FOLIA BIOLOGICA ET GEOLOGICA 52/1-2, 5–26, LJUBLJANA 2011 ABSTRACT UDC 630*23:582.632.2(497.4Pohorje) 575.2:582.632.2(497.4Pohorje) Genetic variability and suitability of under-planted beech in selected N o rwa y sp ruce mo nocul tures o n the P oho rje massif In order to investigate the genetic variability of under- planted young beech in Norway spruce monocultures, 100 randomly chosen individuals on the research plots Brička and Kladje were analysed by means of isozyme gene markers at 17 polymorphic gene loci. The single locus mean value of the Gregorius (1974) allelic distance between the sample popula- tions was relatively high (d 0 = 9.6 %). The results do not sup- port the hypothesis of a common origin of the planting mate- rial from a single ancestral population. A proposal is made for an extension of the network of forest beech seed stands for future melioration of spruce monocultures on Pohorje. Key words: conversion of spruce monoculture, Fagus syl- vatica (L.), artificial regeneration, isoenzyme, genetic varia- tion, forest site, seed stand, Slovenia GENETIC V ARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED NORWAY SPRUCE MONOCULTURES ON THE POHORJE MASSIF GENETSKA V ARIABILNOST IN PRIMERNOST PODSAJENE BUKVE V IZBRANIH SMREKOVIH MONOKULTURAH NA POHORJU Gregor BOŽIČ 1 , Lado KUTNAR 2 & Mitja ZUPANČIČ 3 IZVLEČEK UDK 630*23:582.632.2(497.4Pohorje) 575.2:582.632.2(497.4Pohorje) Genetska variabilnost in primernost podsajene bukve v iz- branih smrekovih monokulturah na Pohorju Za raziskavo genetske variabilnosti podsajenih mladih bukev v smrekovih monokulturah na Pohorju smo analizirali 100 naključno izbranih osebkov na raziskovanih ploskvah Brička in Kladje. Uporabili smo metodo analize izoencimskih genskih označevalcev. Genetsko variabilnost smo ocenili na 17 polimorfnih genskih lokusih. Genetska razdalja (d 0 ) med vzorčenima populacijama izračunana po Gregorius (1974) je sorazmerno velika in znaša 9,6 %. Rezultati raziskave ne pod- pirajo hipoteze o skupnem izvoru saditvenega materiala iz enotne predniške populacije. Podan je predlog za razširitev mreže gozdnih semenskih objektov bukve za potrebe premene smrekovih monokultur na Pohorju. Ključne besede: premena smrekove monokulture, Fagus sylvatica (L.), umetna obnova, izoencim, genetska variabil- nost, gozdno rastišče, semenski sestoj, Slovenija 1 Dr. Gregor Božič, Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, gregor.bozic@gozdis.si 2 Dr. Lado Kutnar, Department of Forest Ecology, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, lado.kutnar@gozdis.si 3 Dr. Mitja Zupančič, Slovenian Academy of Science and Arts, Novi trg 5, 1000 Ljubljana Folia biologica et geologica · Volume / Letnik 52 · Number / Številka 1 · 2011 6 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 At the beginning of the nineties, storm damage and a gradual increase in bark beetles reduced the stability of Norway spruce stands in Europe and caused a percepti- ble reduction in vitality, which was observed until the end of the last decade. The forestry profession endeav- oured to find a method of increasing the long term sta- bility and preserving the permanence of these stands, which led to the choice of habitats of the most suitable tree species. Because of dubious management methods and public pressure and the demand for increased sus- tainability, the insertion of under-planted deciduous trees in coniferous forests became a widely established silvicultural method in Europe. The silvicultural grounds for such a transformation were relatively poorly defined. In the second half of the last century, the conver- sion of pure spruce stands (Picea abies L. Karst.) was one of the main forest-silviculture challenges in Europe (Zerbe 2002; Teuffel, Heinrich & M. Baumgarten 2004). It is thought that there are at least 6 to 7 million hectares of pure spruce stands outside their natural hab- itats in Europe, of which 4-5 million hectares are estab- lished on sites on which deciduous or mixed deciduous- coniferous forests should predominate. The current state is the result of forest management decisions in the past, when mixed stands were exposed to agricultural exploitation, littering, grazing and obtaining firewood (Johann et al. 2004). The great need for timber brought about by industrialisation led to an acceleration of mo- nocultures of fast growing trees. In the last 200 years, spruce was most often chosen as the tree species for ar- tificial renewal of stands because of its fast growth, the simple establishment of stands, low requirements in re- lation to thinning and because it was not excessively burdened by grazing game. The introduction of spruce outside its natural area of distribution is linked to numerous, for the most part short-term benefits. The species is economically very in- teresting, having the potential to produce high quality timber in a short time span. European deciduous forests in the past covered larger areas than they do today, so the general opinion is held in Europe that planning de- ciduous stands is a step towards sustainable forestry (Hannah, Carr & Lankerani 1995; Stanturf & Madsen 2002). One of the ways of establishing them is to change spruce into deciduous or mixed forest. The transformation of the widespread homogeneous spruce into natural deciduous forests has been used in forestry practice in Europe for the last fifty years. A number of factors argue in favour of the trans- formation. Spruce has been shown to be unstable in many cases, it is exposed to a reduction of vitality, storm damage, attacks of bark beetles, drought and it has a negative impact on the soil (Larsen 1995). Ap- preciable changes in the environment and landscape, with consequential changes or reduction of biotic di- versity (Grabherr & Koch 1993) have made public opinion less favourable. Climate change, and especially the increasing likelihood of the occurrence of climatic extremes, such as storms, have exposed the vulnerabil- ity of spruce monocultures and stress the need for re- ducing the risk by including other tree species in spruce stands (Bradshaw et al. 2001). The increase in the price of deciduous timber has reduced the economic justification of planning anthropogenic coniferous stands (Abildtrup, Riis & Jellesmark-Thorsen 1997; Spiecker 2000). F o r s u c c e s s f u l m e l i o r a t i o n , u n d e r - p l a n t i n g w i t h beech (Fagus sylvatica L.), either below the shade of the parent stand or in gaps is a possible alternative to a clear- cut method of management, which is still used in Eu- rope. Under-planting is an old silvicultural technique, which is receiving renewed attention today (Otto 1986; Spellmann & Wagner 1993). The advantages of under- planting are fewer weeds, a more favourable micro-cli- mate, protection from winter frosts (Löf 2000), as well as a more favourable attitude of the public, in contrast to clearcut (Mattsson & Li 1994). In Slovenia, conversion of pure spruce into mixed stands began in the mid-20th century. Although forests in Slovenia are relatively well-preserved in comparison to Central Europe, because of the heritage of the past, the present tree composition of forests deviates from what is considered natural (Diaci & Grecs 2003). The share of spruce in timber stocks is 32 %, while the esti- mated natural share is approximately 8 %. Slovenia is a country of deciduous, mainly beech forests (Šercelj 1996, Ž. Košir et al. 1974, Dakskobler 2008). Seventy percent of forests in Slovenia are classified into forest communities in which beech is the leading species. The period of active melioration of spruce stands started in the early 50s with an instruction from the Ministry of Forestry that a campaign should be started for the planting of noble deciduous trees in spruce plan- tations, mainly sycamore maple (Acer pseudoplatanus) (Diaci 2006). Efforts were not for the most part success- ful because of too high a density of large herbivores (Diaci 2006, summarised from oral sources Mlinšek 2004). The success of realising the first regulatory plans after the Second World War were essentially more suc- cessful. In 1954, Mlinšek elaborated an extensive regula- tory plan for the Mislinja forest-management unit, 1. INTRODUCTION 7 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 which mainly embraced spruce plantations (Mlinšek 1955). It began with gradual conversion on the basis of a control method, with detailed analysis of increment, se- lective thinning was introduced and increased inspec- tion. He introduced an overall methodology of under- planting spruce plantations with seedings and pullings of beech (seedlings pulled from natural forest regenera- tion in a forest stand) and individual and group protec- tion against grazing, ensured an adapted approach to sites. Various methods of individual protection were tried and considerable success was achieved with ce- ment mortar. Because of a lack of seed trees of beech and seedings, pullings of beech were transferred from more or less suitable sites on the north side of Pohorje (Diaci 2006). In order to evaluate the genetic variability of the under-planted beech in pure spruce stands on Pohorje, we performed genotype analysis in the juvenile devel- opment stage of beech of test populations, using iso- zymes. The purpose of the study was to assess the level of genetic relationship of populations of under-planted beech by the method of isozymes gene markers. W e wished to test the hypothesis that the sampled popula- tions of beech have a similar genetic structure and do not show major deviation from average value parame- ters. The study is intended to contribute to a more de- tailed understanding of genetic structures, genetic di- versity and genetic differentiation of beech populations that have been introduced into spruce monocultures on Pohorje. 2. STUDY AREA Pohorje is a distinctive mountain plateau, lying at an altitude of 1200-1500 m and is an extension of the Cen- tral Alps. The massif is constructed of metamorphic and magmatic rocks and sediments (Budnar- T regubov 1958). The climate is medium mountain. In the last 4000 to 5000 years, various forms of fir beech forests with a modest share of spruce have predominated in primary forests (Culiberg & Šercelj 2000). The origi- nal forests on Pohorje consisted mainly of beech, fir and spruce, which larch interspersed in places (Breznikar et al. 2006). Natural spruce forests are edaphically conditioned and thus limited to swampy level areas, bowl-shaped dips and gently inclined slopes on the Pohorje plateau. In the last two centuries, the tree composition of Pohorje forests has changed. Today, anthropogenically altered spruce stands predominate. Because of the negative influences of the tree composi- tion, the sustainable yield from the forests is also threat- ened (Breznikar et al. 2006). In the past, in the period from 1800 to the end of the Second World War, because of the influence of the German school of forest manage- ment and its agricultural principles, spruce was inten- sively introduced in the Pohorje forests and the renewal of forests was directed towards establishing pure spruce stands. After the Second World War, this silvicultural principle was gradually abandoned. Anthropogenic spruce stands on Pohorje, among which belong stand constructions with a predominant share of spruce on beech and fir habitats, today cover 27.000 ha or 45 % of t h e t o t al f o r e s t a r e a o n P o h o r j e ( B r e z n i k a r e t al . 