properties of littoral sediments of a reservoir and a natural lake. Lake and Reservoir Management, 20, 280-295. Germ, M., Urbanc-Berčič, O., Janauer, G.A., Filzmoser, P., Exler, N., Gaberščik, A., 2008. Macrophyte distribution pattern in the Krka River – the role of habitat quality. Large Rivers, 18 (1-2), 145-155. Gobec, K., 2001. Ocena onesnaženosti Slivniškega jezera s trent biotskim indeksom. Raziskovalna naloga, Šentjur, Šolski center Šentjur: 22 pp. Horvat, B., Urbanc-Berčič, O., Gaberščik, A., 2008. Water Quality and Macrophyte Community Changes in the Komarnik Accumulation Lake (Slovenia). In: Vymazal J. (ed.): Wastewater Tre- atment, Plant Dynamics and Management in Constructed in Natural Wetlands. Springer science + Business Media, pp. 13-22. Hrivnák, R., Oťheová, H., Gömöry, D., Valachovič, M., Paľove-Balang, P., 2012. Environmental effects on species richness of macrophytes in Slovak streams. Central European Journal of Biology, 7(6), 1030-1036. http://doi.org/10.2478/s11535-012-0090-8 Hutchinson, G.E., 1975. A threatise on Lymnology. Volume III. Limnological Botany. John Wiley & Sons Inc. New Yourk, London, Sydney, Toronto, 660 pp. Kohler, A., 1978. Methoden der Kartierung von Flora und Vegetation von Süßwasserbiotopen. Lan- dschaft + Stadt, 10 (2), 73-85. 34 Acta Biologica Slovenica, 58 (2), 2015 Kohler, A., Janauer, G.A., 1995. Zur Methodic der Untersuchung von aquatischen Makrophyten in Fließgewässern, In: Steinberg Ch., Bernhardt H., Klapper H. (eds.): Handbuch Angewandte Limnologie, Ecomed Verlag, Lansberg/Lech. Krolová, M., Čížková, H., Hejzlar, J., Poláková, S., 2013. Response of littoral macrophytes to water level fluctuations in a storage reservoir. Knowledge and Management of Aquatic Ecosystems, (408), 1–21. http://doi.org/10.1051/kmae/2013042 Lehmann, A., Castella, E., Lachavanne, J.B., 1997. Morphological traits and spatial heterogeneity of aquatic plants along sediment and depth gradients, Lake Geneva, Switzerland. Aquatic Botany, 55, 281-299. Mazej, Z., Germ, M., 2008. Competitive advantages of Najas marina L. in a process of littoral colo- nization in the lake Velenjsko jezero (Slovenija). Acta Biologica Slovenica, 51 (1), 13-20. Pall, K., Janauer, G.A., 1995. Die Makrophytenvegetation von Flußstauen am Beispiel der Donau zwischen Fluß-km 2552,0 und 2511,8 in der Bundesrepublik Deutschland. Arch. Hydrobiol., Suppl. 101, Large Rivers 9 (2), 91-109. Pall, K., Moser, V., 2009. Austrian Index Macrophytes (AIM-Module 1) for lakes: A Water Framework Directive compliant assessment system for lakes using aquatic macrophytes. Hydrobiologia, 633, 83-104. http://doi.org/10.1007/s10750-009-9871-0 Reddy, K.R., 1983. Fate of nitrogen and phosphorus in a waste-water retention reservoir contai- ning aquatic macrophytes. Journal of Environment Quality, 12(1), 137. http://doi.org/10.2134/ jeq1983.00472425001200010025x Remec-Rekar, Š., 2003. Jezera. In: Uhan J., Bat M. (eds.): Vodno Bogastvo Slovenije. Agencija Re- publike Slovenije za okolje. Scheffer, M., Jeppesen, E., 2007. Regime shifts in shallow lakes. Ecosystems, 10, 1-3. Smith, J.E., 2011. Algae, In: Simberloff D., Rejmanek M. (eds.): Encyclopedia of Biological Invasions, University of California Press, Los Angeles, pp. 11-15. Solimini, A.G., Cardoso, A.C., Heiskanen, A., 2006. Indicators and Method for Ecological Status Assessment under Water Framework Development, European Commission: Joint Reseach Center, EUR22314EN, Luxemburg. Šraj-Kržič, N., Germ, M., Urbanc-Berčič, O., Kuhar, U., Janauer, G.A., Gaberščik, A., 2007. The quality of the aquatic environment and macrophytes of karstic watercourses. Plant Ecology, 192, 107-118. Štraus, M., 2006. 50 let Gospodarjenja z Voglajnskim Ribiškim Okolišem. Šentjur pri Celju, Ribiška Družina Voglajna: 44 pp. Videc, D., 2010. NIVO, Gradnje in ekologija d.d., Celje Vukov, D., Igić, R., Anačkov, G., Janauer, A.G., 2004. The Aquatic macrophytes of “Mali Derdap” (Danube, rkm 1039-999). Internat. Assoc. Danube Res. 35, 421-426. Wetzel, R., 2001. Lymnology: Lake and River Ecology. 3 rd edition. Academic Press, San Diego, San Francisco, New Yourk, London, Sydney, Tokyo, 1006 pp. Phytosociological description of hay meadows with dominating Trisetum flavescens in the lower montane belt of north-western and western Slovenia Fitocenološka oznaka travnikov s prevladujočo vrsto Trisetum flavescens v spodnjem gorskem pasu severozahodne in zahodne Slovenije Igor Dakskoblera*, Andrej Seliškarb aInstitute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Regional unit Tolmin, Brunov drevored 13, SI-5220 Tolmin, Biotechnical Faculty, University of Ljubljana, Department of Forestry and Renewable Forest Resources, Večna pot 83, SI-1000 Ljubljana bGrobeljska cesta 6 b, SI-1234 Mengeš *correspondence: igor.dakskobler@zrc-sazu.si Abstract: We conducted a phytosociological study into hay meadows on former fields on original sites of beech forests form the alliance Aremonio-Fagion in the lower montane belt of the northwestern and western Slovenia (southern Julian Alps, northern part of the Dinaric Alps) and compared them to similar, previously described meadows in Slovenia and northwestern Italy. Based on this comparison they are classified into the new association Rhinantho freynii-Trisetetum flavescentis and new habitat type, southeastern-Alpine-northern-Illyrian lower montane hay meadows – 38.239-S1. Key words: secondary grasslands, synsystematics, Trisetum flavescens, Ar- rhenatherion, Illyrian floral province, Slovenia Izvleček: Fitocenološko smo preučili travnike na nekdanjih njivah na izvornih rastiščih bukovih gozdov iz zveze Aremonio-Fagion v spodnjem gorskem pasu seve- rozahodne in zahodne Slovenije (južne Julijske Alpe, severni del Dinarskega gorstva) in jih primerjali s podobnimi že opisanimi travniki v Sloveniji in severozahodni Italiji. Na podlagi te primerjave jih uvrščamo v novo asociacijo Rhinantho freynii-Trisetetum flavescentis in v nov habitatni tip jugovzhodnoalpski-severnoilirski spodnjegorski gojeni travniki – 38.239-S1. Ključne besede: drugotna travišča, sinsistematika, Trisetum flavescens, Arrhena- therion, Ilirska florna provinca, Slovenija Introduction Phytosociology of meadows with dominant Trisetum flavescens in the submontane and mon- tane belt in Slovenia was studied several years ago by Petras Sackl et al. (2012) who classified these meadows into two associations: Astrantio- Trisetetum Knapp et Knapp ex Oberdorfer 1957 ACTA BIOLOGICA SLOVENICA LJUBLJANA 2015 Vol. 58, [t. 2: 35–60 36 Acta Biologica Slovenica, 58 (2), 2015 and Pastinaco-Arrhenatheretum Passarge 1964. Similar meadows in Friuli Venezia Giulia are classified into the syntaxon Centaureo carniolicae- Arrhenatheretum Oberdorfer 1964 corr. Poldini et Oriolo 1994 f. montana Poldini et Oriolo 1994 (Poldini and Oriolo 1994). When mapping the habitat types in the Spodnja Dolina in Bohinj be- tween Bitnje and Ribčev Laz in 2014 we classified the meadows with dominant Trisetum flavescens as habitat type 38.31 (central-European montane hay meadows), but we found this classification to be inadequate. In the following, 2015, we made a phytosociological inventory of these meadows. Similar meadows were observed and recorded also on the Banjšice plateau above the Central Soča Valley and elsewhere in the foothills of the Julian Alps and in the Trnovski Gozd plateau. We arranged these relevés in the phytosociological table and tried to provide a corresponding syn- taxonomical definition for them. We also described a new habitat type 38.239-S1. Methods Phytosociological records of lower montane meadows were made according to the standard Central-European method (Braun-Blanquet 1964) and entered into the FloVegSi database (Seliškar et al. 2003). We transformed the combined cover- abundance values with numerical values (1–9) according to van der Maarel (1979). Numerical comparisons were performed with the SYN-TAX 2000 program package (Podani 2001). The relevés were compared by means of “(unweighted) aver- age linkage method” – UPGMA, using Wishart’s similarity ratio and Jaccard’s index. The nomencla- ture source for the names of vascular plants is the Mala flora Slovenije (Martinčič et al. 2007) and Šilc and Čarni (2012) for the names of syntaxa. In the classification of species into phytosociological groups (groups of diagnostic species) we mainly refer to the Flora alpina (Aeschimann et al. 2004). Geographic coordinates of relevés are determined according to the Slovenian geographic coordinate system D 48 (5th zone) on the Bessel ellipsoid and with Gauss-Krüger projection. Figure 1: Approximate localities of researched hay meadows on the map of Slovenia Slika 1: Približna lokacija popisanih travišč na zemljevidu Slovenije 37Dakskobler, Seliškar: Hay meadows with Trisetum flavescens Short ecological description of the study area Figure 1 shows approximate localities of stud- ied meadows in the southern Julian Alps (Bohinj and the Bača Valley) and in the northern part of the Dinaric Alps (Banjšice, Trnovski Gozd). They are situated in the elevation belt between (335) 500 m and 800 (1030) m, mainly on plateaus or very gentle slopes. Most of them occurred on abandoned fields. Geological bedrock is glacial material (till), limestone, limestone and flysch (or marlstone), rarely dolomite and marlstone, talus and gravel. The soil is shallow to medium deep. The predominating soil types are brown calcareous soil, eutric brown soil and rarely rendzina. The study area has a humid mountain climate. Ogrin (1998) describes it as a temperate-continental climate of western and southern Slovenia. The av- erage annual temperature is 6–8°C (Cegnar 1998) and average annual precipitation is 2000 mm to 2500 mm (Zupančič 1998). The southwestern part of the study area (Banjšice) has a slightly warmer and less moist climate, and the same applies to the Bača Valley. In terms of climate the relevés from Bohinj are comparable with the relevés from higher elevations in the Trnovski Gozd plateau. The studied hay meadows have been cleared in the belt of Illyrian beech forests from the alli- ance Aremonio-Fagion. These are potentially the sites of associations Anemono trifoliae-Fagetum (Bohinj, partly also the Bača Valley), Lamio orvalae-Fagetum, Omphalodo-Fagetum (Trnovski Gozd), Lamio orvalae-Fagetum and Ornithogalo pyrenaici-Fagetum (Banjšice). Results and discussion In Table 1we arranged 24 relevés of hay mead- ows in the lower montane belt of northwestern and western Slovenia. Their species composi- tion was compared to the species composition of stands from the associations Astrantio-Trisetetum, Figure 2: Dendrogram of hay meadows with dominating Arrhenatherum elatius and Trisetum flavescens in Slovenia and NE Italy (RfT – Rhinantho freynii-Trisetetum, CcA – Centaureo carniolicae-Arrhenatheretum, RbA – Ranunculo bulbosi-Arrhenatheretum, AT – Astrantio-Trisetetum, PA – Pastinaco-Arrhenatheretum) – UPGMA, similarity ratio Slika 2: Dendrogram travnikov s prevladujočima vrstama Arrhenatherum elatius in Trisetum flavescens v Sloveniji in severovzhodni Italiji (RfT – Rhinantho freynii-Trisetetum, CcA – Centaureo carniolicae- Arrhenatheretum, RbA – Ranunculo bulbosi-Arrhenatheretum, AT – Astrantio-Trisetetum, PA – Pastinaco-Arrhenatheretum) – UPGMA, similarity ratio 38 Acta Biologica Slovenica, 58 (2), 2015 Pastinaco-Arrhenatheretum (Petras Sackl et al. 2012), Ranuncolo bulbosi-Arrhenatheretum (Čarni 2003) and stands of the montane form of the as- sociation Centaureo carniolicae-Arrhenatheretum (Poldini and Oriolo 1994) in the synthetic table that was prepared for this purpose (Table 2). The comparison was conducted by means of hierar- chical classification with consideration of species frequencies (Figure 2) and either presence or absence of species (Figure 3). Considering only the presence or absence of species (Figure 3) our relevés are floristi- cally slightly similar to the stands of associations Pastinaco-Arrhenatheretum and Astrantio- Trisetetum, whereas with consideration of species frequencies (Figure 2) we observe more similar- ity with the stands of associations Centaureo carniolicae-Arrhenatheretum and Ranunculo bulbosi-Arrhenatheretum. We additionally analysed the composition of compared syntaxa by groups of diagnostic species (Tables 2 and 3). This com- parison indicates the following. According to this criterion the studied stands are very similar to the stands of the syntaxon Centaureo-Arrhenatheretum f. montana, but have a higher proportion of diag- nostic species of dry grasslands from the class Festuco-Brometea and a much smaller proportion of hygrophilous tall herb species from the class Mulgedio-Aconitetea. Compared to the stands of the association Ranunculo bulbosi-Arrhenentheretum the studied stands have a considerably smaller proportion of acidophilous species from the class Calluno-Ulicetea, and in comparison with the stands of the association Pastinaco-Arrhentheretum they have a higher proportion of species of the class Festuco-Brometea and a smaller proportion of species from classes Stellarietea mediae and Trifolio-Geranietea. Compared to the stands of the association Astrantio-Trisetetum the studied stands have a considerably higher proportion of species from the class Molinio-Arrhenatheretea and a smaller proportion of species from the order Molinietalia and classes Calluno-Ulicetea, Trifolio- Geranietea and Querco-Fagetea. Figure 3: Dendrogram of hay meadows with dominating Arrhenatherum elatius and Trisetum flavescens in Slovenia and NE Italy (RfT – Rhinantho freynii-Trisetetum, CcA – Centaureo carniolicae-Arrhenatheretum, RbA – Ranunculo bulbosi-Arrhenatheretum, AT – Astrantio-Trisetetum, PA – Pastinaco-Arrhenatheretum) – UPGMA, Jaccard Slika 3: Dendrogram travnikov s prevladujočima vrstama Arrhenatherum elatius in Trisetum flavescens v Sloveniji in severovzhodni Italiji (RfT – Rhinantho freynii-Trisetetum, CcA – Centaureo carniolicae- Arrhenatheretum, RbA – Ranunculo bulbosi-Arrhenatheretum, AT – Astrantio-Trisetetum, PA – Pastinaco-Arrhenatheretum) – UPGMA, Jaccard 39Dakskobler, Seliškar: Hay meadows with Trisetum flavescens Some of the diagnostic species of the asso- ciation Centaureo-Arrhenatheretum (Centaurea carniolica, Anthriscus sylvestris and Myosotis sylvatica) are rare in the studied stands. Most of the diagnostic species of the association Ra- nunculo bulbosi-Arrhenatheretum (as defined by Ellmauer and Mucina 1993: 346): Silene nutans, Clinopodium vulgare, Carlina acaulis, Carex montana, Linum catharticum, Trifolium montanum and Lychnis viscaria, are only rarely or not at all recorded in the studied stands. Rare or absent among the diagnostic species of the association Pastinaco-Arrhenatheretum in the studied stands are Pastinaca sativa and Geranium pratense, and Astrantia major, Carex montana, Linum catharticum and Listera ovata are rarely recorded or absent from the diagnostic species of the association Astrantio-Trisetetum. Based on mentioned analyses we came to the following conclusions. The studied stands cannot be classified into associations Pastinaco- Arrhenatheretum or Astrantio-Trisetetum due to the absence of their diagnostic species. Based on the presence of diagnostic species and (or) full floristic similarity these stands could be classified into the association Ranunculo bulbosi-Arrhenatheretum or into the montane form of the association Centaureo carniolicae-Arrhenatheretum. With considera- tion of the dominant species of these grasslands, Trisetum flavescens, their species composition and distribution in the lower montane belt we decided to name them after the dominant spe- cies and classified them into the new association Rhinantho freynii-Trisetetum flavescentis. Their physiognomy and species composition differ both from the meadows of the colline and submontane belt that are usually classified into the association Ranunculo bulbosi-Arrhenatheretum, and from the meadows of the montane and altimontane belt, which are dominated by Trisetum flavescens. The diagnostic species of the new association, Trisetum flavescens, Helictotrichon pubescens, Rhinanthus freynii, Medicago lupulina, Ranun- culus bulbosus and Plantago media, characterise species-rich, cultivated meadows on former fields with relatively shallow soil in the lower montane belt in the region of beech forests from the Illyrian alliance Aremonio-Fagion. Rhinanthus freynii is an eastern-Alpine-Illyrian species, character species of sub-Mediterranean dry grasslands from the suballiance Hypochoeridion maculatae (Aeschimann et al. 2004: 278), which characterise the new association both ecologically and choro- logically. The nomenclature type, holotypus, of the new association is relevé No. 20 in Table 1. The association is divided into two variants. The variant with Rhinanthus minor (its differential species is also Lychnis flos-cuculi) comprises the relevés on slightly moister soil and the variant with Polygala comosa (its differential species include Bromopsis erecta, Brachypodium rupestre and Lathyrus pratensis) comprises relevés on slightly drier sites. In terms of their characteristics the stands of the new association represent a transi- tion between the stands of the syntaxa from orders Poo alpinae-Trisetetalia and Arrhenatheretalia elatioris. The new association is classified into the alliance Arrhenatherion elatioris, order Arrhenatheretalia elatioris and class Molinio- Arrhenatheretea. Following the classification of Palaearctic habitats (P. Devillers-Terschuren and J. Devillers- Terschuren 1998, 2002) we classify the studied meadows into a new habitat type, southeastern- Alpine-northern-Illyrian lower montane hay meadows – 38.239-S1. The description of the new habitat is as follows: Lower montane hay meadows are distributed in the foothills of the Alps and in the northern part of the Dinaric Mountains at elevations between (400) 500 m to 800 (1000) m in the belt of Illyrian montane beech forests (alliance Aremonio-Fagion) and are an intermediate stage between HT 38.22 and 38.3. The geological bedrock is usually cal- careous, but frequently interlayered with silicate (limestone, limestone and marl), in places also glacial material (till). The soil is shallow brown rendzina, brown calcareous soil, eutric brown soil. Meadows are situated on plateaus or gentle slopes, frequently on former fields. They are usually mown once or twice a year, unfertilised or only moderately fertilised and species rich. The dominant grass is Trisetum flavescens, while Arrhenatherum elatius, Helictotrichon pubescens and Holcus lanatus have a slightly lower median coverage. More poorly represented or absent from the species composition are the diagnostic species of montane hay meadows. The differential species are some of the species of semi-dry meadows from the class Festuco-Brometea (Medicago lupulina, 40 Acta Biologica Slovenica, 58 (2), 2015 Rhinanthus freynii, Plantago media, Ranunculus bulbosus). In terms of floristics they are more similar to lowland hay meadows from the as- sociations Ranunculo bulbosi-Arrhenatheretum and Centaureo carniolicae-Arrhenatheretum (HT 38.221) than to montane hay meadows, but are nevertheless substantially different in their entire floristic composition, especially in terms of the presence of different companion species that are characteristic of the (lower) montane belt and in that Trisetum flasvescens dominates over Arrhenatherum elatius. Conclusions Despite the predominant Trisetum flavescens the hay meadows on former fields in the lower montane belt of the northwestern and western Slovenia, originally the sites of beech forests from the alliance Aremonio-Fagion, are floristi- cally nevertheless more similar to the meadows from the order Arrhenatheretalia elatioris than to those from the order Poo alpinae-Trisetetalia. They could be classified either into the association Ranuculo bulbosi-Arrhenatheretum or Centaureo carniolicae-Arrhenatheretum, but their distribu- tion in the lower montane belt and entire species composition justify their classification into the new association Rhinantho freynii-Trisetetum flavescentis. The new association indicates an intermediate type of hay meadows of the lower montane belt where Trisetum flavescens is the dominating species; their species composition, however, does not yet comprise expressly mon- tane (upper-montane) species, but more species of semi-dry grasslands. They are species rich and less prone to degradation that is caused by inten- sive fertilisation. These meadows also comprise several protected species (Anon. 2004), such as Orchis ustulata, O. morio, O. tridentata, Lilium bulbiferum, Listera ovata and Dactylorhiza fuchsii. Povzetek V letu 2014 smo pri kartiranju habitatnih tipov v Spodnji dolini v Bohinju med Bitnjami in Ribčevim Lazom označili travnike s prevladujočo vrsto Trisetum flavescens kot habitatni tip 38. 31 (srednjeevropski gorski gojeni travniki), vendar se nam ta oznaka ni zdela najbolj ustrezna. Naslednje leto, 2015, smo te travnike fitocenološko popisali. Podobne travnike smo opazili in popisali tudi v hri- bovju Banjšic nad srednjo Soško dolino in ponekod drugod v prigorju Julijskih Alp in v Trnovskem gozdu. Vse te popise smo uredili v fitocenološko tabelo in njihovo vrstno sestavo primerjali z vrstno sestavo sestojev asociacij Astrantio-Trisetetum, Pastinaco-Arrhenatheretum (Petras Sackl et al. 2012), Ranuncolo bulbosi-Arrhenatheretum (Čarni 2003) in s sestoji montanske forme asociacije Cen- taureo carniolicae-Arrhenatheretum (Poldini in Oriolo 1994). Primerjavo smo izvedli s hierarhično klasifikacijo, ob upoštevanju frekvence vrst in zgolj prisotnosti ali odsotnosti vrst. Primerjane združbe smo analizirali tudi po sestavi skupin diagnostičnih vrst. Na podlagi navedenih analiz ugotavljamo, da uvrstitev preučenih sestojev v asociaciji Pastinaco- Arrhenatheretum ali Astrantio-Trisetetum zaradi odsotnosti njunih diagnostičnih vrst ni mogoča. Po prisotnosti diagnostičnih vrst in (ali) celotni floristični podobnosti bi te sestoje mogli uvrstiti v asociacijo Ranunculo bulbosi-Arrhenatheretum ali v montansko formo asociacije Centaureo carniolicae-Arrhenatheretum. Ob upoštevanju prevladujoče vrste teh travišč, Trisetum flave- scens, njihove vrstne sestave in razširjenosti v spodnjem gorskem pasu, smo se odločili za njihovo poimenovanje po prevladujoči vrsti in jih uvrščamo v novo asociacijo Rhinantho freynii- Trisetetum flavescentis. Označuje vrstno bogata travišča na nekdanjih njivah z razmeroma plitvimi tlemi, v katerih prevladuje rumenkasti ovsenec, a v njihovi sestavi še ni vrst, ki so značilne za zgornji gorski pas, pač pa več vrst polsuhih travišč. Obravnavana travišča so značilna za spodnji gorski pas v območju bukovih gozdov iz ilirske zveze Aremonio-Fagion. Diagnostične vrste nove asociacije so Trisetum flavescens,Helictotrichon pubescens, Rhinanthus freynii, Medicago lu- pulina, Ranunculus bulbosus in Plantago me- dia. Po tipologiji palearktičnih habitatnih tipov (P. Devillers-Terschuren in J. Devillers-Terschuren 1998, 2002) preučene travnike uvrščamo v nov habitatni tip jugovzhodnoalpski-severnoilirski spodnjegorski gojeni travniki – 38.239-S1. 