
Informática 35 (2011) 51-62 51

Model-Based Dependable Composition of Self-Adaptive Systems

Javier Cubo, Carlos Canal and Ernesto Pimentel
Dept. of Computer Science, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain
Email: {cubo,canal,ernesto}@lcc.uma.es, Web: http://www.lcc.uma.es/^{cubo,canal,ernesto}

Keywords: self-adaptive, context-aware, SOA, transition systems, model transformation, dependable composition, adap-
tation, evolution, fault tolerance, error recovery

Received: October 15, 2010

Building mobile and pervasive systems as a selection, composition, adaptation and evolution ofpre-existing software
entities may arise dynamically and continuously different issues related to inconsistencies, changes or faults. We pro-
pose an approach to detect and handle these issues with the appropriate methodology in every case. This is performed
by tackling three great challenges in software engineering related to self-adaptive systems: (i) their formalisation, by
using model-based SOA, which bridge the business and software processes, (ii) their development and maintenance,
by performing adaptation and/or evolution when inconsistencies or changes occur, and (iii) their monitoring to handle
faults, by using errorrecovery techniques. We use an example based on an intelligent transportation system to validate
ourproposal.

Povzetek: Opisanaje sestava prilagodljivih sistemovna osnovi modela.

1 Introduction
The increased usage of mobile and portable devices has
given rise over the last few years to a new market of mo-
bile and pervasive applications. These applications may be
executed on either mobile computers (laptops, tabletPCs,
etc.), or wireless hand-held devices (PDAs, smart phones,
etc.), or embedded systems (PDAs, on-board computer, in-
telligent transportation or buildings systems, etc.), or even
use sensors or RFID tags. Their main goal is to provide
connectivity and services at any time, adapting and moni-
toring when required and improving the user experience.
These systems are different to the traditional distributed
computing systems. On one hand, a mobile system is able
to change location allowing the communication via mo-
bile devices. On the other hand, a pervasive application
attempts to create an ambient intelligence environment to
make the computing part of it and its enabling technolo-
gies essentially transparent. This results in some new is-
sues related to inconsistencies, changes or faults, which
arise dynamically and continuously whilst composing ser-
vices in these systems, and which have to be detected and
handled. These issues can be classified into four main cat-
egories [23]: (i) mismatch problems, (ii) requirement and
configuration changes (iii) network and remote system fail-
ures, and (iv) internal service errors. The first refers to
the problems that may appear at different interoperabil-
ity levels (i.e., signature, behavioural or protocol, qual-
ity of service and semantic or conceptual levels), and the
Software Adaptation paradigm tackles these problems in
a non-intrusive way [8].The second is prompted by con-
tinuous changes over time (new requirements or services
fully created at run-time), and Software Evolution (or Soft-
ware Maintenance) focuses on solving them in an intrusive-
way [19]. The third and fourth are related to networks (net-

work connection break-off or remote host unavailable) and
services (suspension of services during the execution or
system run-time error) failures respectively, that are both
addressed by Fault Tolerance (or Error Recovery) mecha-
nisms [24]. Developing real-world mobile and pervasive
systems handling all these faults is extremely complex and
error-prone. Therefore, it is essential to determine an effec-
tive methodology to develop this kind of system.

Self-adaptive software provides a broadly inclusive
adaptation methodology that spans a wide range of adap-
tive behaviours [22]. One of the key aspects of self-
adaptive software is that it supports both software adapta-
tion and evolution, by addressing mismatch problems and
requirement or configuration changes. Another advantage
of self-adaptive systems is that they adapt the software sys-
tems to changing operational contexts and environments,
thereby reducing human effort in the human-computer in-
teraction. Context-awareness provides the most relevant
information (location, identity, time and activity) to users
and stakeholders, adapting themselves to their changing sit-
uation, preferences and requirements, and optimising the
quality of service [12]. Therefore, context information
plays an important role in software adaptation and evolu-
tion to control the scope of change. However, current pro-
gramming technology offers only very weak support for
developing context-aware applications, and new research
is urgently needed to develop novel Context-Oriented Pro-
gramming (COP) mechanisms [21]. As regards failures
related to networks and services, fault tolerance mecha-
nisms to be exploited for the development of dependable
systems allow the handling of exceptions raised by adaptive
demand, returning back the self-adaptive system to any ear-
lier stable state. The choice of fault tolerance mechanisms
depends on the fault assumptions and on the system's char-

http://www.lcc.uma.es/%5e%7bcubo,canal,ernesto%7d

52 Informatica 35 (2011) 29-37 C. Canal et al.

acteristics and requirements. There are two main classes
of error recovery [24]:backward and forward error recov-
ery. The former is based on rolling services back to the
previous correct state in the presence of failure. The latter
involves transforming the system services into any correct
state, and relies on an exception handling mechanism.

