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Abstract. The K-matrix approach is applied to the calculation of the multipole amplitudes
M1+, E1+, and S1+ in the ∆ channel within the Cloudy Bag Model. The separation of the
amplitudes into the resonant part and the background is presented and discussed.

1 Introduction

In our previous work [1] (see also [2]) we presented a method to calculate pion
electroproduction amplitudes in the framework of chiral quark models. We de-
rived the expressions for the transition K-matrix and the T-matrix and showed
how to separate the resonant part from the background. In the present work we
apply this method to the calculation of amplitudes M1+, E1+, and S1+ in the
∆(1232) channel.

We use the Cloudy Bag Model as a simple example of a chiral quark model.
In spite of the known limitations of the model we show that it is possible to re-
produce these amplitudes sufficiently well in a broad energy range. We explain
how to isolate the resonant parts of the amplitudes and show that these parts are
in good agreement with the results extracted from the experiment.

2 Electro-production amplitudes and cross-sections

In electro-production, the incoming virtual photon with four-momentum (ωγ,kγ),
ω2

γ − k
2
γ = −Q2, and polarization µ interacts with the nucleon with the third

components of spin ms and isospin mt; the final state consists of the scattered
pion with four-momentum (ω0,k0) and the third component of isospin t and the
nucleon with good m ′

s and m ′
t. In the c.m. frame the nucleon momentum is op-

posite to that of the photon (pion). If the z-axis is oriented in the direction of the
incoming photon, the K-matrix for this process can be written as

Kγπ = −π〈ΨP(ms,mt; k0, t)|Hγ|N(m ′
s,m

′
t); kγ, µ〉 . (1)
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Here ΨP is a principal-value state (see e.g. [3]) while |N(m ′
s,m

′
t); kγ, µ〉 stands for

the asymptotic (free) states representing the nucleon and the photon. The princi-
pal value state can be written in the form1:

|ΨP〉 =

√
ω0

k0

{
a
†
t(k0)|N(ms,mt)〉 +

∫
dk

χ(k0, k)

ωk −ω0

a
†
t(k)|N(ms,mt)〉 + cR|R〉

}
,

(2)
where a†t(k) is the pion creation operator, |N〉 is the nucleon state, and |R〉 is a
(possible) resonant state with excited internal degrees of freedom (e.g. quarks
and/or mesons). The amplitude describing the scattered pion, χ(k0, k), is related
to the phase shift. The state (2) is normalized as

〈ΨP
α(E)|ΨP

β(E ′)〉 = (1 + K2)αα δ(E − E ′)δαβ , (3)

where E is the total energy of the system K is the K-matrix for pion scattering, and
α, β label different channels. The normalization (3) is not practical in numerical
calculations because the factor in front of the δ function diverges as E approaches
the resonant energy. It is more convenient to work with the state normalized sim-
ply to δ(E − E ′) at the resonance:

|ΨR〉 = K−1
ππ|ΨP〉 . (4)

We now expand ΨP (or equivalently ΨR) in (1) in states with good total an-
gular momentum J and isospin T :

Kγπ = Kππ

√
ωγkγ

∑

lm

〈ΨRJ, T,MJMT ; k0, l|[Hγ , a
†
µ(kγ)]|N(m ′

s,m
′
t)〉

× Ylm(ϑ,ϕ)C
JMJ
1
2

mslm
CTMT

1
2

mt1t
+ . . . , (5)

where ϑ is the angle between the scattered pion and the incident photon, a†
µ(kγ)

is the creation operator for the photon, the factor
√
ωγkγ ensures the proper

normalization of the photon asymptotic state, and C’s are the Clebsh-Gordan co-
efficients. Since we are usually interested in one particular channel with given J
and T we have denoted by . . . other channels not taken into account.

The T -matrix is obtained as

Tγπ = Kγπ(1 + iTππ) , (6)

yielding a similar expression as (5) in which Kππ is replaced by Tππ. The appear-
ance of Kππ (Tππ) in front of the (real) transition amplitude means that the phase
shift of the transition K or T -matrix is that of the meson scattering – an explicit
manifestation of the Watson theorem. In fact, in the above derivations, we have
tacitly assumed that “switching on” the electro-magnetic interaction Hγ does not
change the strong scattering amplitudes, i.e. the principal-value state (2) remains
unchanged.