41Dakskobler, Seliškar: Hay meadows with Trisetum flavescens Acknowledgements In our field work we were assisted by Branko Zupan and Iztok Sajko. Two anonymous review- ers helped us with valuable improvements and corrections. English translation by Andreja Šalamon Verbič. References Aeschimann, D., Lauber, K., Moser, D. M.,Theurillat, J.-P., 2004. Flora alpina. Bd. 1, 2, 3. Haupt Verlag, Bern, Stuttgart, Wien, 1159 pp., 1188 pp., 322 pp. Anonymous, 2004. Uredba o zavarovanih prosto živečih rastlinskih vrstah. Uradni list RS 46/2004. Braun-Blanquet, J., 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde. 3. Auflage. Springer, Wien – New York. 865 pp. Cegnar, T., 1998. Temperatura zraka. In: Fridl, J., Kladnik, D., Orožen Adamič, M., Perko, D. (eds.): Geografski atlas Slovenije. Država v prostoru in času. Državna založba Slovenije, Ljubljana. pp. 100–101. Čarni, A., 2003. Vegetation of cultivated grasslands in the Goričko region (NE Slovenia). Acta Bio- logica Slovenica (Ljubljana), 44/ 4: 13–27. Devillers-Terschuren, P., Devillers-Terschuren, J., 1998. A classification of Palearctic habitats. Nature and environment 87, Concil of Europe, Strasbourg. Devillers-Terschuren, P., Devillers-Terschuren, J., 2002. Application and development of the Pal- aearctic habitat classification in the course of the setting up of the Emerald Project – Slovenia. Concil of Europe, Strasbourg. Ellmauer, T., Mucina, L., 1993. Molinio-Arrhernatheretea. In: Mucina, L., Grabherr, G., Ellmauer, T. (eds.): Die Pflanzengesellschaften Österreichs. Teil I. Anthropogene Vegetation, Gustav Fischer Verlag, Jena. pp. 297–401. Maarel van der, E., 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio, 39 (2): 97–114. Martinčič, A., Wraber, T., Jogan, N., Podobnik, A., Turk, B., Vreš, B., Ravnik, V., Frajman, B., Strgulc Krajšek, S., Trčak, B., Bačič, T., Fischer, M. A., Eler, K., Surina, B., 2007. Mala flora Slovenije. Ključ za določanje praprotnic in semenk. Četrta, dopolnjena in spremenjena izdaja. Tehniška založba Slovenije, Ljubljana. 967 pp. Ogrin, D., 1998. Podnebje. In: Fridl, J., Kladnik, D., Orožen Adamič, M., Perko, D. (eds.): Geografski atlas Slovenije. Država v prostoru in času. Državna založba Slovenije, Ljubljana. pp. 110–111. Petras Sackl, T., Kaligarič, M., Ivajnšič, D., Škornik, S., 2012. Plant communities with yellow oat grass (Trisetum flavescens (L.) Pb.) in the submontane and montane regions of Slovenia. Hacquetia (Ljubljana), 11 (2): 179–207. Podani, J., 2001. SYN-TAX 2000. Computer Programs for Data Analysis in Ecology and Systematics. User’s Manual, Budapest. 53 pp. Poldini, L., Oriolo, G., 1994. La vegetazione dei prati da sfalcio e dei pascoli intensivi (Arrhenathe- retalia e Poo-Trisetetalia) in Friuli (NE Italia). Studia Geobotanica (Trieste), 14, Suppl. 1: 3–48. Seliškar, T., Vreš, B., Seliškar, A., 2003. FloVegSi 2.0. Računalniški program za urejanje in analizo bioloških podatkov. Biološki inštitut ZRC SAZU, Ljubljana. Šilc, U., Čarni, A., 2012. Conspectus of vegetation syntaxa in Slovenia. Hacquetia (Ljubljana), 11 (1): 113–164. Zupančič, B., 1998. Padavine. In: Fridl, J., Kladnik, D., Orožen Adamič, M., Perko, D. (eds.): Geo- grafski atlas Slovenije. Država v prostoru in času. Državna založba Slovenije, Ljubljana. pp. 98–99. 42 Acta Biologica Slovenica, 58 (2), 2015 Table 1 (Preglednica1): Rhinantho freynii-Trisetetum flavescentis Number of relevé (Zaporedna številka popisa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Pr. Fr. Database number of relevé (Delovna številka popisa) 24 58 13 25 70 07 25 82 34 24 58 26 24 58 80 25 49 91 24 59 44 24 59 48 24 59 45 24 59 46 25 83 89 24 59 49 25 82 30 25 47 87 25 85 15 25 85 17 25 49 84 25 85 07 25 85 13 25 85 10 25 85 12 25 85 14 25 85 16 25 85 11 Author of relevé (Avtor popisa) ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID Elevation in m (Nadmorska višina v m) 730 716 620 760 550 500 700 620 695 715 735 335 630 1030 580 590 920 580 590 575 575 575 575 560 Aspect (Lega) S SE SW SW NW 0 SE E S SSE NE SW NE NE NE SEE W W N W 0 NNW NE S Slope in degrees (Nagib v stopinjah) 10 10 5 5 5 0 10 10 5 5 20 3 5 15 5 5 5 2 5 2 0 2 5 2 Parent material (Matična podlaga) DRG AL AF DRG D Pr Gr ALR Gr Gr L Gr AL DL Mo Mo A Mo Mo Mo Mo Mo Mo Mo Soil (Tla) Eu Eu Eu Eu Eu Re Re CC Re CC Eu CC Eu Eu CC CC CC CC CC CC CC CC CC CC Cover of herb layer in % (Zastiranje zeliščne plasti v %): 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 Number of species (Število vrst) 53 46 51 44 53 46 51 49 43 41 39 45 28 38 29 33 38 44 45 39 30 37 45 43 Relevé area (Velikost popisne ploskve) m2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 Date of taking relevé (Datum popisa) 6/ 6/ 20 12 5/ 31 /2 01 5 6/ 4/ 20 15 6/ 6/ 20 12 6/ 13 /2 01 2 6/ 9/ 20 14 6/ 5/ 20 12 6/ 5/ 20 12 6/ 5/ 20 12 6/ 5/ 20 12 5/ 28 /2 01 5 6/ 5/ 20 12 6/ 4/ 20 15 6/ 19 /2 01 4 6/ 2/ 20 15 6/ 2/ 20 15 4/ 8/ 20 14 5/ 19 /2 01 5 5/ 19 /2 01 5 5/ 19 /2 01 5 5/ 19 /2 01 5 5/ 19 /2 01 5 6/ 2/ 20 15 5/ 19 /2 01 5 Locality (Nahajališče) M rz la R up a - P ri Št al ah Ba nj šic e - P er rt ov ti Ba nj šic e - K op ru šč e M rz la R up a- Pr i Š ta la h Če po va n- Vr at a- Gr ud en Bo hi nj sk a Bi st ric a - Za gr ad ec Ru t n ad B aš ko d ol in o Ru t n ad B aš ko d ol in o Ru t n ad B aš ko d ol in o Ru t n ad B aš ko d ol in o Ba nj šic e -L ev pa - Te st en i Ko rit ni ca v B aš ki d ol in i Ba nj šic e -K up ru šč e - S v. To m až Vo jsk o - G ne zd a Bo hi nj sk a Bi st ric a- Do br av a Bo hi nj sk a Bi st ric a- Do br av a Pr ed m ej a - P od ka pl ic e- Po lh Bo hi nj sk a Bi st ric a- Do br av a Bo hi nj sk a Bi st ric a- Do br av a Bo hi nj sk a Bi st ric a- Do br av a Bo hi nj sk a Bi st ric a- Do br av a Bo hi nj sk a Bi st ric a- Do br av a Bo hi nj sk a Bi st ric a- Do br av a Bo hi nj sk a Bi st ric a- Do br av a Quadrant (Kvadrant) 99 49 /3 99 48 /1 99 48 /1 99 49 /3 98 48 /4 97 49 /2 97 49 /3 97 49 /3 97 49 /3 97 49 /3 98 48 /3 98 49 /1 99 48 /1 99 49 /4 97 49 /2 97 49 /2 00 49 /3 97 49 /2 97 49 /2 97 49 /2 97 49 /2 97 49 /2 97 49 /2 97 49 /2 Coordinate GK Y (D-48) m 41 36 09 40 19 64 40 23 71 41 33 16 40 78 40 42 09 18 41 46 85 41 48 23 41 47 16 41 46 43 40 26 17 41 33 00 40 20 20 41 78 60 41 84 43 41 84 18 41 50 21 41 79 73 41 81 43 41 80 08 41 77 54 41 80 08 41 85 99 41 74 94 Coordinate GK X (D-48) m 50 96 10 8 51 02 31 8 51 05 62 2 50 96 25 0 51 07 42 4 51 26 61 3 51 18 74 1 51 18 17 3 51 18 73 2 51 18 81 0 51 08 11 8 51 14 30 6 51 05 50 5 50 96 35 4 51 25 44 7 51 25 21 4 50 89 65 4 51 25 30 0 51 25 23 1 51 25 39 7 51 25 18 0 51 25 60 6 51 25 51 4 51 25 12 7 Diagnostic species of the association (Diagnostične vrste asociacije) Pr. Fr. MA Trisetum flavescens E1 1 1 3 3 3 1 3 3 3 3 3 2 3 4 4 3 3 1 1 3 4 1 2 2 24 100 MA Helictotrichon pubescens E1 . + 2 2 1 1 4 3 3 . 3 2 3 . + + 1 2 2 2 2 + 1 2 21 88 FB Medicago lupulina E1 + . . 1 + 1 + + + + + + 1 . 1 . . + + 1 + + 2 1 19 79 FB Rhinanthus freynii E1 1 2 1 3 2 3 + 1 . + 1 + . + + 1 + . + 1 . . . 2 18 75 FB Plantago media E1 . 1 + . + + 1 + 1 + + + . . . . + + + + . + + + 17 71 43Dakskobler, Seliškar: Hay meadows with Trisetum flavescens Table 1 (Preglednica1): Rhinantho freynii-Trisetetum flavescentis Number of relevé (Zaporedna številka popisa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Pr. Fr. Database number of relevé (Delovna številka popisa) 24 58 13 25 70 07 25 82 34 24 58 26 24 58 80 25 49 91 24 59 44 24 59 48 24 59 45 24 59 46 25 83 89 24 59 49 25 82 30 25 47 87 25 85 15 25 85 17 25 49 84 25 85 07 25 85 13 25 85 10 25 85 12 25 85 14 25 85 16 25 85 11 Author of relevé (Avtor popisa) ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID Elevation in m (Nadmorska višina v m) 730 716 620 760 550 500 700 620 695 715 735 335 630 1030 580 590 920 580 590 575 575 575 575 560 Aspect (Lega) S SE SW SW NW 0 SE E S SSE NE SW NE NE NE SEE W W N W 0 NNW NE S Slope in degrees (Nagib v stopinjah) 10 10 5 5 5 0 10 10 5 5 20 3 5 15 5 5 5 2 5 2 0 2 5 2 Parent material (Matična podlaga) DRG AL AF DRG D Pr Gr ALR Gr Gr L Gr AL DL Mo Mo A Mo Mo Mo Mo Mo Mo Mo Soil (Tla) Eu Eu Eu Eu Eu Re Re CC Re CC Eu CC Eu Eu CC CC CC CC CC CC CC CC CC CC Cover of herb layer in % (Zastiranje zeliščne plasti v %): 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 Number of species (Število vrst) 53 46 51 44 53 46 51 49 43 41 39 45 28 38 29 33 38 44 45 39 30 37 45 43 Relevé area (Velikost popisne ploskve) m2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 Date of taking relevé (Datum popisa) 6/ 6/ 20 12 5/ 31 /2 01 5 6/ 4/ 20 15 6/ 6/ 20 12 6/ 13 /2 01 2 6/ 9/ 20 14 6/ 5/ 20 12 6/ 5/ 20 12 6/ 5/ 20 12 6/ 5/ 20 12 5/ 28 /2 01 5 6/ 5/ 20 12 6/ 4/ 20 15 6/ 19 /2 01 4 6/ 2/ 20 15 6/ 2/ 20 15 4/ 8/ 20 14 5/ 19 /2 01 5 5/ 19 /2 01 5 5/ 19 /2 01 5 5/ 19 /2 01 5 5/ 19 /2 01 5 6/ 2/ 20 15 5/ 19 /2 01 5 Locality (Nahajališče) M rz la R up a - P ri Št al ah Ba nj šic e - P er rt ov ti Ba nj šic e - K op ru šč e M rz la R up a- Pr i Š ta la h Če po va n- Vr at a- Gr ud en Bo hi nj sk a Bi st ric a - Za gr ad ec Ru t n ad B aš ko d ol in o Ru t n ad B aš ko d ol in o Ru t n ad B aš ko d ol in o Ru t n ad B aš ko d ol in o Ba nj šic e -L ev pa - Te st en i Ko rit ni ca v B aš ki d ol in i Ba nj šic e -K up ru šč e - S v. To m až Vo jsk o - G ne zd a Bo hi nj sk a Bi st ric a- Do br av a Bo hi nj sk a Bi st ric a- Do br av a Pr ed m ej a - P od ka pl ic e- Po lh Bo hi nj sk a Bi st ric a- Do br av a Bo hi nj sk a Bi st ric a- Do br av a Bo hi nj sk a Bi st ric a- Do br av a Bo hi nj sk a Bi st ric a- Do br av a Bo hi nj sk a Bi st ric a- Do br av a Bo hi nj sk a Bi st ric a- Do br av a Bo hi nj sk a Bi st ric a- Do br av a Quadrant (Kvadrant) 99 49 /3 99 48 /1 99 48 /1 99 49 /3 98 48 /4 97 49 /2 97 49 /3 97 49 /3 97 49 /3 97 49 /3 98 48 /3 98 49 /1 99 48 /1 99 49 /4 97 49 /2 97 49 /2 00 49 /3 97 49 /2 97 49 /2 97 49 /2 97 49 /2 97 49 /2 97 49 /2 97 49 /2 Coordinate GK Y (D-48) m 41 36 09 40 19 64 40 23 71 41 33 16 40 78 40 42 09 18 41 46 85 41 48 23 41 47 16 41 46 43 40 26 17 41 33 00 40 20 20 41 78 60 41 84 43 41 84 18 41 50 21 41 79 73 41 81 43 41 80 08 41 77 54 41 80 08 41 85 99 41 74 94 Coordinate GK X (D-48) m 50 96 10 8 51 02 31 8 51 05 62 2 50 96 25 0 51 07 42 4 51 26 61 3 51 18 74 1 51 18 17 3 51 18 73 2 51 18 81 0 51 08 11 8 51 14 30 6 51 05 50 5 50 96 35 4 51 25 44 7 51 25 21 4 50 89 65 4 51 25 30 0 51 25 23 1 51 25 39 7 51 25 18 0 51 25 60 6 51 25 51 4 51 25 12 7 Diagnostic species of the association (Diagnostične vrste asociacije) Pr. Fr. MA Trisetum flavescens E1 1 1 3 3 3 1 3 3 3 3 3 2 3 4 4 3 3 1 1 3 4 1 2 2 24 100 MA Helictotrichon pubescens E1 . + 2 2 1 1 4 3 3 . 3 2 3 . + + 1 2 2 2 2 + 1 2 21 88 FB Medicago lupulina E1 + . . 1 + 1 + + + + + + 1 . 1 . . + + 1 + + 2 1 19 79 FB Rhinanthus freynii E1 1 2 1 3 2 3 + 1 . + 1 + . + + 1 + . + 1 . . . 2 18 75 FB Plantago media E1 . 1 + . + + 1 + 1 + + + . . . . + + + + . + + + 17 71 44 Acta Biologica Slovenica, 58 (2), 2015 Number of relevé (Zaporedna številka popisa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Pr. Fr. FB Ranunculus bulbosus E1 + 1 . . . + 1 + + . + . . . . . . + . + . + . + 11 46 Differential species of lower units (Razlikovalnice nižjih enot) FB Polygala comosa E1 . + + + + . 1 . 1 + . . 1 . . . . . . . . . + . 9 38 FB Bromopsis erecta E1 + 1 + + + . 1 + . . . 2 . . . . . . . . . . . . 8 33 FB Brachypodium rupestre E1 2 + . 2 1 + + + . . . . . . . . . . . . . . . . 7 29 MA Lathyrus pratensis E1 . . 1 . + . 1 1 . . + . . + . . + . . . . . . . 7 29 CU Rhinanthus minor E1 . + . . . 1 . . . . . . . . . . + 2 1 1 1 2 + 1 10 42 MA Lychnis flos-cuculi E1 . 1 . . . . . . . . . . . + . . . 2 1 1 1 2 1 1 9 38 MA Arrhenatheretalia, Molinio-Arrhenatheretea Leucanthemum ircutianum E1 1 1 1 1 1 2 1 1 1 1 1 1 + + + + + 1 + 1 1 1 1 1 24 100 Arrhenatherum elatius E1 1 . 1 3 4 1 1 3 3 4 1 1 3 3 4 3 3 1 2 2 2 + 1 2 23 96 Ranunculus acris E1 1 + + . 1 1 + 1 1 1 2 1 + + + 1 1 2 1 2 1 2 2 2 23 96 Leontodon hispidus E1 1 + 1 1 1 2 2 2 3 2 + 2 2 2 1 1 1 1 2 1 . . 1 2 22 92 Rumex acetosa E1 + . + + 1 1 1 + 1 1 + + + 1 + + + + 1 1 1 . + 1 22 92 Dactylis glomerata E1 1 . 1 2 2 2 1 1 2 1 1 1 1 2 2 2 2 . 1 1 1 1 2 1 22 92 Galium mollugo agg. (G. album) E1 1 + + 1 + + . + + + + + + 1 1 1 1 . . + 1 + 1 + 21 88 Trifolium pratense E1 1 1 1 + . 1 2 . 2 2 2 2 3 2 1 1 1 . 2 2 2 2 1 2 21 88 Poa pratensis E1 . . . 1 1 1 1 1 2 1 2 + + . + + + 2 2 1 + + + 1 20 83 Holcus lanatus E1 2 4 3 + 1 . 1 1 + + . 2 . + . 2 . 3 3 3 2 4 3 2 19 79 Knautia arvensis E1 1 . . 3 . 2 2 2 3 2 1 2 . . 1 1 1 1 1 + 1 1 2 1 19 79 Lotus corniculatus E1 + 1 1 . . 1 1 1 1 2 . 1 1 1 + . + + + 1 . 1 + + 19 79 Plantago lanceolata E1 + + + + 1 1 + + + + 1 + + . + . + + . . + + 1 . 19 79 Pimpinella major E1 . + + . + + 2 1 2 1 + 1 . 1 1 + . + 1 + + + + . 19 79 Cerastium holosteoides E1 + 1 + 1 . + 1 1 + + 1 . . 1 . . . + + 1 + 1 1 + 19 76 Achillea millefolium E1 . + + + 1 . . + + 1 1 + . 1 1 1 1 + + + + + 1 . 19 76 Festuca pratensis E1 + + + + + 2 + 1 + . . 1 + 1 . + 1 + . + . . 1 . 17 71 Centaurea jacea E1 2 + + 1 2 1 . . . . . 2 + 1 . 1 1 + + 1 1 1 + . 17 71 Cynosurus cristatus E1 + . + + + 1 . . . . . 1 . 2 + 3 . 3 3 2 2 2 2 1 16 67 Trifolium repens E1 + . 1 + + + + + . 1 . . 1 + . 1 + + . . . . + . 14 58 Daucus carota E1 + 1 + . . + + 1 + . . + . . . . . + + + . + + + 14 58 Lolium perenne E1 . . . . . . + + + + . 1 . + 1 + . 1 + + 1 1 + . 14 58 Tragopogon pratense subsp. orientalis E1 . 1 1 1 + + 1 + . . 1 1 1 . . . . + + 1 . . . . 13 54 Festuca rubra E1 1 2 1 . . . 1 + . . . + . 1 1 + 1 . . . . + 2 . 12 50 Crepis biennis E1 . . + + 1 1 . 1 . . 1 1 . 1 . 1 + . + + . . . . 12 50 Vicia cracca E1 . . 1 + + . 1 + + 1 + . . 1 . . . . . . . . . . 9 38 Veronica chamaedrys E1 . . . . + . . . + + 1 . . . . . . . + + 1 + . + 9 38 Campanula patula E1 . 1 . . + . . . . . . . . . . . + . + + . + + 1 8 33 Taraxacum officinale agg. E1 . . . . + . . . . . 1 + . . . . . 1 2 . 1 1 . + 8 33 Heracleum sphondylium E1 . + . . . . + + + . + . + . + . . . . . . . . . 7 29 Allium scorodoprasum E1 . . . . 1 + . + . . . . . . + + . . + . . . . + 7 29 Ajuga reptans E1 + . . . . . . . . . + . . . . . + + + . . + . . 6 25 Stellaria graminea E1 . + + . . . . . . . 1 . . 1 . + + . . . . . . . 6 25 45Dakskobler, Seliškar: Hay meadows with Trisetum flavescens Number of relevé (Zaporedna številka popisa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Pr. Fr. FB Ranunculus bulbosus E1 + 1 . . . + 1 + + . + . . . . . . + . + . + . + 11 46 Differential species of lower units (Razlikovalnice nižjih enot) FB Polygala comosa E1 . + + + + . 1 . 1 + . . 1 . . . . . . . . . + . 9 38 FB Bromopsis erecta E1 + 1 + + + . 1 + . . . 2 . . . . . . . . . . . . 8 33 FB Brachypodium rupestre E1 2 + . 2 1 + + + . . . . . . . . . . . . . . . . 7 29 MA Lathyrus pratensis E1 . . 1 . + . 1 1 . . + . . + . . + . . . . . . . 7 29 CU Rhinanthus minor E1 . + . . . 1 . . . . . . . . . . + 2 1 1 1 2 + 1 10 42 MA Lychnis flos-cuculi E1 . 1 . . . . . . . . . . . + . . . 2 1 1 1 2 1 1 9 38 MA Arrhenatheretalia, Molinio-Arrhenatheretea Leucanthemum ircutianum E1 1 1 1 1 1 2 1 1 1 1 1 1 + + + + + 1 + 1 1 1 1 1 24 100 Arrhenatherum elatius E1 1 . 1 3 4 1 1 3 3 4 1 1 3 3 4 3 3 1 2 2 2 + 1 2 23 96 Ranunculus acris E1 1 + + . 1 1 + 1 1 1 2 1 + + + 1 1 2 1 2 1 2 2 2 23 96 Leontodon hispidus E1 1 + 1 1 1 2 2 2 3 2 + 2 2 2 1 1 1 1 2 1 . . 1 2 22 92 Rumex acetosa E1 + . + + 1 1 1 + 1 1 + + + 1 + + + + 1 1 1 . + 1 22 92 Dactylis glomerata E1 1 . 1 2 2 2 1 1 2 1 1 1 1 2 2 2 2 . 1 1 1 1 2 1 22 92 Galium mollugo agg. (G. album) E1 1 + + 1 + + . + + + + + + 1 1 1 1 . . + 1 + 1 + 21 88 Trifolium pratense E1 1 1 1 + . 1 2 . 2 2 2 2 3 2 1 1 1 . 2 2 2 2 1 2 21 88 Poa pratensis E1 . . . 1 1 1 1 1 2 1 2 + + . + + + 2 2 1 + + + 1 20 83 Holcus lanatus E1 2 4 3 + 1 . 1 1 + + . 2 . + . 2 . 3 3 3 2 4 3 2 19 79 Knautia arvensis E1 1 . . 3 . 2 2 2 3 2 1 2 . . 1 1 1 1 1 + 1 1 2 1 19 79 Lotus corniculatus E1 + 1 1 . . 1 1 1 1 2 . 1 1 1 + . + + + 1 . 1 + + 19 79 Plantago lanceolata E1 + + + + 1 1 + + + + 1 + + . + . + + . . + + 1 . 19 79 Pimpinella major E1 . + + . + + 2 1 2 1 + 1 . 1 1 + . + 1 + + + + . 19 79 Cerastium holosteoides E1 + 1 + 1 . + 1 1 + + 1 . . 1 . . . + + 1 + 1 1 + 19 76 Achillea millefolium E1 . + + + 1 . . + + 1 1 + . 1 1 1 1 + + + + + 1 . 19 76 Festuca pratensis E1 + + + + + 2 + 1 + . . 1 + 1 . + 1 + . + . . 1 . 17 71 Centaurea jacea E1 2 + + 1 2 1 . . . . . 2 + 1 . 1 1 + + 1 1 1 + . 17 71 Cynosurus cristatus E1 + . + + + 1 . . . . . 1 . 2 + 3 . 3 3 2 2 2 2 1 16 67 Trifolium repens E1 + . 1 + + + + + . 1 . . 1 + . 1 + + . . . . + . 14 58 Daucus carota E1 + 1 + . . + + 1 + . . + . . . . . + + + . + + + 14 58 Lolium perenne E1 . . . . . . + + + + . 1 . + 1 + . 1 + + 1 1 + . 14 58 Tragopogon pratense subsp. orientalis E1 . 1 1 1 + + 1 + . . 1 1 1 . . . . + + 1 . . . . 13 54 Festuca rubra E1 1 2 1 . . . 1 + . . . + . 1 1 + 1 . . . . + 2 . 12 50 Crepis biennis E1 . . + + 1 1 . 1 . . 1 1 . 1 . 1 + . + + . . . . 12 50 Vicia cracca E1 . . 1 + + . 1 + + 1 + . . 1 . . . . . . . . . . 9 38 Veronica chamaedrys E1 . . . . + . . . + + 1 . . . . . . . + + 1 + . + 9 38 Campanula patula E1 . 1 . . + . . . . . . . . . . . + . + + . + + 1 8 33 Taraxacum officinale agg. E1 . . . . + . . . . . 1 + . . . . . 1 2 . 1 1 . + 8 33 Heracleum sphondylium E1 . + . . . . + + + . + . + . + . . . . . . . . . 7 29 Allium scorodoprasum E1 . . . . 1 + . + . . . . . . + + . . + . . . . + 7 29 Ajuga reptans E1 + . . . . . . . . . + . . . . . + + + . . + . . 6 25 Stellaria graminea E1 . + + . . . . . . . 1 . . 1 . + + . . . . . . . 6 25 46 Acta Biologica Slovenica, 58 (2), 2015 Number of relevé (Zaporedna številka popisa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Pr. Fr. Carum carvi E1 . . . 1 . . . + . . 1 1 . . . . . + + . . . . . 6 25 Prunella vulgaris E1 + . . 1 . + . . . . . . . + . . . . . . . . + . 5 21 Vicia sepium E1 . . . + 1 . . + . . + . . . . 1 . . . . . . . . 5 21 Poa trivialis E1 . . . . . . . . . . . . . . + 1 . . . + 1 . 1 . 5 21 Euphrasia rostkoviana E1 . . . . . . 1 . 1 + . . . . . . . . . . . . . . 3 13 Medicago sativa E1 . . . . . . . . + + . + . . . . . . . . . . . . 3 13 Bellis perennis E1 . . . . . . . . . . . . . . . . . . . . + 1 + . 3 13 Carex hirta E1 + . . . . . . . . . . . . . . . . . . . . . + . 2 8 Bromus hordeaceus E1 . . . + . . . . . . . + . . . . . . . . . . . . 2 8 Achillea roseoalba E1 . . . . . . . . . . . . . . . + . . + . . . . . 2 8 Agropyron repens E1 . . . . . . . . . . . . . . . . + + . . . . . . 2 8 Phleum pratense E1 . . . . . . . . . . . . . . . . 1 . . . . . + . 2 8 Pastinaca sativa E1 . + . . . . . . . . . . . . . . . . . . . . . . 1 4 Trifolium campestre E1 . + . . . . . . . . . . . . . . . . . . . . . . 1 4 Anthriscus sylvestris E1 . . . . 1 . . . . . . . . . . . . . . . . . . . 1 4 Alchemilla xanthochlora E1 . . . . + . . . . . . . . . . . . . . . . . . . 1 4 Alopecurus pratensis E1 . . . . . . . . + . . . . . . . . . . . . . . . 1 4 Festuca arundinacea E1 . . . . . . . . . . . 2 . . . . . . . . . . . . 1 4 Alchemilla vulgaris E1 . . . . . . . . . . . . . . . . 1 . . . . . . . 1 4 Veronica serpyllifolia E1 . . . . . . . . . . . . . . . . . . . . . + . . 1 4 Trifolium patens E1 . . . . . . . . . . . . . . . . . . . . . . + . 1 4 Ornithogalum umbellatum E1 . . . . . . . . . . . . . . . . . . . . . . . 1 1 4 Mo Molinietalia caeruleae Colchicum autumnale E1 1 + . 1 . + + + . . + + . + . + . 1 1 1 . . . . 13 54 Centaurea carniolica E1 . . . . . . . . . . . + . . . . . . + . . . . . 2 8 Primula elatior E1 . . . . + . . . . . . . . . . . . . . . . . . . 1 4 Primula x digenea E1 . . . . + . . . . . . . . . . . . . . . . . . . 1 4 Equisetum arvense E1 . . . . . + . . . . . . . . . . . . . . . . . . 1 4 Betonica officinalis E1 . . . . . . . . . . . . . . . . . . + . . . . . 1 4 PaT Poo alpinae-Trisetetalia Anthoxanthum odoratum E1 1 2 1 + + . . + + . 2 1 . 1 . . . 1 2 2 + 1 + 1 17 71 Agrostis capillaris E1 . . . + . . + . . + + . . + . . 2 . . . . . 1 . 7 29 Ranunculus nemorosus E1 . . . . . . . . . . . . . . . . . + + . . . + . 3 13 MuA Veratrum album subsp. lobelianum E1 . . . . . . . . . . . . . 1 . . . . . . . . . . 1 4 FB Brometalia erecti, Festuco-Brometea Salvia pratensis E1 . 2 1 3 + 3 3 2 . + 1 + + . . + . + + 1 + . + 2 18 75 Briza media E1 2 1 1 . + 2 1 . . + . + . . . . + + . + . . + . 12 50 Thymus pulegioides E1 1 1 + + . 1 + + + . . . . . . . . . . . . . + . 9 38 Carex caryophyllea E1 + + . . . . . + + + . . . . . . . + + . . . . + 8 33 Pimpinella saxifraga E1 + . + 1 . . + . . . . . . . . . . . . + . + . + 7 29 Silene vulgaris subsp. vulgaris E1 . . . . . + 1 . 1 + . . . . + + . . . . . . . . 6 25 Festuca rupicola E1 . + . . . 1 1 . . . . + . . . . . + . . . . . . 5 21 Orobanche gracilis E1 . . . . . + 1 . + + . + . . . . . . . . . . . . 5 21 Arabis hirsuta E1 . . . + . . + . . + . . . . . . + . . . . . . . 4 17 47Dakskobler, Seliškar: Hay meadows with Trisetum flavescens Number of relevé (Zaporedna številka popisa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Pr. Fr. Carum carvi E1 . . . 1 . . . + . . 1 1 . . . . . + + . . . . . 6 25 Prunella vulgaris E1 + . . 1 . + . . . . . . . + . . . . . . . . + . 