2006). The negative effects of the altered tree composition dictate a search for forest management-actions by which a more natural intermixture of tree species in forest stands will be introduced. Because of the negative im- pact of encouraging spruce on beech and fir sites, plan- ning measures in spruce monocultures requires an un- derstanding of the processes of degradation of sites. With a predominant share of spruce in stands, raw humus begins to accumulate in the soil and the lability of the soil also contributes to its damaging action. Spruce, because of its shallow roots, over-exploits the upper soil horizons, and the lower horizons begin to compact. A worsening of the physical properties of the soil occurs (reduction of aeration) and the acidity of the soil increases, the availability of nutrients is reduced and the intensity of humification and mineralisation of or- ganic substances in the soil is reduced, initiating the ac- cumulation of unfavourable forms of humus. With the gradual compaction of the soil profile and increasing of the impermeable horizon the biologically active depth of the soil is reduced and, because of the worsened phys- ical properties of the soil, the soil water capacity is re- duced. Moist forms of raw humus and mosses increase the surface accumulation of rainwater and condition the process of pseudogleyification of the soil (Breznikar et al. 2006). The development of more stable forest structures and retarding degradation processes in forest soils are the main strategic aims in planning the development of forests on Pohorje. Planned interventions for meliora- tion of the altered stand constructions and targeted sil- viculture measures began in the Mislinje part of Pohorje in the fifties of the last century and have gradually been extended to the entire region of Pohorje. The main mel- ioration measure is the introduction of broadleaf trees, 8 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 mainly beech, in spruce stands and eliminating the im- pact of over-numerous game on young forest trees. We chose research sites on the southern side of Po- horje, in research plots of the Slovenian Forestry Insti- tute, at the locations Brička above Mislinjski jarek (SFS District unit Slovenj Gradec) and Kladje near Osanka- rica (SFS District unit Maribor) (Table 1). Both sites are presumed to have been covered with beech or fir-beech forests, with interspersed spruce, before the more in- tensive interventions and degradation processes. The cited locations are potential natural sites of acidophil- ous beech with white wood-rush (Luzula luzuloides), a geographic variant with Cardamine trifolia (Luzulo al- bidae-Fagetum Meusel 1937 var. geogr. Cardamine tri- folia (Marinček 1983) Marinček & Zupančič 1995). Relatively well preserved acidophilous beech forest still grows on a smallish area on the edge of the Brička site. The wider region of the Kladja site is considerably changed but, on the basis of individual remains of such forest, it be concluded that it is a potential site of this association. However, in the wider area of this part of Pohorje, the association of beech with Cardamine waldsteinii has been charted. This is a zonal associa- tion of Pohorje high mountain beech forest, which grows on the upper part of the montane belt of the Po- horje massif, i.e., at an altitude from 1000 to 1300 m. In addition to the characteristic tree species of beech and sycamore maple, fir and spruce also appear with larger shares in relatively well preserved stands of this asso- ciation. On this basis, a special geographic variant of this association with fir was defined (Cardamini saven- si-Fagetum Ž. Košir 1962 var. geogr. Abies alba Ž. Košir 1979). Because of the promotion of spruce in the past, the area of the sites is overgrown with spruce monocultures. The starting point for the selection of research plots, in addition to the requirement for spruce covered potential beech sites, also included the presence of a larger number of vital under-planted trees of beech within individual areas, a similar age of the planted beech in comparable locations and possibilities of including the research plots within the framework of other investigations. Table 1: Survey of research site characteristics according to Čater (2011) Preglednica 1: Značilnosti izbranih raziskovalnih objektov (Čater 2011) Plot (Ploskev) Altitude (m) (Nadmorska višina) Latitude (Severna zem- ljepisna širina) Longitude (Vzhodna zem- ljepisna dolžina) Annual precipitation (mm) (Letne padavine) Annual average air T (°C) (Povprečna letna temper- atura zraka) Dominant soil type (Prevladujoči talni tip) Brička (BRI) 1093 46°28’40’’ 15°15’40’’ 1190 9.1 Dystric Cambisol (Distrična rjava tla) Kladje (KLA) 1308 46°28’48’’ 15°23’24’’ 1066 9.2 Dystric Cambisol (Distrična rjava tla) The research sites are overgrown by mature trees of spruce and under-planted beech in the juvenile development stage. At Brička above Mislinjski jarek, the area is covered by 173 spruce / ha, with an estimated growing stock of spruce stands of 477 m 3 / ha, and at Kladje near Osankarica, 126 trees/ha with a growing stock of 302 m 3 / ha (Čater 2011). In 2006, the age of the sampled under-planted beech was estimated at around 10-15 years (Čater 2011). 3. MATERIAL AND METHODS 3.1 Sampling At the research plots Brička and Kladje on Pohorje, we randomly sampled 100 beech trees for genetic testing. On each area of a size 100 m x 100 m, we uniformly cov- ered vital trees of under-planted beech. In the winter period of 2005 / 2006, we took a branch with dormant buds from each of the sampled trees, which we used for the extraction of enzymes. The buds were preserved until analysis in test tubes at a temperature of -20° C. The size of the sample was 50 trees at each site. 3.2 Analysis of isoenzymes We investigated the genetic characteristics of the beech by the method of isozyme analysis. The research material consisted of dormant buds. The genotype of each tree was established by means of horizontal electrophoresis o n star c h g e ls. Enzym e extra cti o n fr o m th e d o rm an t buds, electrophoresis, staining the gels and reading the electrophoregrams was performed by standard method- ological procedures for the analysis of beech samples (Konnert, Hussendoerfer & Dounavi 2004). The lab- 9 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 oratory part of the analysis was performed in the frame- work of the research tasks of project “Carbon dynamics in natural beech forests” (L4-6232) in February 2006. Table 2: Gene loci analysed Preglednica 2: Analizirani genski lokusi Enzyme system (Encimski system) E.C. Code (E.C. koda) Analysed gene loci (Analizirani genski lokusi) Number of alleles (Število alelov) Aspartate aminotransferase (Aat) syn. Glutamate oksaloacetate transam- inase (Got) (Aspartat aminotransferaza syn. Glutamat oksalacetat transaminaza) 2.6.1.1 Aat-A, Aat-B 2, 2 Aconitase (Aco) (Akonitaza) 4.2.1.3 Aco-A, Aco-B 2, 3 Isocitrate dehydrogenase (Idh) (Izocitrat dehidrogenaza) 1.1.1.42 Idh-A 2 Malate dehydrogenase (Mdh) (Malat dehidrogenaza) 1.1.1.37 Mdh- A, Mdh-B, Mdh-C 2, 4, 2 Menionreduktase (Mnr) (Menionreduktaza) 1.6.99.2 Mnr-A 3 Peroxidases (Per) (Peroksidaze) 1.11.1.7 Per-A, Per-B 2, 3 Phosphoglucose isomerase (Pgi) (Fosfoglukoza izomeraza) 5.3.1.9 Pgi-B 2 Phosphoglucomutase (Pgm) (Fosfoglukomutaza) 2.7.5.1 Pgm-A 2 Shikimate dehydrogenase (Skdh) (Šikimat dehidrogenaza) 1.1.1.25 Skdh-A 3 6-Phosphogluconate dehydrogenase (6-Pgdh) (6-Fosfoglukonat dehidrogenaza) 1.1.1.44 6-Pgdh-A, 6-Pgdh-B, 6-Pgdh-C 3, 2, 4 Total (Skupaj) 10 17 43 The laboratory work was done in the Bayerische Amt für forstliche Saat - und Pflanzenzucht in Teisendorf, Ger- many, under the leadership of Dr. Monika Konnert. The results of isozyme analysis were evaluated by the relative frequency of alleles and genotypes, by indi- vidual gene loci. The genetic structure of the population was described on the basis of the frequency of individual alleles at polymorphic loci. Any gene locus at which we found at least one allele was considered to be a polymor- phic locus, irrespective of its relative frequency in the population (without criteria). The frequencies of distribution of alleles at loci were described according to individual populations by 4 al- lele profiles, which we defined according to Finkeldey (1993), as: i) fixation, if there was only 1 allele (allele fre- quency 100 %) at an individual gene locus, ii) low level of polymorphism if there were frequent alleles at an indi- vidual gene locus (allele frequency > 80 %) and one or more rare alleles, iii) high level of polymorphism if there were at least two alleles as predominant at an individual gene locus (allele frequency > 20 %), iv) untypical profile if the allele structure at an individual gene locus could not be classified into the first three profiles. We interpreted the genetic variability within indi- vidual populations by the parameters of genetic multi- plicity and genetic diversity. With the parameter of ge- netic multiplicity, which takes into account only the number of different gene types in individual popula- tions, we calculated three parameters: (1) share of poly- morphicity of the analysed gene loci (P %); (2) the high- est possible number of different alleles (M max ); (3) the average number of alleles per polymorphic locus (A/L). With the parameter of genetic diversity, which, in con- trast to the parameter of genetic multiplicity takes into account in addition to the number of different gene types also their frequency of appearance in a popula- tion, we calculated observed heterozygosity (H a ) and conditional heterozygosity (H c ; Gregorius, Krau- hausen & Mueller-Starck 1986), effective allele di- versity (ν; Gregorius 1978, Gregorius 1987), multi- locus hypothetical gametic diversity (ν gam ) and the level of genetic differentiation among individuals within a population (δ T ; Gregorius 1987), which, with larger samples, is the same as the share of expected heterozy- gosity, created by random mating or panmixia (H e ; Nei 1973). We used the χ2 test to check how the actual het- erozygosity shares in under-planted young beech dif- fered from expected heterozygosity shares created by random mating (Hardy-Wienberg equilibrium), which we carried out by loci separately for each sample popula- tion individually, at a level of risk α = 0.05. 10 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 We gave genetic differentiation between the sam- pled populations of under-planted beech at the sites Brička and Kladje by the criteria of average genetic dis- tance (d 0 ; Gregorius 1974). Statistical comparison of the genetic structures of the beech was carried out on the basis of the χ2 test of the homogeneity of allele fre- quencies by loci. The null hypothesis of homogeneity of allele distributions between populations was rejected at the level of risk α = 0.05. For calculating individual pa- rameters, we used the GSED programme for evaluating isozyme analysis data (Gillet 1998). 