1 Here the normalization of the principal value state (see (3)) and consequently the defi-
nition of the K-matrix is changed slightly with respect to the ones used in [1].
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To obtain the electro-production amplitudes in the ∆-channel, we keep only
the p-wave pions and the J = T = 3

2
component of the final state in (5); we

furthermore neglect nucleon recoil and the effect of the two-pion decay channel.
The pertinent electro-production amplitudes are related to the matrix elements of
the T -matrix, by

M
(3/2)

1+ = Tππ

√
3

16k0kγ

1

π

[
−

1

2
√
3

(3K3/2 +
√
3K1/2)

]
(7)

and

E
(3/2)

1+ = Tππ

√
3

16k0kγ

1

π

1

2
√
3

(K3/2 −
√
3K1/2) . (8)

Here we have introduced the analogues of the familiar helicity amplitudes:

Kλ =
√
ωγkγ 〈ΨR(MJ = λ)|

e0√
2ωγ

∫
dr εµ · j(r)eikγ·r|N(m ′

s = λ− µ)〉 , (9)

where j(r) is the vector part of the electro-magnetic current. The differential cross
section then reads

dσT

dΩ
=
k0

kγ

{
1

2
|M1+|2(5 − 3 cos2 ϑ) +

9

2
|E1+|2(1 + cos2 ϑ)

+ 3ReM∗
1+E1+(1 − 3 cos2 ϑ)

}
.

The longitudinal amplitude is

L
(3/2)

1+ = Tππ

√
3ωγ

32π2k0

〈Ψ̃(MJ = 1
2
)|

e0√
2ωγ

∫
dr ε0 · j(r)eikγ·r|N(m ′

s = 1
2
)〉 , (10)

with
dσL

dΩ
=
k0

kγ

|L1+|2
{
4 + 12 cos2 ϑ

}
. (11)

3 Calculation of the K-matrix in chiral quark models

We consider quark models in which the p-wave pions couple to the three-quark
core. Assuming a pseudo-scalar interaction, the pion part of the Hamiltonian is

Hπ =

∫
dk

∑

mt

{
ωk a

†
mt(k)amt(k) +

[
Vmt(k)amt(k) + Vmt(k)

† a
†
mt(k)

]}
, (12)

where a†mt(k) is the creation operator for a p-wave pion with the third compo-
nents of spin m and isospin t, and Vmt(k) = −V(k)

∑3
i=1 σm

iτt
i represents the

general form of the pion source in which the function V(k) depends on the par-
ticular model. In the Cloudy Bag Model, V(k) reads

V(k) =
k2

√
12π2ωk

ω0
MIT

ω0
MIT − 1

j1(kR)

2fπkR
, (13)
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where ω0
MIT = 2.0428. The free parameters are the bag radius R and the energy

splitting between the bare nucleon and the bare delta which is adjusted such that
the experimental position of the resonance is reproduced.

Neglecting recoil,ωγ = ω0 = E− EN, the trial state takes the form

|Ψ〉 =

√
ω0

k0

{[
a
†
mt(k0)|ΦN〉

] 3
2

3
2

+

∫
dk

χ(k, k0)

ωk −ω0

[
a
†
mt(k)|Φ

E
N〉
] 3

2
3
2

+ cE
∆|Φ∆〉

}
.

(14)
Here Φ∆ denotes the resonant state representing the bare delta (i.e. three quarks
in s-state coupled to J = T = 3

2
) and a cloud of up to two pions around the bare

nucleon and delta.
The pion profiles in ΦN and Φ∆ can be most easily determined from the

following relations that hold for Hamiltonians of the type (12):

amt(k)|A〉 = −
V

†
mt(k)

ωk +H − EA
|A〉 (15)

and

amt(k)am ′t ′(k ′)|A〉 =
V

†
mt(k)

ωk +ω ′
k +H − EA

V
†
m ′t ′(k ′)

ω ′
k +H− EA

|A〉 + [k ↔ k ′] , (16)

where |A〉 is an eigenstate of H; in our case either |ΦN〉 or |Ψ〉.
From (14) we have calculated the P33 phase shift as well as the multipole am-

plitudes for the electroproduction. In order to reproduce the experimental phase
shift (see Fig. 1) we had to reduce the value of the pion decay constant appear-
ing in (13) from the experimental value 93MeV to 83MeV > fπ > 78MeV for
0.9 fm < R < 1.1 fm, respectively.