5 21 Vicia sepium E1 . . . + 1 . . + . . + . . . . 1 . . . . . . . . 5 21 Poa trivialis E1 . . . . . . . . . . . . . . + 1 . . . + 1 . 1 . 5 21 Euphrasia rostkoviana E1 . . . . . . 1 . 1 + . . . . . . . . . . . . . . 3 13 Medicago sativa E1 . . . . . . . . + + . + . . . . . . . . . . . . 3 13 Bellis perennis E1 . . . . . . . . . . . . . . . . . . . . + 1 + . 3 13 Carex hirta E1 + . . . . . . . . . . . . . . . . . . . . . + . 2 8 Bromus hordeaceus E1 . . . + . . . . . . . + . . . . . . . . . . . . 2 8 Achillea roseoalba E1 . . . . . . . . . . . . . . . + . . + . . . . . 2 8 Agropyron repens E1 . . . . . . . . . . . . . . . . + + . . . . . . 2 8 Phleum pratense E1 . . . . . . . . . . . . . . . . 1 . . . . . + . 2 8 Pastinaca sativa E1 . + . . . . . . . . . . . . . . . . . . . . . . 1 4 Trifolium campestre E1 . + . . . . . . . . . . . . . . . . . . . . . . 1 4 Anthriscus sylvestris E1 . . . . 1 . . . . . . . . . . . . . . . . . . . 1 4 Alchemilla xanthochlora E1 . . . . + . . . . . . . . . . . . . . . . . . . 1 4 Alopecurus pratensis E1 . . . . . . . . + . . . . . . . . . . . . . . . 1 4 Festuca arundinacea E1 . . . . . . . . . . . 2 . . . . . . . . . . . . 1 4 Alchemilla vulgaris E1 . . . . . . . . . . . . . . . . 1 . . . . . . . 1 4 Veronica serpyllifolia E1 . . . . . . . . . . . . . . . . . . . . . + . . 1 4 Trifolium patens E1 . . . . . . . . . . . . . . . . . . . . . . + . 1 4 Ornithogalum umbellatum E1 . . . . . . . . . . . . . . . . . . . . . . . 1 1 4 Mo Molinietalia caeruleae Colchicum autumnale E1 1 + . 1 . + + + . . + + . + . + . 1 1 1 . . . . 13 54 Centaurea carniolica E1 . . . . . . . . . . . + . . . . . . + . . . . . 2 8 Primula elatior E1 . . . . + . . . . . . . . . . . . . . . . . . . 1 4 Primula x digenea E1 . . . . + . . . . . . . . . . . . . . . . . . . 1 4 Equisetum arvense E1 . . . . . + . . . . . . . . . . . . . . . . . . 1 4 Betonica officinalis E1 . . . . . . . . . . . . . . . . . . + . . . . . 1 4 PaT Poo alpinae-Trisetetalia Anthoxanthum odoratum E1 1 2 1 + + . . + + . 2 1 . 1 . . . 1 2 2 + 1 + 1 17 71 Agrostis capillaris E1 . . . + . . + . . + + . . + . . 2 . . . . . 1 . 7 29 Ranunculus nemorosus E1 . . . . . . . . . . . . . . . . . + + . . . + . 3 13 MuA Veratrum album subsp. lobelianum E1 . . . . . . . . . . . . . 1 . . . . . . . . . . 1 4 FB Brometalia erecti, Festuco-Brometea Salvia pratensis E1 . 2 1 3 + 3 3 2 . + 1 + + . . + . + + 1 + . + 2 18 75 Briza media E1 2 1 1 . + 2 1 . . + . + . . . . + + . + . . + . 12 50 Thymus pulegioides E1 1 1 + + . 1 + + + . . . . . . . . . . . . . + . 9 38 Carex caryophyllea E1 + + . . . . . + + + . . . . . . . + + . . . . + 8 33 Pimpinella saxifraga E1 + . + 1 . . + . . . . . . . . . . . . + . + . + 7 29 Silene vulgaris subsp. vulgaris E1 . . . . . + 1 . 1 + . . . . + + . . . . . . . . 6 25 Festuca rupicola E1 . + . . . 1 1 . . . . + . . . . . + . . . . . . 5 21 Orobanche gracilis E1 . . . . . + 1 . + + . + . . . . . . . . . . . . 5 21 Arabis hirsuta E1 . . . + . . + . . + . . . . . . + . . . . . . . 4 17 48 Acta Biologica Slovenica, 58 (2), 2015 Number of relevé (Zaporedna številka popisa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Pr. Fr. Sanguisorba minor s. lat. E1 + . + . . . 1 + . . . . . . . . . . . . . . . . 4 17 Silene nutans E1 + . . . + . . . . . . . . + . . + . . . . . . . 4 17 Buphthalmum salicifolium E1 . . + . + . . . . . . . 1 . . . . . . . . . . . 3 13 Filipendula vulgaris E1 . . . . . . . . . . . . . . . . . + + . . . . + 3 13 Koeleria pyramidata E1 1 . . . . + . . . . . . . . . . + . . . . . . . 3 13 Orchis ustulata E1 + . . r . . . . . . . . + . . . . . . . . . . . 3 13 Hieracium bauhinii E1 + . . . . . . . . . . . . . . . + . . . . . . . 2 8 Linum catharticum E1 1 . . . . . . . . . . . . . . . . . . . . . . + 2 8 Knautia illyrica E1 . 1 1 . . . . . . . . . . . . . . . . . . . . . 2 8 Peucedanum oreoselinum E1 . . + . . . 1 . . . . . . . . . . . . . . . . . 2 8 Orchis tridentata E1 . . + . . . . . . . . + . . . . . . . . . . . . 2 8 Ranunculus polyanthemophyllus E1 . . + . . . . . . . . . + . . . . . . . . . . . 2 8 Trifolium montanum E1 . . + . . . . . . . . . . 1 . . . . . . . . . . 2 8 Centaurea scabiosa subsp. fritschii E1 . . . 2 + . . . . . . . . . . . . . . . . . . . 2 8 KC Arenaria serpyllifolia E1 . . . + . . . . + . . . . . . . . . . . . . . . 2 8 Cirsium erisithales E1 . . . . + . + . . . . . . . . . . . . . . . . . 2 8 Anthyllis vulneraria E1 . . . . . + . . . . . . + . . . . . . . . . . . 2 8 Carex montana E1 . . . . . 1 . . . . . . . . . . . . . . . . . + 2 8 Thlaspi praecox E1 . . . . . . 1 . + . . . . . . . . . . . . . . . 2 8 Galium verum E1 . . . . . . + . . . . . . . . . . . + . . . . . 2 8 Danthonia alpina E1 1 . . . . . . . . . . . . . . . . . . . . . . . 1 4 Scabiosa triandra E1 + . . . . . . . . . . . . . . . . . . . . . . . 1 4 Genista tinctoria E1 . + . . . . . . . . . . . . . . . . . . . . . . 1 4 Festuca valesiaca E1 . + . . . . . . . . . . . . . . . . . . . . . . 1 4 Campanula rapunculus E1 . . 1 . . . . . . . . . . . . . . . . . . . . . 1 4 Cirsium pannonicum E1 . . + . . . . . . . . . . . . . . . . . . . . . 1 4 Helianthemum ovatum E1 . . + . . . . . . . . . . . . . . . . . . . . . 1 4 Orchis morio E1 . . + . . . . . . . . . . . . . . . . . . . . . 1 4 Gymnadenia conopsea E1 . . . r . . . . . . . . . . . . . . . . . . . . 1 4 Campanula glomerata E1 . . . . + . . . . . . . . . . . . . . . . . . . 1 4 Campanula rotundifolia E1 . . . . + . . . . . . . . . . . . . . . . . . . 1 4 Medicago falcata E1 . . . . . + . . . . . . . . . . . . . . . . . . 1 4 Euphorbia verrucosa E1 . . . . . . . . . . + . . . . . . . . . . . . . 1 4 Carlina acaulis E1 . . . . . . . . . . . . . + . . . . . . . . . . 1 4 Gentianella ciliata E1 . . . . . . . . . . . . . r . . . . . . . . . . 1 4 Ononis spinosa E1 . . . . . . . . . . . . . . . . . . . . . . . + 1 4 CU Calluno-Ulicetea Luzula campestris E1 + 1 + . + . + + . . + . . . . . . 1 . + . + . + 11 45 Carex pallescens E1 2 1 + . . . . . . . . . . . . . . + . . . . . 1 5 21 Veronica officinalis E1 + + . . . . . . . . . . . . . . . . . . . . . . 2 8 Chamaespartium sagittale E1 1 . . . . . . . . . . . . . . . . . . . . . . . 1 4 Polygala vulgaris E1 + . . . . . . . . . . . . . . . . . . . . . . . 1 4 Potentilla erecta E1 + . . . . . . . . . . . . . . . . . . . . . . . 1 4 Phyteuma zahlbruckneri E1 . . . . . . . . . . . . . . . . 1 . . . . . . . 1 4 49Dakskobler, Seliškar: Hay meadows with Trisetum flavescens Number of relevé (Zaporedna številka popisa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Pr. Fr. Sanguisorba minor s. lat. E1 + . + . . . 1 + . . . . . . . . . . . . . . . . 4 17 Silene nutans E1 + . . . + . . . . . . . . + . . + . . . . . . . 4 17 Buphthalmum salicifolium E1 . . + . + . . . . . . . 1 . . . . . . . . . . . 3 13 Filipendula vulgaris E1 . . . . . . . . . . . . . . . . . + + . . . . + 3 13 Koeleria pyramidata E1 1 . . . . + . . . . . . . . . . + . . . . . . . 3 13 Orchis ustulata E1 + . . r . . . . . . . . + . . . . . . . . . . . 3 13 Hieracium bauhinii E1 + . . . . . . . . . . . . . . . + . . . . . . . 2 8 Linum catharticum E1 1 . . . . . . . . . . . . . . . . . . . . . . + 2 8 Knautia illyrica E1 . 1 1 . . . . . . . . . . . . . . . . . . . . . 2 8 Peucedanum oreoselinum E1 . . + . . . 1 . . . . . . . . . . . . . . . . . 2 8 Orchis tridentata E1 . . + . . . . . . . . + . . . . . . . . . . . . 2 8 Ranunculus polyanthemophyllus E1 . . + . . . . . . . . . + . . . . . . . . . . . 2 8 Trifolium montanum E1 . . + . . . . . . . . . . 1 . . . . . . . . . . 2 8 Centaurea scabiosa subsp. fritschii E1 . . . 2 + . . . . . . . . . . . . . . . . . . . 2 8 KC Arenaria serpyllifolia E1 . . . + . . . . + . . . . . . . . . . . . . . . 2 8 Cirsium erisithales E1 . . . . + . + . . . . . . . . . . . . . . . . . 2 8 Anthyllis vulneraria E1 . . . . . + . . . . . . + . . . . . . . . . . . 2 8 Carex montana E1 . . . . . 1 . . . . . . . . . . . . . . . . . + 2 8 Thlaspi praecox E1 . . . . . . 1 . + . . . . . . . . . . . . . . . 2 8 Galium verum E1 . . . . . . + . . . . . . . . . . . + . . . . . 2 8 Danthonia alpina E1 1 . . . . . . . . . . . . . . . . . . . . . . . 1 4 Scabiosa triandra E1 + . . . . . . . . . . . . . . . . . . . . . . . 1 4 Genista tinctoria E1 . + . . . . . . . . . . . . . . . . . . . . . . 1 4 Festuca valesiaca E1 . + . . . . . . . . . . . . . . . . . . . . . . 1 4 Campanula rapunculus E1 . . 1 . . . . . . . . . . . . . . . . . . . . . 1 4 Cirsium pannonicum E1 . . + . . . . . . . . . . . . . . . . . . . . . 1 4 Helianthemum ovatum E1 . . + . . . . . . . . . . . . . . . . . . . . . 1 4 Orchis morio E1 . . + . . . . . . . . . . . . . . . . . . . . . 1 4 Gymnadenia conopsea E1 . . . r . . . . . . . . . . . . . . . . . . . . 1 4 Campanula glomerata E1 . . . . + . . . . . . . . . . . . . . . . . . . 1 4 Campanula rotundifolia E1 . . . . + . . . . . . . . . . . . . . . . . . . 1 4 Medicago falcata E1 . . . . . + . . . . . . . . . . . . . . . . . . 1 4 Euphorbia verrucosa E1 . . . . . . . . . . + . . . . . . . . . . . . . 1 4 Carlina acaulis E1 . . . . . . . . . . . . . + . . . . . . . . . . 1 4 Gentianella ciliata E1 . . . . . . . . . . . . . r . . . . . . . . . . 1 4 Ononis spinosa E1 . . . . . . . . . . . . . . . . . . . . . . . + 1 4 CU Calluno-Ulicetea Luzula campestris E1 + 1 + . + . + + . . + . . . . . . 1 . + . + . + 11 45 Carex pallescens E1 2 1 + . . . . . . . . . . . . . . + . . . . . 1 5 21 Veronica officinalis E1 + + . . . . . . . . . . . . . . . . . . . . . . 2 8 Chamaespartium sagittale E1 1 . . . . . . . . . . . . . . . . . . . . . . . 1 4 Polygala vulgaris E1 + . . . . . . . . . . . . . . . . . . . . . . . 1 4 Potentilla erecta E1 + . . . . . . . . . . . . . . . . . . . . . . . 1 4 Phyteuma zahlbruckneri E1 . . . . . . . . . . . . . . . . 1 . . . . . . . 1 4 50 Acta Biologica Slovenica, 58 (2), 2015 Number of relevé (Zaporedna številka popisa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Pr. Fr. Festuca filiformis E1 . . . . . . . . . . . . . . . . . . . . . . . + 1 4 TG Trifolio-Geranietea Viola hirta E1 + . . . . + . . . . . . . . . . . . . . . . . + 3 13 Clinopodium vulgare E1 . . . + + . . . . + . . . . . . . . . . . . . . 3 13 Dianthus barbatus E1 . . . . . . + + . + . . . . . . . . . . . . . . 3 13 Hypericum perforatum E1 . + . . 1 . . . . . . . . . . . . . . . . . . . 2 8 Astragalus glycyphyllos E1 . . . . . . . . + . . . + . . . . . . . . . . . 2 8 Campanula rapunculoides E1 . . . . . . . . + + . . . . . . . . . . . . . . 2 8 Verbascum nigrum E1 . . . . . . . . . . . . . . + . . . . . . . . . 1 4 Thalictrum minus E1 . . . . . . . . . . . . . . . + . . . . . . . . 1 4 Lilium bulbiferum E1 . . . . . . . . . . . . . . . . + . . . . . . . 1 4 CD Caricetalia davallianae Carex panicea E1 . . . . . . . . . . . . . . . . . . . . . . + . 1 4 SM Stellarietea mediae, Galio-Urticetea Erigeron annuus E1 . . . + + . . + + + . 1 + . . . . . . . . . . . 7 29 Myosotis arvensis E1 . . . . . . . . . . + . . . . . . 1 + . + + . + 6 25 Veronica arvensis E1 . . . . . . . . . . . . . . + . . . 1 . + + + . 5 21 Convolvulus arvensis E1 . . . . + . . . . + . . . . . . . . . . . . . . 2 8 Silene latifolia subsp. alba E1 . . . . . . . . . . . . . . + + . . . . . . . . 2 8 Vicia hirsuta E1 . . . . + . . . . . . . . . . . . . . . . . . . 1 4 Aegopodium podagraria E1 . . . . . . . + . . . . . . . . . . . . . . . . 1 4 Rumex obtusifolius E1 . . . . . . . . . . . . . . + . . . . . . . . . 1 4 Plantago major E1 . . . . . . . . . . . . . . . . . + . . . . . . 1 4 EA Epilobietea angustifolii Carex muricata E1 . . . . . . . . + . . . . . . . . . . . . . . . 1 4 Myosotis sylvatica E1 . . . . . . . . . . + . . . . . . . . . . . . . 1 4 Cirsium arvense E1 . . . . . . . . . . . . + . . . . . . . . . . . 1 4 FS Fagetalia sylvaticae Knautia drymeia E1 + . . . 1 . + + . . . . . + . . . . . . . . . . 5 21 Carex sylvatica E1 . . . . . . . 1 . . . 1 . . . . . . . . . . . . 2 8 Primula vulgaris E1 . . + . . . . . . . . . . . . . . . . . . . . . 1 4 Phyteuma spicatum subsp. coeruleum E1 . . . . . . . . . . . . . + . . . . . . . . . . 1 4 QF Querco-Fagetea Cruciata glabra E1 1 + + . . . . . 1 . . . . . . . . . . . . . . + 5 21 Carex flacca E1 + . . . . . . . . . . . . . . . . + . . . . . + 3 13 Listera ovata E1 . . . . . . . . . . . + . + . . . . . . . . . . 2 8 Dactylorhiza fuchsii E1 . . . . . + . . . . . . . . . . . . . . . . . . 1 4 Ornithogalum pyrenaicum E1 . . . . . . . . . + . . . . . . . . . . . . . . 1 4 O Other species (Ostale vrste) Alchemilla sp. E1 + . . . . . . . . . . . . . . . . . . . . . . . 1 4 Orobanche sp. E1 . . . . . + . . . . . . . . . . . . . . . . . . 1 4 Agrostis sp. E1 . . . . . . . + . . . . . . . . . . . . . . . . 1 4 Knautia sp. E1 . . . . . . . . . + . . . . . . . . . . . . . . 1 4 51Dakskobler, Seliškar: Hay meadows with Trisetum flavescens Number of relevé (Zaporedna številka popisa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Pr. Fr. Festuca filiformis E1 . . . . . . . . . . . . . . . . . . . . . . . + 1 4 TG Trifolio-Geranietea Viola hirta E1 + . . . . + . . . . . . . . . . . . . . . . . + 3 13 Clinopodium vulgare E1 . . . + + . . . . + . . . . . . . . . . . . . . 3 13 Dianthus barbatus E1 . . . . . . + + . + . . . . . . . . . . . . . . 3 13 Hypericum perforatum E1 . + . . 1 . . . . . . . . . . . . . . . . . . . 2 8 Astragalus glycyphyllos E1 . . . . . . . . + . . . + . . . . . . . . . . . 2 8 Campanula rapunculoides E1 . . . . . . . . + + . . . . . . . . . . . . . . 2 8 Verbascum nigrum E1 . . . . . . . . . . . . . . + . . . . . . . . . 1 4 Thalictrum minus E1 . . . . . . . . . . . . . . . + . . . . . . . . 1 4 Lilium bulbiferum E1 . . . . . . . . . . . . . . . . + . . . . . . . 1 4 CD Caricetalia davallianae Carex panicea E1 . . . . . . . . . . . . . . . . . . . . . . + . 1 4 SM Stellarietea mediae, Galio-Urticetea Erigeron annuus E1 . . . + + . . + + + . 1 + . . . . . . . . . . . 7 29 Myosotis arvensis E1 . . . . . . . . . . + . . . . . . 1 + . + + . + 6 25 Veronica arvensis E1 . . . . . . . . . . . . . . + . . . 1 . + + + . 5 21 Convolvulus arvensis E1 . . . . + . . . . + . . . . . . . . . . . . . . 2 8 Silene latifolia subsp. alba E1 . . . . . . . . . . . . . . + + . . . . . . . . 2 8 Vicia hirsuta E1 . . . . + . . . . . . . . . . . . . . . . . . . 1 4 Aegopodium podagraria E1 . . . . . . . + . . . . . . . . . . . . . . . . 1 4 Rumex obtusifolius E1 . . . . . . . . . . . . . . + . . . . . . . . . 1 4 Plantago major E1 . . . . . . . . . . . . . . . . . + . . . . . . 1 4 EA Epilobietea angustifolii Carex muricata E1 . . . . . . . . + . . . . . . . . . . . . . . . 1 4 Myosotis sylvatica E1 . . . . . . . . . . + . . . . . . . . . . . . . 1 4 Cirsium arvense E1 . . . . . . . . . . . . + . . . . . . . . . . . 1 4 FS Fagetalia sylvaticae Knautia drymeia E1 + . . . 1 . + + . . . . . + . . . . . . . . . . 5 21 Carex sylvatica E1 . . . . . . . 1 . . . 1 . . . . . . . . . . . . 2 8 Primula vulgaris E1 . . + . . . . . . . . . . . . . . . . . . . . . 1 4 Phyteuma spicatum subsp. coeruleum E1 . . . . . . . . . . . . . + . . . . . . . . . . 1 4 QF Querco-Fagetea Cruciata glabra E1 1 + + . . . . . 1 . . . . . . . . . . . . . . + 5 21 Carex flacca E1 + . . . . . . . . . . . . . . . . + . . . . . + 3 13 Listera ovata E1 . . . . . . . . . . . + . + . . . . . . . . . . 2 8 Dactylorhiza fuchsii E1 . . . . . + . . . . . . . . . . . . . . . . . . 1 4 Ornithogalum pyrenaicum E1 . . . . . . . . . + . . . . . . . . . . . . . . 1 4 O Other species (Ostale vrste) Alchemilla sp. E1 + . . . . . . . . . . . . . . . . . . . . . . . 1 4 Orobanche sp. E1 . . . . . + . . . . . . . . . . . . . . . . . . 1 4 Agrostis sp. E1 . . . . . . . + . . . . . . . . . . . . . . . . 1 4 Knautia sp. E1 . . . . . . . . . + . . . . . . . . . . . . . . 1 4 52 Acta Biologica Slovenica, 58 (2), 2015 Legend - Legenda ID Igor Dakskobler MuA Mulgedio-Aconitetea KC Koelerio-Corynophoretea A Limestone - apnenec D Dolomite - dolomit Gr Gravel - grušč Pr Alluvium - prod L Marlstone - laporovec G Claystone - glinavec R Chert - roženec Mo Till - til Eu Eutric brown soil - evtrična rjava tla CC Chromoc Cambisols - rjava pokarbonatna tla Re Rendzina - rendzina Table 2: Synoptic table of Trisetum flavescens and Arrhenatherum elatius dominating (sub)montane grass- lands in Slovenia and NE Italy Preglednica 2: Sintezna tabela (sub)montanskih travnikov s prevladujočima vrstama Trisetum flavescens in Arrhenatherum elatius v Sloveniji in severovzhodni Italiji Successive number (Zaporedna številka) 1 2 3 4 5 Number of relevés (Število popisov) 24 10 7 44 47 Number of taxa (Število taksonov) 166 120 71 191 147 Sign for the syntaxa (Oznaka sintaksonov) RfT CcA RbA AT PA Author (Avtor) DS PO Č PS PS Diagnostic species of the association Rhinantho freynii-Trisetetum (Diagnostične vrste asocacije) MA Trisetum flavescens E1 100 90 86 98 91 MA Helictotrichon pubescens E1 88 50 43 68 15 FB Medicago lupulina E1 79 30 . 30 45 FB Rhinanthus freynii E1 75 30 . 84 21 FB Plantago media E1 71 70 . 48 26 FB Ranunculus bulbosus E1 46 . 100 25 . Diagnostic species of the association Centaureo-Arrhenatheretum (Diagnostične vrste asociacije) MA Pimpinella major E1 79 100 43 27 9 MA Knautia arvensis E1 79 70 57 27 57 Mo Colchicum autumnale E1 54 60 . 48 9 MA Heracleum sphondylium E1 33 80 . 25 74 FB Silene vulgaris subsp. vulgaris E1 25 80 . 27 36 Mo Centaurea carniolica E1 8 50 . . . MA Anthriscus sylvestris E1 4 60 . . . EA Myosotis sylvatica E1 4 40 . . . Diagnostic species of the association Ranunculo bulbosi-Arrhenatheretum (Diagnostične vrste asociacije) FB Salvia pratensis E1 75 90 . 75 49 FB Ranunculus bulbosus E1 46 . 100 25 . 53Dakskobler, Seliškar: Hay meadows with Trisetum flavescens Legend - Legenda ID Igor Dakskobler MuA Mulgedio-Aconitetea KC Koelerio-Corynophoretea A Limestone - apnenec D Dolomite - dolomit Gr Gravel - grušč Pr Alluvium - prod L Marlstone - laporovec G Claystone - glinavec R Chert - roženec Mo Till - til Eu Eutric brown soil - evtrična rjava tla CC Chromoc Cambisols - rjava pokarbonatna tla Re Rendzina - rendzina Table 2: Synoptic table of Trisetum flavescens and Arrhenatherum elatius dominating (sub)montane grass- lands in Slovenia and NE Italy Preglednica 2: Sintezna tabela (sub)montanskih travnikov s prevladujočima vrstama Trisetum flavescens in Arrhenatherum elatius v Sloveniji in severovzhodni Italiji Successive number (Zaporedna številka) 1 2 3 4 5 Number of relevés (Število popisov) 24 10 7 44 47 Number of taxa (Število taksonov) 166 120 71 191 147 Sign for the syntaxa (Oznaka sintaksonov) RfT CcA RbA AT PA Author (Avtor) DS PO Č PS PS Diagnostic species of the association Rhinantho freynii-Trisetetum (Diagnostične vrste asocacije) MA Trisetum flavescens E1 100 90 86 98 91 MA Helictotrichon pubescens E1 88 50 43 68 15 FB Medicago lupulina E1 79 30 . 30 45 FB Rhinanthus freynii E1 75 30 . 84 21 FB Plantago media E1 71 70 . 48 26 FB Ranunculus bulbosus E1 46 . 100 25 . Diagnostic species of the association Centaureo-Arrhenatheretum (Diagnostične vrste asociacije) MA Pimpinella major E1 79 100 43 27 9 MA Knautia arvensis E1 79 70 57 27 57 Mo Colchicum autumnale E1 54 60 . 48 9 MA Heracleum sphondylium E1 33 80 . 25 74 FB Silene vulgaris subsp. vulgaris E1 25 80 . 27 36 Mo Centaurea carniolica E1 8 50 . . . MA Anthriscus sylvestris E1 4 60 . . . EA Myosotis sylvatica E1 4 40 . . . Diagnostic species of the association Ranunculo bulbosi-Arrhenatheretum (Diagnostične vrste asociacije) FB Salvia pratensis E1 75 90 . 75 49 FB Ranunculus bulbosus E1 46 . 100 25 . Successive number (Zaporedna številka) 1 2 3 4 5 FB Carex caryophyllea E1 33 . . . . FB Pimpinella saxifraga E1 29 . 43 55 46 FB Silene nutans E1 17 10 29 20 30 TG Clinopodium vulgare E1 13 20 . 16 11 FB Carex montana E1 8 . . 5 2 FB Linum catharticum E1 8 10 . 5 . FB Trifolium montanum E1 8 30 14 5 4 FB Carlina acaulis E1 4 20 . 27 9 KC Lychnis viscaria E1 . . 14 . . Diagnostic species of the association Astrantio-Trisetetum (Diagnostične vrste asociacije) MA Astrantia major E1 . . . 61 2 FB Carex montana E1 8 . . 5 2 FB Linum catharticum E1 8 10 . 5 . QF Listera ovata E1 8 10 . 5 . Diagnostic species of the association Pastinaco-Arrhenatheretum (Diagnostične vrste asociacije) MA Arrhenatherum elatius E1 96 100 100 57 79 MA Campanula patula E1 33 30 29 27 32 MA Pastinaca sativa E1 4 40 . 5 87 MA Geranium pratense E1 . . . 5 . MA Molinio-Arrhenatheretea Leucanthemum ircutianum E1 100 60 43 89 89 Ranunculus acris E1 96 100 100 32 34 Leontodon hispidus E1 92 90 57 66 96 Rumex acetosa E1 92 100 57 11 15 Dactylis glomerata E1 92 70 29 98 85 Galium mollugo agg. (G. album) E1 88 80 29 66 55 Trifolium pratense E1 88 100 86 55 83 Poa pratensis E1 83 40 29 18 32 Holcus lanatus E1 79 30 86 48 72 Lotus corniculatus E1 79 80 57 82 87 Plantago lanceolata E1 79 80 57 52 89 Achillea millefolium E1 76 80 43 86 55 Cerastium holosteoides E1 76 60 29 . . Festuca pratensis E1 71 70 43 41 68 Centaurea jacea E1 71 . 43 84 70 Cynosurus cristatus E1 67 10 14 23 28 Trifolium repens E1 58 50 14 16 . Daucus carota E1 58 10 . 11 32 Lolium perenne E1 58 . . 5 17 Tragopogon pratense subsp. orientalis E1 54 80 100 52 62 Festuca rubra E1 50 40 86 36 19 Crepis biennis E1 50 40 . 34 38 Lychnis flos-cuculi E1 38 . 14 23 4 Vicia cracca E1 38 90 . 77 91 54 Acta Biologica Slovenica, 58 (2), 2015 Successive number (Zaporedna številka) 1 2 3 4 5 Veronica chamaedrys E1 38 70 71 45 13 Campanula patula E1 33 30 29 27 32 Taraxacum officinale E1 33 50 43 18 13 Allium scorodoprasum E1 29 . . . . Lathyrus pratensis E1 29 80 . 57 43 Stellaria graminea E1 25 10 14 93 70 Ajuga reptans E1 25 10 . 5 38 Carum carvi E1 25 70 . . . Prunella vulgaris E1 21 20 . 64 40 Poa trivialis E1 21 . 14 16 6 Bellis perennis E1 21 . . 93 30 Vicia sepium E1 21 40 . 7 . Euphrasia rostkoviana E1 13 10 . 30 . Medicago sativa E1 13 10 . . 4 Achillea roseoalba E1 8 20 . . . Bromus hordeaceus E1 8 . 14 7 34 Carex hirta E1 8 . 14 . . Phleum pratense E1 8 . . 18 62 Agropyron repens E1 8 . . . 6 Alchemilla xanthochlora E1 4 60 . 50 19 Ornithogalum umbellatum E1 4 20 . . . Pastinaca sativa E1 4 40 . 5 87 Alopecurus pratensis E1 4 . 