Self-adaptive systems requires high reusability, depend-
ability, robustness, adaptability, and availability. In order to
reduce efforts and costs, these systems may be developed
using existing Commercial-Off-The-Shelf (COTS) compo-
nents or (Web) services. In contrast to the traditional ap-
proach in which software systems are implemented from
scratch, COTS and services can be developed by different
vendors using different languages and different computer
platforms. Although the reuse of software has matured
and has overcome some of the previously mentioned prob-
lems, it has not become standard practice yet, since reusing
components or services requires the selection, composi-
tion, adaptation and evolution of prefabricated software
parts, by means of their public interfaces, in order to solve
different problems. Thus, it is desired to reduce the ef-
fort of adapting and maintaining existing services in or-
der to achieve a cost-effective and dependable development
of self-adaptive systems. Component-Based Software En-
gineering (CBSE) [25] and Service-Oriented Architecture
(SOA) [13] promote software reuse by selecting and assem-
bling pre-existing software entities (COTS and services, re-
spectively)1. These software development paradigms al-
low the building of fully working systems as efficiently as
possible in order to improve the level of self-adaptive soft-
ware reusability, dependability and adaptability [8]. On
one hand, current industrial platforms using CBSE provide
only some of the means to describe components at their
signature level (e.g., CORBA's IDL2). On the other hand,
one way to implement SOA is using WSDL for describ-
ing services, SOAP3 for communication, UDDI for service
registry and discovery, and BPEL [1] for service orchestra-
tion. However, BPEL is not yet widely considered in cur-
rent XML-based industrial service technology, which, in
addition, only supports queries based on keywords and cat-
egories. This may bring about erroneous executions and/or
low-precision results in realistic and complex applications,
as it neither handles the order in which the service mes-
sages are exchanged with its environment, nor is it able
to discover semantic capabilities of services (functionality)
nor can it be adapted to a changing environment without
human intervention. Therefore, behavioural descriptions,
and multiple context and semantic (e.g., by means of on-
tologies) information must be specified and managed in
real-world services to avoid undesirable situations during
their interaction, such as deadlocks or livelocks, and to im-
prove their features (such as QoS). In this sense, our pro-
posal tackles the need to support the variability of the adap-
tation process in self-adaptive systems by using context-

1In the sequel, we use service to refer both terms.
2 www.omg.org/technology/documents/formal/components.htm
3http://www.w3.org/TR/soap/

aware, semantic-based, model-based adaptation, and de-
pendency analysis mechanisms.

Approach and Contributions. We propose an approach to
detect and handle the different inconsistencies, changes or
faults arisen in self-adaptive systems. This is performed
by tackling three great challenges in software engineer-
ing related to self-adaptive systems: (i) their formalisation,
by using model-based SOA, which bridges the business
and software processes, (ii) their development and main-
tenance, by performing adaptation and/or evolution when
required, and (iii) their monitoring to handle faults, by us-
ing error recovery techniques.

In order to achieve these goals, we make the following
contributions. Firstly (i) we develop a model transforma-
tion process to allow us the discovery, composition, adapta-
tion and maintenance of services. This process, according
to the Model-Driven Architecture (MDA)4, takes a source
model (BPEL or WF [10], both implemented as SOAs) and
produces a target model (in our case transition systems),
and vice versa. Secondly, (ii) we use software adaptation
and evolution concern respectively with adapting or chang-
ing the software during its execution. Both paradigms typi-
cally tackle the adapting and the evolving of software sepa-
rately depending on the changes being made. However, we
propose a model-based approach using self-adaptive tech-
niques through both paradigms to reduce the effort and cost
of modifying the system. In this way, our approach will as-
sist respectively to the application developers and software
designers to first apply software adaptation (non-intrusive
way) when that paradigm may solve the problem, and only
in the case it is not enough, software evolution (intrusive
way) will be used. Finally, (iii) we combine both backward
and forward error recovery techniques to maintain consis-
tency, correctness, and coordination of changes, and to han-
dle errors in self-adaptive systems. We have developed a
prototype tool on Python, which implements our approach,
integrated inside the toolbox ITACA [7]. ITACA5 (Inte-
grated Toolbox for the Automatic Composition and Adap-
tation of Web Services) is a toolbox under implementation
at the University of Málaga for the automatic composi-
tion and adaptation of services accessed through their in-
terfaces. The toolbox fully covers an adaptation process
which goes from behavioural model extraction from exist-
ing service interface descriptions, to the final adaptor im-
plementation.

Figure 1 is an overview of our approach, which focuses
on systems made up of a service repository, clients (con-
sidered as services as well), and a shared domain ontol-
ogy. When a user performs a request, e.g., from a mo-
bile device, our process is executed. First, (1) abstract in-
terface specifications (Context-Aware Symbolic Transition
Systems, CA-STSs, presented in Section 3.1) are extracted
from the BPEL or WF services, by means of our model
transformation process (Section 3.2). Then, (2) a discov-

4http://www.omg.org/docs/omg/03-06-01.pdf
5Accesible at http://itaca.gisum.uma.es

http://www.omg.org/technology/documents/formal/components.htm
http://www.w3.org/TR/soap/
http://www.omg.org/docs/omg/03-06-01.pdf
http://itaca.gisum.uma.es

MODEL-BASED DEPENDABLE COMPOSITION OF. Informatica 35 (2011) 51-62 53

ery process based on semantic and compatibility mecha-
nisms finds the services satisfying that request, and iden-
tifies possible mismatches and changes that will determine
whether the services involved need adaptation and/or evo-
lution (Section 4.1). If mismatches or changes occur, then
(3) observation planning will determine when, where, what,
and how [6] to perform adaptation and/or evolution depend-
ing on whether the changes are related to anticipated or
unanticipated adaptation, respectively. Next, (4.a) in the
case that adaptation is required, a CA-STS adaptor will be
generated in a non-intrusive way (Section 4.1), and (4.b)
if evolution is needed, then first the designer will have
to modify the system in an intrusive way, and second the
adaptor will be generated (Section 4.1). Then, (5) from the
CA-STS adaptor, the corresponding BPEL or WF adaptor
service is generated using our model transformation pro-
cess (Section 4.1), and the whole system is deployed, al-
lowing the BPEL or WF services to interact via the BPEL
or WF adaptor. Finally, (6) a fault tolerance process han-
dles exceptions raised by adaptive demand, returning back
the system to any earlier stable situation, by using error re-
covery techniques (Section 4.2).

