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Abstract

The 4-girth-thickness 6(4, G) of a graph G is the minimum number of planar subgraphs
of girth at least four whose union is G. In this paper, we obtain that the 4-girth-thickness of
complete tripartite graph K, ,, ,, is [ 23] except for (4, K1.1,1) = 2. And we also show
that the 4-girth-thickness of the complete graph K1 is three which disprove the conjecture

posed by Rubio-Montiel concerning to (4, K).
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1 Introduction

The thickness 6(G) of a graph G is the minimum number of planar subgraphs whose union
is G. It was defined by W. T. Tutte [10] in 1963. Then, the thicknesses of some graphs have
been obtained when the graphs are hypercube [7], complete graph [1, 2, 11], complete
bipartite graph [3] and some complete multipartite graphs [6, 12, 13].

In 2017, Rubio-Montiel [9] defined the g-girth-thickness 6(g, G) of a graph G as the
minimum number of planar subgraphs whose union is G with the girth of each subgraph is
atleast g. It is a generalization of the usual thickness in which the 3-girth-thickness 6(3, G)
is the usual thickness 8(G). He also determined the 4-girth-thickness of the complete graph
K, except K10 and he conjectured that (4, K19) = 4. Let K, ,, ,, denote a complete
tripartite graph in which each part contains n (n > 1) vertices. In [13], Yang obtained
0(Knnn) =[] whenn =3 (mod 6).

In this paper, we determine 6(4, K, ,, ,,) for all values of n and we also give a decompo-
sition of K1 with three planar subgraphs of girth at least four, which shows 0(4, K1) = 3.
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2 The 4-girth-thickness of K, ,, ,,

Lemma 2.1 ([4]). A planar graph with n vertices and girth g has at most g%(n - 2)
edges.

Theorem 2.2. The 4-girth-thickness of K, ,, p is

n+1
0(47Kn,n,n) = ’V 2 —‘
except for (4, K1 1,1) = 2.
Proof. Itis trivial forn = 1, 6(4, K11.1) = 2. Whenn > 1, because |E(K,, )| = 3n?,
|V (Ky.nn)| = 3n, from Lemma 2.1, we have

In the following, we give a decomposition of K, ,, ,, into [”7“} planar subgraphs of

girth at least four to complete the proof. Let the vertex partition of K, ,, », be (U, V, W),
where U = {u1,...,un}, V= {v1,...,v,} and W = {wy,...,w,}. In this proof, all
the subscripts of vertices are taken modulo 2p.

Case 1: Whenn = 2p (p > 1). Let Gy, ..., Gp+1 be the graphs whose edge set is empty
and vertex set is the same as V (Kap 25 2p ).

Step 1: For each G; (1 < ¢ < p), arrange all the vertices w1, v3—2;, U2, Vg—2;, U3, V5—2;,
..., U2p, V2p_2i42 ON a circle and join u; t0 vjy2_2; and v;11_2;, 1 < j < 2p. Then we
get a cycle of length 4p, denote it by G} (1 < i < p).

Step 2: For each G} (1 < i < p), place the vertex wy;_ inside the cycle and join it to
U1, ..., Uzp, place the vertex wo; outside the cycle and join it to vy, ..., va,. Then we get
a planar graph G? (1 < i < p).

Step 3: For each Gf (1 <4 < p), place vertices wy; for 1 < j < p and j # ¢, inside of
the quadrilateral wa;_1u2;—1v1u2; and join each of them to vertices ug;—1 and ug;. Place
vertices wa;_1, for 1 < j < pand j # ¢, inside of the quadrilateral wa;v2;—1ukV2;, in
which uy, is some vertex from U. Join each of them to vertices vo; 1 and ve;. Then we get
a planar graph G; (1 <1 < p).

Step 4: For G, 1, join wy;_1 to bothi)gi,l and vg;, join wy; to both ug; 1 and wug;, for
1 <@ < p, then we get a planar graph G, 1.

