

ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 16 (2019) 19–24 https://doi.org/10.26493/1855-3974.1488.182 (Also available at http://amc-journal.eu)

A note on the 4-girth-thickness of $K_{n,n,n}^*$

Xia Guo, Yan Yang[†]

School of Mathematics, Tianjin University, Tianjin, P. R. China

Received 20 September 2017, accepted 8 January 2018, published online 24 August 2018

Abstract

The 4-girth-thickness $\theta(4, G)$ of a graph G is the minimum number of planar subgraphs of girth at least four whose union is G. In this paper, we obtain that the 4-girth-thickness of complete tripartite graph $K_{n,n,n}$ is $\lceil \frac{n+1}{2} \rceil$ except for $\theta(4, K_{1,1,1}) = 2$. And we also show that the 4-girth-thickness of the complete graph K_{10} is three which disprove the conjecture posed by Rubio-Montiel concerning to $\theta(4, K_{10})$.

Keywords: Thickness, 4-girth-thickness, complete tripartite graph. *Math. Subj. Class.: 05C10*

1 Introduction

The *thickness* $\theta(G)$ of a graph G is the minimum number of planar subgraphs whose union is G. It was defined by W. T. Tutte [10] in 1963. Then, the thicknesses of some graphs have been obtained when the graphs are hypercube [7], complete graph [1, 2, 11], complete bipartite graph [3] and some complete multipartite graphs [6, 12, 13].

In 2017, Rubio-Montiel [9] defined the g-girth-thickness $\theta(g, G)$ of a graph G as the minimum number of planar subgraphs whose union is G with the girth of each subgraph is at least g. It is a generalization of the usual thickness in which the 3-girth-thickness $\theta(3, G)$ is the usual thickness $\theta(G)$. He also determined the 4-girth-thickness of the complete graph K_n except K_{10} and he conjectured that $\theta(4, K_{10}) = 4$. Let $K_{n,n,n}$ denote a complete tripartite graph in which each part contains $n \ (n \ge 1)$ vertices. In [13], Yang obtained $\theta(K_{n,n,n}) = \lceil \frac{n+1}{3} \rceil$ when $n \equiv 3 \pmod{6}$.

In this paper, we determine $\theta(4, K_{n,n,n})$ for all values of n and we also give a decomposition of K_{10} with three planar subgraphs of girth at least four, which shows $\theta(4, K_{10}) = 3$.

[†]Corresponding author.

^{*}Supported by the National Natural Science Foundation of China under Grant No. 11401430.

E-mail addresses: guoxia@tju.edu.cn (Xia Guo), yanyang@tju.edu.cn (Yan Yang)

2 The 4-girth-thickness of $K_{n,n,n}$

Lemma 2.1 ([4]). A planar graph with n vertices and girth g has at most $\frac{g}{g-2}(n-2)$ edges.

Theorem 2.2. The 4-girth-thickness of $K_{n,n,n}$ is

$$\theta(4, K_{n,n,n}) = \left\lceil \frac{n+1}{2} \right\rceil$$

except for $\theta(4, K_{1,1,1}) = 2$.

Proof. It is trivial for n = 1, $\theta(4, K_{1,1,1}) = 2$. When n > 1, because $|E(K_{n,n,n})| = 3n^2$, $|V(K_{n,n,n})| = 3n$, from Lemma 2.1, we have

$$\theta(4, K_{n,n,n}) \ge \left\lceil \frac{3n^2}{2(3n-2)} \right\rceil = \left\lceil \frac{n}{2} + \frac{1}{3} + \frac{2}{3(3n-2)} \right\rceil = \left\lceil \frac{n+1}{2} \right\rceil$$

In the following, we give a decomposition of $K_{n,n,n}$ into $\lceil \frac{n+1}{2} \rceil$ planar subgraphs of girth at least four to complete the proof. Let the vertex partition of $K_{n,n,n}$ be (U, V, W), where $U = \{u_1, \ldots, u_n\}$, $V = \{v_1, \ldots, v_n\}$ and $W = \{w_1, \ldots, w_n\}$. In this proof, all the subscripts of vertices are taken modulo 2p.

Case 1: When n = 2p $(p \ge 1)$. Let G_1, \ldots, G_{p+1} be the graphs whose edge set is empty and vertex set is the same as $V(K_{2p,2p,2p})$.

Step 1: For each G_i $(1 \le i \le p)$, arrange all the vertices $u_1, v_{3-2i}, u_2, v_{4-2i}, u_3, v_{5-2i}, \ldots, u_{2p}, v_{2p-2i+2}$ on a circle and join u_j to v_{j+2-2i} and $v_{j+1-2i}, 1 \le j \le 2p$. Then we get a cycle of length 4p, denote it by G_i^1 $(1 \le i \le p)$.