^Semantic Matchmaking and Protocol Compatibi l i ty^
j + '

£ Service Planning Process (SPP)

Observation and Adaptation Planning J

&
i +

Service Monitor ing Process (SMP)

Dependency Analysis and Error Recovery J < -

©Self-Adaptive
Composition &

Process (SCP)

Software Adaptation
- Service Adaptor -

(Application Developer)

Software Evolution
Reconfiguration

- Service Adaptor -
(Software Designer)

Figure 1: Overview of our proposal

Outline. The remainder of this article is structured as fol-
lows. In Section 2, we introduce a case study which will be
used throughout this article for illustrative purposes. Sec-
tion 3 presents our model-based SOA approach. In Sec-
tion 4.1 the dependable composition process is described.
Sections 5 presents works related to model-based transfor-
mation, and self-adaptive and error recovery techniques.
Finally, Section 6 ends the article with a discussion about
the evaluation of our approach and some concluding re-
marks.

2 Motivating example: ITS
To illustrate our proposal, we describe a case study in
which services connected to an Intelligent Transportation
System (ITS) require and provide context-aware trans-
portation facilities. We consider different scenarios where
city users of transport (passengers or drivers) are interested
in planning their route on their hand-held devices (mobile
phones or onboard computer), by receiving data from a

Route service. In addition to the Route service, a Map ser-
vice may also reply the user's requests as the Route service
is not available anymore. We consider two kind of users:
1) bus/metro passenger, and 2) drivers. The latter have two
different profiles: driving a private vehicle (car), or a taxi.
Users receive different results of their route, depending on
their profiles. We assume services can respond to the users'
requests, but issues related to inconsistencies, changes or
faults may arise at run-time, making it necessary to detect
and handle them.

Passenger scenario. A passenger communicates with the
system to obtain the best itinerary to a destination by
bus/metro. The Route service response depends on certain
context information, i.e., the passenger location and desti-
nation, as well as the traffic or transport timetable, so the
result may vary frequently.

Driver scenario. Let us imagine the Route service typi-
cally calculates a route requested by drivers based on traf-
fic congestion (considering vehicles that enter and leave an
area). In a normal situation, a car/taxi driver can change the
route dynamically on being advised by the ITS of rerouting
alternatives. In this scenario, we describe three different
cases:

- A) Drivers request that the Route service considers the
context information related to the weather as a new require-
ment to calculate the rerouting.

- B) From the previous case, vehicles driving in a spe-
cific area discover a new Car Parking service provided by
the context of the new environment, but not considered ini-
tially by the system. Drivers would like to request this new
service, so the ITS should include that service into the sys-
tem.

- C) Considering the requirements of the two previous
cases, we imagine that in a certain moment the connection
with the Route service is lost. This service will be replaced
automatically and quickly at run-time by another service
with similar functions and considered at design-time by the
system, i.e., the Map service, which will also help to guide
the driver.

This case study presents a service-oriented pervasive
system with context-awareness features. Self-adaptive
software, in addition to tackle different adaptive be-
haviours, is useful for dealing with all forms of embedded
or pervasive software. We use a structured modelling ap-
proach to specify service-oriented architectures, because it
is easier to determine when a new service is needed, as
well as when it is more cost-effective and efficient to al-
ter an existing service, develop a new one, or acquire a
third-party service, and to manage fault tolerance mecha-
nisms. Since models tend to be represented using a graphi-
cal notation, the model-based methodology involves using
visual-modeling languages. We adopt an expressive and
user-friendly graphical notation based on transition sys-
tems, which reduces the complexity of modelling services,
as we will show in the next section.

54 Informatica 35 (2011) 51-62 J. Cubo et al.

3 Model-based SOA
In this section, we describe our formal model to specify
services using Context-Aware Symbolic Transition Sys-
tems (CA-STS). Different automata-based or Petri net-
based models can be used to describe behavioural inter-
faces. We have chosen CA-STS, which is based on transi-
tion systems, because it is simple, graphical, and provides
a good level of abstraction to tackle discovery, verification,
composition, or adaptation issues [14, 15]. Furthermore,
any formalism to describe dynamic behaviour may be ex-
pressed in terms of a transition system [14]. Thus, our
approach becomes general enough to be applied in other
applications. In addition, we relate our interface model to
implementation platforms. There exists several platforms
or languages that can be used to develop services, such as
UML6, BPEL or WF. First, we present the syntax and op-
erational semantics of our interface model. Second, we de-
scribe a textual grammar to abstract implementation details
of WF activities, and define our transformation process to
extract CA-STS specifications from WF services.

3.1 CA-STS Interface Model
We consider systems consisting of context-aware clients
and services. We assume both client and service inter-
faces are specified using context profiles, signatures and
protocols. Context profiles define information which may
change according to the client preferences and service en-
vironment. Signatures correspond to operations profiles.
Protocols are represented using transition systems. Client
and services interact according to the operational semantics
we will define later.