29 20 11 Festuca arundinacea E1 4 . . . . Plantago major E1 4 . . 2 4 Trifolium campestre E1 4 . . 11 23 Alchemilla vulgaris E1 4 . . . . Trifolium patens E1 4 . . . . Veronica serpyllifolia E1 4 . . . . Viola tricolor E1 . 30 . 7 2 Agrostis stolonifera E1 . 10 . . . Orobanche minor E1 . 10 . . . Senecio gaudinii E1 . 10 . . . Moenchia mantica E1 . . 14 . . Senecio jacobea E1 . . 14 . . Symphytum officinale E1 . . 14 . 100 Astrantia major E1 . . . 61 2 Deschampsia cespitosa E1 . . . 16 17 Phleum phleoides E1 . . . . 47 Ranunculus repens E1 . . . . 23 Lolium multiflorum E1 . . . . 4 MC Molinietalia caeruleae Betonica officinalis E1 4 10 14 34 4 Carex panicea E1 4 . . . . Primula elatior E1 4 . . . . 55Dakskobler, Seliškar: Hay meadows with Trisetum flavescens Successive number (Zaporedna številka) 1 2 3 4 5 Primula x digenea E1 4 . . . . Equisetum arvense E1 4 . 14 11 4 Herminium monorchis E1 . . 14 . . Sanguisorba officinalis E1 . . 14 . . Cirsium oleraceum E1 . . . 75 21 Inula salicina E1 . . . 23 2 Valeriana officinalis E1 . . . 14 . Molinia caerulea E1 . . . 7 4 Alchemilla glabra E1 . . . 5 . Succisa pratensis E1 . . . 5 PaT Poo alpinae-Trisetetalia Anthoxanthum odoratum E1 71 50 71 80 72 Agrostis capillaris E1 29 20 . . . Ranunculus nemorosus E1 13 . . . 4 Trollius europaeus E1 . 70 . 16 . Poa alpina E1 . 10 . 5 . Campanula scheuchzeri E1 . . . 66 . FB Festuco-Brometea Briza media E1 50 50 57 91 64 Polygala comosa E1 38 . . 2 . Thymus pulegioides E1 38 20 . 48 6 Bromopsis erecta E1 33 . . 86 62 Brachypodium rupestre E1 29 20 . 2 4 Festuca rupicola E1 21 10 43 . . Orobanche gracilis E1 21 10 . . . Arabis hirsuta E1 17 10 . . . Sanguisorba minor s. lat. E1 17 20 . 16 23 Buphthalmum salicifolium E1 13 10 . 55 . Filipendula vulgaris E1 13 . 43 20 11 Koeleria pyramidata E1 13 10 . . . Orchis ustulata E1 13 . . 2 . Anthyllis vulneraria E1 8 . . 61 23 Centaurea scabiosa s. lat. E1 8 . . 27 11 Cirsium erisithales E1 8 10 . . . Galium verum E1 8 . 57 57 43 Hieracium bauhinii E1 8 . 14 5 11 Knautia illyrica E1 8 . . . . Orchis tridentata E1 8 . . . . Peucedanum oreoselinum E1 8 . 71 . . Ranunculus polyanthemophyllus E1 8 . . . . Thlaspi praecox E1 8 . . . . Campanula rapunculus E1 4 . . . . Campanula glomerata E1 4 10 . 25 51 Campanula rotundifolia E1 4 90 . 2 . Cirsium pannonicum E1 4 . . 5 2 56 Acta Biologica Slovenica, 58 (2), 2015 Successive number (Zaporedna številka) 1 2 3 4 5 Danthonia alpina E1 4 . . . . Euphorbia verrucosa E1 4 . . . . Festuca valesiaca E1 4 . . . . Genista tinctoria E1 4 . . . . Gentianella ciliata E1 4 . . . . Gymnadenia conopsea E1 4 10 . 39 6 Helianthemum ovatum E1 4 . . 30 9 Medicago falcata E1 4 . . 2 2 Ononis spinosa E1 4 . . 5 11 Orchis morio E1 4 . . . . Scabiosa triandra E1 4 . . 14 4 Gentianella germanica E1 . 10 . 9 . Thesium linophyllon E1 . . 43 . . Euphorbia cyparissias E1 . . 14 34 4 Prunella grandiflora E1 . . . 43 9 Allium carinatum E1 . . . 32 11 Cuscuta epythimum E1 . . . 25 9 Dianthus hyssopifolius E1 . . . 25 . Asperula cynanchica E1 . . . 18 . Scabiosa columbaria E1 . . . 7 2 Senecio integrifolius E1 . . . 7 . Carlina vulgaris E1 . . . 5 2 Gentiana cruciata E1 . . . 5 . Melica ciliata E1 . . . 5 . Veronica teucrium E1 . . . 5 34 Galium lucidum E1 . . . . 9 Centaurium erythrea E1 . . . . 4 KC Koelerio-Corynophoretea Arenaria serpyllifolia E1 8 . . . . Sedum sexangulare E1 . 20 . . . Thlaspi perfoliatum E1 . 10 . . . Dianthus deltoides E1 . . 14 . . Poa compressa E1 . . 14 . . Petrorhagia saxifraga E1 . . . 11 4 Sedum reflexum E1 . . . . 13 ES Elyno-Seslerietea Scorzonera rosea E1 . 10 . . . Acinos alpinus E1 . 10 . . . Betonica alopecurus E1 . 10 . . . Carduus defloratus E1 . 10 . 20 . Euphrasia picta E1 . 10 . 20 . Galium anysophyllum E1 . 10 . . . Phyteuma orbiculare E1 . 10 . . . Biscutella laevigata E1 . . . 48 . Polygonum viviparum E1 . . . 16 2 Ranunculus carinthiacus E1 . . . 34 . 57Dakskobler, Seliškar: Hay meadows with Trisetum flavescens Successive number (Zaporedna številka) 1 2 3 4 5 Ranunculus montanus E1 . . . 7 . Rhinanthus glacialis E1 . . . 5 . Knautia longifolia E1 . . . 5 2 CD Caricetalia davallianae Tofieldia calyculata E1 . . . 32 . Astrantia carniolica E1 . . . 16 . Parnassia palustris E1 . . . 7 . CU Calluno-Ulicetea Luzula campestris E1 45 . 71 66 30 Rhinanthus minor E1 42 10 57 . . Carex pallescens E1 21 . . 18 4 Veronica officinalis E1 8 . . 2 . Chamaespartium sagittale E1 4 . 29 5 9 Festuca filiformis E1 4 . . . . Phyteuma zahlbruckneri E1 4 30 . 32 4 Polygala vulgaris E1 4 . . 30 19 Potentilla erecta E1 4 10 14 82 17 Galium pumilum E1 . 20 . . . Luzula multiflora E1 . 20 . . . Rumex acetosella E1 . . 29 52 28 Carex leporina E1 . . 14 . . Hypochoeris radicata E1 . . 14 . . Arnica montana E1 . . . 18 . Leontodon helveticus E1 . . . 16 4 Nardus stricta E1 . . . 7 38 Holcus mollis E1 . . . 7 4 Carex pilulifera E1 . . . 7 . Campanula barbata E1 . . . 5 . Antennaria dioica E1 . . . 2 . Calluna vulgaris E1 . . . 2 . TG Trifolio-Geranietea Dianthus barbatus E1 13 30 . 2 2 Viola hirta E1 13 . . . . Astragalus glycyphyllos E1 8 . . . . Campanula rapunculoides E1 8 . . . 2 Hypericum perforatum E1 8 10 14 18 26 Lilium bulbiferum E1 4 10 . 11 2 Thalictrum minus E1 4 . . . . Verbascum nigrum E1 4 . . . . Vicia incana E1 . 40 . . . Annthericum ramosum E1 . 10 . 20 4 Vicia sylvatica E1 . 10 . . . Hieracium umbellatum E1 . . 14 . . Trifolium alpestre E1 . . . 75 21 Trifolium medium E1 . . . 70 83 58 Acta Biologica Slovenica, 58 (2), 2015 Successive number (Zaporedna številka) 1 2 3 4 5 Laserpitium latifolium E1 . . . 14 6 Vincetoxicum hirundinaria E1 . . . 14 . Lilium carniolicum E1 . . . 7 . Origanum vulgare E1 . . . 5 4 Polygonatum odoratum E1 . . . 5 . Trifolium rubens E1 . . . 5 . MuA Mulgedio-Aconitetea Veratrum album subsp. lobelianum E1 4 . . 11 2 Carduus carduelis E1 . . . 34 . Chaerophyllum aureum E1 . 70 . . . Chaerophyllum hirsutum E1 . 70 . 14 9 Geranium sylvaticum E1 . 60 . . . Hypericum maculatum E1 . 10 . . . Lathyrus occidentalis E1 . 10 . . . Phyteuma ovatum E1 . 10 . 45 9 Silene dioica E1 . 10 . . . Thalictrum aquilegiifolium E1 . . . 5 . EA Epilobietea angustifolii Carex muricata E1 4 . . . . Cirsium arvense E1 4 . . 2 4 Fragaria vesca E1 . . 14 . . Carex spicata E1 . . . 5 . GU Galio-Urticetea Aegopodium podagraria E1 4 20 . . . Lamium album E1 . 20 . . . Cirsium eriophorum E1 . . . 2 4 Salvia verticillata E1 . . . 2 6 SM Stellarietea mediae Erigeron annuus E1 28 . 29 7 26 Myosotis arvensis E1 24 . . . . Veronica arvensis E1 20 10 29 . . Convolvulus arvensis E1 8 . . 2 32 Silene latifolia subsp. alba E1 8 10 . . . Rumex obtusifolius E1 4 . 14 7 9 Vicia hirsuta E1 4 10 . . . Vicia sativa E1 . 10 . . . Capsella bursa-pastoris E1 . . . 14 30 Vaccaria pyramidata E1 . . . 2 4 Poa annua E1 . . . . 32 Potentilla reptans E1 . . . . 60 EP Erico-Pinetea Aquilegia atrata E1 . 30 . . . Knautia ressmanii E1 . 10 . . . Polygala chamaebuxus E1 . . . . 6 59Dakskobler, Seliškar: Hay meadows with Trisetum flavescens Successive number (Zaporedna številka) 1 2 3 4 5 VP Vaccinio-Piceetea Deschampsia flexuosa E1 . . . 43 19 Luzula luzuloides E1 . . . 14 . Maianthemum bifolium E1 . . . 9 . Calamagrostis arundinacea E1 . . . 7 4 Gentiana asclepiadea E1 . . . 5 2 Luzula luzulina E1 . . . 5 . FS Fagetalia sylvaticae Knautia drymeia E1 21 . . 77 87 Carex sylvatica E1 8 . . . . Phyteuma spicatum subsp. coeruleum E1 4 . . . . Campanula trachelium E1 . 10 . 9 6 Lilium martagon E1 . 10 . . . Helleborus niger E1 . . . 9 . Melica nutans E1 . . . 7 2 QF Querco-Fagetea Cruciata glabra E1 21 20 29 80 23 Carex flacca E1 13 . . 27 17 Listera ovata E1 8 10 . 5 . Dactylorhiza fuchsii E1 4 . . 18 . Ornithogalum pyrenaicum E1 4 . . . . Primula vulgaris E1 4 . . 32 4 Aquilegia vulgaris E1 . 20 . 16 . Primula veris E1 . 20 . 5 . Crocus vernus E1 . . . 38 89 Melampyrum pratense E1 . . . 11 . Serratula tinctoria E1 . . . 5 . Chamaecytisus supinus E1 . . . 5 . O Other species (Druge vrste) Agrostis sp. E1 4 . . . . Alchemilla sp. E1 4 . . . . Knautia sp. E1 4 . . . . Orobanche sp. E1 4 . . 11 9 Achillea sp. E1 . . . 30 9 Sedum sp. E1 . . . 23 . Aquilegia sp. E1 . . . 7 . Legend - Legenda RfT Rhinantho freynii-Trisetetum, this article (ta članek); CcA Centaureo carniolicae-Arrhenatheretum f. montana, Poldini and Oriolo 1994, Table 1, rel. 13-22; RbA – Ranunculo bulbosi-Arrhenatheretum, Čarni 2003, Table 1, rel. 1-7; AT – Astrantio-Trisetetum, Petras Sackl et al. 2012, Table 1; PA - Pastinaco-Arrhenatheretum, Petras Sackl et al. 2012, Table 2. DS Dakskobler, Seliškar PO Poldini, Oriolo Č Čarni PS Petras Sackl et al. 60 Acta Biologica Slovenica, 58 (2), 2015 Table 3: Phytosociological structure of Trisetum flavescens and Arrhenatherum elatius dominating (sub) montane grasslands in Slovenia and NE Italy (relative frequencies) Preglednica 3: Sestava po diagnostičnih vrstah v (sub)montanskih travnikih s prevladujočima vrstama Trisetum flavescens in Arrhenatherum elatius v Sloveniji in severovzhodni Italiji (relativne frekvence) Successive number (Zaporedna številka) 1 2 3 4 5 Number of relevés (Število popisov) 24 10 7 44 47 Sign for the syntaxa (Oznaka sintaksonov) RfT CcA RbA AT PA Author (Avtor) DS PO Č PS PS Molinio-Arrhenatheretea 62 59 60 40 58 Molinietalia caeruleae 1,9 2,8 2,1 4,3 1,1 Poo alpinae-Trisetetalia 2,7 3,5 2,6 3,2 1,9 Festuco-Brometea 22 16 20 24 18 Koelerio-Corynophoretea 0,2 0,7 1,6 0,2 0,4 Elyno-Seslerietea, Caricetalia davallianae 0,1 1,6 0 4,1 0,1 Calluno-Ulicetea 3,2 2,1 8,5 6,8 4 Trifolio-Geranietea 1,8 3,1 1 5,1 4,1 Mulgedio-Aconitetea 0,1 5,6 0 2,1 0,5 Epilobietea angustifolii 0,3 0,9 0,5 0,1 0,1 Stellarietea mediae, Galio-Urticetea 2,6 1,9 2,7 0,7 5,2 Vaccinio-Piceetea, Erico-Pinetea 0 0,9 0 1,6 0,8 Fagetalia sylvaticae 0,9 0,5 0 2 2,4 Querco-Fagetea 1,2 1,6 1,1 4,7 3,4 Other species (Druge vrste) 0,4 0 0 1,4 0,5 Skupaj (Total) 100 100 100 100 100 Legend - Legenda See Table 2 (glej preglednico 2) Extraction of DNA from different sample types – a practical approach for GMO testing Ekstrakcija DNA iz različnih vrst vzorcev -praktični pristop za določanje GSO Jana Žel*, Tina Demšar, Dejan Štebih, Mojca Milavec, Kristina Gruden Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia *correspondence: jana.zel@nib.si Abstract: Current methods based on DNA targets for the detection, identification and quantification of genetically modified organisms (GMOs) involve extraction of the DNA. Different extraction procedures have been developed for the great variety of samples from food, feed, seeds and particular plant parts. This makes the operation of routine analytical laboratories complex and workloads heavy. Here we present a decision-making system, developed over many years of GMO testing on different sam- ples, that result in the application of only a few extraction methods for the majority of samples. Developed decision-making system enables quicker and more cost effective testing of GMOs. In addition, the performance of DNA extraction resulting from the use of the selected extraction methods is presented for use in subsequent testing of GMOs by real time PCR methods. This approach can be used as a model for similar systems based on nucleic acid analysis in food, feed, seeds and plants. Keywords: Extraction methods, Genetically modified organisms (GMO), Deci- sion-making system, GMO testing, NucleoSpin® Food, Cetyltrimethylammonium bromide (CTAB) Izvleček: Metode za določanje, identifikacijo in kvantifikacijo gensko spremenje- nih organizmov (GSO) temeljijo na zaznavanju značilnih zaporedij DNA, zato je ključni del metode ekstrakcija DNA. Za ekstrakcijo DNA iz različnih vrst vzorcev, kot so živila, krma, semena in deli rastlin, so razviti različni postopki. Delo rutinskih laboratorijev je zato zelo kompleksno in obsežno. Tu predstavljamo sistem odločanja, ki smo ga razvili v mnogih letih testiranja GSO v različnih vzorcih. Z uporabo nekaj izbranih metod ekstrakcije lahko analiziramo večino vzorcev na hitrejši in finančno učinkovitejši način. Dodatno podajamo informacijo o uporabi izbranih ekstrakcijskih metod v povezavi z nadaljnjo analizo GSO s PCR v realnem času. Ta pristop se lahko uporabi kot model za podobne sisteme, ki temeljijo na analizi nukleinskih kislin v živilih, krmi, semenih in rastlinah. Ključne besede: Metode ekstrakcije, Gensko spremenjeni organizmi (GSO), Sistem odločanja, GSO testiranje, NucleoSpin® Food, Cetiltrimetilamonijev bromid (CTAB) ACTA BIOLOGICA SLOVENICA LJUBLJANA 2015 Vol. 58, [t. 2: 61–75 Introduction Efficient and reliable extraction of nucleic acids is a prerequisite for obtaining accurate results from molecular analyses such as amplification of specific DNA or RNA sequences by polymerase chain reaction (PCR). The extraction method should yield sufficient DNA of adequate structural integrity and purity, independently of the matrix to which it is applied (Codex Committee On Methods Of Analysis And Sampling 2010). Acceptance criteria applicable to DNA extraction methods were recently defined in the new European Network of GMO Laboratories (ENGL) document on Definition of minimum performance requirements for analytical methods of GMO testing (ENGL 2015). GMOs are already widespread and countries have different regulations and policies for their management (http://bch.cbd.int/). Many countries have labeling requirements for products containing GMOs, demanding methods for their detection and for their analysis in order to control approved and unapproved GMOs. Some countries have also set thresholds for the unintended presence of GMOs in a product, requiring quantitative analysis of GMOs. Testing for genetically modified organisms (GMOs) is based on multiplication of the genetic elements characteristic of the GMOs, therefore a DNA extraction procedure is crucial (Žel et al. 2012). Only DNA of certain quality is amplifiable in further multiplication using molecular methods. Real-time PCR is the technology of choice for detecting GMOs, especially when quantitative analyses are needed (qPCR) (Žel et al. 2012), even PCR is also used by some laboratories. Other methods, such as isothermal multiplication and digital PCR, that are under rapid development, are also dependent on a good quality extraction method (Milavec et al. 2014). GMOs have been detected in various samples – food, feed, seeds and plants from the field. Each sample may contain only one ingredient, e.g. maize seeds, or a number of ingredients, such as feed composed of a variety of grains, e.g. maize, rice and soybean. Additionally, particular processed samples, such as corn flakes, can differ, depending on the manufacturing procedure and the DNA can be present in low amounts and also degraded. As early as 2006, Cankar et al. pointed out that extrac- tion technique and sample properties have a crucial influence on the results of GMO detection and quantification (Cankar et al. 2006). Molecules of plant origin or from other sources, even components of DNA extraction solutions can influence PCR reactions. During GMO quantification standard curve using certified reference material is used, therefore similarity of PCR efficiency for the sample and certified reference material is a prerequisite for exact quantification. The appropriate extrac- tion method has to be determined for each sample type. Detailed guidelines have been reported for validating the extraction methods applied prior to PCR examination of food and feed products for the presence of genetically modified material (Waiblinger and Grohmann 2014; ENGL 2011). Selection of methods for DNA extraction and purification is mostly done on experience-based choice of the user, as noted in ISO 21571:2005 that deals with nucleic acid extraction for detect- ing GMOs (ISO 21571:2005; ISO 21571:2005/ A1 2013). Some extraction methods have already been proposed in this standard, together with their scope and examples of samples for each method. Specific extraction methods have been proposed for challenging samples such as pollen from honey (Waiblinger et al. 2012), soybean lecithin (ISO 21571:2005/A1 2013) or choline chloride (Sacco et al. 2014). The influence of extraction method and of sample characteristics on the quality and yield of DNA extracted from different samples has been reviewed (Gryson 2010; Demeke and Jenkins 2010). The suitability of different extrac- tion methods for different samples, the effects of sample processing, the presence of PCR inhibi- tors in the extraction reagents and in the samples themselves are reviewed, together with the theory behind the effects. One extraction method can be more suitable for a particular sample than another, but it would be very challenging to test all available methods on all samples. It is worthwhile to mention also that there are different quantification procedures for quantification of extracted nucleic acids however, the methods produce different results, making it unwise to try to compare data obtained with the different methods (Bustin et al. 2009). Using different extraction methods for different samples is also time and cost wasting for labora- 63Žel et al.: Extraction od DNA for GMO testing tories testing many samples daily. It is therefore essential to set up, in the laboratory, a manageable decision-making system that can support selec- tion of the extraction method appropriate for an individual sample. Here we present a decision-making system for selecting extraction methods for GMO testing on different samples – food, feed, seeds and whole plants. It has been developed over many years of GMO testing at the National Institute of Biology, Ljubljana, where various extraction methods have been tested for individual samples. Additionally, and in line with the decision-making system, data relating the extraction method appropriate for further testing of GMOs with real time PCR to a given sample type, based on practical experience, are tabulated. Materials and methods Samples Samples were taken from routine analyses, including seeds/grains, plant leaves and various food and feed samples (for details see also Tab. 1-6). Each sample (e.g. soybean flour, maize corn flakes etc.) was tested at least 5 times from independent consignments. Homogenization Most of the samples (seeds, feed, soybean meal, choline chloride, rice, and pasta) were ground with a Retsch ZM200 rotor mill. Some (usually with high fat content, e.g. oilseed rape seeds) were cooled with liquid nitrogen before grinding with a Retsch GM200 knife mill. Samples such as sausage or tofu were homogenized using a Bioreba HOMEX 6 homogenizer. Leaf samples were prepared by cutting off small pieces from different leaves, then combining and homogeniz- ing them together as one sample with a FASTprep instrument (MP Biomedicals) using 15ml tubes, a ceramic ball and quartz sand. DNA extraction 200 mg of homogenized sample was used for all isolations, unless stated otherwise. Different extraction methods were used (see Tab. 1 to 6). NucleoSpin® Food (Macherey-Nagel) was used as described by the manufacturer. In lysis step more than 200 mg of sample can be used when needed (e.g. when small amounts of DNA in the sample can be expected) with scaled up lysis buffer volumes and in this case, after lysis, double the amount of supernatant was used for further processing. Cetyltrimethylammonium bromide (CTAB) method with RNase-A and proteinase-K solutions for removing RNA and proteins from the sample was performed as described in ISO 21571, Annex A.3 – Preparation of PCR-quality DNA using the CTAB-based DNA extraction methods (ISO 21571:2005). Removal of lipid components from chocolate and lecithin was performed using hexane prior the first step of the CTAB method (Solfizzo et al. 1998). For samples with low amount of DNA up to 20 g of sample was used and further steps of DNA extraction were done with larger volumes of chemicals. Samples of oil were first centrifuged and pellet was used for DNA extraction using NucleoSpin® Food (Macherey-Nagel) (Costa et al. 2010). The DNeasy Plant Mini Kit (Qiagen) was used to extract DNA from plant leaves, as described by the manufacturer. All extractions from each sample were carried out in duplicate. qPCR The quality of extracted DNA was checked by measuring the efficiency of amplification of reference taxon specific genes by qPCR, using appropriate dilutions of both DNA extractions e.g. 10x and 100x (Žel et al. 2012), with the exception of stable sample types (for explanation see results section), for which a second dilution was made only for one extraction. Each dilution of DNA was analyzed in duplicate. Negative control of extraction and environ- mental control, no template control and positive control were included. The following qPCR methods were applied: for soybean, the method targeting the lectin Le1 gene (Le1) (Pauli et al. 2001), for maize, the method targeting the high mobility group protein gene (hmga) (Hernandez 64 Acta Biologica Slovenica, 58 (2), 2015 et al. 2004); for oilseed rape the method targeting the phosphoenolpyruvate carboxylase gene (PEP) (Zeitler et al. 2002); for rice the method targeting the phospholipase D gene (PLD) (Mazzara et al. 2006); for potato and tomato the method targeting the potato and tomato specific metallo-carboxy- peptidase inhibitor gene (POT, TOM) (Hernandez et al. 2003) and, for flax, the method targeting the stearoyl-acyl carrier protein desaturase gene (SAD) (Genetic ID NA Inc. 2009). The method targeting the 18S rRNA gene was used for confirmation of DNA extraction when insufficient reference gene was present (Eukaryotic 18S rRNA Endogenous Control, Life Technologies, Part No.:4319413E). qPCRs were randomly run on the ABI PRISM® 7900 HT sequence detection system, ViiA™ 7 (both Life Technologies) or LightCycler® 480 System (Roche). Reactions were performed in 10 µl reaction mixture, using 2 µl of diluted DNA, in a 384-well plate. All qPCR assays were performed using TaqMan® Universal PCR Master Mix (Life Technologies, Part No.: 4304437). PCR cycling conditions were set to 2 min at 50°C and 10 min at 95°C followed by 45 cycles of 15 s at 95°C and 1min at 60°C. 65Žel et al.: Extraction od DNA for GMO testing Table 1: Extractions used