Step 2: For each G_i^1 $(1 \le i \le p)$, place the vertex w_{2i-1} inside the cycle and join it to u_1, \ldots, u_{2p} , place the vertex w_{2i} outside the cycle and join it to v_1, \ldots, v_{2p} . Then we get a planar graph G_i^2 $(1 \le i \le p)$.

Step 3: For each G_i^2 $(1 \le i \le p)$, place vertices w_{2j} for $1 \le j \le p$ and $j \ne i$, inside of the quadrilateral $w_{2i-1}u_{2i-1}v_1u_{2i}$ and join each of them to vertices u_{2i-1} and u_{2i} . Place vertices w_{2j-1} , for $1 \le j \le p$ and $j \ne i$, inside of the quadrilateral $w_{2i}v_{2i-1}u_kv_{2i}$, in which u_k is some vertex from U. Join each of them to vertices v_{2i-1} and v_{2i} . Then we get a planar graph \overline{G}_i $(1 \le i \le p)$.

Step 4: For G_{p+1} , join w_{2i-1} to both v_{2i-1} and v_{2i} , join w_{2i} to both u_{2i-1} and u_{2i} , for $1 \le i \le p$, then we get a planar graph \overline{G}_{p+1} .

For $\overline{G}_1 \cup \cdots \cup \overline{G}_{p+1} = K_{n,n,n}$, and the girth of \overline{G}_i $(1 \le i \le p+1)$ is at least four, we obtain a 4-girth planar decomposition of $K_{2p,2p,2p}$ with p+1 planar subgraphs. Figure 1 shows a 4-girth planar decomposition of $K_{4,4,4}$ with three planar subgraphs.

Case 2: When n = 2p + 1 (p > 1). Base on the 4-girth planar decomposition $\{\overline{G}_1, \ldots, \overline{G}_{p+1}\}$ of $K_{2p,2p,2p}$, by adding vertices and edges to each \overline{G}_i $(1 \le i \le p+1)$ and some other modifications on it, we will get a 4-girth planar decomposition of $K_{2p+1,2p+1,2p+1}$ with p + 1 subgraphs.

Step 1: (Add u to $\overline{G}_i, 1 \leq i \leq p$.) For each \overline{G}_i $(1 \leq i \leq p)$, we notice that the order of the p-1 interior vertices $w_{2j}, 1 \leq j \leq p$, and $j \neq i$ in the quadrilateral

Figure 1: A 4-girth planar decomposition of $K_{4,4,4}$.

 $w_{2i-1}u_{2i-1}v_1u_{2i}$ of \overline{G}_i has no effect on the planarity of \overline{G}_i . We adjust the order of them, such that $w_{2i-1}u_{2i-1}w_{2p-2i+2}u_{2i}$ is a face of a plane embedding of \overline{G}_i . Place the vertex u in this face and join it to both w_{2i-1} and $w_{2p-2i+2}$. We denote the planar graph we obtain by \widehat{G}_i $(1 \le i \le p)$.

Step 2: (Add v and w to \widehat{G}_1 .) Delete the edge v_1u_2 in \widehat{G}_1 , put both v and w in the face $w_ku_1v_1w_tv_2u_2$ in which w_k is some vertex from $\{w_{2j} \mid 1 < j \leq p\}$ and w_t is some vertex from $\{w_{2j-1} \mid 1 < j \leq p\}$. Join v to w, join v to u_1, u_2 , and join w to v_1, v_2 , we get a planar graph \widetilde{G}_1 .

Step 3: (Add v and w to $\widehat{G}_i, 2 \le i \le p$.) For each \widehat{G}_i $(2 \le i \le p)$, place the vertex v in the face $w_k u_{2i-1}v_1u_{2i}$ in which w_k is some vertex from $\{w_{2j} \mid 1 \le j \le p \text{ and } j \ne i\}$, and join it to u_{2i-1} and u_{2i} . Place the vertex w in the face $w_k v_{2i-1}u_tv_{2i}$ in which w_k is some vertex from $\{w_{2j-1} \mid 1 \le j \le p \text{ and } j \ne i\}$ and u_t is some vertex from U. Join w to both v_{2i-1} and v_{2i} , we get a planar graph \widetilde{G}_i $(2 \le i \le p)$.