As seen from Figs. 2 the experimental values for the electroproduction am-
plitudes are underestimated. The reason lies in a too weak γN∆ vertex, which is a
known feature of the Cloudy Bag Model. Taking a smaller R and reducing further
the value of fπ [4] enhances the contribution of the pion cloud, and thus increases
the strength of the γN∆ vertex. Yet this mechanism does not help to improve the
agreement: increasing the strength of the quark-pion interaction leads to a larger
width of the resonance, and since

√
Γ appears (implicitly) in the denominator

of the amplitudes (9) and (10), the net effect is such that the magnitude of the
ImM1+ in the vicinity of the resonance decreases.

4 Extracting the resonance

In some models, the delta resonance is described as a particle with a finite life-
time and an energy corresponding to the pole of the T -matrix in the complex
energy plane. The properties of such a particle can not be directly related to the
measured amplitudes since the amplitude include also non-resonant processes. In
this section we show how to relate the results obtained in the K-matrix approach
to those of the above mentioned models.

The resonant part of the amplitudes is usually assumed to have a Breit-
Wigner shape with a constant width (see Eq. (18)) below). In order to identify
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the part in the total amplitude that possesses this type of behavior we write the
pertinent K-matrix in the form proposed in [5]:

Kππ =
C

E∆ − E
+D , (17)

with two constant coefficients C and D. Using these two parameters and the ex-
perimental value for E∆ we obtain an excellent fit to the calculated phase shift
(see Fig. 1). The corresponding T -matrix can be cast in the form, suggested by
Wilbois et al. in the speed-plot analysis (Eqs. (71)-(76) of [6]):

Tππ =
Kππ

1− iKππ

= e2iδb
ΓT
∆/2

M∆ − E − iΓT
∆/2

+ sin δbeiδb . (18)

The parameters of the T -matrix can be easily deduced from (17) and are given in
Table 1. Since we started from a real K-matrix, the resulting T -matrix automati-
cally obeys unitarity, which is an important merit of our approach.

Fig. 1. The phase shift in the P33
channel as a function of the invari-
ant mass. The data points are the
single-energy values of the SM02K
(2GeV) solution of the SAID πN
partial-wave analysis [7]. The thick
line represents the calculated phase
shift, while the thin line is the two-
parameter fit to the calculated val-
ues. The agreement is worse only
above 1300 MeV where the two-
pion channel becomes relevant and
our approach is not valid anymore.

In a similar way we can split the K-matrix for the electroproduction in the
resonant and the background part:

Kγπ =
A

E∆ − E
+ B . (19)

The parameters A and B for each multipole can be determined by fitting the cal-
culated amplitudes using the form implied by (7) and (8):

M =
1√
k0kγ

Kγπ

1 − iKππ

, (20)

where M is etherM(3/2)

1+ or E(3/2)

1+ . Alternatively, one can use a simplified form:

M =
Kγπ

1 − iKππ

, (21)
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which is more frequently used in the experimental analysis, e.g. in [8] and in
the SP-analysis of [6]; the form (20) being used in the MSP analysis of [6]. The
resulting parameters are listed in Table 1.

Table 1. Resonance pole parameters extracted from the computed phase shifts and electro-
production amplitudes using the form (21). Parameter C is the resonance width divided
by 2,D is the tangent of the background phase shift, andM∆ and ΓT

∆ are parameters of the
T-matrix (see (18)). Experimental values are the recent PDG values [9] and from [6].