for soybean samples. Tabela 1: Ekstrakcije uporabljene za vzorce soje. Sample Stability of sample Test portion DNA extraction methoda Elution volume (µl) Volume of water added after elution (µl) Cq value obtained on reference gene Seeds/grains grains stable 200 mg NucleoSpin® Food 100 µl+100 µl 800 µl 24-27 Food flour stable 200 mg NucleoSpin® Food 100 µl+100 µl 800 µl 24-27 tofu-soybean curd stable 500 mg NucleoSpin® Food 100 µl+100 µl 300 µl 21-23 soybean drink variable 500 ul - 1 ml NucleoSpin® Food 100 µl+100 µl 50 µl > 22 b Frankfurt sausage, sausage, cold meats variable 500 mg to 1 g NucleoSpin® Food 50 µl + 50 µl / > 22 b flackes, cracker, crispies variable 200 mg NucleoSpin® Food 50 µl + 50 µl / > 22 b soy steaks, burger, medallion variable 200 mg to 1 g NucleoSpin® Food 50 µl + 50 µl / > 24 b soy spread variable 1 g to 5 g NucleoSpin® Food 50 µl + 50 µl / > 23 b soybean meat, soybean peaces, variable 200 mg NucleoSpin® Food 50 µl + 50 µl / > 23 b soy nuggets variable 200 mg NucleoSpin® Food 50 µl + 50 µl / > 22 b biscuits variable at least 5 g CTAB 100 µl / > 22 b lecithin Variable at least 15 g hexane + CTAB 100 µl / > 28 b chocolate Variable 20 g hexane + CTAB 100 µl / > 34 b Soya desert variable 10 g CTAB 100 µl / > 23 Feed animal feed variable 200 mg NucleoSpin® Food 100 µl+100 µl 300 µl > 22 b soybean meal stable 200 mg NucleoSpin® Food 100 µl+100 µl 800 µl 24-27 soy proteins variable 200 mg NucleoSpin® Food 100 µl+100 µl 300 µl > 22 b a when more than 200mg was used for the NucleoSpin® Food extraction, the starting procedure was modified as described in Materials and Methods b actual value depends on the DNA content and processing 66 Acta Biologica Slovenica, 58 (2), 2015 Table 2: Extractions used for maize samples. Tabela 2: Ekstrakcije uporabljene za vzorce koruze. Sample Stability of sample Test portion DNA extraction methoda Elution volume (µl) Volume of water added after elution (µl) Cq value obtained on reference gene Seeds/grains kernels stable 200 mg NucleoSpin® Food 100 µl+100 µl / 20-24 Food flour stable 200 mg NucleoSpin® Food 100 µl+100 µl / 20-24 semolina stable 200 mg NucleoSpin® Food 100 µl+100 µl / 20-24 corn cobs stable 200 mg to 1g NucleoSpin® Food 100 µl+100 µl / 20-24 corn flakes stable 200 mg NucleoSpin® Food 50 µl + 50 µl / 23-25 chips, tortilla chips variable 200 mg NucleoSpin® Food 50 µl + 50 µl / > 22 b tortilla variable 200 mg till 2g NucleoSpin® Food 50 µl + 50 µl / > 22 b canned corn stable 1 g NucleoSpin® Food 50 µl + 50 µl / 20-27 popcorn chips variable 200 mg NucleoSpin® Food 50 µl + 50 µl / > 25 b bread variable 5 g NucleoSpin® Food 50 µl + 50 µl / > 25 b crunchy muesli variable at least 5 g CTAB 100 µl / > 30 b corn gluten variable 2 g CTAB 100 µl / > 23 b Feed feed variable 200 mg NucleoSpin® Food 100 µl+100 µl 300 µl > 22 b Leaves maize leaves stable 200 mg to 1 g CTAB / DNeasy Plant Mini kit 100 µl / 50 µl + 50 µl / 20-27 / 24-30 a when more than 200mg was used for the NucleoSpin® Food extraction, the starting procedure was modified as described in Materials and Methods b actual value depends on the DNA content and processing 67Žel et al.: Extraction od DNA for GMO testing Table 3: Extractions used for samples with oilseed rape and flax. Tabela 3: Ekstrakcije uporabljene za vzorce oljne ogrščice in lanu. Plant species Sample Stability of sample Test portion DNA extraction methoda Elution volume (µl) Volume of water added after elution (µl) Cq value obtained on reference gene seed rape Seeds seeds stable 200 mg NucleoSpin® Food 100 µl+100 µl 300 µl 22-26 Feed Oilseed cake variable 200 mg NucleoSpin® Food 100 µl+100 µl 300 µl > 23 b Leaves leaves stable 200 mg to 1 g CTAB / DNeasy Plant Mini kit 100 µl / 50 µl + 50 µl / 20-27 / 24-30 flax Seeds seeds stable 200 mg NucleoSpin® Food 50 µl + 50 µl / 22 - 26 a when more than 200mg was used for the NucleoSpin® Food extraction, the starting procedure was modified as described in Materials and Methods b actual value depends on the DNA content and processing Table 4: Extractions used for samples containing rice. Tabela 4: Ekstrakcije uporabljene za vzorce riža. Sample Stability of sample Test portion DNA extraction methoda Elution volume (µl) Volume of water added after elution (µl) Cq value obtained on reference gene Seeds/grains grain stable 200 mg NucleoSpin® Food 100 µl+100 µl 50µl 22-24 Food waffels variable 200 mg NucleoSpin® Food 50 µl + 50 µl / > 26 b rice drink variable 1 ml NucleoSpin® Food 100 µl+100 µl 50µl > 22 b rice pudding variabe 10 g NucleoSpin® Food 50 µl + 50 µl / > 26 b spaghetti variable 200 mg NucleoSpin® Food 50 µl + 50 µl / > 22 b rice cracker variable 200 mg NucleoSpin® Food 50 µl + 50 µl / > 28 b boiled rice grains variable 500 mg to 5g NucleoSpin® Food 50 µl + 50 µl / > 26 b rice bread variable 200 mg NucleoSpin® Food 50 µl + 50 µl / > 24 b choline chloride (rice) variable 200 mg NucleoSpin® Food 50 µl + 50 µl / > 27 b Feed dog food with rice variable 200 mg NucleoSpin® Food 50 µl + 50 µl / > 24 b a when more than 200mg was used for the NucleoSpin® Food extraction, the starting procedure was modified as described in Materials and Methods b actual value depends on the DNA content and processing 68 Acta Biologica Slovenica, 58 (2), 2015 Table 5: Extractions used for samples with potato. Tabela 5: Ekstrakcije uporabljene za vzorce krompirja. Sample Stability of sample Test portion DNA extraction methoda Elution volume (µl) Volume of water added after elution (µl) Cq value obtained on reference gene Food tuber stable 0,5 g NucleoSpin® Food 50 µl + 50 µl / > 22 b potato puree variable 1 g NucleoSpin® Food 50 µl + 50 µl / > 30 b pommes frites variable at least 1 g NucleoSpin® Food 50 µl + 50 µl / > 25 b croquettes variable at least 1 g NucleoSpin® Food 50 µl + 50 µl / > 28 b gnocchi variable at least 1 g NucleoSpin® Food 50 µl + 50 µl / > 30 b potato starch variable 1g CTAB 100 µl / > 35 (Ct 18S 25) a when more than 200mg was used for the NucleoSpin® Food extraction, the starting procedure was modified as described in Materials and Methods b actual value depends on the DNA content and processing Table 6: Extractions used for samples with tomato. Tabela 6: Ekstrakcije uporabljene za vzorce paradižnika. Sample Stability of sample Test portion DNA extraction methoda Volume of water added after elution (µl) Expected Cq value obtained on reference gene Food fresh tomato stable 500 mg NucleoSpin® Food / 23-27 concentrate variable 1 ml NucleoSpin® Food / > 33 b ketchup variable 1 ml NucleoSpin® Food / > 35 b peeled tomato (canned) variable 1 ml NucleoSpin® Food / > 33 b Leaves stable 200 mg to 1 g CTAB / DNeasy Plant Mini Kit / 20-27 /24-30 a when more than 200mg was used for the NucleoSpin® Food extraction, the starting procedure was modified as described in Materials and Methods b actual value depends on the DNA content and processing 69Žel et al.: Extraction od DNA for GMO testing Table 7: Comparison of prices of different extraction methods. Tabela 7: Primerjava cen različnih izolacijskih metod. 1 sample 3 samples 10 samples Extraction method Working hours Chemicalsa Final priceb Working hours Chemicals Final price Working hours Chemicals Final price NucleoSpin® Food 2,25 6 60 2,5 21 58 6,5 66 94 CTAB 4 5 100 6,5 10 100 9 25 100 CTAB with larger volumes 6 8 127 10 20 203 NA NA NA DNeasy 2,25 10 64 2,5 35 73 6,5 110 109 a prices in Slovenia b calculated prices expressed as ratio (CTAB is taken as 100%) Results and discussion We divided samples in two categories, known and new sample types, depending on our experiences on their performance during extrac- tion procedure with respect to the efficiency of amplification of reference taxon specific genes by qPCR as explained in Material and Methods section. Known sample types are the ones which we tested already many times and we have experi- ences on the efficiency of extraction and quality of extracted DNA in contrast with new sample types where no experience have been obtained. Some of the known samples (stable sample types) gave repeatable extraction results, even when obtained from different sources or produced by different manufacturers. Others, (variable sample types), are more variable and unexpected results of DNA extraction can be obtained, so the testing procedure for these samples was adapted. Some of the samples, known or new, can be also challenging samples, usually containing highly degraded DNA or the presence of inhibitors and they are treated differently. Testing different extraction methods Over many years of testing, individual samples were tested in our laboratory by different meth- ods – DNeasy Plant Mini Kit (Qiagen, Valencia, CA), Wizard extraction (Promega, Madison, WI), CTAB based extraction, CTAB extraction and GENESpin kit (GeneScan, Freiburg, Germany) (Cankar et al. 2006), and NucleoSpin® Food. The most important parameter for testing quality of extracted DNA was the qPCR efficiency of amplification of reference taxon specific genes, using appropriate dilutions. Extraction of DNA from known sample types For known stable food and feed sample types NucleoSpin® Food was the most successful method, producing the expected yield and quality of DNA. DNA was extracted from leaves with the CTAB method or DNeasy Plant Mini Kit as explained later. For variable sample types, giving different quantities and qualities of the extracted DNA, some were treated with NucleoSpin® Food and others, mostly more processed ones, with the CTAB method. Sometimes NucleoSpin® Food as the first choice does not give expected result, then CTAB method is applied on the sample. The CTAB method has been used widely for extracting DNA from leaves, seeds/grains and processed food/feed samples [ISO 21571:2005)]. It was developed in 1980 (Murray and Thompson 1980) and the various versions or modifications of the CTAB protocol are reviewed in Demeke and Jenkins (2010). The procedure is however time-consuming and uses hazardous chemicals including phenol and chloroform (Demeke and Jenkins 2010). The CTAB method was therefore 70 Acta Biologica Slovenica, 58 (2), 2015 not the first choice. The larger amounts of extracted DNA are not a decisive factor, since the yields obtained by NucleoSpin® Food are sufficient for further analyses in most of the samples according to our experiences. In cases where samples contain only small amounts of DNA, larger test portions can be used for extracting DNA. A limited sample size (e.g. 20–200 mg) is generally used for DNA extraction with kits (Demeke and Jenkins 2010), so the CTAB method is more appropriate in the case of large test portions (e.g., >200 mg). NucleoSpin® Food was also used successfully for sample sizes greater than 200 mg, with an adapted starting procedure as described in Materials and Methods. Experiences for selection of extraction methods for different samples, arranged according to the prior knowledge on the presence of the main plant species ingredient, are described further. Known sample types are presented in the cor- responding Tables 1-6, where it is also indicated whether a sample is stable or variable. Further information on the testing procedures is given on the size of the test portion of the analytical sample used for extraction and on elution vol- umes. Since the quality and quantity of extracted DNA is checked by measuring the effectiveness of amplification and the quantity of the reference gene, the expected quantification cycles (Cq) values are also provided. • Soybean (Glycine max (L.) Merr. Fabaceae) samples Stable soybean sample types, like grains, flour, and most of the food variable ones (e.g. soybean drink, sausages) can be extracted with NucleoSpin® Food (Tab. 1). Some (e.g. biscuits and soya desert) are extracted with CTAB. If the extraction of DNA from variable sample types extracted with NucleoSpin® Food does not result in the appropriate quality or quantity of DNA, the CTAB method is used. Hexane is used as the first step in the CTAB method for lecithin and chocolate samples. It is known that DNA is difficult to extract from lecithin. In our laboratory very different Cq values were obtained for lecithin samples. NucleoSpin® Food has been used without any problem for all feed samples containing soybean as the prevailing ingredient. • Maize (Zea mays subsp. mays, Poaceae) samples As for soybean, NucleoSpin® Food was used successfully for all unprocessed and for most processed maize-based food samples (Tab. 2). Exceptions are crunchy muesli and corn gluten, for which the CTAB method was used. NucleoSpin® Food was used without any problem for all feed samples containing maize as the prevailing ingredient. DNA was extracted from leaves using either CTAB or DNeasy Plant Mini Kit. CTAB gives higher yields but enough DNA for reliable qPCR analyses can be obtained with DNeasy Plant Mini Kit and the extraction is much quicker. DNeasy Plant Mini Kit was used when multiple samples of leaves had to be tested at the same time. • Oilseed rape (Brassica napus L., Brassicaceae) and flax (Linum usitatissimum L., Linaceae) samples NucleoSpin® Food can also be used for oilseed rape and flax seeds (Tab. 3). Extraction of DNA with NucleoSpin® Food was also successful for samples of rapeseed cake, used as animal feed. DNA from oilseed leaves is extracted by CTAB or DNeasy Plant Mini Kit as described for maize leaves. • Rice (Oryza sativa L., Poaceae) samples All rice samples tested so far have been extracted by NucleoSpin® Food (Tab. 4). The presence of rice was also examined in samples of choline chloride, which is used as an additive in feed, rice being used in the manufacturing process as a plant derived carrier. A special schedule was written for testing in choline chloride, where a slightly modified CTAB method was proposed for extracting DNA (Sacco et al. 2014). In accordance with our system we have used NucleoSpin® Food as our primary method and found that it gives satisfactory results. • Potato (Solanum tuberosum L., Solanaceae) sample types DNA from potato tubers and from most pro- 71Žel et al.: Extraction od DNA for GMO testing cessed food can be extracted with NucleoSpin® Food with the exception of potato starch, for which the CTAB method is used (Tab. 5). For potato tubers we use cores from potato heel ends, where there is more DNA than in other parts of the tuber. • Tomato (Solanum lycopersicum L., Solan- aceae) samples DNA from tomato fruits can be extracted by NucleoSpin® Food (Tab. 6). NucleoSpin® Food is also the first choice for more processed tomato samples, such as canned tomato, ketchup or tomato concentrate. Extraction of these chal- lenging sample types is occasionally not effective and CTAB with larger test portions has to be used. However, this approach can fail to extract enough DNA for further testing. DNA from tomato leaves is extracted by CTAB or DNeasy Plant Mini Kit as described above. Extraction of DNA from new sample types Experiences from known sample types are used also in the samples not previously tested. The successful use of NucleoSpin® Food suggests it as the first choice for new sample types. The extracted DNA is then analyzed for the reference gene with qPCR. NucleoSpin® Food is then accepted for use if qPCR amplification efficiency and quantity of the extracted DNA were adequate; otherwise the CTAB mehod is applied, sometimes with the ad- dition of hexane, when more lipids are present in the sample. If the CTAB method is not successful the sample is treated as a challenging sample. Extraction of DNA from challenging samples Some samples are generally known as very challenging for the extraction of DNA, including those containing lecithin, starch, chocolate, canned tomato or oil, those that are highly processed and/or those in which DNA is present in very low amounts or is degraded. The effect of food processing on plant DNA degradation and PCR- based GMO analysis is reviewed in more detail by Gryson (2010). The samples can vary greatly and inhibitors of PCR reaction may be present. Certain additional steps can be used to minimize inhibition, like the addition of proteinase K to degrade proteins or of hexane to remove lipid components (Gryson 2010, Solfizzo et al 1998, Terry et al. 2002). When testing the final product is too difficult, it is advisable to ask for raw mate- rial, if available, because the extraction of DNA from the raw material is usually more successful. Extraction of DNA from oil samples is also difficult, because the DNA remains only in the leftovers of plant material present in the oil. There- fore prior centrifugation of the sample, using the sediment for further extraction with NucleoSpin® Food, is recommended and has been used in our laboratory (Costa et al. 2010). When testing the effectiveness of DNA extrac- tion by a method targeting the reference gene, the possibility exists that the extraction from the sample with more ingredients was effective but that insuf- ficient reference gene was present. Since preferred reference genes are usually chosen on the basis of their being only one copy, the 18S rRNA gene which is present in more copies and characteristic for all eukaryotic cells, can be additionally used to assess the level of DNA extraction. Decision-making system for selecting extraction methods A decision-making system was developed, based on DNA extraction results for known and new sample types, taking into account also chal- lenging samples (Fig. 1). The system dictates the use of two extraction methods for most samples, with practical implications for fluent workflow in the testing of many different samples. Most of the samples could be tested using NucleoSpin® Food or the CTAB method, sometimes with modification for challenging samples. Financial aspects In general, published protocols proved to be cheaper than commercial kits because they do not depend on costly reagents covered by international patents (Pirodini et al. 2010). On the other hand DNA extraction kits generally operate faster than the CTAB method (Demeke and Jenkins 2010). Some financial comparisons have been made by Smith et al. (2005) concerning methods for ex- tracting DNA from potatoes and potato-derived products; only costs of materials were compared (Smith et al. 2005). No other exact economic 72 Acta Biologica Slovenica, 58 (2), 2015 evaluations have been published. The financial aspect of the methods selected by our decision- making system follows. As noted above, NucleoSpin® Food and the CTAB method were used for extracting DNA from most samples. Additionally, the DNeasy Plant Mini Kit was used for extracting DNA from leaves. The number of samples tested at the same time influ- ences the final price; one, three and ten samples were tested in parallel – only the CTAB method using larger volumes is limited to test maximum of three samples at the same time. Working hours, chemicals and final prices were each compared, being expressed as ratios, with CTAB being taken as 100% (Tab. 7). Comparison of the final costs of all the methods showed that NucleoSpin® Food is the most cost effective, especially on account of the least number of working hours required to perform extractions. Independently of the extraction method used, the price decreases with increasing number of samples on account of the reduced working hours per sample. With more samples tested in parallel, final prices became more comparable. Future perspectives The laboratories dealing with many different samples daily need efficient system for extraction of DNA from these samples to enable high through- put and reliable DNA testing results. Developed decision-making system enables organized and supportive structure for quicker decisions in daily workflow in the laboratory. Figure 1: Decision-making system for selection of DNA extractions. Known sample types – tested many times, knowledge on DNA extraction regarding efficiency is known. Stable ones give repeatable, while variable ones give unexpected results of DNA extraction. New sample types – there is no experience on DNA extraction. Slika 1: Sistem odločanja za izbor metode za ekstrakcijo DNA. Poznani vzorci - testirani večkrat, poznana je uspešnost ekstrakcije DNA. Stabilni vzorci – analiza da pričakovan rezultat, medtem ko je pri variabilnh vzorcih lahko nepričakovan rezultat. Novi vzorci - zanje ni izkušnje glede uspešnosti ekstrakcije DNA. 73Žel et al.: Extraction od DNA for GMO testing Besides experiences described from testing of GMOs in our laboratory, further possibilities exist for more efficient operation of the DNA extrac- tion step in testing procedures. The introduction of automation of DNA extraction using magnetic beads should further speed the process and result in higher throughput (Guertler et al. 2014). The modular approach, declaring individual steps of the detection procedure, like DNA ex- traction and qPCR as independent modules, is commonly accepted in the detection of GMOs, but not in all other areas using nucleic acid based testing (Bellocchi et al. 2010; Holst-Jensen and Berdal 2004). In GMO detection the ratio between transgene and reference gene is used. In other areas, however, absolute quantification is needed, so it is even more important that extraction methods used in different laboratories are comparable, therefore decision-making systems can be used also for the purposes of standardization. New technologies can also enable amplification of DNA without prior intensive extraction, as was shown for leaf and seed tissues of MON 810, using loop-mediated isothermal amplification (LAMP) (Lee et al. 2009) or even qPCR (Mano et al. 2014) and digital PCR (Pavšič et al. 2015) giving further possibilities for even more standardized procedures of testing without influences of the extraction step. Conclusions The decision-making system for selecting extraction methods described here enables the use of tested methods for most samples. The advantage of such a system is that different samples coming to the laboratory can be processed in parallel using the same method, thus resulting in rationalization of the workflow, labor and cost. In consequence, fewer methods need to be verified or validated and the education of personnel is more rational. The tables presented in this paper, which relate extraction to sample type, can also be useful for other laboratories testing similar sample types. The decision-making system presented here can also contribute to harmonizing the extraction steps for GMO detection used in different laboratories. The decision-making system can also be adapted for other areas using nucleic acids testing in food, feed, seeds and plants. Povzetek Pri analizah živil, krme, semen in rastlin, ki temeljijo na določanju nukleinskih kislin, se upo- rablja različne metode ekstrakcije DNA. Takšen primer je tudi določanje gensko spremenjenih organizmov (GSO), kjer izvajamo analize na zelo različnih vrstah vzorcev, od rastlin ali semen, do zelo procesiranih vzorcev kot so kosmiči ali čokolada, ki se med seboj lahko zelo razlikujejo, npr. zaradi različnih načinov obdelave pri proiz- vodnji ali različnih dodatkov ipd. Celo vzorci enake sestave se lahko med različnimi proizvajalci razlikujejo glede kvalitete DNA, ki jo vsebujejo. Razvite so različne metode za ekstrakcijo DNA, ki delujejo uspešno pri nekaterih vrstah vzorcev, pri drugih pa ne. Zato je delo v laboratorijih, ki analizirajo različne vrste vzorcev zelo kompleksno. Na osnovi naših izkušenj smo razvili sistem odločanja za izbor ekstrakcije DNA za posamezen vzorec. V laboratoriju uporabljamo tri metode za ekstrakcijo DNA. Za večino vzorcev uporabimo NucleoSpin® Food, za nekatere vzorce (npr. gluten, lecitin in čokolada) je najbolj primerna izolacija s cetiltrimetilamonijevim bromidom (CTAB), pri ekstrakciji DNA iz listov pa upora- bljamo CTAB ali DNeasy Plant Mini Kit. Vzorce smo glede na pridobljene izkušnje o uspešnosti ekstrakcije razdelili na poznane vzorce, ki smo jih že večkrat testirali, in nove vzorce. Poznane vzorce ločujemo na stabilne vzorce, za katere smo pokazali, da iz njih vedno pridobimo DNA ustrezne kvalitete in v zadostni količini, in na variabilne vzorce, pri katerih je lahko učinkovitost ekstrakcije zelo različna zaradi zgoraj omenjenih razlogov. Novi vzorci so tisti, s katerimi še nimamo izkušnje o učinkovitosti ekstrakcije DNA. Skladno s to razdelitvijo smo naredili shemo odločanja, ki je prikazana na Sl. 1. Obenem smo za vzorce z različnimi vsebnostmi posamezne rastlinske vrste (koruze, soje, lanu, krompirja, paradižnika, oljne ogrščice) podali natančne informacije o rezultatih pridobljenih pri nadaljnji analizi DNA z metodo PCR v realnem času. Vzpostavljeni sistem odločanja izbora metode ekstrakcije DNA je narejen na primeru določanja GSO, vendar je uporaben tudi za druge podobne analize nukleinskih kislin v obravnavanih vrstah vzorcev. 