Context Profile, Signature and Protocol.
A context is defined as "the information that can be used
to characterise the situation of an entity. An entity is a
person, place, or object that is considered relevant to in-
teraction between a user and an application including the
user and application themselves" [12]. Context informa-
tion can be represented in different ways and can be clas-
sified in four main categories [17]: (i) user context: role,
preferences, language, calendar, social situation or privi-
leges, (ii) device/computing context: network connectivity,
device capabilities or server load, (iii) time context: current
time, day, year, month or season, and (iv) physical context:
location, weather or temperature. For our purpose, we only
need a simple representation where contexts in both clients
and services are defined by context attributes with asso-
ciated values. In addition, we differentiate between static
context attributes (e.g., role, day, ...) and dynamic ones
(e.g., network connectivity, current time, location,...). Dy-
namic attributes can change continuously at run-time, so
they have to be dynamically evaluated during the service
composition. Finally, both clients and services are char-
acterised by public (e.g., weather, temperature, season, ...)
and private (e.g., personal data, local resources,...) context
attributes. Thus, we represent and gather the service con-

6http://www.omg.org/technology/documents/formal/uml.htm

text information by using a context profile, which is a set of
tuples (CA, CV, CK, CT), where: CA is a context attribute
(or simply context) with its corresponding value CV, CK
determines if CA is static or dynamic, and CT indicates if
CA is public or private. For instance, (user, driver, static,
public), indicates that user is a public and static context
which corresponds to the user profile driver as value.

A signature corresponds to a set of operation profiles.
This set is a disjoint union of provided and required oper-
ations. An operation profile is the name of an operation,
together with its argument types (input/output parameters)
and its return type.

A protocol is represented using a Symbolic Transi-
tion Graph (STG) [16] extended with value passing, con-
text variables and conditions, that we call Context-Aware
Symbolic Transition System (CA-STS). Conditions spec-
ify how applications should react (e.g., to context changes).
We take advantage of using ontologies described in a spe-
cific domain to capture and manage the semantic informa-
tion of the services in a system by comparing concepts,
such as context information, operation names, arguments
and types. In this way, we can determine the relationship
between the different concepts that belong to that domain.

Let us introduce the notion of variable, expression, and
label required by our CA-STS protocol. We consider two
kinds of variables, those representing regular variables or
static context attributes, and those corresponding to dy-
namic context attributes (named context variables). In or-
der to distinguish between them, we will mark the context
variables with the symbol over the specific variable.
An expression is defined as a variable or a term constructed
with a function symbol f (an identifier) applied to a se-
quence of expressions, i e f (F1,...,Fn), F being expres-
sions.

Definition 1 (CA-STS label). A label corresponding to a
transition of a CA-STS is either an internal action T (tau)
or a tuple (B, M, D, F) representing an event, where: B is
a condition (boolean expression that manages both con-
ditional choices and context changes), M is the operation
name, D is the direction of operations (! and ? represent
emission and reception, respectively), andF is a list of ex-
pressions if the operation corresponds to an emission, or a
list of variables if the operation is a reception.

Definition 2 (CA-STS Protocol). A Context-Aware Sym-
bolic Transition System (CA-STS) Protocol is a tuple
(A, S,I,Fc, T), where: A is an alphabet which corresponds
to the set of CA-STS labels associated to transitions, S is
a set of states, I e S is the initial state, Fc C S are correct
final states (deadlock-free), and T C S x A x S is the tran-
sition function whose elements (si,a,s2) e T are usually
denoted by s1 s2.

Finally, a CA-STS interface is constituted by a tuple
(CP, SI, P), where: CP is a context profile, and SI is the
signature of the CA-STS protocol P. Both client and ser-
vices consist of a set of interfaces. For instance, let us

http://www.omg.org/technology/documents/formal/uml.htm

MODEL-BASED DEPENDABLE COMPOSITION OF. Informatica 35 (2011) 51-62 55

focus on the client shown in Figure 6. It has an inter-
face (CPU, SIU, Pu), where CPu refers to the context in-
formation related to the user location (dynamic context
attribute loc), user profile and device used by the client
of the user (static context attributes user and dev respec-
tively), SIu is formed by all the operation profiles, such
as lUl = reqRldest, loc, user, and Pu is the protocol which
indicates the CA-STS behaviour. For example, lUl means
that a client with the context information loc and user is-
sues an emission looking for a route from his/her location
to a destination, and then this client receives a possible
route lu2 = getRlroute, and so on. Note we have left out
the return types of the arguments to simplify the notation.
Initial and final states are depicted in CA-STSs using bul-
let arrows and hollow states, respectively. Our proposal
is suitable for synchronous systems where clients interact
with services, such as mobile systems. We adopt a syn-
chronous and binary communication model (explained in
next section, Figure 3). Clients can execute several proto-
cols simultaneously, i.e., concurrent interactions (in a bi-
nary model). Client and service protocols can be instanti-
ated several times.

At the user level, client and service interfaces can be
specified by using: (i) context information into XML
files for context profiles, (ii) WSDL for signatures, and
(iii) business processes defined in industrial platforms,
such as Abstract BPEL (ABPEL) [1] or WF workflows
(AWF) [10], for protocols. We assume context information
is inferred from the client requests (HTTP header of SOAP
messages), thereby as a change occurs the new value of the
context attribute is automatically sent to the corresponding
service (controlled in rules presented in Figure 2). We also
consider processes (clients and services) implemented as
business processes which provide the WSDL and protocol
descriptions.

Next, we define the CA-STS operational semantics.

Operational Semantics of CA-STS.
We formalise first the operational semantics for one CA-
STS service, and second for the composition of n CA-STS
services. In the following, we use a pair (s, E) to represent
an active state s G S and an environment E. An environ-
ment is a set of pairs (x, v) where x is a variable, and v
is the corresponding value of x (it can be also represented
by E(x)). The function type returns the type of a variable.
We use boolean expressions b to describe CA-STS condi-
tions. Regular and context variables are evaluated in emis-
sions and receptions (by considering the current value of
the context, e.g., the current date), respectively. Therefore,
two evaluation functions are used to compute expressions
in an environment: (i) ev evaluates regular variables or ex-
pressions, and (ii) evc evaluates context variables changing
dynamically. We define ev as follows:

ev(E,x) =
I E (x) i f x is a regular variable
I x i f x is a context variable

Function evc is defined in a similar way to ev, only con-
sidering context variables, since we first apply ev to eval-
uate the regular variables: evc(E,x) = E(x), where x is a
context variable. We also define an environment overload-
ing operation "0" in such a way that given an environment
E, E 0 (x, v) denotes a new environment, where the value
corresponding to x is v.