4. RESULTS The research was primarily intended to shed light from a genetic point of view on monocultures of spruce on Pohorje meliorated with under-planted beech. The aim was to evaluate the genetic structure of under-planted beech at the Brička and Kladje sites, i.e., on degraded potential natural sites of acidophilous beech forest with white wood-rush (Luzula luzuloides), the geographic variant with Cardamine (Luzulo albidae-Fagetum Meu- sel 1937 var. geogr. Cardamine trifolia Marinček (1983) M arin če k & Z u p an či č 1 99 5 ) . W e wi s h e d t o ev al ua t e whether there are differences in the genetic structures among groups of trees of under-planted beech. The re- sults of genetic comparison are shown in Tables 3 and 4 for 17 polymorphic gene loci. 4.1 Allele and genotype frequencies It is clear from the relative allele frequencies of the ana- lysed loci (Table 3) that there is polymorphism at all 17 analysed gene loci in the populations (P = 100 %). In both populations, we discovered a low level of polymor- phism at 3 loci (Aat-A, Aco-A, Skdh-A), a high level of polymorphism at 2 loci (Aat-B, Per-A). Locus Idh-A also shows a similar polymorphism. We found untypical profiles in both populations at 6 loci (Aco-B, Mdh-A, Mnr-A, Pgi-B, 6-Pgdh-A, -B). We found a distinct transi- tion between low and high levels of polymorphism in the test populations at 5 loci. Loci Per-B and 6-Pgdh-C re- flect low polymorphism in the sample from Brička and high polymorphism in the sample from Kladje, while loci Mdh-B, -C and Pgm-A have low polymorphism in the sample from Kladje and high in the sample from Brička. The same predominant allele is always present in both sampled populations. The frequency of the main allele was found in a range of 54 % to 99 %. Frequencies above 10 % could additionally be achieved by alleles Aat- B 2 , Aco-B 2 , Idh-A 2 , Mdh-A 1 , Mdh-B 4 , Mdh-C 1 , Per-A 1 , Per-B 1 , Pgm-A 2 , 6-Pgdh-A 4 , 6-Pgdh-B 1 and 6-Pgdh-C 4 , while other alleles appeared with low frequencies. The allele frequencies, for example, change greatly with alleles Mdh-B 4 , Per-B 1 , Pgm-A 2 and 6-Pgdh-C 4 . The frequencies of alleles Per-B 1 and 6-Pgdh-C 4 are lower in the sample from Brička than in the sample from Kladje (11 % vs. 37 % and 8 % vs. 23 %), while the allele frequen- cies of Mdh-B 4 and Pgm-A 2 are higher in the sample from Brička than in that from Kladje (16 % vs. 5 % and 40 % vs. 9 %). The allele variants Aat-A 1 , Mdh-B 2 , Pgi-B 3 , 6-Pgdh-A 4 , 6-Pgdh-C 5 are also interesting, which are only rarely present in the Kladje population (a frequency of less than 5 %) but more frequently in the Brička popu- lation (up to 11 %) or Mdh-A 1 , which is rare in the Brička population (1 %) and more frequent in the population from Kladje (10 %). Comparison of the genotype frequencies indicates the existence of differences between the compared sam- ple populations at individual gene loci, namely at 7 of the total of 17 analysed gene loci. Homozygous and het- erozygous types that are much more frequent in the Brička sample than in the Kladje are: Per-B 22 (70 % vs. 32 %), Pgm-A 23 (44 % vs. 18 %), Pgm-A 22 (18 % vs. 0 %), Mdh-A 33 (98 % vs. 80 %), Mnr-A 33 (90 % vs. 74 %), 6-Pgdh-C 15 (20 % vs. 4 %) and Pgi-B 23 (16 % vs. 2 %). Heterozygous or homozygous types much more fre- quent in the Kladje sample than in the Brička sample are: Pgm-A 33 (82 % vs. 38 %), Mdh-A 13 (20 % vs. 2 %), Per-B 12 (30 % vs. 14 %), Per-B 11 (20 % vs. 4 %), Mnr-A 35 (20 % vs. 6 %) and Mdh-B 33 (72 % vs. 54 %). 11 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 4.2 Intra-population genetic variation 4.2.1 Genetic multiplicity In terms of meaning, the expression genetic multiplicity refers exclusively to the number of genetic categories (al- leles, genotypes) of a population or parts of it. On the entire study area, we discovered 43 different alleles (M max ) at 17 polymorphic loci in the sample popula- tions. We did not find all possible allele variants in ei- ther population of under-planted beech. Total allele multiplicity is represented in rejuvenated groups of beech from 93.0 % (Brička) to 95.3 % (Kladje). Both pop- ulations on average have the same number of alleles per locus present (A/L = 2.40). 4.2.2 Genetic diversity Genetic diversity is the variability of individuals within a population, which is expressed by the frequency of dif- ferent genetic categories within the population. The cri- terion of genetic (allele) diversity in a population is the actual available or effective number of alleles at an indi- vidual locus. Because the contribution of rare alleles (i.e., alleles with a frequency < 5 %) to the total amount is small, this criterion also expresses the actual level of equilibrium of frequent alleles. Comparison of the avar- age values of the effective number of alleles per locus (ν) indicates the diversity of the sampled populations. Val- ues range from 1.28 (Kladje) to 1.34 (Brička), which cor- responds to a ratio of 1:1.05. The corresponding smaller value of effective number of alleles per locus in the Kl- adje sampled population, with a value of A/L = 2.40, in- dicates the presence of a larger share of rare alleles. Val- ues of allele diversity (ν) by individual loci are shown in Table 4. Analysis of the hypothetical multi-loci gametic diversity (ν gam ) of the test trees showed that the number of genetic variants of the 17 loci gametic types that the group of 50 sample trees in the populations could have produced ranges from 99 .8 (Kladje ) to 203. 1 (Brička ) Table 3: Relative allele frequencies of under-planted beech populations from the Brička (BRI) and Kladje (KLA) locations on Pohorje presented per gene loci Preglednica 3: Relativne alelne frekvence populacij podsajene bukve z območja Brička (BRI) in Kladje (KLA) na Pohorju s prikazom po lokusih Locus (Lokus) Alelle (Alel) BRI N = 50 KLA N = 50 Locus (Lokus) Alelle (Alel) BRI N = 50 KLA N = 50 Aat-A 1 0.060 0.030 Per-A 1 0.280 0.240 2 0.940 0.970 2 0.720 0.760 Aat-B 2 0.330 0.290 Per-B 1 0.110 0.370 3 0.670 0.710 2 0.830 0.540 3 0.060 0.090 Aco-A 2 0.970 0.990 3 0.030 0.010 Pgi-B 2 0.920 0.990 3 0.080 0.010 Aco-B 2 0.170 0.090 3 0.810 0.910 Pgm-A 2 0.400 0.090 4 0.020 - 3 0.600 0.910 Idh-A 2 0.180 0.160 Skdh-A 2 0.010 - 3 0.820 0.840 3 0.990 0.960 5 - 0.040 Mdh-A 1 0.010 0.100 3 0.990 0.900 6-Pgdh-A 2 0.890 0.950 3 - 0.010 Mdh-B 1 0.050 0.080 4 0.110 0.040 2 0.090 0.010 3 0.700 0.860 6-Pgdh-B 1 0.120 0.090 4 0.160 0.050 2 0.880 0.910 Mdh-C 1 0.250 0.180 6-Pgdh-C 1 0.810 0.720 2 0.750 0.820 3 0.010 0.030 4 0.080 0.230 Mnr-A 3 0.930 0.870 5 0.100 0.020 4 - 0.030 5 0.070 0.100 12 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 and corresponds to a ratio of 1:2.04. Although the calcu- lated values have only an indicative character, this com- parison suggests greater potential of the group of under- planted beech trees at the Brička site than that of the group of under-planted beech trees at the Kladje site for the production of genetically different gametes, which will be subject to genetic variation in new generations. The average value of actual (observed) heterozygosity (H a ) for the 17 loci gene pool are in a range from 21.1 % in the group of trees from Kladje to 23.5 % in the Brička group of trees, which corresponds to a ratio of 1:1.11. The level of heterozygosity explicitly differs between the test populations from Brička and Kladje at 5 loci, name- ly at Mdh-A (2 % vs. 20 %), Mnr-A (6 % vs. 26 %), Per-B (26 % vs. 48 %), Pgi-B (16 % vs. 2 %) and Pgm-A (44 % vs. 18 %). Table 4: Comparison of indicators of genetic varia- bility for under-planted populations of beech at Brička (BRI) and Kladje (KLA): number of alleles per locus (A/L), allelic diversity (ν), average heterozygosity (H a , H c ), intrapopulational genetic differentiation (δ T ), ge- netic distance (d 0 ) and value of the χ2 test of homogene- ity of genetic structures by loci, with significance level α = 0.05 (*), α = 0.01 (**), α = 0.001 (***) for 17 polymor- phic loci. Bold type indicates significant deviation (p < 005) of genotype frequencies from Hardy-Weinberg equilibrium, underlined values indicate a significant heterozygote deficiency. Preglednica 4: Primerjava kazalnikov genetske vari- abilnosti pri podsajenih populacijah bukve Brička (BRI) in Kladje (KLA): število alelov na lokus (A/L), alelna raznolikost (ν), povprečna heterozigotnost (H a , H c ), genetska diferenciacija med osebki znotraj populacije (δ T ), genetska razdalja (d 0 ) in vrednost χ2 testa homog- enosti genetskih struktur po lokusih, z nivojem značilnosti α = 0,05 ( *), α = 0,01 (**), α = 0,001 (***) za 17 polimorfnih lokusov. Krepki tisk označuje značilno odstopanje (p < 0,05) frekvenc genotipov od Hardy- Weinbergovega ravnotežja, podčrtane vrednosti označujejo značilni deficit heterozigotov. Locus (Lokus) A/L ν δ T (%) H a (%) H c (%) d 0 (%) χ 2 value (χ 2 vrednost) BRI KLA BRI KLA BRI KLA BRI KLA BRI KLA Aat-A 2 2 1.13 1.06 11.4 5.9 12.0 6.0 100 100 3.0 n.s. Aat-B 2 2 1.79 1.70 44.7 41.6 36.0 22.0 51.5 37.9 4.0 n.s. Aco-A 2 2 1.06 1.02 5.9 2.0 6.0 2.0 100 100 2.0 n.s. Aco-B 3 2 1.46 1.20 31.8 16.5 28.0 18.0 73.7 100 10.0 n.s. Idh-A 2 2 1.42 1.37 29.8 27.2 24.0 24.0 66.7 75.0 2.0 n.s. Mdh-A 2 2 1.02 1.22 2.0 18.2 2.0 20.0 100 100 9.0 7.792** Mdh-B 4 4 1.90 1.34 47.9 25.4 40.0 28.0 66.7 100 19.0 14.495** Mdh-C 2 2 1.60 1.42 37.9 29.8 42.0 32.0 84.0 88.9 7.0 n.s. Mnr-A 2 3 1.15 1.30 13.2 23.5 6.0 26.0 42.9 100 6.0 n.s. Per-A 2 2 1.68 1.57 40.7 36.8 52.0 48.0 92.9 100 4.0 n.s. Per-B 3 3 1.42 2.29 29.8 56.9 26.0 48.0 76.5 52.2 29.0 20.822*** Pgi-B 2 2 1.17 1.02 14.9 2.0 16.0 2.0 100 100 7.0 5.701* Pgm-A 2 2 1.92 1.20 48.5 16.5 44.0 18.0 55.0 100 31.0 25.976*** Skdh-A 2 2 1.02 1.08 2.0 7.8 2.0 4.0 100 50.0 4.0 n.s. 6-Pgdh-A 2 3 1.24 1.11 19.8 9.7 14.0 6.0 63.6 60.0 7.0 n.s. 6-Pgdh-B 2 2 1.27 1.20 21.3 16.5 12.0 18.0 50.0 100 3.0 n.s. 6-Pgdh-C 4 4 1.49 1.75 33.1 43.2 38.0 36.0 100 64.3 17.0 n.s. Gene pool (Genski sklad) 2.40 2.40 1.34 1.28 25.6 22.3 23.5 21.1 77.9 84.0 9.6 Genetic variation among individuals within an in- dividual population, independent of the population size or the number of studied individuals, is defined by the level of genetic differentiation (δ T ). The average lev- els of genetic (allele) differentiation δ T in the sampled populations of under-planted beech range from 22.3 % (Kladje) to 25.6 % (Brička), which corresponds to a ratio of 1:1.15. Observed frequencies of genotypes at the majority of loci correspond to the frequencies of geno- types expected according to Hardy-Weinberg equilib- rium. We found significant deviation from a Hardy- Weinberg structure at the Brička site at the loci Mnr-A, Per-A and 6-Pgdh-B and at the Kladje site at loci Aat-B, Per-A and Skdh-A. In the Kladje sample population, a significant deficiency of heterozygotes also appeared at locus Aat-B. According to the Hardy-Weinberg law, de- viation of expected genotype frequencies from the Har- dy-Weinberg structure suggest that random mating does not exist, that there is gene flow into the popula- tion or that natural selection is in operation. The high- est realised level of heterozygosity (H c ) in the sampled populations is from 77.9 % (Brička) to 84.0 % (Kladje). 13 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 The calculated value (H c ) for both sample populations together, though, indicates a deficiency of heterozy- gotes in comparison with the highest achievable values, which equals 100 %. However, because of the lack of data on the origin of the parental stands of beech and past development phases of the groups of trees under- planted in the spruce monocultures on Pohorje includ- ed in the analysis, we cannot establish whether the re- productive system, the method of obtaining them and the use of forest reproduction material and/or various forms of (survival) selection influenced this phenome- non. 4.3 Genetic differentiation between the sampled populations The frequency of individual alleles at some loci (e.g., Pgm-A 2 (9 % vs. 40 %), Per-B 1 (11 % vs. 37 %), Mdh-B 4 (5 % vs. 16 %), Mdh-A 1 (1 % vs. 10 %), 6-Pgdh-C 4 (8 % vs. 23 %)) partially indicates great diversity of the stands. If we compare the allele distribution of the sample popula- tions of under-planted beech, the probability of deviati- ons from homogeneous allele structures is statistically significant at 5 of the 17 analysed loci (Table 4). The cal- culated values show that deviations from the homogene- ity of allele distributions are highly significant at loci Per-B and Pgm-A (α = 0.001), Mdh-A (α = 0.01) and, at a level of risk α = 0.05, also at Mdh-B and Pgi-B. The share of alleles that do not differentiate the test populations (d 0 ), for the genetic fund of 17 polymorphic loci, amo- unts on average to 9.6 %. In a comparison of individual loci, we also find high values of genetic distance. The sample groups of beech, which at locus Pgm-A are sepa- rated into 31 % allele and 44 % genotype shares, and at loci Per-B and Mdh-B into 29 % or 19 % allele and 38 % or 26 % type shares, respectively, already allow the fin- ding of major genetic differentiation between them. The hypothesis that the sample groups of beech under-plan- ted in the two spruce monocultures on Pohorje (Brička in Kladje) have a similar genetic structure, cannot there- fore be confirmed. In th e sel ected sp ruce m o n ocul tur es o n P o h o rje, th e population of under-planted beech at the Brička site has greater effective allele diversity, hypothetical multi-locus gametic diversity, observed heterozygosity and greater differentiation