74 Acta Biologica Slovenica, 58 (2), 2015 Acknowledgements We are grateful to Dr. Roger Pain for critical re- view of the manuscript. The work was co-financed by the Slovenian Research Agency (contract no. P4-0165) and the Slovenian Ministry of Agriculture and Environment (contract no. 2330-13-000072). The research leading to these results has also re- ceived funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 613908, relating to the project “Development of Cost-efficient Advanced DNA- based methods for specific Traceability issues and High Level On-site Applications”. References Bellocchi, G., De Giacomo, M., Foti, N., Mazzara, M., Palmaccio, E., Savini, C., Di Domenican- tonio, C., Onori, R., Van den Eede, G., 2010. Testing the interaction between analytical modules: an example with Roundup Ready soybean line GTS 40-3-2. BMC Biotechnol., 10:55-69. Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J., Wittwer, C.T., 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem., 55 (4), 611-22. Cankar, K., Stebih, D., Dreo, T., Zel, J., Gruden, K., 2006. Critical points of DNA quantification by real-time PCR - effects of DNA extraction method and sample matrix on quantification of gene- tically modified organisms. BMC Biotechnol., 6:37-52. Codex Committee On Methods Of Analysis And Sampling, 2010. Guidelines on performance criteria and validation of methods for detection, identification and quantification of specific DNA sequences and specific proteins in foods. CAC/GL 74-2010 Codex alimentarius commission WHO Rome. Costa, J., Mafra, I., Amaral, J.S., Oliveira, M.B.P.P., 2010. Monitoring genetically modified soybean along the industrial soybean oil extraction and refining processes by polymerase chain reaction techniques. Food Res. Int., 43:301–306. Demeke, T., Jenkins, G.R., 2010. Influence of DNA extraction methods, PCR inhibitors and quanti- fication methods on real-time PCR assay of biotechnology-derived traits. Anal. Bioanal. Chem., 396:1977–1990. European Network of GMO Laboratories, 2015. Definition of minimum performance requirements for analytical methods of GMO testing. JRC95544. European Network of GMO laboratories (ENGL), 2011. Verification of analytical methods for GMO testing when implementing interlaboratory validated methods. European Commission; JRC Scientific and Technical Reports, EUR 24790 EN – 2011. Genetic ID NA Inc., 2009. NOST-Spec Construct-specific Method for the Detection of CDC Triffid Flax (Event FP967) Using Real-time PCR. http://gmo-crl.jrc.ec.europa.eu/doc/Flax-CDCTrif- fidFlaxJRC091030.pdf Guertler, P., Eicheldinger, A., Muschler, P., Goerlich, O., Busch, U., 2014. Automated DNA extraction from pollen in honey. Food Chem., 149:302–306. Gryson, N., 2010. Effect of food processing on plant DNA degradation and PCR-based GMO analysis: a review. Anal Bioanal. Chem., 396:2003–2022. Hernandez, M., Duplan, M.N., Berthier, G., Vaitilingom, M., Hauser, W., Freyer, R., Pla, M., Bertheau, Y., 2004. Development and Comparison of Four Real-Time Polymerase Chain Reaction Systems for Specific Detection and Quantification of Zea mays L. J Agric. Food Chem., 52:4632–4637. Hernandez, M., Ferrando, A., Esteve, T., Puigdomenech, P., Prat, S., Pla, M., 2003. Real-time and conventional polymerase chain reaction systems based on the metallo-carboxypeptidase inhibitor gene for specific detection and quantification of potato and tomato in processed food. J Food Prot., 66:1063–107.0 Holst-Jensen, A., Berdal, K., 2004. The modular analytical procedure and validation approach and the units of measurement for genetically modified materials in foods and feeds. J AOAC Int, 87:927–936. 75Žel et al.: Extraction od DNA for GMO testing ISO 21571: 2005 Foodstuffs - Methods of analysis for the detection of genetically modified orga- nisms and derived products - Nucleic acid extraction. Geneva: International Organization for Standardization. ISO 21571:2005/A1 2013 Foodstuffs - Methods of analysis for the detection of genetically modified organisms and derived products - Nucleic acid extraction - Amendment 1 (ISO 21571:2005/Amd 1:2013) Geneva: International Organization for Standardization. Lee, D., La Mura, M., Allnutt, T., Powell, W., Greenland, A., 2009. Isothermal amplification of gene- tically modified DNA sequences directly from plant tissues lowers the barriers to high-throughput and field-based genotyping. J Agric, Food Chem, 57:9400–9402. Mano, J., Hatano, S., Futo, S., Minegischi, Y., Ninomiya, K., Nakamura, K., Kondo, K., Teshima, R., Takabatakabe, R. and Kitta, K., 2014. Development of direct real-time PCR system applicable to a wide range of foods and agricultural products. Food Hyg, Saf, Sci, 55:25-33, Mazzara, M., Grazioli, E., Savini, C., Van den Eede, G., 2006. Validation Report and Protocol. Event-specific method for the quantitation of rice line llrice62 using real-time PCR validation report and Protocol. Institute for health and consumer protection. European Commission, JRC Biotechnology and GMO unit. Milavec, M., Dobnik, D., Yang, L., Zhang, D., Gruden, K., Zel, J., 2014. GMO quantification: valuable experience and insights for the future. Anal Bioanal Chem., 406:6485–6497. Murray, M. G., Thompson, W. F., 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8:4321-4325. Pavšič, J., Žel, J., Milavec, M., 2015 Digital PCR for direct quantification of viruses without DNA extraction. Anal Bioanal Chem (DOI 10.1007/s00216-015-9109-0, published on-line 19.October 2015) Pauli, U., Linger, M., Schrott, M., Schouvey, B., Hubner, P., Brodmann, P., Eugster, A., 2001. Quan- titative detection of genetically modified soybean and maize: Method evaluation in a swiss ring trial. Mitt Lebensm, Hyg., 92:145–158. Pirondini, A., Bonas, U., Maestri, E., Visioli, G., Marmiroli, M., Marmiroli, N., 2010. Yield and amplificability of different DNA extraction procedures for traceability in the dairy food chain. Food Control, 21:663–668. Sacco, M.G., Gatto, F., Paracchini, V., Scaravelli, E., Nardini, E., Savini, C., Mazzara, M., Kreysa, J, 2014. Extraction of DNA from Choline Chloride Feed Additive ( CC ) and from derived and Screening of CC and PMCC for ( a ) presence of rice and ( b ) presence of BT63. European Com- mission JRC Science and Policy Reports. Smith, D.S., Maxwell, P.W., De Boer, S.H., 2005. Comparison of several methods for the extraction of DNA from potatoes and potato-derived products. J Agric. Food Chem., 53:9848–9859. Solfrizzo, M., Avantaggiato, G., Visconti, 1998. Use of various clean-up procedures for the analysis of ochratoxin A in cereals. J Chromatogr. A, 815:67–73. Terry, C. F., Harris, N., Parker, H.C. 2002. Detection of genetically modified crops and their derivatives: Critical steps in sample preparation and extraction. J AOAC Int., 85:768–774. Waiblinger, H.U., Grohmann, L., 2014. Guidelines for validation of DNA extraction methods applied in subsequent PCR analysis of food and feed products for the presence of genetically modified material. J Verbr. Lebensm., 9:183–190. Waiblinger, H.U., Ohmenhaeuser, M., Meissner, S., Schillinger, M., Pietsch, K., Goerlich, O., Man- kertz, J., Lieske, K., Brol, H., 2012. In-house and interlaboratory validation of a method for the extraction of DNA from pollen in honey. J. Verbr. Lebensm., 7:243–254. Zeitler, R., Pietsch, K., Waiblinger, H.U., 2002. Validation of real-time PCR methods for the quantifi- cation of transgenic contaminations in rape seed. Eur, Food Res. Technol., 214:346–351. Žel, J., Milavec, M., Morisset, D., Plan, D., Van den Eede, G., Gruden, K., 2012. How to Reliably Test for GMOs. 1st ed. Springer, New York, 100pp. Prispevek k slovenski anatomski terminologiji: latinsko − slovenski, slovensko − latinski slovar ptičjih kosti Contribution to Slovenian anatomical terminology: Latin − Slovenian, Slovenian − Latin dictionary of bird bones Franc Janžekoviča*, Tina Zajcb, Srdan V. Bavdekc, Zlatko Golobd, Tina Klenovšeka aFakulteta za naravoslovje in matematiko, Univerza v Mariboru, Koroška cesta 160, 2000 Maribor bTrubarjeva 3, 3310 Žalec cFakulteta za matematiko, naravoslovje in informacijske tehnologije, Univerza na Primorskem, Glagoljaška 8, 6000 Koper dDVM Golob d.o.o. Ambulanta za male, divje in eksotične živali, Glavni trg 7, 2366 Muta *korespondenca: franc.janzekovic@um.si Izvleček: V članku je predstavljeno poimenovanje kosti ptičjega skeleta. Posa- mezni strokovni izraz je zapisan v mednarodni strokovni nomenklaturi, tj. v latinščini ali latinizirani grščini, večinoma sledi poslovenjeni strokovni izraz in nato slovensko poimenovanje posameznega anatomskega izraza. Zaporedje gesel sledi anatomski regionalizaciji ptičjega telesa. V prvem dodatku so po abecedi navedeni slovenski strokovni izrazi, opremljeni z besednovrstnimi oznakami za končnico v drugem sklonu ednine in za spol, z latinskim izrazom v nadaljevanju. V drugem dodatku so navedena po abecedi latinska anatomska poimenovanja, ki jim sledijo slovenski strokovni izrazi. Ključne besede: anatomija, ptičje kosti, okostje, skelet, slovenska terminologija Abstract: The work presents anatomical terminology of bones of a bird skeleton. An individual technical term is written in the international standard form, i.e. in Latin or Latinized Greek, mostly followed by the slovenized technical term and afterwards by the Slovenian expression for the individual anatomical term. The succession of terms follows the anatomical body regionalisation in birds. In Appendix 1, Slovenian technical terms are listed in alphabetical order with marks for the genitive case singular and sex, followed by Latin names. In Appendix 2, the Latin anatomical names are listed in alphabetical order succeeded by Slovenian expressions. Key words: anatomy, birds bones, skeleton, Slovenian terminology ACTA BIOLOGICA SLOVENICA LJUBLJANA 2015 Vol. 58, [t. 2: 77–92 78 Acta Biologica Slovenica, 58 (2), 2015 Uvod Terminologija (strokovno izrazoslovje) je veda o strokovnih izrazih izbranega področja in v tem delu predstavljamo poimenovanje oz. slovenske izraze za ptičje kosti. Prispevek je zasnovan kot dvojezični strokovni slovar. Zajema poimenovanja posameznih ptičjih kosti in sklope kosti posa- meznih telesnih področij. Z njim dopolnjujemo in posodabljamo slovensko strokovno izrazje. Pri uporabi slovenskih ustreznic smo se ravnali po obstoječem splošnem anatomskem izrazju, kot ga navajata Veterinarski terminološki slovar (Br- glez in sod. 2013) in Slovenski medicinski slovar (Kališnik 2012). Specifično anatomsko izrazje za ptiče v temeljni slovenski veterinarski literaturi ni zastopano (npr. Rigler 1985 in 1990), povzeli smo ga po novejši monografiji Funkcionalna anatomija ptičev z osnovami ornitologije (Golob 2011). Geselske iztočnice in njihovo zaporedje smo povzeli po Baumelu in sod. (1993), primerjali smo jih z Nickelom (2000). Zaporedje gesel sledi regionalizaciji ptičjega telesa po telesnih delih oz. področjih telesa: lobanja z osnim skeletom, hrbtenica in prsni koš, privesni skelet s plečnim obročem in kostmi peruti ter medenični obroč s kostmi noge. Poleg zaporedja, ki sledi anatomski regionalizaciji, so v dodatku še v abecednem zaporedju gesla v latinskem in slovenskem jeziku ter v slovenskem in latinskem jeziku. V prvem dodatku so v abecednem zaporedju gesel slov- enske iztočnice zapisane v imenovalniku ednine ali množine, dodane so besednovrstne oznake za končnico v rodilniku in oznaka za spol (m, ž, s). Geselska iztočnica je eno- ali večbesedna v latinskem jeziku, sledijo poslovenjena in slovenska ustreznica oz. več ustreznic. Pri nekaterih geslih so navedene še vedno uporabljane sopomenke, te so označene z okrajšavo sin. (sinonim). Slov- enske ustreznice temeljijo na rabi v sodobnem strokovnem jeziku. Kjer slovenskih ustreznic do sedaj nismo imeli, smo latinsko poimenovanje glasovno poslovenili. Sledijo slovenske sopomenke in ponekod še opisne oblike izrazov. Latinske iztočnice so zapisane v krepkem tisku (sinonimi v navadnem tisku), sledijo slovenske ustreznice v navadnem tisku. Prispevek predstavlja prvine sporazumeval- nega jezika stroke. Navedene so kosti, ki jih imajo ptiči. Nekatere med njimi so značilne samo za določene skupine, npr. tilna kost (os nuchale) za kormorane in kačjevratnike, ali pa štrleča kost (os prominens) za kanje, sokole in sove. Nasploh je pri ptičih precejšnja raznolikost v obliki in velikosti skeletnih elementov. Latinsko-slovenski anatomski izrazi ptičjega okostja SKELETON AXIALE – AKSIALNI SKELET, OSNO OKOSTJE CRANIUM – KRANIJ, LOBANJA ossa cranii – kosti kranija, kosti lobanje os occipitale – okcipitalna kost, zatilnica os basioccipitale – baziokcipitalna kost, osnovna zatilnica os exoccipitale – eksokcipitalna kost, stranska zatilnica os supraoccipitale – supraokcipitalna kost, zgornja zatilnica os sphenoidale – sfenoidna kost, zagozdnica os basisphenoidale – bazisfenoidna kost, osnovna zagozdnica os laterosphenoidale, sin. os orbitosphenoidale – laterosfenoidna kost, orbitosfenoidna kost, stranska zagozdnica os parasphenoidale – parasfenoidna kost, obzagozdnica ossa temporalia – temporalne kosti, senčnične kosti os squamosum – skvamozna kost, luskasta kost os oticum – otična kost, ušesna kapsula os epioticum – epiotična kost, nadušesna kost 79Janžekovič et al.: Prispevek k slovenski anatomski terminologiji os opisthoticum – opistotična kost, ušesni stebriček os prooticum – prootična kost, predušesna kost os metoticum – metotična kost, priušesna kost pila otica, sin. opisthotic, sin. columella, sin. pila prootica – kolumela, stebrc os parietale – parietalna kost, temenica os frontale – frontalna kost, čelnica os ethmoidale – etmoidna kost, sitkina kost os mesethmoidale – mezetmoidna kost, sredinska sitkina kost os ectethmoidale – ektetmoidna kost, zunanja sitkina kost os lacrimale, sin. os prefrontale – lakrimalna kost, solznica, predčelnica ossa maxillae et palati – kosti maksile in palatinuma, kosti zgornje čeljusti in neba os nasale – nazalna kost, nosnica premaxilla, sin. rostrum maxillae – premaksila, kljun zgornje čeljustnice, predčeljustnica, medčeljustnica maxilla, sin. os maxillare – maksila, zgornja čeljustnica os palatinum – palatinalna kost, nebnica, nebna kost vomer – vomer, lemežnica, ralo os pterygoideum – pterigoidna kost, krilna kost, krilatka os jugale – jugalna kost, jarmova kost os quadratojugale – kvadratojugalna kost, kvadratnojarmova kost os quadratum – kvadratna kost, štirikotnica ossa mandibulae, kosti mandibule, kosti spodnje čeljusti os dentale – dentalna kost, zobna kost, zobnica os angulare – angularna kost, kotna kost os articulare – artikularna kost, sklepna kost os coronoideum – koronoidna kost, kronasta kost os prearticulare – preartikularna kost, predsklepna kost os spleniale – splenialna kost, žmulasta kost os supraangulare – supraangularna kost, nadkotna kost ossa accessoria cranii – dodatne kosti lobanje anulus tympanicus – bobničev obroč os nuchale – nuhalna kost, tilna kost ossa sclerae – beločnične kosti os siphonium – cevasta kost os suprajugale – suprajugalna kost, nadjarmova kost ossa supraorbitalia – supraorbitalne kosti, nadočnične kosti os lacrimopalatinum – solzničnonebna kost ossa suturarum – šivne kosti os uncinatum – kavljasta kost apparatus hyobranchialis, sin. apparatus hyoideus – hiobranhialni aparat, jezičnoškržni aparat, jezični aparat, jezičnica paraglossum, sin. entoglossum – paraglosum, objezična kost, objezičnica, entoglosum, znotrajjezična kost, znotrajjezičnica basihyale, sin. basihyoideum – bazihioid, telo jezičnice urohyale, sin. urohyoideum, sin. basibranchiale – urohioid, rep jezičnice, telo škržnega dela jezičnice cornu branchiale – rog jezičnice, rog jezičnega aparata 80 Acta Biologica Slovenica, 58 (2), 2015 columna vertebralis – hrbtenica vertebrae cervicales – cervikalna vretenca, vratna vretenca atlas – atlas, nosač axis, sin. epistrophaeus – aksis, okretač vertebrae thoracicae, lumbicales sacrales et caudales – torakalna, lumbalna, sakralna in kavdalna vretenca, prsna, ledvena, križna in repna vretenca notarium, sin. os dorsale – notarij, hrbtna kost, hrbtnica synsacrum, sin. os lumbosacrale – sinsakrum, sokrižnica vertebrae synsacrales – sinsakralna vretenca, vretenca sokrižnice vertebrae caudales liberae – prosta repna vretenca pygostylus – pigostil, križni opornik, mrdenica, jurična kost skeleton thoracis – torakalni skelet, okostje prsnega koša costae – rebra costa vertebralis – vertebralno rebro, vretenčno rebro costa sternalis – sternalno rebro, prsnično rebro costae completae verae – prava popolna rebra costae completae spuriae – neprava popolna rebra costae incompletae – nepopolna rebra costae fluctuantes – prosta rebra, plavajoča rebra sternum – sternum, prsnica SKELETON APPENDICULARE – APENDIKULARNI SKELET, PRIVESNO OKOSTJE skeleton membri thoracini – skelet torakalne okončine, okostje prsne okončine ossa cingula membri thoracini – kosti obroča torakalne okončine, kosti obroča prsne okončine, kosti plečnega obroča, kosti ramenskega obroča furcula, sin. clavicula – furkula, klavikula, vilice, ključnica scapula – skapula, plečnica, (lopatica) coracoideum, sin. os coracoideum – korakoid, krokarnica skeleton alae – okostje peruti skeleton brachii – skelet brahija, okostje nadlakti humerus – humerus, nadlahtnica skeleton antebrachii – skelet antebrahija, okostje podlakti ulna – ulna, komolčnica, podlahtnica radius – radius, koželjnica skeleton manus – skelet roke, okostje roke ossa carpi – karpalne kosti, zapestnice os carpi radiale – radialna karpalna kost, koželjnična zapestnica os carpi ulnare – ulnarna karpalna kost, komolčnična zapestnica os prominens – prominentna kost, štrleča kost 81Janžekovič et al.: Prispevek k slovenski anatomski terminologiji carpometacarpus – karpometakarpalna kost, zapestnodlančna kost, zapestnodlančnica os metacarpale alulare, sin. metacarpus pollicis – alularna dlančnica, perutkina dlančnica os metacarpale majus – večja dlančnica os metacarpale minus – manjša dlančnica ossa digitorum manus – prstnice roke phalanx digiti alulae – prstnica perutke phalanx proximalis digiti majoris –zgornja prstnica večjega prsta phalanx distalis digiti majoris – spodnja prstnica večjega prsta phalanx digiti minoris – prstnica manjšega prsta skeleton membri pelvini – okostje medenične okončine ossa cingula membri pelvini – kosti obroča medenične okončine pelvis – medenica os coxae – kolčnica os ilium – črevnica os ischii – sednica os pubis – dimeljnica skeleton femoris – okostje stegna os femoris – femur, stegnenica patella – patela, pogačica skeleton cruris – okostje goleni tibiotarsus – tibiotarzus, goleničnonartna kost, golenonartnica fibula – fibula, mečnica skeleton pedis – okostje stopala ossa tarsi – nartne kosti, nartnice os tibiale, sin. astragalus – astragalus, golenična nartna kost os fibulare, sin. calcaneum – kalkaneum, mečnična nartna kost os tarsi distale – distalna tarzalna kost, spodnja nartna kost tarsometatarsus – tarzometatarzus, nartnostopalna kost, nartostopalnica os metatarsale I (primum), sin. os hallucis – metatarzlana kost I, prva stopalnica os metatarsale II (secundum) – metatarzalna kost II, druga stopalnica os metatarsale III (tertium) – metatarzalna kost III, tretja stopalnica os metatarsale IV (quartum) – metatarzalna kost IV, četrta stopalnica ossa digitorum pedis – prstnice stopala phalanx (mn. phalanges) digitorum pedis – prstnica (prstnice) prstov stopala phalanx ungualis – prstnica kremplja, krempeljnica Označevanje prstov na medenični okončini smo povzeli po