We present in Figure 2 the semantics of a CA-STS (Ao),
with three rules that formalise the meaning of each kind of
CA-STS label: internal actions T (INT), emissions (EM),
and receptions (REC); and one rule to simulate the dynamic
update of the environment according to the context changes
at run-time (DYN). Note that according to Definition 1,
b G B is a condition, a G M is an operation name, and x G F
and v G F correspond to a list of variables and expressions,
respectively. A condition b may contain regular and/or con-
text variables and both of them must be evaluated in the
environment of the source service (sender), because the de-
cision is taken in the sender. However, evaluation of ex-
pressions v only affects regular variables (rule EM), since
context variables will be evaluated in the target service (re-
ceiver) to consider the context values when the message
is received (see rule COM in Figure 3). We assume that
the dynamic modification of the environment will be de-
termined by different external elements depending on the
type of the context (e.g., user intervention, location update
by means of a GPS, time or temperature update, and so on).
Then, we model this situation by assuming a transition re-
lation which indicates the environment update as a change
occurs, denoted by E ^ dE', where E' (x) = E (x) only if x
is a dynamic context variable, and in which case the new
value of x is automatically sent to the corresponding ser-

vice.

(s ——̂ s') e T evc(ev(E,b),

(s, E) A o (s', E)

-- t rue

(s b,a.x si) g T evc(ev(E,b),b) = t rue

(s, E) . o (s', E)

(s s') G T evc(ev(E,b),b) = t rue v' = ev(E,v)

(s, E) —Uo (s', E)
E ^ dE'

(INT)

(REC)

(EM)

(DYN)

ev(E, f (vi,..Vn)) = f (ev(E, vi),..., ev(E, Vn))

(s, E) -Uo (s, E')

Figure 2: Operational Semantics of one CA-STS

The operational semantics of n (n > 1) CA-STSs (u c)
is formalised using two rules: a first synchronous commu-
nication rule (COM, Figure 3) in which value-passing and
variable substitutions rely on a late binding semantics [20]
and where the environment E is updated; and a second in-
dependent evolution rule (INET, Figure 3). A list of pairs
(si,Ei) is represented by [as1,...,asn]. Rule COM uses
the function evc to evaluate dynamically in the receiver the
context changes related to the dynamic context attributes
of the sender. Regular variables have been evaluated previ-
ously in the rule EM when the message is emitted. This dy-
namic evaluation handled in the operational semantics al-
lows the modelling of service protocols depending on con-

56 Informatica 35 (2011) 51-62 J. Cubo et al.

text changes. Rule INET is executed in the case of an in-
ternal service propagation that gives rise to either a state
(related to the rule INT) or an environment (rule DYN)
change. Thus, transitions — d o not distinguish between
internal evolutions coming from either internal actions in
services or dynamic updates in the environment.

i, j e^-.n} i = j type(x) = type(v) (si,Ei) • (s[, Ei)

(S j , E j) — o • S , E j) Ej = Ej 0(x, eVc(Ej,v))

nj r c

n]

[asi,..., (si, E i) , . . . , (s j , Ej),..., asn]

[asi,..., (s ' , E i) , . . . , (S j , E j) , . . . , a

i e{1..n} (Si,Ei) —^o (Sj,E')

[a s i , . . . , (si, E i) , . . . , asn] —^c [a s i , . . . , (si, E'),..., asn]

(COM)

(INET)

Figure 3: Operational Semantics of n CA-STSs

Following, we present our model transformation process
by using WF services as illustration purpose.

3.2 Model Transformation Process
To perform the service discovery, composition, adaptation
and maintenance, we first need to define a textual notation
to abstract and formalise services implemented in the WF
platform. Second, we define our model transformation pro-
cess.

Abstraction of WF Workflows.
To relate our model transformation process with realistic
and complex examples, we use the WF platform, which be-
longs to the .NET Framework 3.5 and is supported by Vi-
sual Studio 2008. We have chosen WF because it makes the
implementation of services easier thanks to its workflow-
based graphical support and the automation of the code
generation, and it is an useful and interesting alternative
compared to the well-know BPEL. Nevertheless, we have
also validated our proposal using BPEL as shown in [7].
In addition, the .NET Framework is widely used in many
companies, and WF is increasingly prevalent in the soft-
ware engineering community [26].

In order to illustrate the motivating example presented
in Section 2, we use a representative kernel of the
WF activities, namely Code, Sequence, Terminate,
Receive, Send, IfElse, While, and Listen with
EventDriven activities, that are general enough to de-
scribe any service.

In Table 1, we formalise the textual grammar (left hand-
side) defined for the WF activities considered (on the
right hand-side the informal meaning of these activities is
provided), which abstracts several implementation details.
Our grammar considers as input textual workflows (defined
in XML files) corresponding to the graphical description of
the WF workflows, with WF activities A , where C, Q are
boolean conditions, I, Ii (inputs), O, Oi (outputs) are pa-
rameters of activities, and Id are service identifiers.