among individuals within the population in the gene pool than the population of under-planted beech at the Kladje site. The reasons for the different comparative values of the individual sample populations are not known. The established differences in the level of genetic variability may reflect different sources of prov- enance, historical differences in interventions in the area of the parental stands, differences in the method of obtaining and using the forest reproductive material and/or different forms of survival selection of juvenile beech, both in the parental and in the new, changed con- ditions of their living environment. These are only theo- retical suppositions, of course, which have not in this case been verified. Additional research of the genetic structure of beech stands with natural regeneration that have survived the period of spruce monocultures in the area of Pohorje is recommended, in order to know whether the analysed genetic structure of the sampled beech in our research was representative or not. The first evidence of the existence of genetic differ- ences between the studied groups of under-planted beech at the Brička and Kladje sites is provided by the result of a statistical test of homogeneity of allele struc- ture at polymorphic gene loci. Among the allele distri- butions of sampled populations of beech, we obtained significant deviations at 5 of 17 loci. The level of ana- lysed genetic differentiation between the sampled popu- lations is relatively large. Between the groups of under- planted beech in selected spruce monocultures in the southern part of Pohorje, the genetic differentiation (d 0 ) is expressed by the share of alleles that do not distin- guish the two populations, 9.6 %. This finding is similar to the established values of allele (genetic) distance (d 0 ; Gregorius 1974) among the most differentiated popu- lations of beech in Bavaria (Germany), which differed in a range from 2.6 % to 10.9 % (Konnert & Henkel 1997). Similarly high values of genetic differentiation, estab- lished among the four populations with the most differ- ent habitats, is also cited by research of twenty autoch- thonous populations of beech from the area of western Germany (Turok 1994). The observed deviation between the sampled popu- lations from Brička and Kladje on Pohorje, in the event of representativeness of the genetic structures of the studied populations, may indicate that the gene flow be- tween the parental stands of beech was limited or that the greater genetic differentiation may also be a conse- quence of isolation and specific selection processes that the beech at these locations experienced. This could also mean that the planting material that was under-planted 5. DISCUSSION 14 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 in Brička and Kladje does not derive from the same pa- rental origin of beech. All these links can certainly not be understood in greater detail and their impact evalu- ated without new, in-depth research. The results of our investigation thus point to the conclusion that the group of beech trees in the spruce monoculture at Brička is ge- netically slightly different from the group of beech trees in the spruce monoculture of Kladje. With under-planting of beech in spruce monocul- tures (without including naturally regeneration of beech), there is a constant danger of the loss of alleles (or genetic information) because of genetic drift, which can occur in small, isolated populations because of a reduction of the original size of the population during development and growth of the future beech stand. This danger is poten- tially greater in our case for the Kladje beech population, which shows a lower level of intra-population genetic variability and has a larger share of rare alleles (with fre- quencies < 5 %) than the Brička beech population. Silviculture treatment is a crucial step in the devel- opment of forest. The use of natural regeneration in stands is therefore recommended for the renewal of for- ests. In cases in which this is not possible, forest repro- ductive material (seeds and pullings) obtained from neighbouring seed stands should be used. Collection and use of forest reproductive material is regulated by the Act on Forest Reproduc t ive Mater ia l (U LR S, no. 58/02 , 85/02 , 45/04) and the Regulation for approval of basic material for production of forest reproductive material (FRM) of the categories “source indentified” and “selected” and the national list of basic material (URLS, no. 91/03). »For the majority tree species (primarily beech, pedunculate oak, sessile oak, fir and spruce), the use of seeds and seedlings within the altitudinal belt and provenance re- gion from which it comes or from a neighbouring region is recommended. The use of seeds and seedlings from other regions of provenance is less recommended, and only exceptionally does either the forester or silviculture expert prescribe also the use of seeds and seedlings from neighbouring altitudinal zones. For minority tree spe- cies, the whole of Slovenia is considered a uniform region of provenance, divided into 4 altitudinal belts. Neverthe- less, even for these species, the use of seed in the region from which it originates is recommended« (Medved et al. 2011, p. 137). Forest seed is genetic material, so the selection of forest seed sources has far-reaching conse- quences. There are not a large number of high-quality seed sources or stands and, because of the general change- ability of forests and because of the anthropogenic bur- dening of forests to date, there are ever fewer. In order to spread the risk and as a condition of the ecological adapt- ability of forests, forest seed sources must embrace a suf- ficiently large biological diversity, i.e., all the more im- portant tree species with their local races and their ge- netic variability. This is especially important given the present fast climate change and other anthropogenically caused uncertainties. Biological diversity and its adapta- tion to local ecological conditions can still be expected in well-preserved natural and autochthonous forests. Only one seed stand is approved for obtaining forest reproductive material in the Pohorje region of prove- nance, namely provenance Osankarica (ident. no. GSO: 2.0 1 1 9 ) a t an al ti tude o f 1 240 m, » sel ected « ca teg o ry (Kraigher, Božič & Verlič 2011). This seed stand is also proposed as a forest genetic reserve in Slovenia and dynamic gene conservation unit on the European level (Westergren, Božič & Kraigher 2010). Pullings are also used for conversion spruce monocultures on Po- horje, collected in a “selected” category seed stand (ident. number GSO: 4.0175, provenance Temenjak) in vicinity (Kraigher, Božič & Verlič 2011 ). An approved seed stand at an altitude from 650 to 700 m is classified in the Savinjska-Šaleška ecological sub-region (code 4.3) of the Prealpine provenance region (Kutnar et al. 2002). There are relatively few preserved beech forests on Pohorje. The majority of these have been transformed into spruce monocultures. In addition, Pohorje is over- grown with natural spruce forests, especially at higher altitudes, i.e., in the altimontane and lower sub-alpine zone. The montane zone is covered with fir forests. The natural possibilities of the preserved genetic heritage of beech are limited in area and the structure of stands in these areas is relatively poor. Seed beech trees are rare, the majority are stump-grown or mixed stands of stump-grown and seed trees. Regardless of the stand form, it will be necessary to a certain extent additionally to select for seed stands, even though the area may be very limited. Additional seed stands could be chosen in the Pohorje provenance region or in similar ecological conditions in neighbouring provenance regions (alpine and subalpine). In all cases, these are stands that are placed in the associations (syntaxa) Luzulo-Fagetum Meusel 1937, Hieracio rotundati-Fagetum Ž. Košir 1994 and Cardamine savensi-Fagetum Ž . K o š i r 1 9 6 2 v a r . geogr. Abies alba Ž. Košir 1994 in the montane/altimon- tane zone and the associations (syntaxa) Castaneo-Fage- tum sylvaticae Marinček & Zupančič ( 1979 ) 1995 and Hedero-Fagetum Ž. Košir (1962) 1994 var. geogr. Polys- tichum setiferum Ž. Košir 1994 in the colinar zone. We propose an enlargement of the network of seed stands on Pohorje (including Rdeči breg) and Kobansko, with the aim of exploiting existing potentials of beech that has survived the period of spruce monocultures for the needs of renewal of these complexes with the use of habitats of adapted planting material. The importance of this measure is in preparation of a high-quality base 15 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 of planting material suitable for under-planting beech in s p ru c e m o n o c ul t ur e s o n P o h o rj e , wi th s im ul t an e o u s preservation of the adaptation potential for growth and development of beech in suitable areas of degraded for- ests in the light of possible climate change. Economi- cally interesting conifers, such as spruce and fir, have a relatively large share in the timber stock of very varied forest associations in Slovenia. However, the surface share of potential forest communities in which conifers predominate is relatively small. Model-based forecasts indicate that this share will probably be further reduced. As has been established for Western and Central Europe (Kienast, Brzeziecki & Wildi 1998; Lexer et al. 2002, Maracchi, Sirotenko & Bindi 2005; Koca, Smith & Sykes 2006), it can also be expected in Slovenia that there will be a pronounced replacement of coniferous with deciduous forests (Kutnar, Kobler & Bergant 2009; Kutnar & Kobler 2011). Simulations of climatic effects on spruce indicate an explicit fall in the share and worsened prospects of this species with the realisation of generally applicable climate scenarios, which envis- age further atmospheric warming in the future (Ogris & Jurc 2010, Kobler & Kutnar 2010). The problem of seed sources of beech on Pohorje therefore deserves particular attention. The work of pre- serving seed sources and the biological diversity of for- ests should include both the protection of seed sources with the aid of legislation and regulations and the pro- tection of seed sources by means of the status of special purpose forests and other forestry nature conservation efforts for preserving the natural genetic heritage by protecting and supplementing the network of forest gene reservoirs and other areas with important seed sources. It is also sensible to continue directly applicable research and development work for the needs of the forest seed and sapling trade, including in depth research into the genetic characteristics of populations of forest tree spe- cies in Slovenia. 