R fπ C D M∆ ΓT
∆ A(M1) B(M1) A(E2) B(E2)

[fm] [MeV] [MeV] [MeV] [MeV] [10−3/mπ] [10−3/mπ]

1.1 78 57 −0.39 1213 49 0.0123 −2.57 −0.000235 −1.19

1.0 81 56 −0.40 1213 48 0.0117 −3.53 −0.000236 −1.09

0.9 83 56 −0.41 1212 48 0.0115 −4.00 −0.000221 −1.00

Experiment 60 −0.435 1210 50

Fig. 2. The M(3/2)

1+ and the E(3/2)

1+ electro-production amplitude in the CBM by using R =

1.0 fm and fπ = 81MeV. The data points in the figures are the single-energy values of the
SM02K (2GeV) solution of the SAID πN partial-wave analysis [7]. The thick lines represent
the calculated amplitudes for R = 1.0 fm and fπ = 81 MeV, while the thin lines are the fits
to the calculated values using the parameters from Table 1.

From our results it is possible to extract the resonance parameters at the pole
of the T -matrix, based on the separation of the amplitude into the resonant and
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background parts, using the parameterization [6,8]

T = TR + TB , TR =
rΓT

∆eiφ

M∆ − E − iΓT
∆/2

. (22)

Using (20), the parameters r, φ, and TB can be expressed in terms of A, B, C, and
D. The moduli and phases for the transverse multipoles are shown in Table 2
together with the EMR ratio. While the magnitudes are underestimated, the ratio
as well as the phases are much better reproduced.

Table 2. Resonance pole parameters extracted from the computed E(3/2)

1+ andM(3/2)

1+ mul-
tipoles using the form (21) and parameters in Table 1, compared to various determinations
from data. The moduli r are in units of 10−3/mπ. R∆ is the EMR ratio at the pole of the
T -matrix.

R [fm]/fπ [MeV] rE φE rM φM R∆

1.1 / 78 0.75 −154◦ 16 −25◦ −0.031 − 0.037 i

1.0 / 81 0.72 −158◦ 15 −28◦ −0.030 − 0.037 i

0.9 / 83 0.67 −159◦ 14 −31◦ −0.029 − 0.037 i

Ref. [8] 1.23 −154.7◦ 21.2 −27.5◦ −0.035 − 0.046 i

Ref. [6] (SP) 1.23 −156◦ 19.9 −26.0◦ −0.040 − 0.047 i

Ref. [10], Fit 1 1.22 −149.7◦ 22.2 −27.4◦ −0.029 − 0.046 i

Ref. [11], Fit A 1.38 −158◦ 20.9 −31◦ −0.040 − 0.053 i

Table 3. Same as Table 2 except that the parameterization (20) is used.

R [fm]/fπ [MeV] rE φE rM φM R∆

1.1 / 78 0.74 −157◦ 16 −34◦ −0.026 − 0.038 i

1.0 / 81 0.68 −160◦ 15 −37◦ −0.025 − 0.037 i

0.9 / 83 0.62 −162◦ 14 −40◦ −0.023 − 0.037 i

Ref. [6] (MSP) 1.12 −162◦ 20.7 −36.5◦ −0.032 − 0.044 i

5 Discussion

We have presented a method to calculate directly the K-matrices of resonant
electro-production processes in the framework of chiral quark models.

The identification of the resonant part and the background is unambiguous
in the K-matrix formalism. In the T -matrix formalism, this separation is based on
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the assumption that the position and the width of the resonance do not depend
on the invariant energy and is intimately connected to our picture of a resonance
as a short-lived particle. While such an assumption cannot be justified in a micro-
scopic model, it is surprising how well it reproduces the experimental results in
a broad range of energies. (The agreement at low and high energies in Fig. 2 can
be improved by assuming that the background part is energy-dependent.)

N

N

N N N

∆

(a) (b)

Fig. 3. Two processes dominating the P33 channel

Neither the resonant part nor the background are related to a specific pro-
cess, such as those depicted in Fig 3. Naively, one would expect that graph (b)
corresponds to the resonant part and graph (a) to the background. Yet they both
contribute to the resonant part as well as to the background; note that the process
(a) alone can lead to the resonance in this channel for sufficiently strong πN cou-
pling and has the opposite sign with respect to the background contribution in
the whole energy range.

Let us conclude by noting that a good microscopic model should be able to
reproduce the total amplitude and not just the resonant part, since, as seen from
Tables 2 and 3, the extracted values from the experiment are too unreliable to
serve as benchmarks.
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