The WF platform is capable of developing workflows in
different scenarios, from simple sequential ones to realistic
and complex state machine-based workflows involving hu-
man interaction. The programming languages available in

stf ::= Code executes code
Terminate endsWF
Rece ive (Icl,0p[,0,I\ I,,]) receives msg
Send (Id,Op[,Oi 0„,IJ) sends msg
Sequence (¿yj,¿as) executes ,
I f E l s e ((Ci.M) (C„,.&„),.&) if C] or si
While (C,a) a while C

| L i s t e n (i?i E„) fires one Ej
E ::= EventDriven(Receive (Id,Op[,Ij]i ,£>Q a when Id

Table 1: Grammar for the WF abstract notation

the platform are Visual Basic and C#. Our examples have
been implemented in C#.

Example. We have designed WF workflows for the User
Route request, and for the Route and Map services. WF
provides a WSDL description for each WF workflow. For
space reasons, in Figure 4 only the WF workflow that rep-
resents the behaviour of the User Route request is shown.

Sequential Workflow WF User

I

& send_reqR

i
Lj code_reqR

a receive_getR

J j code_getR

% send_showR

S code_showR

E receive_ackR
m

y? code_ackR

+
I

a

Figure 4: WF workflow of the User's request

Next, we present how we extract CA-STS specifications
from WF services.

From WF to CA-STSs.
CA-STSs are used as an abstraction to focus on behavioural
composition issues by describing service interfaces in a
standard notation. These CA-STSs are automatically gen-
erated from WF services. For each WF service, our model
transformation process parses the three XML files corre-
sponding to its context information, WSDL description,
and WF workflow. A new XML file containing the in-
formation about its context profile, signature, and CA-
STS protocol is automatically generated. This XML corre-
sponds to the behavioural interface of a CA-STS specifica-
tion. This process has been implemented following the pat-
terns of our transformation process presented in Figure 5.

We have developed an ad-hoc transformation language
to translate WF activities (WF workflows defined in XML
files) in CA-STS elements (XML files represented in a
graphical notation by means of transition systems) and vice
versa. The extracted CA-STS specifications must preserve
the semantics of workflows as encoded in the WF platform.
A formal proof of semantics preservation between both lev-
els has not been achieved yet since the WF formal seman-
tics is not rigorously documented. Our encoding has been
deduced from our experiments using the WF platform. The
main ideas of the CA-STS specification obtained from ab-
stract description of workflow constructs are the following:
(i) Code is an internal transition, (ii) Terminate corre-
sponds to a final state, (iii) Receive and Send are re-
ception and emission, respectively, (iv) Sequence must

o

MODEL-BASED DEPENDABLE COMPOSITION OF. Informatica 35 (2011) 51-62 57

WF workflow activities
abstraction

9

j or Terminate

Receive(ld,0p[,0,l I In)

Send (Id, Op[,Oi OnJ)

Sequence(Ai,A2)

IfElse((Ci, Send(Idi, Op i[, O,Ii])),
...,(Cn,An),

Send(Idn+i, Opn+i[, Ok, In+i]))

While(C,A)

Listen(EventDriven(
Receive(Idi,Opi[,Oi,I]),Ai),

.,EventDriven(
Receive(Idn,Opn[, On,h]),An))

CA-STS protocol elements
abstraction

Internal actions such as
assignments or write to console T s i

- * s „

©—:—Kg) ® -KS)—•©

-PP'/O. Onlor -Dp ![0 ! OjL Op?/^

[Ci]Op< ![Oi] si [Opi?Ii S2]

[Cn] A Si

Ppn+i'Qkl^SÙ [Op iI * ©]

so
>.[C]A

so O

Opi?[I]

Op n ?[Ij]

• * (s i ^ - O p 1 ' • O 1 s2]

^ s i [O p n ! O n s2]

Figure 5: Patterns of our model transformation process
from WF to CA-STS and vice versa

preserve the activities' order, (v) ifElse corresponds to
an internal choice, (vi) While is translated as a looping
behaviour, and Listen corresponds to an external choice.
Initial and final states in the CA-STS come respectively
from the initial and final states that appear in the workflow.
There is a single initial state that corresponds to the begin-
ning of the workflow. Final states correspond either to a
Terminate or to the end of the workflow, so several final
states may appear in the CA-STS because several branches
in the workflow may lead to a final state.

Example. We apply the model transformation process to
the WF services of our case study in order to obtain the cor-
responding CA-STS specifications. Figure 6 shows the in-
terfaces of the User (passenger or driver) and the Route and
Map services modelled using our CA-STS interface model.
Each interface has a context profile, a signature and a CA-
STS protocol.

User \

User's
Protocol (U)

• - X u o
lui=reqR!\

dest,löc,uwr

Context
Profile

loc (dyn)
user (stat ic)
dev (static)

lu2=getR ?route

U2
lu3=show R!route,

dëv
3)
<R?

u
lu4=ac

R!route,
dëv

3)
<R?

U4

Route Service Map Service
Route Service
Protocol (R)

• - K r c
lri=setR?dest,

loCHuser
(r i)

lr2=sendR!route

Context
Profile

loc (dyn)
user (stat ic)
traffic (dyn)
dev (stat ic)

/

ir3=dispfiyR?route,
dev

r3
lr4=cohfirmR!

Map Service
Protocol (M)

mo
lmi=setM?dest,

loc, user

)m2fsendM!
route_map

lm3=displayM?
routej_map,dev

lm4=confirmM!

Figure 6: CA-STS of User and Route and Map services

4 Dependable composition of
self-adaptive SOA

This section presents our approach to tackle self-adaptive
systems changing dynamically over time and must con-
tinue offering services as inconsistencies, changes or faults
occur. We aim to combine self-adaptive composition and
error recovery techniques to perform adaptation and evolu-
tion strategies and to handle errors, respectively.