6. CONCLUSIONS On the basis of the results of analysis of the genetic structure of under-planted juvenile beech in selected s p ru c e m o n o c ul tur e s o n P o h o rj e wi th i s o zym e g e n e markers, we conclude: • Under-planted beech at the Brička site are geneti- cally slightly different from the under-planted beech at the Kladje site. • The genetic variability of under-planted beech within individual populations, according to indica- tors of genetic diversity (H a , ν, ν gam , δ T ) is greater at the Brička site that at the Kladje site. • There is greater potential danger of the loss of ge- netic information (alleles) because of genetic drift at the Kladje site, which can occur in smaller, isolated populations in the development of future stands (than in the population at the Brička site). • The allele (genetic) distance among under-planted beech at the Brička and Kladje sites, which we calcu- lated according to Gregorius (1974), is relative large for the studied gene pool (d 0 = 9.6 %). • The problem of seed sources of beech on Pohorje deserves special attention. There is a need to select relatively well-preserved beech stands on the most varied potential forest sites on Pohorje and Koban- sko, which could be selected as seed stands. POVZETEK Uvod V začetku devetdesetih let so vetrolomi in gradacije podlubnikov zmanjšali stabilnosti smrekovih nasadov v Evropi in povzročili opazno zmanjševanje vitalnosti, ki smo mu bili priča do konca prejšnjega desetletja. Goz- darska stroka si je prizadevala najti načine za povečanje dolgoročne stabilnosti in ohranitev trajnosti teh nasa- dov, kar je vodilo v izbor rastišču primernejših drevesnih vrst. Zaradi vprašljivega golosečnega načina gospodarje- nja in pritiska s strani javnosti ter zahtev po povečanju trajnosti je postal v Evropi vnos s podsadnjo listavcev v iglastih gozdovih široko uveljavljen gozdnogojitven ukrep. Gozdnogojitvena izhodišča so bila za tovrstne premene razmeroma slabo opredeljena. V zadnji polovici prejšnjega stoletja je bila premena čistih smrekovih sestojev ( Picea abies L. Karst.) eden po- glavitnih gojitvenih izzivov v Evropi (Zerbe 2002; Teu- ffel, Heinrich & M. Baumgarten 2004). Ocenjujejo, da je v Evropi najmanj 6 do 7 milijonov hektarov čistih smrekovih sestojev zunaj svojih naravnih rastišč, od ka- terih je 4-5 milijonov hektarov osnovanih na rastiščih, 16 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 kjer bi sicer prevladovali listnati ali mešani iglasto-li- stnati gozdovi. Sedanje stanje je posledica gozdnogo- spodarskih odločitev v preteklosti, ko so bili mešani se- stoji izpostavljeni kmetijskemu izkoriščanju, steljarje- nju, paši in pridobivanju lesa za kurjavo (Johann s sod. 2004). Velika potrebe po lesu zaradi industrializacije je vodila v pospeševanje monokultur hitrorastočega drev- ja. V zadnjih 200 letih je bila smreka najpogosteje izbra- na kot drevesna vrsta za umetno obnovo sestojev zaradi hitre rasti, preprostega osnovanja sestojev, majhnih zah- tev glede redčenj in zaradi ne pretirano obremenjajoče- ga objedanja divjadi. Vnos smreke zunaj njenega naravnega areala je po- vezan s številnimi, v glavnem kratkoročnimi koristmi. Vrsta je ekonomsko zelo zanimiva, ima potencial za proizvodnjo visokokakovostnega lesa v kratkih časov- nih obdobjih. Evropski listnati gozdovi so v preteklosti pokrivali občutno večje površine, kot jih pokrivajo danes, zato velja v Evropi splošno mnenje, da je snova- nje listnatih sestojev korak k trajnostnemu gozdarstvu (Hannah, Carr & Lankerani 1995; Stanturf & Madsen 2002). Eden od načinov osnovanja je premena smrekovij v listnate ali v mešane gozdove. Premena v Evropi široko razširjenih homogenih smrekovij v na- ravne listnate gozdove se uporablja v gozdarski praksi zadnjih 50 let. V prid premeni govori več dejavnikov. Smreka se je v velikih primerih pokazala kot nestabilna, izpostavlje- na je zmanjšanju vitalnosti, vetrolomom, napadom pod- lubnikov, suši in negativno vpliva na tla (Larsen 1995). Občutne spremembe v okolju in krajini s posledicami na spremembe ali zmanjševanje biotske raznolikosti (Gra- bherr & Koch 1993) so zmanjšale naklonjenost javnega mnenja. Klimatske spremembe in posebno naraščajoča verjetnost pojavljanja klimatskih ekstremov kot npr. ne- urij so izpostavile ranljivost smrekovih monokultur in poudarjajo potrebo po zmanjševanju tveganja z vključe- vanjem ostalih drevesnih vrst v smrekove sestoje (Brad- shaw s sod. 2001 ). Dvig cen lesa listavcev je zmanjšal ekonomsko upravičenost snovanja antropogenih igla- stih sestojev (Abildtrup, Riis & Jellesmark-Thorsen 1997; Spiecker 2000). Za uspešno premeno je podsadnja z bukvijo (Fagus sylvatica L.) bodisi pod zastorom matičnega sestoja ali v svetlobnih jaških možna alternativa golosečnemu nači- nu gospodarjenja, ki je v Evropi še vedno prisotno. Pod- sadnja je star gojitveni postopek, ki je danes deležen nove pozornosti (Otto 1986; Spellmann & Wagner 1993). Prednosti podsadnje so manjše zapleveljevanje, ugodnejša mikroklima, varstvo pred poznimi pozebami (Löf 2000), kot tudi večja stopnja naklonjenosti javnega mnenja v nasprotju z golosečnjami (Mattsson & Li 1994). V Sloveniji so s premenami začeli spreminjati čiste smrekove sestoje v mešane sredi 20. stoletja. Čeprav so gozdovi v Sloveniji v primerjavi s Srednjo Evropo raz- meroma ohranjeni, pa zaradi dediščine preteklosti tre- nutna drevesna sestava gozdov odstopa od ocenjene na- ravne (Diaci & Grecs 2003). Delež smreke v lesni zalo- gi je 32 %, ocena naravnega deleža je približno 8 %. Slo- v e n i j a j e d e ž e l a l i s t n a t i h , p r e d v s e m b u k o vi h g o z d o v (Šercelj 1996, Ž. Košir s sod. 1974, Dakskobler 2008). 70 % gozdov Slovenije uvrščamo v združbe, v katerih je bukev vodilna vrsta. Obdobje aktivne premene nasadov smreke ima za- četke v zgodnjih 50. letih z navodili Ministrstva za goz- darstvo za pričetek kampanje sadnje plemenitih listav- cev v nasade smreke, predvsem gorskega javorja (Diaci 2006). Prizadevanja večinoma niso bila uspešna zaradi previsokih gostot velikih rastlinojedov (Diaci 2006 povzeto po ustnem viru Mlinšek 2004). Bistveno boljši je bil uspeh uresničevanja prvih ureditvenih načrtov po drugi svetovni vojni. Mlinšek je leta 1954 izdelal obse- žen ureditveni načrt za enoto Mislinja, ki je zajemal predvsem nasade smreke (Mlinšek 1955). Pričel je s po- stopno premeno na osnovi kontrolne metode s podrob- nimi analizami prirastka, uvedel izbiralna redčenja in podaljšal obhodnje, vpeljal celovito metodologijo pod- sadnje nasadov smreke s sadikami in puljenkami bukve ter posamično in skupinsko zaščito proti objedanju, za- govarjal je rastiščem prilagojen pristop. Preizkušali so različne metode posamične zaščite in dosegli precejšnje uspehe s cementno malto. Zaradi pomanjkanja semen- skih dreves bukve in sadik, so puljenke bukve prenašali iz bolj ali manj primerljivih rastišč na severni strani Po- horja (Diaci 2006). Da bi ocenili genetsko variabilnost podsajene bukve v čistih smrekovih sestojih na Pohorju, smo v juvenilni fazi razvoja bukve opravili genotipsko analizo testnih populacij z uporabo biokemijskih genskih označeval- cev. Namen študije je z metodo analize izoencimov oce- niti stopnjo genetske sorodnosti populacij podsajene bukve. Preizkusiti želimo hipotezo, da imajo testne po- pulacije bukve podobno populacijsko genetsko struktu- ro in ne nakazujejo večjih odstopanj v povprečnih vre- dnostih parametrov. Z raziskavo želimo prispevati k podrobnejšemu poznavanju genetskih struktur, genet- ske raznolikosti in genetske diferenciranosti bukovih populacij, ki so jih vnesli v smrekove monokulture na Pohorju. Študijsko območje Pohorje je izrazita gorska planota, leži v višini 1200-1500 m ter je podaljšek Centralnih Alp. Masiv je zgrajen iz 17 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 metamorfnih in magmatskih kamenin ter sedimentov (Budnar-Tregubov 1958). Klima je sredogorska. V za- dnjih 4000 do 5000 letih so v prvotnih gozdovih prevla- dovale različne oblike jelovo bukovih gozdov ob skro- mni udeležbi smreke (Culiberg & Šercelj 2000). Prvo- bitne gozdove na Pohorju so sestavljale predvsem bukev, jelka in smreka, ponekod pa je bil primešan tudi mace- sen (Breznikar s sod. 2006). Naravni smrekovi gozdovi so edafsko pogojeni in s tem omejeni na zamočvirjene zaravnice, skledaste uleknine in na blago nagnjena po- bočja na pohorskem platoju. V zadnjih dveh stoletjih je bila drevesna sestava pohorskih gozdov spremenjena. Danes tu prevladujejo antropogeno spremenjeni smre- kovi sestoji. Zaradi negativnih vplivov spremenjene dre- vesne sestave je ogrožena tudi trajnost donosov iz gozda (Breznikar s sod. 2006). V preteklosti se je v obdobju od leta 1800 do konca druge svetovne vojne zaradi vpli- va nemške šole gospodarjenja z gozdovi in njenih polje- delskih načel v pohorske gozdove intenzivno vnašala smreka, obnova gozda pa je bila usmerjena v osnovanje čistih smrekovih sestojev. Po drugi svetovni vojni so se ta gozdnogojitvena načela postopoma opuščala. Antro- pogeni smrekovi sestoji na Pohorju, med katere sodijo sestojne zgradbe s prevladujočim deležem smreke na bukovih in jelovih rastiščih, pokrivajo danes 27 000 ha oziroma 45 % skupne gozdne površine na Pohorju (Bre- znikar s sod. 2006). Negativne posledice spremenjene drevesne sestave narekujejo iskanje ustreznih ukrepov pri gospodarjenju z gozdovi, s katerimi bi postopoma vzpostavili bolj na- ravno zmes drevesnih vrst v gozdnih sestojih. Načrtova- nje ukrepov v smrekovih monokulturah zahteva pozna- vanje procesov degradacije rastišča zaradi negativnega vpliva pospeševanja smreke na bukovih in jelovih rasti- ščih. Pri prevladujočem deležu smreke v sestoju se začne na tleh kopičiti surov humus, k njegovemu škodljivemu delovanju pa dodatno prispeva labilnost tal. Smreka za- radi plitvega koreninjenja premočno izkorišča zgornje talne horizonte, spodnji talni horizonti pa se začno zgo- ščevati. Pride do poslabšanja fizikalnih lastnosti tal (zmanjševanje zračnosti), povečuje se kislost tal, zmanj- šuje se dostopnost hranilnih snovi, zmanjša se intenziv- nost humifikacije in mineralizacije organskih snovi v tleh, prične se kopičenje neugodnih oblik humusa. S po- stopnim zbijanjem talnega profila in dviganjem nepro- pustnega horizonta se zmanjšuje biološko aktivna globi- na tal, zaradi slabših fizikalnih lastnosti tal pa se zmanj- ša kapaciteta tal za vodo. Vlažne oblike surovega humu- sa in mahovi povečujejo površinsko akumulacijo pada- vinske vode in pogojujejo procese pseudooglejevanja tal (Breznikar s sod. 2006). Razvoj stabilnejših gozdnih struktur in zaviranje degradacijskih procesov v gozdnih tleh so glavni strate- ški cilji pri načrtovanju razvoja gozdov na Pohorju. Na- črtni posegi za sanacijo spremenjenih sestojnih zgradb in usmerjeno gozdnogojitveno ukrepanje so se začeli na mislinjskem delu Pohorja v petdesetih letih prejšnjega stoletja in se postopoma širili na celotno območje Po- horja. Glavni ukrep sanacije je vnos listavcev, predvsem bukve, v smrekove sestoje in izločitev vpliva preštevilne divjadi na gozdno mladje. Raziskovane objekte na Pohorju smo izbrali na južni strani Pohorja na raziskovanih ploskvah Gozdarskega inštituta Slovenije in sicer na lokaciji Brička nad Mislinj- skim jarkom ( ZGS O E Sloven j Gradec ) in Kladje pri O s a n k a r i c i ( Z G S O E M a r i b o r ) ( P r e g l e d n i c a 1 ) . O b a objekta je pred intenzivnejšimi posegi in degradacijski- mi procesi domnevno poraščal bukov ali jelovo-bukov gozd s primesjo smreke. Navedeni lokaciji veljata za po- tencialno naravno rastišča acidofilnega bukovja z belka- sto bekico, geografska varianta s trilistno penušo (Lu- zulo albidae-Fagetum Meusel 1937 var. geogr. Cardami- ne trifolia (Marinček 1983) Marinček & Zupančič 1995). Na robu objekta Brička še danes na manjši površini raste razmeroma dobro ohranjen acidofilni bukov gozd. Širše območje objekta Kladje je precej spremenjeno, vendar na osnovi posameznih ostankov tovrstnega gozda lahko sklepamo na potencialna rastišča asociacije. Vendar pa je na širšem območju tega dela Pohorja bila kartirana združba bukve z zasavsko konopnico. To je conalna združba pohorskega visokogorskega bukovega gozda, ki naseljuje zgornji del montanskega pasu masiva Pohorje, to je v nadmorskih višinah od 1000 do 1300 m. Poleg značilnih drevesnih vrst bukve in gorskega javorja se v razmeroma dobro ohranjenih sestojih te združbe poja- vljata z večjim deležem tudi jelka in smreka. Na osnovi tega je bila opredeljena posebna geografska varianta te združbe z jelko (Cardamini savensi-Fagetum Ž. Košir 1962 var. geogr. Abies alba Ž. Košir 1979). Zaradi pospeševanja smreke v preteklosti območje objektov porašča smrekova monokultura. Izhodišča za izbiro raziskovalnih objektov so poleg zahteve po za- smrečenih potencialnih bukovih rastiščih zajemala še prisotnost večjega števila vitalnih podsajenih dreves bukve znotraj posamezne ploskve, podobno starost vne- sene bukve na primerjalnih lokacijah ter možnosti za vpetost raziskovalnih objektov v okvire drugih preuče- vanj. Raziskovalna objekta gradijo zrela drevesa smreke in podsajene bukve v juvenilni fazi razvoja. Značilnosti izbranih raziskovalnih ploskev so navedene v pregledni- ci št. 1. Na ploskvi Brička nad Mislinjskim jarkom je plo- skev poraščalo 173 smrek / ha z ocenjeno lesno zalogo smrekovega sestoja na 477 m 3 / ha, na ploskvi Kladje pri Osankarici pa 126 dreves / ha z lesno zalogo 302 m 3 / ha (Čater 2011). V letu 2006 je bila starost vzorčene podsa- jene bukve ocenjena na okoli 10 do 15 let (Čater 2011). 