Baumelu in sod. (1993): palec ima oznako 1 (hallux), notranji prst 2 (digitus secundus), srednji prst 3 (digitus tertius) in zunanji prst oznako 4 (digitus quartus). V splošnem imajo ptiči naslednje število prstnic v posameznem prstu: palec 82 Acta Biologica Slovenica, 58 (2), 2015 dve prstnici, notranji prst tri prstnice, srednji prst štiri prstnice in zunanji prst pet prstnic. Končna oz. distalna prstnica (phalax ungualis – krempeljnica) je pri večini ptičev zavita v obliki kavlja in skupaj s keratinskim ovojem (ramfoteko) tvori krempelj, pri ponirkih je sploščena. Število prstnic v posa- meznem prstu noge zapišemo s prstnično formulo (phalangeal formula), npr. 2-3-4-5. Razprava Kljub homolognim kostem pri ljudeh in tetrapodih (štirinožcih) obstajajo precejšnje razlike v anatomskem poimenovanju kosti med biološko, medicinsko in veterinarsko stroko. Npr. v medicinski literaturi se za izraz scapula dosledno uporablja lopatica, v veterinarski pa plečnica. Po drugi strani pri ptičji osteološki terminologiji še vedno niso povsod upoštevana homoplazna stanja nekaterih kosti prednje in zadnje okončine, pred- vsem zeugopodija in autopodija. Tako npr. večina domače strokovne literature sploh ne obravnava ptičjega tibiotarzusa in tarzometatarzusa. Med anatomskimi posebnostmi ptičje lobanje velja omeniti vsaj nekatere, npr. enojni okcipitalni čvrš, gibljivost kvadratne kosti in krilatke ter čeljustni sklep med mandibulo in kvadratno kostjo. Za lobanjo je značilna tudi razmeroma obsežna orbita, katere dno pri večini ptičev ni koščeno, ampak ga večinoma oblikujejo čeljustne mišice. Kinezo lobanje omogočajo sklepi med nekaterimi kostmi viscerokranija, pa tudi stanjšanja kosti, ki predstavljajo upogibna področja (zonae flexoriae). Maxilla – maksila (sin. os maxillare) je ena od kosti zgornje čeljusti, z izrazom maxilla pa poimenujemo tudi kompleks kosti, ki tvorijo zgornjo čeljust. Skratka, v prvem primeru gre za individualno kost, v drugem za kompleks (sestav) kosti (Baumel in sod. 1993). Zato se pri navedbi kosti os maxillare držimo načela, da gre za eno od kosti maksile (tj. maksilarno kost). Je pa res, da se v veterinarski terminologiji sesalcev in v medicinski terminologiji ne uporablja izraza os maxillare, ampak maxilla v pomenu (1) para votlih kosti v obraznem delu lobanje in (2) zgornje čeljusti. Poseben premislek namenjamo slovenjenju termina os jugale, jugalna kost. Ta kost se nahaja na osrednjem delu jugalnega loka (arcus jugalis): kavdalno je koščeno zraščena s kvadratojugalno kostjo (os quadratojugale) in rostralno z jugalnim podaljškom maksilarne kosti (os maxillare: proces- sus jugalis). Jugalni lok povezuje zgornjo čeljust s štirikotnico (os quadratum). Izraz jugalis (lat. iugalis vprežen, povezujoč; iugo spojiti, zvezati; iugum jarem) opredeljuje položajno lastnost ob- jekta (vezno, spojno), ki ima obliko in funkcijo jarma. Pri slovenjenju tega termina se je mogoče nasloniti na izraze jârmnica ali jármovka (trta, vitra pri jarmu) v Pleteršnikovem Slovensko-nemškem slovarju, zap. št. 5240 in 5241 (Fran 2015a); ter geslo jarem v Slovenskem pravopisu iz leta 1950 (Ramovš in sod. 1950); ter jarmski (nanašajoč se na jarem), jarmov (npr. j. lok) in jarmnik (klin, s katerim se povežeta zgornji in spodnji del jarma) iz SSKJ (Fran 2015b)). Izraz jarmov lok (arcus jugalis) je sprejemljiv, nekoliko manj jarmova kost (os jugale), saj so jarmove vse tri kostne sestavine jarmovega loka. Je pa mogoče, če za to obstojijo posebni razlogi, kost natančno opredeliti kot jarmova kost v ožjem pomenu besede (os jugale proprium). Za jezični skelet, tj. jezičnoškržni aparat (apparatus hyobranchialis) je v strokovni lit- eraturi vrsta sopomenk, ki imajo različen izvor svojega nastanka. V novejšem času se uveljav- ljajo predvsem izrazi, ki označujejo pripadnost bodisi podjezičnemu (hioidnemu) loku ali škržnim (branhialnim) lokom. Podjezični (hioidni) del jezičnice obsega tri sestavine. Spredaj je objezična kost ali objezičnica (paraglossum, sin. entoglossum, sin. glossohyale), ki ima pri večini ptičev obliko puščice; kost nastopa v paru z kavdolateralno ležečim rogu podobnim koncem (ceratohyale proper – rogu podobna jezičnica v ožjem pomenu besede, tudi epihyale proper – končni del jezičnice v ožjem pomenu besede); tretja sestavina podjezičnega dela je telo jezičnice (basihyale, sin. basihyoideum). Škržni del jezičnega aparata izhaja iz prvega in drugega škržnega loka. Iz prvega nastaneta rogu podobna škržna kost (ceratobranchyale) in končna škržna kost (epibranchiale), ki skupaj tvorita (večji) rog jezičnega aparata, tj. rog jezičnice. Z drugega škržnega loka izhaja urohioid (urohyale, sin. urohyoideum, sin. basibranchiale – rep jezičnice ali telo škržnega dela jezičnice), ta pa se pri odraslih ptičih zraste s pred njim ležečim telesom 83Janžekovič et al.: Prispevek k slovenski anatomski terminologiji jezičnice (bazihioidom) (Baumel in sod. 1993, Fine Dictionary 2013). Jezičnoškržni aparat ima vrstno značilne modifikacije, tako sta npr. rogova jezičnice pri žolnah in detlih izredno dolga. Pri izrazu urohioid gre za določeno nejasnost, kajti kost ne izvira iz podjezičnega (hioidnega) loka, ampak iz drugega škržnega (branhialnega) loka, na kar opozarja sopomenka basibranchiale (telo škržnega dela jezičnice). Zaradi dvojnosti rabe izrazov lopatica in plečnica pri živalih v našem naravoslovju ni odveč navesti naslednje. Za poimenovanje izraza scapula se pri slovanskih narodih večinoma upo- rablja lopatica oz. lópatka, v srbskem jeziku tudi plećka, pri zahodnoevropskih pa npr. omoplate (fr.) / omoplato (šp.) / das Schulterblatt (nem.) / skulderblad (šved.) oz. shoulderblade (angl.). Pri zahodnoevropskih narodih je torej dosledno opredeljeno področje te kosti (pleča, rame), medtem ko pomenijo izrazi blade / blatt / blad / plate / plato rezilo (npr. noža, sablje), tudi rezilo omotače ali lopate (tj. lopatico). Domneva se, da izraz scapula izvira iz grškega ‘skaptein’, kar pomeni kopati (Wikipedia 2013). Pri ptičih je skapula večinoma ozka in rahlo ukrivljena (sabljasta), pri pingvinih pa lopatasto razširjena, podobna kot pri sesalcih. V našem prispevku smo dali prednost izrazu plečnica, ker je anatomsko smotrno glede na pleča (področje trupa med plečnicama). Nenatančnost se je prenesla tudi v SSKJ (Fran 2015b), kjer so opisana pleča kot »zgornji del človeškega ali živalskega trupa med lopaticama«, plečnica pa kot »parna ploščata kost na spodnjem stranskem delu prsi«. Zaradi istih in podobnih vzrokov smo dali prednost tudi izrazu plečni obroč (in ne ramenski obroč). Eno od posebnih vprašanj zadeva medenično okončino, predvsem golenico, nartnice in sto- palnice. Ker se posamezne kosti oz. njihove koščene zasnove pojavijo med embrionalnim razvojem ptičev, uporabljamo vse navedene izraze, glede na stanje pri odraslih ptičih pa tudi nova izraza tibiotarzus (golenonartnica: golenica je zraščena z dorzalnima nartnicama astragalusom in kalkaneumom) in tarzometatarzus (nartosto- palnica: stopalnice II, III in IV so zraščene med seboj in z distalno nartnico, os tarsi distale). Proces zraščanja kosti je prisoten tudi v pe- ruti, ki privede do nastanka karpometakarpusa (zapestnodlančnice: zrast zapestnic in dlančnic). Med embrionalnim razvojem nastanejo osifikaci- jska jedra šestih zapestnih koščic, od katerih ena nazaduje in izgine, dve se izoblikujeta v samostojni zapestnici (os carpi radiale – koželjnična zapest- nica in os carpi ulnare – komolčnična zapestnica), tri pa se vključijo v proksimalni del dlančnih kosti. Nastane sestavljena kost zapestnodlančnica, pri kateri razlikujemo tri dlančne sestavine: perut- kino dlančnico (os metacarpale alulare), večjo dlančnico (os metacarpale majus) in manjšo dlančnico (os metacarpale minus). Večja in manjša dlančnica sta proksimalno zraščeni med seboj, s perutkino dlančnico in z omenjenimi tremi zapestnicami; nato potekata ločeno, med njima je dlančnični prostor (spatium metacarpale), na dis- talnem koncu pa sta sinostozno zraščeni (Baumel in sod. 1993). Opisana anatomska značilnost je pomembna sestavina peruti, saj predstavlja podlago za pripetje primarnih letalnih peres. Veterinarski terminološki slovar prej navedenih izrazov ne obravnava, prav tako ne obravnava dosledno za ptiče značilnih diferenciacij hrbtenice in posebnosti skeleta lobanje. V praksi se izrazi sicer uporabljajo, predvsem v pedagoške namene na univerzah v Sloveniji, navaja pa jih tudi Golob (2011). Izraz sinsakrum opredeljuje Veterinarski terminološki slovar (Brglez in sod. 2013) kot kost iz zraščenih kavdalnih prsnih, ledvenih, križnih in nekaj repnih vretenc ptičev, ne navaja pa slovenskega imena. Osnovo izraza predstavlja sakrum, tj. križnica (lat. os sacrum), predpona sin- pa pomeni zlitje ali zraščenost (gr. syn: s, z, skupaj, hkrati, v sestavljankah s so- (Verbinc, 1968)) prej navedenih vretenc. Sinsakrum torej lahko slovenimo kot kost(i) sokrižja, sokrižna zrast ali sokrižnica. Pri tem je treba upoštevati, da je križnica sesalcev zraščena iz nekaj (štiri do pet pri človeku) križnih vretenc. V obeh primerih gre torej za zraščenost vretenc v področju križa, le da je ta pri ptičih obsežnejša in predstavlja evolucijsko prilagoditev njihovemu načinu gibanja. Razložiti velja tudi slovensko poimenovanje izraza pygostylus (pigostil). Le-ta zadeva končno kost hrbtenice pri ptičih, ki nastane s postnatalnim zlitjem zadnjih štiri do osem vretenc. Izraz ima grški izvor in pomeni križni opornik (gr. pyge del telesa pred repom, križ; sokrižnica vključuje tudi prva repna vretenca; stylos steber, opornik), tj. 84 Acta Biologica Slovenica, 58 (2), 2015 opornik repnega dela ptičjega telesa in še posebej repnih letalnih peres. Za razumevanje tega izraza si pomagajmo z razlago izraza uropigij (gr. oura rep, pyge križ), tj. zadnji del telesa, ki obsega rep in križno področje. V slovenščini označujemo to področje ptičjega telesa tudi s pogovornim izrazom (kurja) škofija. Pigostil je torej kost v področju (kurje) škofije, t. i. mrdina (Brglez in sod. 2013). Vendar se izraz mrdina ni uveljavil v naši strokovni literaturi, za kar je najbrž več vzrokov, predvsem ta, da kot izpeljanka iz mrde (Fran 2015b, Snoj 1997) ne ustreza dovolj tvornosti našega tehničnega izrazja na področju osteologije (prim. čelo → čelnica, pleče → plečnica, nadlaket → nadlahtnica, stegno → stegnenica itn.). Sprejemljivejši bi bil izraz (kost) mrdenica. Pigostil ima v strokovni literaturi dve sopomenki, urostil in kokciks. Izraz urostil (gr. oura rep, stylos steber) se uporablja predvsem v osteologiji rib in žab, coccyx (gr. kokkyx kukavica, gre za podobnost končne hrbtenične kosti iz zraščenih vretenc s kukavičjim kljunom (Merriam-Webster 2013)) pa predvsem v osteologiji človeka in človeku podobnih opic (slov. trtica). Slovenjenje izraza pigostil s trtico torej smiselno ne ustreza izvirniku, prav tako ne poimenovanje drugih delov ptičjega telesa z izpel- jankami iz trtice (npr. trtična žleza; gl. uropygii, dobesedno repnokrižna žleza). Posebej je treba omeniti tudi ključnici oz. njuno koščeno zraščenost v furkulo, vilice (lat. furca). V naše strokovno in splošno izrazje se je kot sopomenka furkuli vrinila kobilica. Vendar gre v tem primeru za poimenovanje, ki ga ni mogoče nasloniti na furkulo. Gredelj ali kobilica je namreč na prsnici (carina sterni). Pojasniti je treba tudi vprašanje uvajanja slovenskih anatomskih izrazov. Obstoječe uvel- javljene izraze smo vnesli v gradivo, sicer pa smo predvsem slovenili mednarodno sprejete termine. Tako je npr. pri opisu vretenc mogoče govoriti o njihovem sprednjem in zadnjem koncu, vendar se v sodobni anatomski terminologiji tetrapodov (štirinožnih živali) opuščata izraza anteriorni (sprednji) in posteriorni (zadnji). Uveljavila sta se izraza kranialni (tj. bližji lobanji) in kavdalni (bližji repu). V navedenem primeru sta izraza sprednji in zadnji (primerni) splošni opisni sopomenki, ki pa terminološko ne ustrezata izrazoma kranialen (bližji lobanji) oz. kavdalen (bližji repu). Poleg tega pri vretencih dvonožnih živali in človeka pomeni sprednji (anteriorni) ventralno (trebušno) in zadnji (posteriorni) dorzalno (hrbtno) smer. Zahvala Za skrben jezikovni pregled besedila in izboljšav se zahvaljujemo Gregorju Fazarincu iz Veterinarske fakultete Univerze v Ljubljani, Cvetani Tavzes iz Inštituta za slovenski jezik Frana Ramovša Slovenske akademije znanosti in umetnosti, Tonetu Novaku iz Fakultete za nara- voslovje in matematiko Univerze v Mariboru in Viktorju Majdiču. Prispevek je bil delno podprt s sredstvi Agencije RS za raziskovalno dejavnost iz raziskovalnega programa Biodiverziteta (P1-0078) in projekta Prazgodovinska kolišča na Ljubljan- skem barju, Slovenija: kronologija, kultura in paleookolje (L6-4157). 85Janžekovič et al.: Prispevek k slovenski anatomski terminologiji Dodatek 1: Abecedno zaporedje gesel v slovenskem in latinskem jeziku. Slovenskim iztočnicam je dodana končnica v rodilniku in spol (m, ž, s). Appendix 1: Alphabetical list of terms in Slovenian and Latin language. Marks for genitive case and sex (m, ž, s) are added to Slovenian terms. beločnična kost -e -i ž os sclerae bobničev obroč -ega -a m anulus tympanicus cevasta kost -e -i ž os siphonium čelnica -e ž os frontale četrta stopalnica -e -e ž os metatarsale IV črevnica -e ž os ilium spodnja nartna kost -e -e -i ž os tarsi distale dimeljnica -e ž os pubis druga stopalnica -e -e ž os metatarsale II golenična nartna kost -e -e -i ž os tibiale goleničnonartna kost -e -i ž tibiotarsus hrbtenica -e ž columna vertebralis hrbtna kost -e -i ž notarium jarmova kost -e -i ž os jugale jezičnica -e ž apparatus hyobranchialis kavljasta kost -e -i ž os uncinatum ključnica -e ž furcula kolčnica -e ž os coxae komolčnica -e ž ulna komolčnična zapestnica -e -e ž os carpi ulnare kotna kost -e -i ž os angulare koželjnica -e ž radius koželjnična zapestnica -e -e ž os carpi radiale krempeljnica -e ž phalanx ungualis krilatka -e ž os pterygoideum križni opornik-a -a m pygostylus križno vretence -ega -a s vertebra sacrales krokarnica -e ž coracoideum kronasta kost -e -i ž os coronoideum kvadratnojarmova kost -e -i ž os quadratojugale ledveno vretence -ega -a s vertebra lumbicales lemežnica -e ž vomer lobanja -e ž cranium luskasta kost -e -i ž os squamosum 86 Acta Biologica Slovenica, 58 (2), 2015 manjša dlančnica -e -e ž os metacarpale minus mečnica -e ž fibula mečnična nartna kost -e -e -i ž os fibulare nadjarmova kost -e -i ž os suprajugale nadkotna kost -e -i ž os supraangulare nadlahtnica -e ž humerus nadočnične kosti -ih -- ž ossa supraorbitalia nadušesna kost -e -i ž os epioticum nartnostopalna kost -e -i ž tarsometatarsus nebnica -e ž os palatinum neprava popolna rebra -ih -ih reber s costae completae spuriae nepopolno rebro -ega -a s costa incompleta nosač -a m atlas nosnica -e ž os nasale objezičnica -e ž paraglossum obzagozdnica -e ž os parasphenoidale okretač -a m axis osnovna zagozdnica -e -e ž os basisphenoidale osnovna zatilnica -e -e ž os basioccipitale perutkina dlančnica -e -e ž os metacarpale alulare plečnica -e ž scapula pogačica -e ž patella prava popolna rebra -ih -ih reber s costae completae verae predčeljustnica -e ž premaxilla predsklepna kost -e -i ž os prearticulare predušesna kost -e -i ž os prooticum priušesna kost -e -i ž os metoticum prosto rebro -ega -a s costa fluctuans prosto repno vretence -ega -ega -a s vertebra caudalis libera prsno vretence -ega -a s Vertebra thoracica prsnica -e ž sternum prsnično rebro -ega -a s costa sternalis prstnica manjšega prsta -e -- -- ž phalanx digiti minoris prstnica perutke -e -- ž phalanx digiti alulae prstnica prstov stopala -e -- -- ž phalanx digitorum pedis prva stopalnica -e -e ž os metatarsale I rebro -a ž costa rep jezičnice -a -- m urohyale 87Janžekovič et al.: Prispevek k slovenski anatomski terminologiji repno vretence -ega -a s vertebra caudalis rog jezičnice -a -- m cornu branchiale sednica -e ž os ischii senčnične kosti -e -- m ossa temporalia sitkina kost -e -i ž os ethmoidale sklepna kost -e -i ž os articulare sokrižnica -e ž synsacrum solznica -e ž os lacrimale solzničnonebna kost -e -i ž os lacrimopalatinum spodnja prstnica večjega prsta -e -e -- -- ž phalanx distalis digiti majoris sredinska sitkina kost -e -e -i ž os mesethmoidale stebrc -a m pila otica stegnenica -e ž os femoris stranska zagozdnica -e -e ž os laterosphenoidale stranska zatilnica -e -e ž os exoccipitale šivna kost -e -i ž os suturarum štirikotnica -e ž os quadratum štrleča kost -e -i ž os prominens telo jezičnice -esa -- ž basihyale temenica -e ž os parietale tilna kost -e -i ž os nuchale tretja stopalnica -e -e ž os metatarsale III ušesna kapsula -e -e ž os oticum ušesni stebriček -ega -čka ž os opisthoticum večja dlančnica -e -e ž os metacarpale majus vratno vretence -ega -a s vertebra cervicalis vretence sokrižne zrasti -a -- -- ž vertebra synsacralis vretenčno rebro -ega -a s costa vertebralis zagozdnica -e ž os sphenoidale zapestnodlančnica -e ž carpometacarpus zatilnica -e ž os occipitale zgornja čeljustnica -e -e ž os maxillare zgornja prstnica večjega prsta -e -e -- -- ž phalanx proximalis digiti majoris zgornja zatilnica -e –e ž os supraoccipitale zobna kost -e -i ž os dentale zunanja sitkina kost -e -e -i ž os ectethmoidale žmulasta kost -e -i ž os spleniale 88 Acta Biologica Slovenica, 58 (2), 2015 Dodatek 2: Abecedno zaporedje gesel v latinskem in slovenskem jeziku. Appendix 2: Alphabetical list of terms in Latin and Slovenian language. anulus tympanicus bobničev obroč apparatus hyobranchialis jezičnica atlas nosač axis okretač basihyale telo jezičnice carpometacarpus zapestnodlančnica columna vertebralis hrbtenica coracoideum krokarnica cornu branchiale rog jezičnice costa sternalis prsnično rebro costa vertebralis vretenčno rebro costae rebra costae completae spuriae neprava popolna rebra costae completae verae prava popolna rebra costae fluctuantes prosta rebra costae incompletae nepopolna rebra cranium lobanja fibula mečnica furcula ključnica humerus nadlahtnica maxilla zgornja čeljustnica notarium hrbtna kost os angulare kotna kost os articulare sklepna kost os basioccipitale osnovna zatilnica os basisphenoidale osnovna zagozdnica os carpi radiale koželjnična zapestnica os carpi ulnare komolčnična zapestnica os coronoideum kronasta kost os coxae kolčnica os dentale zobna kost os ectethmoidale zunanja sitkina kost os epioticum nadušesna kost os ethmoidale sitkina kost os exoccipitale stranska zatilnica 89Janžekovič et al.: Prispevek k slovenski anatomski terminologiji os femoris stegnenica os fibulare mečnična nartna kost os frontale čelnica os ilium črevnica os ischii sednica os jugale jarmova kost os lacrimale solznica os lacrimopalatinum solzničnonebna kost os laterosphenoidale stranska zagozdnica os mesethmoidale sredinska sitkina kost os metacarpale alulare perutkina dlančnica os metacarpale majus večja dlančnica os metacarpale minus manjša dlančnica os metatarsale I prva stopalnica os metatarsale II druga stopalnica os metatarsale III tretja stopalnica os metatarsale IV četrta stopalnica os metoticum priušesna kost os nasale nosnica os nuchale tilna kost os occipitale zatilnica os opisthoticum ušesni stebriček os oticum ušesna kapsula os palatinum nebnica os parasphenoidale obzagozdnica os parietale temenica os prearticulare predsklepna kost os prominens štrleča kost os prooticum predušesna kost os pterygoideum krilatka os pubis dimeljnica os quadratojugale kvadratnojarmova kost os quadratum štirikotnica os siphonium cevasta kost os sphenoidale zagozdnica os spleniale žmulasta kost os squamosum luskasta kost 90 Acta Biologica Slovenica, 58 (2), 2015 os supraangulare nadkotna kost os suprajugale nadjarmova kost os supraoccipitale zgornja zatilnica os tarsi distale spodnja nartna kost os tibiale golenična nartna kost os uncinatum kavljasta kost ossa accessoria cranii dodatne kosti lobanje ossa alae kosti peruti ossa carpi zapestnice ossa cingula membri pelvini kosti obroča medenične okončine ossa cingula membri thoracini kosti obroča prsne okončine ossa cranii kosti lobanje ossa digitorum manus prstnice roke ossa digitorum pedis kosti prstov stopala ossa mandibulae kosti spodnje čeljusti ossa maxillae et palati kosti zgornje čeljusti in neba ossa membri pelvici kosti medenične okončine ossa metatarsalia stopalnice ossa pedis kosti stopala ossa proximalia tarsi bližnje nartne kosti ossa sclerae beločnične kosti ossa supraorbitalia nadočnične kosti ossa suturarum šivne kosti ossa tarsi nartne kosti ossa temporalia senčnične kosti paraglossum objezičnica patella pogačica pelvis medenica phalanx digiti alulae prstnica perutke phalanx digiti minoris prstnica manjšega prsta phalanx digitorum pedis prstnica prstov stopala phalanx distalis digiti majoris spodnja prstnica večjega prsta phalanx proximalis digiti majoris zgornja prstnica večjega prsta phalanx ungualis krempeljnica pila otica stebrc premaxilla predčeljustnica pygostylus križni opornik 91Janžekovič et al.: Prispevek k slovenski anatomski terminologiji radius koželjnica scapula plečnica skeleton alae okostje peruti skeleton antebrachii okostje podlakti skeleton appendiculare privesno okostje skeleton axiale osno okostje skeleton brachii okostje nadlakti skeleton cruris okostje goleni skeleton femoris okostje stegna skeleton manus okostje roke skeleton membri pelvini okostje medenične okončine skeleton membri thoracini okostje prsne okončine skeleton pedis okostje stopala skeleton thoracis okostje prsnega koša sternum prsnica synsacrum sokrižnica tarsometatarsus nartnostopalna kost tibiotarsus goleničnonartna kost ulna komolčnica urohyale rep jezičnice vertebrae caudales repna vretenca vertebrae caudales liberae prosta repna vretenca vertebrae cervicales vratna vretenca vertebrae lumbales ledvena vretenca vertebrae sacrales križna vretenca vertebrae thoracicae prsna vretenca vomer lemežnica Literatura Baumel, J.J., King, A.S., Breazile, J.E., Evans, H.E., Vanden Berge, J.C. (eds), 1993. Handbook of avian anatomy: nomina anatomica avium. Nuttall Ornithological Club. Cambridge. Brglez, I., Tavzes, C., Tavzes, M. (ur.), 2013.Veterinarski terminološki slovar. Inštitut za slovenski jezik Frana Ramovša ZRC SAZU in Veterinarska fakulteta. Ljubljana. Fine Dictionary, 2013. Hyoid. Pridobljeno 10.10.2013, iz http://www.finedictionary.com/hyoid.html Fran, 2015a. Pleteršnikov Slovensko-nemški slovar. Pridobljeno 31.12.2015, iz http://bos.zrc-sazu. si/pletersnik.html Fran, 2015b. Slovar slovenskega knjižnega jezika. Pridobljeno 31.12.2015, iz http://bos.zrc-sazu. si/sskj.html 92 Acta Biologica Slovenica, 58 (2), 2015 Golob, Z., 2011. Funkcionalna anatomija ptičev z osnovami ornitologije. Fakulteta za naravoslovje in matematiko. 