4.1 Self-Adaptive Composition
Composing services relates to dealing with assembly of au-
tonomous services given their interfaces. We need to ad-
dress the specification of the composition, and to ensure
the services are composed in a consistent way.

Firstly, our discovery process (SDP module in Figure 1)
finds the most appropriate services for a user's request. To
do that, it is based on semantic matchmaking and protocol
compatibility techniques [9]. The first is used to establish
a ranked list of the services that better match the user's re-
quest, by comparing the semantic matching of the context
profiles and all the operation profiles (names, arguments
and types) w.r.t. an ontology defined in the ITS domain.
The second checks if the services selected are compati-
ble with the user at the protocol level. There exists dif-
ferent notions of compatibility in synchronous communi-
cation, such as opposite behaviours, unspecified reception,
and deadlock-freeness [4]. We have chosen the deadlock-
freeness notion to illustrate our proposal, but other defi-
nitions could also be used. This compatibility definition
guarantees that all the interactions between two services
are performed in a satisfactory way, leading to a correct
final state.

Secondly, once our approach discovers services, changes
during the service composition may occur in many differ-
ent ways. On one hand, when adaptability is anticipated
and limited to some variation points (e.g., software product
line), the different changes to be adapted at run-time are
known at design-time. On the other hand, in the unantici-
pated adaption, the possible variations are recognised and
computed at run-time, being, for instance, new services dis-
covered and assembled dynamically using self-awareness
and environmental context information by means of plan-
ning techniques. Planning (SPP module in Figure 1) is a
key feature for self-adaptive systems. Observation plan-
ning determines when, where, what, and how [6] to perform
adaptation and/or evolution to solve faults. Adaptation
planning aims to prepare the system to be adapted by using
an adaptation contract. Software adaptation covers all the
changes related to the anticipated adaptation. In addition,
it is also characterised by highly dynamic run-time proce-
dures that occur as devices and applications move from net-
work to network, changing their contexts, and enhancing
the flexibility and maintainability of systems. Therefore,
software adaptation can also address these cases of unan-
ticipated adaptation. Software evolution refers to the con-
tinuous changes over time, tackling other cases of unan-

Ai.A2

so

58 Informatica 35 (2011) 51-62 J. Cubo et al.

ticipated adaptation, such as new requirements or services
fully created at run-time.

Then, self-adaptive techniques by combining both adap-
tation and evolution paradigms (SCP module in Figure 1)
supposes a contribution of the approach presented in this
work, where the actors are the application developers and
the software designers, respectively. We have made the
distinction between software adaptation, where application
developers generate third-party adaptors (using the adap-
tation contract) in a non-intrusive way, and software evo-
lution, where software designers modify the software enti-
ties in an intrusive way and then an adaptor is generated.
To perform this, we follow a two-process methodology, by
modeling self-adaptive systems with a combination of an-
ticipated and unanticipated adaptation. First, the applica-
tion developers, who do not have knowledge of the source
code and documentation, take advantage of adaptors to au-
tomatically adapt software when it is not necessary to mod-
ify the code. When the first process is not enough to adapt
the system to the new situation because changes in the re-
quirements or an addition/removal of a service occur, then
our approach help the software designers to perform evo-
lution. Therefore, they select a minimal set of changes to
adapt software, as they are familiar with such software sys-
tem. Note that this intrusive way of adapting the system
requires that the designer has knowledge not only about
the system, but also about our approach.

From the (matching) tuples of sets of correspondences
obtained in the discovery process, we can automatically
generate an adaptation contract when any fault or change
occurs during the service interaction. Moreover, we also
want composition to distinguish between the available con-
texts when translating the messages among services. Using
a non-contextual approach, message correspondences are
fixed. This prevents inconsistencies or changes in these
connections being taken into account, and motivates the
need for the new capabilities that our approach provides
in order to achieve message translation depending on con-
texts. Therefore, we define the adaptation contract between
events in the CA-STS protocols by means of vectors ex-
pressing interactions among service messages to specify
the evolution of every service depending on its contexts.
These interactions denote a service communication and are
formalised through synchronisation vectors [2], which al-
low messages with different names and even different num-
bers of parameters to be synchronised. Each event appear-
ing in one vector is executed by one service, and the over-
all result corresponds to a synchronisation between all the
services involved. A vector may involve any number of
services.

Definition 3 (Synchronisation Vector). A synchronisation
vector (or vector for short) for a set of protocols Pi =
(Ai,Si,Ii,Fa,Ti), i e {1,.. ,n}, is a tuple (v1,...,vn) with
vi e Ai U {e}, e meaning that a service does not participate
in a synchronisation.

However, vectors are not sufficient to support more
advanced adaptation scenarios such as contextual rules,

choice between vectors or, more generally, ordering (e.g.,
when one message in some service corresponds to several
in another service, which requires the application of sev-
eral vectors). The order in which vectors have to be ap-
plied can be specified using different notations such as reg-
ular expressions, Labelled Transition Systems (LTSs), or
(Hierarchical) Message Sequence Charts (MSCs). Due to
their readability and user friendliness, we chose to spec-
ify adaptation contracts using LTSs whose labels are tu-
ples. This tuple-LTS is made up of a set of tuples (v,a),
where v is a vector on transitions and a indicates if v
has been executed, interrupted or not executed (values
can be successful_execution, int_execution
or not_executed represented with S, I and N, respec-
tively). Therefore, this tuple-LTS is essential in some situa-
tions in which faults, such as deadlocks or livelocks, can be
avoided by applying some vectors in a specific order. If the
order among correspondences between services does not
matter, the tuple-LTS contains one state with all transitions
looping on it.