18 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 Material in metode Nabiranje vzorcev Na raziskovalnih objektih Brička in Kladje na Pohorju smo za genetske analize vzeli vzorec stotih naključno izbranih dreves bukve. V vzorec na vsaki ploskvi v veli- kosti 100 m x 100 m smo enakomerno zajeli vitalna dre- vesa posajene bukve. Z vsakega od poskusnih dreves smo v zimskem obdobju leta 2005 / 2006 odvzeli vejo s spečimi popki, ki smo jih uporabili za ekstrakcijo enci- mov. Popke smo do analize hranili v epruvetah pri tem- peraturi -20° C. Velikost vzorca je bila 50 dreves na po- samezno ploskev. Analiza izoencimov Raziskave genetskih značilnosti bukve smo izvedli z metodo analize izoencimov na škrobnem gelu. Razisko- vani material so speči popki. Encimske izvlečke smo ek- strahirali iz bukovih popkov po že preizkušenih meto- dah. Genotip vsakega drevesa smo ugotavljali s pomočjo horizontalne elektroforeze na škrobnem gelu. Ekstrak- cijo encimov iz spečih popkov, elektroforezo, barvanje gelov in odčitavanja elektroforegramov smo izvajali po standardiziranih metodoloških postopkih za analizo bukovih vzorcev (Konnert, Hussendoerfer & Dou- navi 2004). Laboratorijski del analiz smo izvedli febru- arja 2006 v okviru nalog raziskovalnega projekta Di- namika ogljika v naravnem bukovem gozdu (L4-6232). Analize smo izvedli v genetskem laboratoriju Bayerische Amt für forstliche Saat- und Pflanzenzucht v Teisendor- fu, Nemčija, pod vodstvom dr. Monike Konnert. V analize smo zajeli 10 encimskih sistemov, ki jih kodira 17 genskih lokusov (preglednica št. 2). Rezultate izoencimskih analiz smo vrednotili z relativnimi fre- kvencami alelov in genotipov po posameznih genskih lokusih Genetsko strukturo populacije smo opisali na osnovi pogostosti pojavljanja posameznih alelov na po- limorfnih lokusih. Kot polimorfen lokus smo upoštevali vsak genski lokus, na katerem smo ugotovili vsaj še en alel, ne glede na njegovo relativno pogostost v populaciji (brez kriterija). Frekvenčne porazdelitve alelov na lokusih smo po posamezih populacijah opisali s 4 alelnimi profili, ki smo jih določili po Finkeldeyu (1993), in sicer kot: i) fiksacijo, če je na posameznem genskem lokusu samo 1 alel (alelna frekvenca = 100 %), ii) nizko stopnjo poli- morfizma, če je na posameznem genskem lokusu je pri- soten pogosti alel (alelna frekvenca > 80 %) in eden ali več redkih alelov, iii) visoko stopnjo polimorfizma, če sta na posameznem genskem lokusu najmanj dva alela kot prevladujoča (alelna frekvenca > 20 %), iiii) netipični profil, če alelne strukture na posameznem genskem lo- kusu ne moremo uvrstiti v 1., 2. ali 3. profil. Genetsko variabilnost znotraj posameznih popula- cij smo interpretirali s parametri genetske pestrosti in genetske raznolikosti. Pri parametru genetske pestro- sti, ki v posamezni populaciji upošteva samo številčnost različnih genetskih tipov, smo izračunali tri parametre: (1) delež polimorfnosti analiziranih genskih lokusov (P %); (2) največje možno število različnih alelov (M max ); (3) povprečno število alelov na polimorfni lokus (A/L). Pri parametru genetske raznolikosti, ki za razliko od parametra genetske pestrosti poleg števila različnih ge- netskih tipov upošteva tudi njihovo pogostnost poja- vljanja v populaciji, smo izračunali opaženo heterozigo- tnost (H a ) in pogojeno hetrozigotnost (H c ; Gregorius, Krauhausen & Mueller-Starck 1986), efektivno alelno raznolikost (ν; Gregorius 1978, Gregorius 1987), večlokusno hipotetično gametska raznolikost (ν gam ) ter stopnjo genetske diferenciacije med osebki znotraj populacije (δ T ; Gregorius 1987), ki je pri večjih vzorcih enaka stopnji pričakovanih hetrozigotnih dele- žev, ki nastanejo pri panmiksični oplodnji (H e ; Nei 1 973 ). Za preverjanje, kako se dejanski heterozigotni deleži v podsajenem mladju bukve razlikujejo od priča- kovanih hetrozigotnih deležev, ki nastanejo pri panmi- ksični oplodnji (Hardy-Wienbergovo ravnotežje) smo uporabili χ2 test, ki ga izvajamo po lokusih ločeno za vsako vzorčeno populacijo posebej, pri stopnji tveganja α = 0,05. Genetsko diferenciranost med vzorčenima popu- lacijama podsajene bukve na lokacijah Brička ter Klad- je smo podali z merilom povprečne genetske razdalje (d 0 ; Gregorius 1974). Statistično primerjavo genet- skih struktur bukve smo izvedli na osnovi χ2 testa ho- mogenosti alelnih frekvenc po lokusih. Ničelno hipo- tezo homogenosti alelnih porazdelitev med populaci- jami zavračamo na nivoju tveganja α = 0,05. Za izračun posameznih parametrov genetske variabilnosti in sta- tističnih primerjav smo uporabili program za ovre- dnotenje podatkov izoencimskih analiz GSED (Gillet 1998). Rezultati V tej raziskavi želimo osvetliti predvsem genetski vidik premene monokultur smreke na Pohorju s podsadnjo b ukv e. C il j raziska v e j e ug o t o vi ti g e n etsk o struktur o podsajene bukve na lokacijah Brička in Kladje, to je na degradiranih potencialno naravnih rastiščih acidofilne- ga bukovja z belkasto bekico, geografska varianta s trili- stno penušo (Luzulo albidae-Fagetum Meusel 1937 var. 19 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 geogr. Cardamine trifolia Marinček (1983) Marinček & Zupančič 1995). Ugotoviti želimo ali so razlike v genet- skih strukturah med skupinami dreves podsajene bukve. Rezultate genetskih primerjav prikazujemo v pregledni- cah št. 3 in 4 za 17 polimorfnih genskih lokusov. Frekvence alelov in genotipov Iz relativnih alelnih frekvenc analiziranih lokusov je razvidno (preglednica št. 3), da je v populacijah poli- morfnih vseh 17 analiziranih genskih lokusov (P = 100 %). V obeh populacijah smo odkrili nizko stopnjo poli- morfnosti na 3 lokusih (Aat-A, Aco-A, Skdh-A), visoko stopnjo polimorfnosti na 2 lokusih (Aat-B, Per-A). Po- dobno polimorfnost nakazuje tudi lokus Idh-A. Netipi- čen profil smo v obeh populacijah odkrili na 6 lokusih (Aco-B, Mdh-A, Mnr-A, Pgi-B, 6-Pgdh-A, -B). Razločen prehod med nizko in visoko stopnjo polimorfizma pri testnih populacijah smo ugotovili pri 5 lokusih. Lokusa Per-B in 6-Pgdh-C odražata nizek polimorfizem v vzor- cu Brička in visok polimorfizem v vzorcu Kladje, med- tem ko imajo lokusi Mdh-B, -C in Pgm-A nizek polimor- fizem v vzorcu Kladje ter visok v vzorcu Brička. V obeh vzorčenih populacijah je vedno prisoten isti prevladajo- či alel. Frekvenco glavnega alela smo odkrili v razponu od 54 % do 99 %. Frekvence nad 10 % lahko dosegajo še aleli Aat-B 2 , Aco-B 2 , Idh-A 2 , Mdh-A 1 , Mdh-B 4 , Mdh-C 1 , Per-A 1 , Per-B 1 , Pgm-A 2 , 6-Pgdh-A 4 , 6-Pgdh-B 1 , 6-Pgdh- C 4 , medtem ko se drugi aleli pojavljajo v nizkih frekven- cah. Alelne frekvence se na primer močno spremenijo pri alelih Mdh-B 4 , Per-B 1 , Pgm-A 2 in 6-Pgdh-C 4 . Fre- kvenci alelov Per-B 1 in 6-Pgdh-C 4 sta v vzorcu Brička nižji kot v vzorcu Kladje (11 % vs. 37 % in 8 % vs. 23 %), medtem ko sta alelni frekvenci Mdh-B 4 in Pgm-A 2 večji kot v vzorcu Kladje (16 % vs. 5 % in 40 % vs. 9 %). Zani- miv e so tudi al eln e varian te Aat-A 1 , Mdh-B 2 , Pgi-B 3 , 6-Pgdh-A 4 , 6-Pgdh-C 5 , ki so v populaciji Kladje le redko prisotne (to je s frekvenco manj kot 5 %) ter pogostnejše v populaciji Brička (do 11 %) oziroma alel Mdh-A 1 , ki je redek v populacij Brička (1 %) ter pogostnejši v popula- ciji Kladje (10 %). Primerjava genotipskih frekvenc nakazuje na obstoj razlik med primerjanima vzorčenima populacijam na posameznih genskih lokusih in sicer na 7 od skupaj 17 analiziranih genskih lokusov. Homozigotni in heterozi- gotni tipi močneje ferkventni v vzorcu Brička v primer- javi z vzorcem Kladje so: Per-B 22 (70 % vs. 32 %), Pgm- A 23 (44 % vs. 18 %), Pgm-A 22 (18 % vs. 0 %), Mdh-A 33 (98 % vs. 80 %), Mnr-A 33 (90 % vs. 74 %), 6-Pgdh-C 15 (20 % vs. 4 %), Pgi-B 23 (16 % vs. 2 %). Heterozigotni ali homozigotni tipi močneje ferkventni v vzorcu Kladje v primerjavi z vzorcem Brička so: Pgm-A 33 (82 % vs. 38 %), Mdh-A 13 (20 % vs. 2 %), Per-B 12 (30 % vs. 14 %), Per-B 11 (20 % vs. 4 %), Mnr-A 35 (20 % vs. 6 %) in Mdh-B 33 (72 % vs. 54 %). Genetska variabilnost znotraj posameznih vzorčenih populacij Genetska pestrost Izraz genetska pestrost se pomensko nanaša izključno na število genetskih kategorij (alelov, genotipov) popu- lacije ali njenih delov. Na celotnem območju preučeva- nja smo v vzorčenih populacijah podsajene bukve na 17 polimorfnih lokusih odkrili skupaj 43 različnih alelov (M max ). V nobeni populaciji nismo odkrili vseh možnih alelnih variant. Celotna alelna pestrost je v pomladitve- nih skupinah bukve zastopana od 93,0 % (Brička) do 95,3 % (Kladje). Obe populaciji imata v povprečju enako število prisotnih alelov na lokus (A/L = 2,40). Genetska raznolikost Genetska raznolikost je variabilnost osebkov v popula- ciji, ki jo izražajo frekvence različnih genetskih katego- rij znotraj populacije. Merilo genske (alelne) raznoliko- sti v populaciji je dejansko razpoložljivo ali efektivno število alelov na posameznem lokusu. Ker je prispevek redkih alelov (to je alelov s frekvenco < 5 %) k skupni v s o t i m a j h e n , t a m e r a i z r až a t u d i d e j an s k o s t o p n j o uravnoteženosti pogostih alelov. Primerjava srednjih vrednosti efektivnega števila alelov na lokus (ν) naka- zuje na različnost vzorčenih populacij. Vrednosti se gi- bljejo v razponu od 1,28 (Kladje) do 1,34 (Brička) kar ustreza razmerju 1:1,05. Ustrezno manjša vrednost efektivnega števila alelov na lokus pri vzorčeni popula- ciji Kladje z vrednostjo A/L = 2,40 nakazuje prisotnost večjega deleža redkih alelov. Vrednosti alelne raznoli- kosti (ν) po posameznih lokusih so navedene v pregle- dnici št. 4. Analiza hipotetične večlokusne gametske raznolikosti (ν gam ) poskusnih dreves bukve je pokazala, da se število genetsko različnih 17 lokusnih gametskih tipov, ki bi jih lahko proizvedle skupine 50 vzorčnih dreves v populacijah, giblje v razponu vrednosti od 99,8 (Kladje) do 203,1 (Brička) in ustreza razmerju 1:2,04. Čeprav imajo izračunane vrednosti samo nakazovalni značaj, ta primerjava nakazuje na večji potencial skupi- ne podsajenih dreves bukve na lokaciji Brička kot pri skupini podsajenih dreves bukve na lokaciji Kladje za proizvodnjo genetsko različnih gamet, ki bodo v novi generaciji podvržene genetski variaciji. Povprečni vre- 20 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 dnosti dejanske (opažene) heterozigotnosti (H a ) za 17 lokusni genski sklad sta v razponu od 21,1 % v skupini dreves Kladje do 23,5 % v skupini dreves Brička, kar ustreza razmerju 1:1,11. Stopnje heterozigotnosti se med testnima populacijama Brička in Kladje izrazito spre- minjajo na 5 lokusih in sicer na Mdh-A (2 % vs. 20 %), Mnr-A (6 % vs. 26 %), Per-B (26 % vs. 48 %), Pgi-B (16 % vs. 2 %), Pgm-A (44 % vs. 18 %). Genetsko variabilnost med osebki znotraj posame- zne populacije, neodvisno od populacijske velikosti ozi- roma števila proučevanih osebkov, opredeljujemo s sto- pnjo genetske diferenciacije (δ T ). V vzorčenih populaci- jah podsajene bukve se povprečne stopnje genetske (alelne) diferenciacije δ T gibljejo v razponu od 22,3 % (Kladje) do 25,6 % (Brička), kar ustreza razmerju 1:1,15. Opažene frekvence genotipov se pri večini lokusov uje- majo s frekvencami genotipov, pričakovanimi po Har- dy-Weinbergovem ravnotežju. Značilna odstopanja od Hardy-Weinbergove strukture smo na lokaciji Brička ugotovili na lokusih Mnr-A, Per-A, 6-Pgdh-B, na lokaciji Kladje pa na lokusih Aat-B, Per-A in Skdh-A. V vzorčeni populaciji Kladje je na lokusu Aat-B prišlo tudi do poja- va značilnega primanjkljaja heterozigotov. Odstopanja pričakovanih genotipskih frekvenc od Hardy-Weinber- gove strukture v skladu s Hardy-Weinbergovem zako- nom nakazujejo, da je v populacijah lahko prišlo do dru- gačnega prenosa genov kot pri panmiksični oplodnji ali pa so na testne populacije delovale različne oblike genet- ske selekcije. Največja možna