For G1 U+ UGpi1 = Ky p.n, and the girth of G; (1 < < p+1) is at least four, we
obtain a 4-girth planar decomposition of Ky, 2, 2, With p + 1 planar subgraphs. Figure 1
shows a 4-girth planar decomposition of K, 4 4 with three planar subgraphs.

Case 2: Whenn = 2p + 1 (p > 1). Base on the 4-girth planar decomposition {G1, ...,
Gpi1} of Kap oy 2p, by adding vertices and edges to each G; (1 < i < p + 1) and some
other modifications on it, we will get a 4-girth planar decomposition of Kop 1 2541,2p+1
with p + 1 subgraphs.

Step 1: (Add u to G;,1 < i < p.) For each G; (1 < i < p), we notice that the
order of the p — 1 interior vertices woj, 1 < j < p, and j # i in the quadrilateral
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(a) The graph G1. (b) The graph G.
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(c) The graph
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Figure 1: A 4-girth planar decomposition of K4 4 4.

Waj_1Usi_101Usz; of G; has no effect on the planarity of G,;. We adjgst the order of them,
such that wa; _1u2;—1Wap—2i42Us2; is a face of a plane embedding of G;. Place the vertex u
in this face and join it to both wg;_1 and wa,_2;42. We denote the planar graph we obtain

by@i(lgigp).

Step 2: (Add v and w to G 1.) Delete the edge vjus in G 1, put both v and w in the face
WE U1 V1 W UaU2 in which wy, is some vertex from {wsy; | 1 < j < p} and w, is some vertex
from {wg;—1 | 1 < j < p}. Join v to w, join v to u1, ug, and join w to vy, v, we get a
planar graph Gi.

Step 3: (Add v and w to (A}'Z-, 2 < i < p.) For each @ (2 < i < p), place the vertex v in
the face wyug;—1v1u2; in which wy, is some vertex from {ws; | 1 < j < pand j # i}, and
join it to ue; 1 and wue;. Place the vertex w in the face wgv9;_1uv9; in Which wy, is some
vertex from {wy;_1 | 1 < j < pand j # i} and u, is some vertex from U. Join w to both

vg;—1 and vg;, we get a planar graph G; (2 < i < p).

Step 4: (Add u, v and w to Gp4+1.) We add u, v and w to Gp41. For 1 < i < 2p, join u to
each v;, join v to each wj, join w to each w;, join u to both v and w, and join v; to ug, then
we get a planar graph G ;. Figure 2 shows a plane embedding of G, 1.

For C~¥1 U---u C~¥p+1 = K nn, and the girth of é, (1 <i<p+1)isat least four,
we obtain a 4-girth planar decomposition of Kap,11,2p+1,2p+1 With p+ 1 planar subgraphs.
Figure 3 shows a 4-girth planar decomposition of K5 5 5 with three planar subgraphs.

Case 3: When n = 3, Figure 4 shows a 4-girth planar decomposition of K3 3 3 with two
planar subgraphs.

Summarizing the above, the theorem is obtained. O
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(c) The graph Gs.

Figure 3: A 4-girth planar decomposition of K 5 5.

Figure 4: A 4-girth planar decomposition of K3 3 3.
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3 The 4-girth-thickness of K¢

In [9], the author posed the question whether 6(4, K1¢) = 3 or 4, and conjectured that it is
four. We disprove his conjecture by showing 6(4, K19) = 3.

Theorem 3.1. The 4-girth-thickness of K1q is three.

Figure 5: A 4-girth planar decomposition of K.

Proof. From [9], we have 6(4, K19) > 3. We draw a 4-girth planar decomposition of
Ko with three planar subgraphs in Figure 5, which shows 6(4, K1) < 3. The theorem
follows. O

We would like to state that after submitting this paper for review, we notice that there
exist two results regarding the 4-girth-thickness of Ky, o), 2, and K. Rubio-Montiel [8]
obtained the exact value of the 4-girth-thickness of the complete multipartite graph when
each part has an even number of vertices. And by computer, Castafieda-Lopez et al. [5]
found the other two decompositions of K into three planar subgraphs of girth at least
four. In this paper, we give these results in a constructive way.
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