2. izd. Maribor. Kališnik, M. (gl. ur.), 2012. Slovenski medicinski e-slovar. Univerza v Ljubljani, Medicinska fakul- teta in Lek d.d. Pridobljeno 1.6.2012, iz www.lek.si/si/skrb-za-zdravje/medicinski-slovar/. Merriam-Webster, 2013. Coccyx. Pridobljeno 10.10.2013, iz http://www.merriam-webster.com/ dictionary/coccyx. Nickel, R., Schummer, A., Seiferle, E., Siller, W.G., Wight, P.A.L., 2000. Anatomy of the Domestic Birds. Verlag Paul Parey, Springer-Verlag. Berlin, Heidelberg. Ramovš, F., Župančič, O., Bajec, A., Kolarič, R., Rupel, M., Šmalc, M., Šolar, J. (ur. odbor), 1950. Slovenski pravopis. Priredila Inštitut za slovenski jezik in Zavod za kulturo slovenskega jezika po 1. izd. Breznik-Ramovš: Slovenski pravopis 1935. SAZU – Državna založba Slovenije. Ljubljana. Rigler, L., 1985. Veterinarski anatomski slovar. SAZU in ZRC SAZU. Ljubljana. Rigler, L., 1990. Anatomija domačih živali. Osteologia in syndesmologia. Univerza v Ljubljani, Veterinarska fakulteta. Ljubljana. Snoj, M., 1997. Slovenski etimološki slovar. Mladinska knjiga. Ljubljana. Verbinc, F., 1968. Slovar tujk. Cankarjeva založba. Ljubljana. Wikipedia, 2013. Scapula. Pridobljeno 10.10.2013, iz http://en.wikipedia.org/wiki/Scapula. Brancelj, Anton, Jama Velika Pasica/ The Velika Pasica Cave Zgodovina, okolje in življenje v njej/ The History, Environment and Life in it Prva izdaja, Založba ZRC in Nacionalni inštitut za biologijo, LJUBLJANA 2016 Bibliografski podatki o knjigi: knjiga ob- sega 110 strani, vključuje 25 slik, 9 tabel in 55 izvirnih fotografij. Knjiga s strokovno recenzijo in lektoriranjem je napisana v slovenskem in angleškem jeziku. ISBN 978-961-254-820-9 (Založba ZRC) 281110784 Prof. Antona Branclja, avtorja knjige o zgo- dovini in življenju v jami Velika Pasica v bližini vasi Gornji Ig na Krimu, poznam že od študentskih let, ko se je njegovo zanimanje za svet podzemlja kazalo kot navdušenje in strast do odkrivanja zani- mivosti in razsežnosti jamskega okolja ter življenja v njem. Pogosti obiski kraškega podzemnega sveta od dijaških let pa vse do danes so avtorju prinašali nova spoznanja o biologiji in razširjenosti jamskih organizmov ter prispevali k razvoju slovenske speleobiologije. Kot dolgoletni član Društva za raziskovanje jam se je avtor udeleževal sprva številnih ekskurzij, pozneje pa tudi jamarskih odprav z namenom raziskovanja in poučevanja. Kot pedagoški delavec je znanje o življenju v jamah posredoval generacijam študentov in jih navduševal za delo na tem področju. Pričujoče delo je dokaj obsežna monografija, ki vključuje dober zgodovinski pregled dogodkov, povezanih z naključnimi in načrtovanimi obiski, meritvami in odkritji v jami Velika Pasica v ob- dobjih od sredine 19. stoletja pa vse do danes. V katastru Društva za raziskovanje jam Ljubljana (DZRJL) je shranjena večina starejših zapisnikov o obiskih Velike Pasice. Iz zapisnika DZRJL je razvidno, da je bila jama 15. maja 1927 registrirana kot “VELIKA PASICA pri Zgornjem Igu”. Avtor v uvodu opiše geografsko lego jame s sli- kovitimi in nazornimi navodili za preprost dostop, ki spodbudijo bralca, da bi se nemudoma odpravil na pot in poiskal to znamenitost. Ko prispemo do vhoda naletimo na železno rešetko, ki zapira vhod v jamo. Pred leti so domačini jamo zavarovali z vrati, saj je bila v preteklosti občasno izpostavljena tudi nezaželenim obiskom in vandalizmu. Na seznamu naravnih vrednot, ki imajo lastnosti jame v skladu z zakonom, ki določa varstvo podzemnih jam, ima Velika Pasica status odprte vodoravne jame z nadzorovanim vstopom. Po temeljitem očiščenju jame je postala jama dostopna in primerna tudi za obiskovalce, ki si želijo ogledati to naravno zanimivost osrednjeslovenske regije. Jamo Velika Pasica uvrščamo v kategorijo hidrološko neaktivnih jam, ker v njej ni tekoče vode. Knjiga vsebuje natančen opis velikosti jame, jamskega reliefa in prikaz kapniških struktur, do- polnjen s kvalitetnimi fotografijami in izvirnimi risbami. Fotografije jamarjev v barvitih oblačilih popestrijo vsebino in pričajo o tem, da je življenje v jami lahko občasno tudi zelo živahno, in hkrati vzbujajo optimizem o prihodnosti raziskovanja in ohranjanja slovenskega kraškega podzemlja. Knjiga vsebuje množico podatkov o klimat- skih razmerah v jami in njeni okolici, ki izvirajo iz dolgoletnih in natančnih meritev temperature vode in zraka ter pretoka prenikajoče vode. Knjiga ACTA BIOLOGICA SLOVENICA LJUBLJANA 2015 Vol. 58, [t. 2: 93–95 94 Acta Biologica Slovenica, 58 (2), 2015 vključuje tudi grafične prikaze izvirnih rezultatov meritev, ki so podpora za razprave o hidroloških procesih v jami. Prikazan je tudi vpliv večjih nalivov na povečan pretok prenikle vode in spre- membe temperature na merilnih mestih. V knjigi so podrobno predstavljeni hidravlični procesi v jami v povezavi z različnimi padavinskimi režimi. Rezultati hidroloških in kemijskih meritev so pri- kazani in razloženi z vidika ekoloških razmer, v katerih živijo vodni organizmi epikrasa, najvišjega sloja krasa, ki sega do površja in zajema preperino in kraško kamnino. Strokovna kakovost dela temelji na obsežni in natančni navedbi virov, na predstavitvi številnih izvirnih podatkov fizikalnih in kemijskih meritev vode in zraka ter skrbno načrtovanih poskusih. Zelo natančno so opisane naprave za zbiranje vzorcev materiala, ki pronica v jamo z vodnimi curki, prikazani pa so tudi shranjevalniki podat- kov. Bralec sledi opisom posameznih živalskih vrst skozi zgodovino vse do današnjih časov, ko lahko opisane primerke opazujemo v njihovem naravnem okolju. Avtor opisuje različne skupine živali in njihovo prilagoditev na življenje v jamah; od občasnih obiskovalcev jam do stalnih prebi- valcev v jamskih vodnih in kopenskih habitatih. V okolici jame prevladuje jelovo-bukov gozd, ki je zaradi pogoste sečnje že precej redek. Ob vhodu v jamo so skale porasle s praprotjo, mahovi in jetrnjaki in algami. V vhodni dvorani so ostanki lesa prerasli s plesnimi, kamnine pa so večinoma pokrite s kolonijami bakterij, ki so pokrite z vodnimi kapljicami, ki se ob osvetlitvi zlato ali srebrno zableščijo in jih zato jamarji imenujejo »jamsko zlato«. V knjigi so s fotografijami in slikovitimi opisi predstavljene najpogostejše živali, ki živijo v jami, od migetalkarjev, polžev, rakov, predvsem ceponožcev in dvoklopnikov, do paščipalcev, kačic in hroščev. Prav med temi organizmi je bilo opisanih trinajst novih vrst in podvrst. Zgodovinsko pomembni so opisi jamskih hroščev, polžev in paščipalcev, več kot pet novih vrst je bilo opisanih iz te jame v obdobju med drugo polovico 19. in prvo polovico 20. stoletja. Avtor knjige je opisal štiri nove vrste rakov ceponožcev iz talnih lužic v jami. Pozimi se v vhodnih delih jame pogosto zadržujejo tudi netopirji mali podkovnjaki. Iz najdenih iztrebkov gre sklepat, da so občasni gostje v jamah tudi kune, polhi in gozdne miši. Fotografije primerkov živali iz jame, ostankov njihovih iztrebkov ali znakov aktivnosti nekaterih živali v preteklosti (okostje jamskega medveda) prispevajo k zanimivosti knjige. Kopenski živalski svet v jami je zelo bogat, še bogatejši pa je svet vodnih organizmov, ki živijo v različnih tipih talnih lužic, predvsem v bližini stalnih curkov. Glede na število opisanih podze- mnih vrst živali (31) uvrščamo jamo Velika Pasica na deveto mesto na svetovni lestvici. Prisotnost epikraških vrst v jami z visoko nadmorsko višino je posebnost, ki jo je avtor zelo podrobno opisal v knjigi in dokumentiral tudi z navajanjem velikega števila vzorčenih osebkov v štirih curkih iz plavja v povezavi s hidrokemijskimi in hidrološkimi parametri v osemletnem obdobju (2006–2013). Avtor ugotavlja, da je glede na številnost osebkov verjetno, da je epikras za opisane vrste primarno okolje, od koder se v obliki plavja pomikajo v nižje ležeče predele. Posebnost telesnih oblik organizmov iz epikrasa, ki se kažejo predvsem kot močni in zaobljeni trni na okončinah in zadnjem telesnem členu ceponožcev iz jame Velika Pasica, je pomembna prilagoditev na življenje v ozkih špranjah, kjer se pretaka voda. Vredno je izpostaviti dejstvo, da je v knjigi opisana velika raznolikost življenja v povezavi z razmerami v specifičnem epikraškem okolju. Kot navaja avtor, je to verjetno tudi posledica dolgoletnih in podrobnih raziskav in opisov ži- valstva v jami Velika Pasica. Knjiga je zanimiva tako za strokovnjake kot za širšo javnost. Delo je strokovno korektno in vključuje številne podatke, ki temeljijo na dolgoletnem raziskovalnem delu, objavljenem v znanstvenih člankih v kvalitetnih revijah. Primerna je kot obštudijsko gradivo za študente biologije, znanosti o okolju in naravo- varstva in za študente naravoslovja. Avtorju je uspelo jamo Veliko Pasico predstaviti v obliki, ki bo navdušila tudi širši krog bralcev, saj s slikovito in razumljivo besedo naravnost vabi v njen svet. Tudi pri mlajših bralcih bo knjiga z odličnimi ilustracijami zagotovo vzbudila zanimanje za speleologijo in biologijo podzemlja. Jasna Štrus Oddelek za biologijo, Univerza v Ljubljani, Slovenija 95 INSTRUCTIONS FOR AUTHORS 1. Types of Articles SCIENTIFIC ARTICLES are comprehensive descriptions of original research and include a theo- retical survey of the topic, a detailed presentation of results with discussion and conclusion, and a bibliography according to the IMRAD outline (Introduction, Methods, Results, and Discussion). In this category ABS also publishes methodological articles, in so far as they present an original method, which was not previously published elsewhere, or they present a new and original usage of an estab- lished method. The originality is judged by the editorial board if necessary after a consultation with the referees. The recommended length of an article including tables, graphs, and illustrations is up to fifteen (15) pages; lines must be double-spaced. Scientific articles shall be subject to peer review by two experts in the field. REVIEW ARTICLES will be published in the journal after consultation between the editorial board and the author. Review articles may be longer than fifteen (15) pages. BRIEF NOTES are original articles from various biological fields (systematics, biochemistry, genetics, physiology, microbiology, ecology, etc.) that do not include a detailed theoretical discussion. Their aim is to acquaint readers with preliminary or partial results of research. They should not be longer than five (5) pages. Brief note articles shall be subject to peer review by one expert in the field. CONGRESS NEWS acquaints readers with the content and conclusions of important congresses and seminars at home and abroad. ASSOCIATION NEWS reports on the work of Slovene biology associations. 2. Originality of Articles Manuscripts submitted for publication in Acta Biologica Slovenica should not contain previously published material and should not be under consideration for publication elsewhere. 3. Language Articles and notes should be submitted in English, or as an exception in Slovene if the topic is very local. As a rule, congress and association news will appear in Slovene. 4. Titles of Articles Title must be short, informative, and understandable. It must be written in English and in Slovene language. The title should be followed by the name and full address of the authors (and if possible, fax number and/or e-mail address). The affiliation and address of each author should be clearly marked as well as who is the corresponding author. 5. Abstract The abstract must give concise information about the objective, the methods used, the results obtained, and the conclusions. The suitable length for scientific articles is up to 250 words, and for brief note articles, 100 words. Article must have an abstract in both English and Slovene. 6. Keywords There should be no more than ten (10) keywords; they must reflect the field of research covered in the article. Authors must add keywords in English to articles written in Slovene. 7. Running title This is a shorter version of the title that should contain no more than 60 characters with spaces. 96 Acta Biologica Slovenica, 58 (2), 2015 8. Introduction The introduction must refer only to topics presented in the article or brief note. 9. Illustrations and Tables Articles should not contain more than ten (10) illustrations (graphs, dendrograms, pictures, photos etc.) and tables, and their positions in the article should be clearly indicated. All illustrative material should be provided in electronic form. Tables should be submitted on separate pages (only horizontal lines should be used in tables). Titles of tables and illustrations and their legends should be in both Slovene and English. Tables and illustrations should be cited shortly in the text (Tab. 1 or Tabs. 1-2, Fig. 1 or Figs. 1-2; Tab. 1 and Sl. 1). A full name is used in the legend title (e.g. Figure 1, Table 2 etc.), written bold, followed by a short title of the figure or table, also in bold. Subpanels of a figure have to be unambiguously indicated with capital letters (A, B, …). Explanations associated with subpanels are given alphabetically, each starting with bold capital letter (A), a hyphen and followed by the text. 10. The quality of graphic material All the figures have to be submitted in the electronic form. The ABS publishes figures either in pure black and white or in halftones. Authors are kindly asked to prepare their figures in the correct form to avoid unnecessary delays in preparation for print, especially due to problems with insufficient contrast and resolution. Clarity and resolution of the information presented in graphical form is the responsibility of the author. Editors reserve the right to reject unclear and poorly readable pictures and graphical depictions. The resolution should be 300 d.p.i. minimum for halftones and 600 d.p.i. for pure black and white. The smallest numbers and lettering on the figure should not be smaller than 8 points (2 mm height). The thickness of lines should not be smaller than 0.5 points. The permitted font families are Times, Times New Roman, Helvetica and Arial, whereby all figures in the same article should have the same font type. The figures should be prepared in TIFF, EPS or PDF format, whereby TIFF (ending *.tif) is the preferred type. When saving figures in TIFF format we recommend the use of LZW or ZIP compression in order to reduce the file sizes. The photographs can be submitted in JPEG format (ending *.jpg) with low compression ratio. Editors reserve the right to reject the photos of poor quality. Before submitting a figure in EPS format make sure first, that all the characters are rendered correctly (e.g. by opening the file first in the programs Ghostview or GSview – depending on the operation system or in Adobe Photoshop). With PDF format make sure that lossless compression (LZW or ZIP) was used in the creation of the *.pdf file (JPEG, the default setting, is not suitable). Figures created in Microsoft Word, Excel, PowerPoint etc. will not be accepted without the conver- sion into one of the before mentioned formats. The same goes for graphics from other graphical programs (CorelDraw, Adobe Illustrator, etc.). The figures should be prepared in final size, published in the magazine. The dimensions are 12.5 cm maximum width and 19 cm maximum height (width and height of the text on a page). 11. Conclusions Articles shall end with a summary of the main findings which may be written in point form. 12. Summary Articles written in Slovene must contain a more extensive English summary. The reverse also applie s. 13. Literature References shall be cited in the text. If a reference work by one author is cited, we write Allan (1995) or (Allan 1995); if a work by two authors is cited, (Trinajstić and Franjić 1994); if a work by three or more authors is cited, (Pullin et al. 1995); and if the reference appears in several works, (Honsig- Erlenburg et al. 1992, Ward 1994a, Allan 1995, Pullin et al. 1995). If several works by the same author 97 published in the same year are cited, the individual works are indicated with the added letters a, b, c, etc.: (Ward 1994a,b). If direct quotations are used, the page numbers should be included: Toman (1992: 5) or (Toman 1992: 5–6).The bibliography shall be arranged in alphabetical order beginning with the surname of the first author, comma, the initials of the name(s) and continued in the same way with the rest of the authors, separated by commas. The names are followed by the year of publication, the title of the article, the international abbreviation for the journal (periodical), the volume, the number in parenthesis (optional), and the pages. Example: Mielke, M.S., Almeida, A.A.F., Gomes, F.P., Aguilar, M.A.G., Mangabeira, P.A.O., 2003. Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flood- ing. Experimental Botany, 50 (1), 221–231. Books, chapters from books, reports, and congress anthologies use the following forms: Allan, J.D., 1995. Stream Ecology. Structure and Function of Running Waters, 1st ed. Chapman & Hall, London, 388 pp. Pullin, A.S., McLean, I.F.G., Webb, M.R., 1995. Ecology and Conservation of Lycaena dispar: Britis h and European Perspectives. In: Pullin A. S. (ed.): Ecology and Conservation of Butterflies, 1st ed. Chapman & Hall, London, pp. 150-164. Toman, M.J., 1992. Mikrobiološke značilnosti bioloških čistilnih naprav. Zbornik referatov s posve- tovanja DZVS, Gozd Martuljek, pp. 1-7. 14. Format and Form of Articles The manuscripts should be sent exclusively in electronic form. The format should be Microsoft Word (*.doc) or Rich text format (*.rtf) using Times New Roman 12 font with double spacing, align left only and margins of 3 cm on all sides on A4 pages. Paragraphs should be separated by an empty line. The title and chapters should be written bold in font size 14, also Times New Roman. Possible sub-chapter titles should be written in italic. All scientific names must be properly italicized. Used nomenclature source should be cited in the Methods section. The text and graphic material should be sent to the editor-in-chief as an e-mail attachment. For the purpose of review the main *.doc or *.rtf file should contain figures and tables included (each on its own page). However, when submitting the manuscript the figures also have to be sent as separate attached files in the form described under paragraph 10. All the pages (including tables and figures) have to be numbered. All articles must be proofread for professional and language errors before submission. A manuscript element checklist (For a manuscript in Slovene language the same checklist is appro- priately applied with a mirroring sequence of Slovene and English parts): English title – (Times New Roman 14, bold) Slovene title – (Times New Roman 14, bold) Names of authors with clearly indicated addresses, affiliations and the name of the corresponding author – (Times New Roman 12) Author(s) address(es) / institutional addresses – (Times New Roman 12) Fax and/or e-mail of the corresponding author – (Times New Roman 12) Keywords in English – (Times New Roman 12) Keywords in Slovene – (Times New Roman 12) Running title – (Times New Roman 12) Abstract in English (Times New Roman 12, title – Times New Roman 14 bold) 98 Acta Biologica Slovenica, 58 (2), 2015 Abstract in Slovene – (Times New Roman 12, title – Times New Roman 14 bold) Introduction – (Times New Roman 12, title – Times New Roman 14 bold) Material and methods – (Times New Roman 12, title – Times New Roman 14 bold) Results – (Times New Roman 12, title – Times New Roman 14 bold) Discussion – (Times New Roman 12, title – Times New Roman 14 bold) Summary in Slovene – (Times New Roman 12, title – Times New Roman 14 bold) Figure legends; each in English and in Slovene – (Times New Roman 12, title – Times New Roman 14 bold, figure designation and figure title – Times New Roman 12 bold) Table legends; each in English and in Slovene – (Times New Roman 12, title – Times New Roman 14 bold, table designation and table title – Times New Roman 12 bold) Acknowledgements – (Times New Roman 12, title – Times New Roman 14 bold) Literature – (Times New Roman 12, title – Times New Roman 14 bold) Figures, one per page; figure designation indicated top left – (Times New Roman 12 bold) Tables, one per page; table designation indicated top left – (Times New Roman 12 bold) Page numbering – bottom right – (Times New Roman 12) 15. Peer Review All Scientific Articles shall be subject to peer review by two experts in the field (one Slovene and one foreign) and Brief Note articles by one Slovene expert in the field. With articles written in Slovene and dealing with a very local topic, both reviewers will be Slovene. In the compulsory accompanying letter to the editor the authors must nominate one foreign and one Slovene reviewer. However, the final choice of referees is at the discretion of the Editorial Board. The referees will remain anonymous to the author. The possible outcomes of the review are: 1. Fully acceptable in its present form, 2. Basically acceptable, but requires minor revision, 3. Basically acceptable, but requires important revision, 4. May be acceptable, but only after major revision, 5. Unacceptable in anything like its present form. In the case of marks 3 and 4 the reviewers that have requested revisions have to accept the suitability of the corrections made. In case of rejection the corresponding author will receive a written negative decision of the editor-in-chief. The original material will be erased from the ABS archives and can be returned to the submitting author on special request. After publication the corresponding author will receive the *.pdf version of the paper.