stopnja hetrozigotnosti (H c ) je v vzorčenih populacijah realizirana od 77,9 % (Brička) do 84,0 % (Kladje). Izračunana vrednost (H c ) za obe vzorčeni populaciji skupaj sicer nakazuje pomanj- kanje heterozigotov v primerjavi z največjo dosegljivo vrednostjo, ki je enaka 100 %. Vendar zaradi pomanjka- nja podatkov o izvoru matičnih sestojev bukve in prete- klih razvojnih fazah v analizi zajetih skupin dreves, podsajenih v monokulture smreke na Pohorju, ne more- mo ugotoviti, ali je na ta pojav vplival reproduktivni sis- tem, način pridobivanja in rabe gozdnega reprodukcij- skega materiala in / ali tudi različne oblike (preživetve- ne) selekcije. Genetska diferenciacija med vzorčenima populacijama Pogostosti posameznih alelov na nekaterih lokusih (npr. Pgm-A 2 (9 % vs. 40 %), Per-B 1 (11 % vs. 37 %), Mdh-B 4 (5 % vs. 16 %), Mdh-A 1 (1 % vs. 10 %), 6-Pgdh-C 4 (8 % vs. 23 %)) deloma nakazujejo veliko različnost sestojev. Če primerjamo alelne porazdelitve vzorčeni populacij pod- sajene bukve je verjetnost odklonov od homogenih alel- nih struktur statistično značilna pri 5 od 17 analiziranih lokusov (preglednica 4). Izračunane vrednosti kažejo, da so odkloni od homogenosti alelnih porazdelitev visoko značilni na lokusih Per-B in Pgm-A (α = 0,001), Mdh-A (α = 0,01), s stopnjo tveganja α = 0,05 pa tudi na Mdh-B in Pgi-B. Delež alelov, ki si jih testni populaciji med seboj ne delita (d 0 ), za genski sklad 17 polimorfnih lokusov, v povprečju znaša 9,6 %. Na primeru posameznih lokusov ugotavljamo tudi visoke vrednosti genetskih razdalj. Vzorčeni skupini bukve, ki se na lokusu Pgm-A ločita v 31 % alelnem in 44 % genotipskem deležu, na lokusih Per-B in Mdh-B pa v 29 % oz. 19 % alelnem ter v 38 % oz. 26 % genotipskem deležu, že dovoljujeta ugotovitev o večji genetski diferenciranosti med njima. Hipoteze, da imajo vzorčene skupine dreves bukve podsajene v dveh smrekovih monokulturah na Pohorju (Brička in Kladje), podobno populacijsko genetsko strukturo, v našem pri- meru ne moremo potrditi. Razprava V izbranih smrekovih monokulturah na Pohorju ima populacija podsajene bukve na lokaciji Brička v genskem skladu večjo efektivno alelno raznolikost, hipotetično večlokusno gametsko raznolikost, opaženo heterozigo- tnost ter večjo diferenciranost med osebki znotraj popu- lacije kot populacija podsajene bukve na lokaciji Kladje. Razlogi za različne primerjalne vrednosti pri posame- znih vzorčenih populacijah niso poznani. Ugotovljene razlike v stopnji genetske variabilnosti so lahko odraz razlik v izvoru provenienc, zgodovinskih razlik v pose- gih v prostor na območju matičnih sestojev, razlik v na- činih pridobivanja in rabe gozdnega reprodukcijskega materiala in / ali različne oblike preživitvene selekcije mladic bukve tako v matičnih kakor tudi v novih, spre- menjenih razmerah njihovega življenjskega okolja. Seve- da so to le teoretične predpostavke, ki v našem primeru niso bile preverjene. Priporočljivo bi bilo še dodatno raziskati genetske strukture sestojev bukve z naravnim mladjem, ki so preživela obdobje smrekovih monokul- tur na območju Pohorja, da bi lahko spoznali, ali je bila v naši raziskavi analizirana genetska struktura vzorčene bukve sploh reprezentativna ali ne. Prvi dokaz o obstoječih genetskih razlikah med pre- učevanima skupinama podsajene bukve na lokaciji Brič- ka in Kladje podaja rezultat statističnega testa homoge- nosti alelnih struktur na polimorfnih genskih lokusih. Med alelnima porazdelitvama vzorčenih populacij bukve smo dobili značilno različne odklone kar pri 5 od 17 genskih lokusov. Stopnja analize genetske diferenci- ranosti bukve je med vzorčenima populacijama soraz- merno velika. Med skupinama podsajene bukve v izbra- nih smrekovih monokulturah na južnem delu Pohorja je genetska diferenciacija (d 0 ) izražena z deležem alelov, ki 21 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 si jih populaciji med seboj ne delita, 9,6 %. Ta vrednost je podobna ugotovljeni vrednosti alelne (genske) razdalje (d 0 ; Gregorius 1974) med najbolj diferenciranimi po- pulacijami bukve na Bavarskem (Nemčija), ki se med seboj sicer razlikujejo od 2,6 % do 10,9 % (Konnert & Henkel 1997). Podobne visoke vrednosti genetske dife- renciacije, ki so jih ugotovili med štirimi populacijami z najbolj različnih rastišč, navaja tudi raziskava dvajsetih domnevno avtohtonih populacij bukve iz območja za- hodne Nemčije (Turok 1994). Opažena odstopanja med vzorčenima populacijama Brička in Kladje na Pohorju bi lahko v primeru repre- zentativnosti genetskih struktur preučevanih populacij nakazovala, da je bil pretok genov med matičnimi sesto- ji bukve omejen ali pa, da je večja genetska diferencira- nost lahko tudi posledica izolacije in specifičnih selek- cijskih procesov, ki jih je doživela bukev na teh lokacijah. Kar nadalje lahko pomeni tudi, da saditveni material, ki je bil podsajen v smrekovih monokulturah Brička in Kladje, ne prihaja iz istega matičnega izvora bukve. Dej- stvo pa je, da vseh teh povezav ni mogoče podrobneje spoznati ter oceniti njihovih vplivov brez novih poglo- bljenih raziskav. Rezultati naših preučevanj zato naka- zujejo na sklep, da je skupina dreves bukve v smrekovi monokulturi Brička genetsko nekoliko različna od sku- pine dreves bukve v smrekovi monokulturi Kladje. Pri podsadnjah bukve v smrekovih monokulturah (brez vključevanja naravnega pomlajevanja bukve) ob- staja stalna nevarnost za izgubo alelov (oz. genetske in- formacije) zaradi genetskega zdrsa, ki bi lahko nastal v majhnih izoliranih populacijah zaradi zmanjševanja pr- votne velikosti populacij pri razvoju in rasti bodočega sestoja bukve. Ta nevarnost je v našem primeru potenci- alno večja za populacijo bukve Kladje, ki nakazuje nižjo stopnjo genetske variabilnosti znotraj populacije in ima večji delež redkih alelov (s frekvencami < 5 %) kot po- pulacija bukve Brička. Zasnova bodočega gozda je kritična faza v življenju gozda. Za obnovo gozdov je zato priporočljivo uporabiti naravno pomlajevanje sestojev. V primerih, kjer to ni mogoče, pa uporabo semenskega materiala in puljenk pridobljenih iz odobrenih semenskih sestojev. To je v ti- stih semenskih objektih, ki jih skladno z določbami Za- kona o gozdnem reprodukcijskem materialu ULRS, št. 58/02, 85/02, 45/04) odobri Gozdarski inštitut Slovenije in so vpisani v Register gozdnih semenskih objektov (ULRS, št. 91/03). »Za večinske drevesne vrste (predvsem za bukev, dob, graden, jelko in smreko) se priporoča upo- raba semena in sadik v okviru višinskega pasu in prove- nienčnega območja, iz katerega izhaja, ali iz sosednjega območja. Manj priporočljiva je uporaba semena in sadik iz drugih provenienčnih območij, le izjemoma gozdar oz. gojitelj predpiše tudi uporabo semena in sadik iz so- sednjih višinskih pasov. Za manjšinske drevesne vrste velja, da je vsa Slovenija enotno provenienčno območje, razdeljeno na 4 višinske pasove. Kljub temu je tudi za te vrste priporočljiva uporaba semena v območju, iz katere- ga izvira« (Medved s sod. 2011, str. 137). Gozdno seme je genetski material, zato ima izbor gozdnih semenskih virov zelo daljnosežne posledice. Kakovostnih semen- skih virov oziroma sestojev zaradi splošne spremenjeno- sti gozdov ni veliko in jih je zaradi sedanje antropogene obremenjenosti gozdov vedno manj. Kot porazdelitev tveganja in kot pogoj za ekološko prilagodljivost gozda morajo gozdni semenski viri zajemati dovolj veliko bio- loško raznovrstnost, to je vse pomembnejše drevesne vrste z njihovimi krajevnimi rasami in njihovo genetsko variabilnostjo. To je še posebej pomembno ob sedanjem naglem spreminjanju podnebja in drugih antropogeno povzročenih nepredvidljivostih. Biološko raznovrstnost in njeno prilagojenost krajevnim ekološkim razmeram še najprej lahko pričakujemo v gozdovih z dobro ohra- njeno naravnostjo in avtohtonostjo. Za pridobivanje gozdnega reprodukcijskega materi- ala je v pohorskem provenienčnem območju odobren le en semenski sestoj in sicer provenienca Osankarica (ident. številka GSO: 2.0119) na nadmorski višini 1240 m, kategorija »izbran« (Kraigher, Božič & Verlič 20 1 1 ). T a semenski sestoj je predlagan tudi za gozdni genski rezervat v Sloveniji in za enoto dinamičnega var- stva genov na ravni Evrope (Westergren, Božič & Kraigher 2010). Za potrebe premene smrekovih mono- kultur na Pohorju se uporabljajo tudi puljenke, nabrane v semenskem sestoju kategorije »izbran« (ident. številka GSO: 4.0175, provenienca Temenjak) v sosedstvu (Kra- igher, Božič & Verlič 2011). Odobreni semenski sestoj na nadmorski legi od 650 m do 700 m uvrščamo v Sa- vinjsko-Šaleško ekološko podregijo (koda 4.3) Predalp- skega provenienčnega območja (Kutnar s sod. 2002). Na Pohorju je razmeroma malo ohranjenih bukovih gozdov. Večina le teh je spremenjena v smrekove mono- kulture. Poleg tega je Pohorje poraščeno z naravnimi smrekovimi gozdovi, zlasti v višjih nadmorskih legah, to je v altimontanskem in nižjem subalpinskem pasu. Montanski pas pa poraščajo jelovi gozdovi. Naravne možnosti ohranjene genetske dediščine bukve so povr- šinsko omejene, na teh površinah pa je struktura sesto- jev razmeroma slaba. Bukovi semenovci so redki, več je panjevcev ali mešanih sestojev panjevca in semenovca. Ne glede na sestojno obliko bi bilo potrebno kolikor to- liko ustrezne sestoje dodatno izbrati za semenske sesto- je, čeprav morda površinsko zelo omejene. Dodatne se- menske sestoje lahko izberemo v pohorskem proveni- enčnem območju ali v podobnih ekoloških razmerah v sosednjih provenienčnih območjih (alpskem in predalp- skem). V vseh primerih gre za sestoje, ki jih uvrščamo v 22 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 asociacije (sintaksone) Luzulo-Fagetum Meusel 1937, Hieracio rotundati-Fagetum Ž. Košir 1994 in Cardamine savensi-Fagetum Ž. Košir 1962 var. geogr. Abies alba Ž. Košir 1994 v montansko / altimontanskem pasu ter v asociacije (sintaksone) Castaneo-Fagetum sylvaticae Marinček & Zupančič (1979) 1995 in Hedero-Fagetum Ž. Košir (1962) 1994 var. geogr. Polystichum setiferum Ž. Košir 1994 v kolinskem pasu. Predlagamo razširitev mreže semenskih objektov na Pohorju (vključno z Rdečim bregom) in Kobanskem s ciljem izkoriščanja obstoječih potencialov bukve, ki je preživela obdobje smrekovih monokultur za potrebe ob- nove teh kompleksov z uporabo rastišču prilagojenega sadilnega materiala. Pomembnost tega ukrepa je v pri- pravi kvalitetne baze saditvenega materiala primernega za podsadnjo bukve v smrekove monokulture na Pohor- ju, ob hkratnem ohranjanju prilagoditvenega potenciala za rast in razvoj bukve na ustreznih površinah degradi- ranih gozdov v luči možnih podnebnih sprememb. Go- spodarsko zanimivi iglavci, kot sta smreka in jelka, imajo razmeroma velik delež v lesni zalogi zelo različnih g o zdnih združb v S l o v e ni j i. V e n dar p a j e po vrš ins ki delež potencialnih združb, v katerih so iglavci prevladu- joči, razmeroma majhen. Kot kažejo napovedi modela, se bo verjetno ta delež še dodatno zmanjšal. Tako kot ugotavljajo za zahodno in srednjo Evropo (Kienast, Br- zeziecki & Wildi 1998; Lexer s sod. 2002, Maracchi, Sirotenko & Bindi 2005; Koca, Smith & Sykes 2006), lahko pričakujemo tudi pri nas, da bo prišlo do izrazite zamenjave gozdov iglavcev z gozdovi listavcev (Kutnar, Kobler & Bergant 2009; Kutnar & Kobler 2011). Si- mulacije podnebnih učinkov na smreko nakazujejo iz- razit upad deleža in slabše perspektive te vrste ob ure- sničitvi splošno veljavnih podnebnih scenarijev, ki pred- videvajo nadaljnje segrevanje ozračja v prihodnosti (Ogris & Jurc 2010, Kobler & Kutnar 2010). Problematika semenskih virov bukve na Pohorju zato zasluži še posebno pozornost. Delo pri ohranjanju semenskih virov in biološke raznovrstnosti gozda naj vključuje tako zavarovanje semenskih virov s pomočjo zakonodaje in predpisov, kot zavarovanje semenskih virov s statusom gozda s posebnim namenom in druga gozdarska naravovarstvena prizadevanja za ohranjanje naravne genetske dediščine z zavarovanjem in dopolnje- vanjem mreže gozdnih genskih rezervatov in drugih površin s pomembnimi semenskimi viri. Smiselno je tudi nadaljevati z neposredno