Step 4: (Add u, v and w to \overline{G}_{p+1} .) We add u, v and w to \overline{G}_{p+1} . For $1 \le i \le 2p$, join u to each v_i , join v to each w_i , join w to each u_i , join u to both v and w, and join v_1 to u_2 , then we get a planar graph \widetilde{G}_{p+1} . Figure 2 shows a plane embedding of \widetilde{G}_{p+1} .

For $\widetilde{G}_1 \cup \cdots \cup \widetilde{G}_{p+1} = K_{n,n,n}$, and the girth of \widetilde{G}_i $(1 \le i \le p+1)$ is at least four, we obtain a 4-girth planar decomposition of $K_{2p+1,2p+1,2p+1}$ with p+1 planar subgraphs. Figure 3 shows a 4-girth planar decomposition of $K_{5,5,5}$ with three planar subgraphs.

Case 3: When n = 3, Figure 4 shows a 4-girth planar decomposition of $K_{3,3,3}$ with two planar subgraphs.

Summarizing the above, the theorem is obtained.

Figure 3: A 4-girth planar decomposition of $K_{5,5,5}$.

Figure 4: A 4-girth planar decomposition of $K_{3,3,3}$.

3 The 4-girth-thickness of K_{10}

In [9], the author posed the question whether $\theta(4, K_{10}) = 3$ or 4, and conjectured that it is four. We disprove his conjecture by showing $\theta(4, K_{10}) = 3$.

Theorem 3.1. The 4-girth-thickness of K_{10} is three.

Figure 5: A 4-girth planar decomposition of K_{10} .

Proof. From [9], we have $\theta(4, K_{10}) \ge 3$. We draw a 4-girth planar decomposition of K_{10} with three planar subgraphs in Figure 5, which shows $\theta(4, K_{10}) \le 3$. The theorem follows.

We would like to state that after submitting this paper for review, we notice that there exist two results regarding the 4-girth-thickness of $K_{2p,2p,2p}$ and K_{10} . Rubio-Montiel [8] obtained the exact value of the 4-girth-thickness of the complete multipartite graph when each part has an even number of vertices. And by computer, Castañeda-López et al. [5] found the other two decompositions of K_{10} into three planar subgraphs of girth at least four. In this paper, we give these results in a constructive way.

References

- V. B. Alekseev and V. S. Gončakov, The thickness of an arbitrary complete graph, *Math. USSR Sbornik* 30 (1976), 187–202, http://stacks.iop.org/0025-5734/30/i=2/a=A04.
- [2] L. W. Beineke and F. Harary, The thickness of the complete graph, *Canad. J. Math.* 17 (1965), 850–859, doi:10.4153/cjm-1965-084-2.
- [3] L. W. Beineke, F. Harary and J. W. Moon, On the thickness of the complete bipartite graph, *Math. Proc. Cambridge Philos. Soc.* 60 (1964), 1–5, doi:10.1017/s0305004100037385.
- [4] J. A. Bondy and U. S. R. Murty, *Graph Theory*, volume 244 of *Graduate Texts in Mathematics*, Springer-Verlag, London, 2008, doi:10.1007/978-1-84628-970-5.
- [5] H. Castañeda-López, P. C. Palomino, A. B. Ramos-Tort, C. Rubio-Montiel and C. Silva-Ruíz, The 6-girth-thickness of the complete graph, 2017, arXiv:1709.07466 [math.co].
- [6] Y. C. Chen and Y. Yang, The thickness of the complete multipartite graphs and the join of graphs, J. Comb. Optim. 34 (2017), 194–202, doi:10.1007/s10878-016-0057-1.
- [7] M. Kleinert, Die dicke des n-dimensionalen Würfel-graphen, J. Comb. Theory 3 (1967), 10–15, doi:10.1016/s0021-9800(67)80010-3.
- [8] C. Rubio-Montiel, The 4-girth-thickness of the complete multipartite graph, 2017, arXiv:1709.03932 [math.CO].

- [9] C. Rubio-Montiel, The 4-girth-thickness of the complete graph, Ars Math. Contemp. 14 (2018), 319–327, doi:10.26493/1855-3974.1349.b67.
- [10] W. T. Tutte, The thickness of a graph, *Indag. Math. (Proceedings)* 66 (1963), 567–577, doi: 10.1016/s1385-7258(63)50055-9.
- [11] J. M. Vasak, The thickness of the complete graph, Notices Amer. Math. Soc. 23 (1976), A-479.
- [12] Y. Yang, A note on the thickness of $K_{l,m,n}$, Ars Combin. 117 (2014), 349–351.
- [13] Y. Yang, Remarks on the thickness of K_{n,n,n}, Ars Math. Contemp. **12** (2017), 135–144, doi: 10.26493/1855-3974.823.068.