uporabnimi raziskavami in razvojnim delom za potrebe gozdnega semenarstva in drevesničarstva vključno s poglobljenimi raziskavami genetskih značilnosti populacij gozdnih drevesnih vrst v Sloveniji. Zaključki Na osnovi rezultatov analiz genetske strukture podsaje- ne mlade bukve v izbranih smrekovih monokulturah na Pohorju z izoencimskimi genskimi označevalci sklepa- mo: • Podsajene bukve na lokaciji Brička so genetsko ne- k o l i k o r a z l i č n e o d p o d s a j e n i h b u k e v n a l o k a c i j i Kladje. • Genetska variabilnost podsajenih bukev znotraj po- samezne populacije je po kazalcih genetske raznoli- kosti (H a , ν, ν gam , δ T ) večja na lokaciji Brička kot pa na lokaciji Kladje. • V populaciji bukve na lokaciji Kladje obstaja večja potencialna nevarnost za izgubo genetske informa- cije (alelov) zaradi genetskega zdrsa, ki bi lahko na- stal v manjših izoliranih populacijah pri razvoju bodočega sestoja (kot v populaciji na lokaciji Brič- ka). • Alelna (genska) razdalja med podsajeno bukvijo na lokaciji Brička in Kladje, ki smo jo izračunali po Gregorius (1974) je za preučevani genski sklad so- razmerno velika (d 0 = 9,6 %). • Problematika semenskih virov bukve na Pohorju zasluži posebno pozornost. Potrebno je poiskati razmeroma ohranjene bukove sestoje na čim bolj različnih rastiščih na Pohorju in Kobanskem, ki bi potencialno lahko bili izbrani kot semenski sestoji. ACKNOWLEDGMENTS The research took place partially within the framework of the research tasks of projects Designation of measures to ensure genetic-based forest protection (V1-1140), Carbon dynamics in natural beech sites (L4-6232) and Programme Group for Forest Ecology, Biology and Te- chnology (P4-0107). We produced the recommendation of enlargement of the network of forest seed objects wi- thin the framework of tasks of the Public Forestry Servi- ce. Particular thanks are due to Dr. Monika Konnert (ASP, Teisendorf) for all her help in work in the genetics laboratory and Prof. Dr. Hojka Kraigher (SFI, Ljubljana) for a critical review of the content of the paper and expert advice. Thanks also to Barbara Štupar and Sussana Nowak. 23 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 REFERENCES - LITERATURA Abildtrup, J., J. Riis & B. Jellesmark-Thorsen, 1997: The reservation price approach an informationally efficient markets. Journal of Forest Economics (3): 229-246. Anonymous, 2002. Zakon o gozdnem reprodukcijskem materialu. Urad. list Repub. Slov. (1991), 58/02, 85/02, 45/04. Anonymous, 2003. Pravilnik o pogojih za odobritev semenskih objektov v kategorijah “znano poreklo” in “izbran”, ter o seznamu gozdnih semenskih objektov. Urad. list Repub. Slov. (1991), 91/03. Bradshaw, R.H.W., B.H., Holmqvist, S.A. Cowling & M.T. Sykes, 2001. The effects of climate change on the distri- bution and management of Picea abies in southern Scandinavia. Can. J. For. Res., 30: 1992-1998. Breznikar, A., G. Mlinšek, M. Cehner, Z. Grecs & M. Čater, 2006. Strategije sanacije antropogenih smrekovih se- stojev na Pohorju. V: Simončič, P. & M. Čater (ur.): Splošne ekološke in gozdnogojitvene osnove za podsadnjo bukve (Fagus sylvatica L.) v antropogenih smrekovih sestojih. Studia Forestalia Slovenica (Ljubljana) 129: 143-153. Budnar-Tregubov, A., 1958. Palinološko raziskovanje barij na Pokljuki in Pohorju. Geologija, Razprave in poročila (Ljubljana) 4: 197-220. Čater, M., 2011. Morfološki in fiziološki odziv mladih bukev (Fagus sylvatica L.) na svetlobo v naravnih bukovih sesto- jih Slovenije. Les (Ljubljana) 63 (5): 188-191. Culiberg M. & Šercelj, A., 2000. Spremembe prvotnih gozdov na Pohorju v zadnjih stoletjih z vidika pelodne analize. Razprave, 4. r., SAZU (Ljubljana) 3: 3-39. Dakskobler, I., 2008. Pregled bukovih rastišč v Sloveniji. Zb. gozd. lesar. (Ljubljana) 87: 3-14. Diaci, J. & Z. Grecs, 2003. Uspešnost gojenja gozdov v zadnjem desetletju in priložnosti za prihodnost. In: Bončina, A. (ed.). Območni gozdnogospodarski načrti in razv ojne perspektive slovenskega gozdarstva. Collection of papers, BF, Department of Foresty and Renewal of Forest Resources (Ljubljana): 81-102. Diaci, J., 2006. Petdeset let premen drugotnih smrekovih gozdov v Sloveniji. In: Simončič P. & M. Čater (ed.): Splošne ekološke in gozdnogojitvene osnove za podsadnjo bukve (Fagus sylvatica L.) v antropogenih smrekovih sestojih. Studia Forestalia Slovenica (Ljubljana) 129: 56-67. Finkeldey, R., 1993. Die Bedeutung allelischer Profile fuer die Konservierung genetischer Ressourcen bei Waldbaeu- men. Goett. Forstgenet. Bericht (Goettingen) 14. Gillet, E. M., 1998. GSED – Genetic Structures from Electrophoresis Data. Version 1.1, Institut fuer Forstgenetik und Forstpflanzenzuechtung, Universitaet Goettingen (Goettingen). Grabherr, G. & G. Koch, 1993. Wie naturnah ist de Österreichische Wald? Österr. Forstzeitung (Wien) 11: 57-58. Gregorius H. R., J. Krauhausen J. & G. Mueller-Starck, 1986. Spatial and temporal genetic differentiation among the seed in a stand of Fagus sylvatica L. Heredity 57: 255-262. Gregorius, H. R., 1974. Genetischer Abstand zwischen Populationen. I. Zur Konzeption der genetischen Abstands- messung. Silvae Genetica, (Frankfurt a. M.) 23: 22-27. Gregorius, H. R., 1978. The concept of genetic diversity and its formal relationship to heterozygosity and genetic dis- tance. Mathematical Biosciences 41 (3-4): 253–271. Gregorius, H. R., 1987. The relationship between the concepts of genetic diversity and differentiation. Teor. Appl. Genet. 74 (3): 397-401. Hannah, L., J.L. Carr, & A. Lankerani, 1995. Human disturbance and natural habitat: A biome level analysis of a global data set. Biodiv. Conserv. 4: 128-155. Johann, E., M. Agnoletti, A-L. Axelsson, M. Bürgi, L. Östlund, X., Rochel, U.E. Schmidt, A. Schuler, J-P. Skovsgaard & V. Winiwarter, 2004. History of secondary Norway spruce forests in Europe. In: Spiecker, H, J. Hansen, E. Klimo, J. P. Skovsgaard, H. Sterba & K. V . Teuffel (ed.): Norway spruce conversion - options and consequences. European Forest Institute Research Report 18 (Brill NV, Leiden, Boston): 25-62. Kienast, F., B. Brzeziecki & O. Wildi, 1998. Potential impacts of climate change on species richness in mountain forests an ecological risk assessment. Biological Conservation 83: 291-305. Kobler, A. & L. Kutnar, 2010. Potential forest change in Slovenia due to climate change. In: Medved, M. (ed.). Small scale forestry in a changing world: opportunities and challenges and the role of extension and technology tran- sfer. Proceedings of the conference. Slovenian Forestry Institute, Slovenia Forest Service (Ljubljana): 333-341. Koca, D., S. Smith & M.T. Sykes, 2006. Modelling regional climate change effects on potential natural ecosystems in Sweden. Climatic Change 78: 381-406. Konnert, M. & W. Henkel, 1997. Untersuchungen zur genetischen Variation der Buche (Fagus sylvatica L.) in Thue- ringen. Allgemeine Forst-und Jagdzeitung, 168 (10): 128-190. 24 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 Konnert, M., E. Hussendoerfer & A. Dounavi, 2004. Handbücher für Isoenzymanalyse. Anleitung fuer Isoen- zymuntersuchung bei Buche (Fagus sylvatica). URL: (http://blag-fgr.genres.de/fileadmin/SITE_GENRES/down- loads/docs/BLAG/buche-arbeitsanleitung.pdf). Košir, Ž., M. Zorn-Pogorelc, J. Kalan, L. Marinček, I. Smole, L. Čampa, M. Šolar, B. Anko, M. Accetto, D. Robič, In. Toman, L. Žgajnar & N. Torelli, 1974. Gozdnovegetacijska karta Slovenije. 1:100.000. Biro za gozdar- sko načrtovanje, zemljevid na 7 listih + legenda Kraigher, H., G. Božič & A. Verlič, 2011. Seznam gozdnih semenskih objektov - stanje na dan 1. 1. 2011. Urad. list Repub. Slov. (1991), 28.1.2011, 6, 208, 597-603. Kutnar, L. & A. Kobler 2011. Prediction of forest vegetation shift due to different climate-change scenarios in Slove- nia. Šumarski list (Zagreb) 135 (3-4): 113-126. Kutnar, L., A. Kobler & K. Bergant, 2009. Vpliv podnebnih sprememb na pričakovano prostorsko prerazporeditev tipov gozdne vegetacije. Zbornik gozdarstva in lesarstva (Ljubljana) 89: 33-42. Kutnar , L., M. Zupančič, D. Robič, N. Zupančič , S. Žitnik , T. Kralj, I. Tavčar, I., M. Dolinar, C. Zrnec, & H. Kraigher, 2002. Razmejitev provenienčnih območij gozdnih drevesnih vrst v Sloveniji na osnovi ekoloških regij . Zbornik gozdarstva in lesarstva (Ljubljana) 67: 73-117. Larsen, J.B., 1995. Ecological stability of forests and sustainable silviculture. Forest Ecology and Management 73 (1-3): 85-96. Lexer, M. J., K. Hönninger, H. Scheifinger, Ch. Matulla, N. Groll, H. Kromp-Kolb, K. Schadauer, F. Star- linger & M. Englisch, 2002. The sensitivity of Austrian forests to scenarios of climatic change: a large-scale risk assessment based on a modified gap model and forest inventory data. Forest Ecology and Management 162: 53-72. Löf, M., 2000. Establishment and growth in seedlings of Fagus sylvatica and Quercus robur: influence of interference from herbaceaous vegetation. Can. J. For. Res. 30: 855-864. Maracchi, G., O. Sirotenko & M. Bindi, 2005. Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Climatic Change 70: 117-135. Mattsson, L. & C.Z. Li, 1994. How do different forest management-practices affect the non-timber value of forests – an economic analysis. Journal of Environmental Management 41:79-88. Medved, M, M. Bajc, G. Božič, M. Čas, M. Čater, A. Ferreira, T. Grebenc, M. Kobal, H. Kraigher, L. Kut- nar, B. Mali, Š. Planinšek, P. Simončič, M. Urbančič, U.Vilhar, M. Westergren, N. Krajnc, G. Kušar, T. Levanič, S. Poljanšek, D. Jurc, M. Jurc, N. Ogris, J. Klun, T. Premrl, R. Robek, P. Železnik, J. Gričar & Piškur, M., 2011. Gospodarjenje z gozdom za lastnike gozdov. Kmečki glas, Ljubljana. Mlinšek, D., 1955. Ureditveni načrt za gospodarsko enoto Mislinja . Gozdno gospodarstvo Slovenj Gradec. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. USA, 70: 3321-3323. Ogris, N. & M. Jurc, 2010. Sanitary felling of Norway spruce due to spruce bark beetles in Slovenia: A model and pro- jections for various climate change scenarios. Ecological Modelling, 221: 290–302. Otto, H.-J., 1994. Waldökologie. Ulmer. Stuttgart. Šercelj, A. 1996. Začetki in razvoj gozdov v Sloveniji. Opera 35, Ljubljana. Spellmann, H. & S. Wagner, 1993. Aids to decision making for planning regeneration in Norway spruce stands with advance planting of beech in the Harz Mountains. Forst-und-Holz (Hannover) 48 (17): 483-490. Spiecker, H. 2000. The growth of Norway spruce within and beyond its natural range. V: Hasenauer, H. (ur.): Pro- ceedings from IUFRO international conference on Forest Ecosystem Restoration. Wienna, Austria 10-12 April 2000. Institute for forest growth research (Wien): 247-256. Stanturf, J.A. & P. Madsen, 2002. Restoration concepts for temperate and boreal forests of North America and We- stern Europe. Plant Biosystems 136: 143-158. Teuffel, K. V., B. Heinrich & M. Baumgarten, 2004. Present distribution of secondary Norway spruce in Europe. In: Spiecker, H., J. Hansen, E. Klimo, J. P. Skovsgaard, H. Sterba & K. V. Teuffel (ed.): Norway spruce con- version - options and consequences. European Forest Institute Research Report 18 (Brill NV, Leiden, Boston): 63-96. Turok, J. 1994. Levels of genetic variation in 20 beech (Fagus sylvatica L.) populations from Western Germany. Mit- teilungen der Bundesforschunganstalt Hamburg (Hamburg). Urbančič, M., & L. Kutnar, 2006 . Site conditions of the Brička plot and comparisons with other SUSTMAN plots. In: Simončič, P. & M. Čater (ed.): Splošne ekološke in gozdnogojitvene osnove za podsadnjo bukve (Fagus sylvatica L.) v antropogenih smrekovih sestojih. Studia Forestalia Slovenica (Ljubljana) 129, 68-85. 25 G. BOŽIČ, L. KUTNAR & M. ZUPANČIČ: GENETIC VARIABILITY AND SUITABILITY OF UNDER-PLANTED BEECH IN SELECTED ... FOLIA BIOLOGICA ET GEOLOGICA 52/1-2 – 2011 Westergren, M., G. Božič & H. Kraigher, 2010. Tehnične smernice za ohranjanje in rabo genskih virov : bukev : Fagus sylvatica : Slovenija. Gozd. vestn. (Ljubljana) 68 (2): 103-106. Zerbe, S., 2002. Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plan- tations. For. Ecol. Manage. 167: 27-42.