Next, we introduce the formal notion of adaptation con-
tract, which is used to model the composition of services
making use of vectors and tuple-LTS.
Definition 4 (Adaptation Contract). An adaptation con-
tract for a set of services Wsit i e 1,..., n, is defined as a
couple (VWsi, Tlts), where VWsi is a set of vectors for ser-
vices Wsi, and Tlts is a tuple-LTS that indicates the interac-
tion order of the vectors VWsi-

Finally, by using the adaptation contract and CA-STS
services, we generate a third-party CA-STS adaptor, that is
in charge of coordinating the services in the system w.r.t.
the set of interactions defined in the contract (according to
the rule COM, Figure 3). For limitations of space and since
it is not a new contribution of this article, the adaptor gen-
eration is detailed in our previous works [7,10]. Adaptor is
platform independent, and it can be refined w.r.t. a specific
platform, such as the WF platform (using our transforma-
tion process, Figure 5).

Next, we describe our fault tolerance process, which
handles exceptions by using error recovery technique.

4.2 Error Recovery Mechanism
Monitoring (SMP module in Figure 1) is necessary to
maintain consistency, correctness, and coordination of
changes, as well as to handle errors. We focus on atomic
actions, that allow programmers to apply both backward
and forward error recovery. These techniques use appro-
priate exception handling mechanisms, which enable deal-
ing with dependability of composed services. Exception
handling is the method of building a system to detect and
recover from exceptional conditions (unexpected occur-
rences). Protecting a system from the effects of excep-
tional conditions is a difficult task, since all unexpected
occurrences can not be anticipated easily while designing
the system. It is necessary to build exception handlers in
order to detect and handle these exception conditions by
avoiding application failures. We perform fault tolerance

MODEL-BASED DEPENDABLE COMPOSITION OF. Informatica 35 (2011) 51-62 59

mechanisms to handle exceptions raised by adaptive de-
mand, returning back the system to any earlier stable state.
To do that, we define an error recovery algorithm based
on backward and forward error recovery, handling possible
failures.

First, we need to define a data structure, called vector
dependency, to track dependencies among the synchroni-
sation vectors of an adaptation contract. We base this on
the tuple-LTS previously generated to obtain the vector de-
pendencies, since the tuple-LTS indicates the order of in-
teractions of the vectors.

Definition 5 (Vector dependency). A vector dependency
between two vectors vi and v2 is a link relationship such

p
as v1 —> v2, where P can define both either functional or
non-functional properties (such as temporal requirements
or resources), and it must always be true to move from v1

to v2.
Then, we define an interaction set, which is generated

as a set of vector dependencies. This set is used to handle
failures, by identifying all the vectors affected by these fail-
ures. Thus, an interaction set contains all the vectors in the
adaptation contract of the communication between services
involved in the interaction.

Our algorithm is executed when any failure related to
networks or services occurs, by performing the following
steps: (1) identify the last vector to be executed in the inter-
action set where the fail occurred, (2) change the status of
all vectors of that interaction set whose events are directly
involved in the error to int_execution, (3) change the
status of all vectors related to other interaction sets which
depended on the vectors involved in the failed interaction
set to int_execution, (4) wait for a timeout if the ser-
vice that provoked the error can be re-established, or swap
the failed service with another service capable of perform-
ing similar roles, (5) if there are not services to swap, then
an exception will be triggered to all the vectors involved
in the error and the execution will stop, otherwise (6) re-
execute all vectors in the interaction set that are labeled as
int_execution and therefore change the value of those
vectors to successful_execution.

Next, we illustrate both self-adaptive and error recovery
processes by using the different scenarios described in our
case study.

Example. Considering the full approach presented above,
we address the scenarios of our case study ITS.

Firstly, common to all the scenarios, to illustrate the dis-
covery process, we focus on the user's request (passenger
or driver). Our process selects Route and Map services in
that order according to the semantic matchmaking, and two
(matching) tuples of sets of correspondences between oper-
ation profiles are returned and presented below (labels lu1 ,
l r i , etc., are represented in Figure 6).

MTU ,R {(lu1 ; lr1) ; (lu2 ; lr2) ; (lu3 ; lr3) ; (lu4 ; lr4) }

MTU ,M — {(lu1 ? lm1) ? (lu2 ? lm2)? (lu3 > lm3)> (lu4 : lm4) }

Once our process has discovered the services, we need
to handle the inconsistencies, changes or faults which have

arisen while composing services in our four scenarios.
Passenger scenario. In this scenario, our self-adaptive
process applies software adaptation due to the mismatch
problems in the behavioural interfaces. An adaptor is gen-
erated by means of the adaptation contract between the
User (passenger) and the Route service. The contract is
made up of the set of vectors presented below and the tuple-
LTS depicted in Figure 7. The ITS knows at design-time
the different contexts considered at run-time in this sce-
nario, so it is enough with anticipated adaptation for the
response given by the Route service.
{v1 - (lu1, lr1), v2 - (lu2 , lr2),

v3 - (lu3 , lr3), v4 - (lu4, lr4)}
s \

\ < v „ N> <v, N> <v3,N> < V , N >

Figure 7: Tuple-LTS indicating the interaction order be-
tween the User and the Route service

It is worth mentioning that in every tuple (v, a), a is al-
ways initialised to N (not_executed), and during the
composition process this value will change to either S
(successful_execution) when the vector vt is ex-
ecuted or to I when it is interrupted (int_execution).
Driver scenario. Here we have three different cases.

- A) and - B) Both cases needs unanticipated adaptation
based on software evolution. Neither the new requirement
(the context information related to weather) requested by
drivers to obtain the rerouting, nor the new service (Parking
service) provided at run-time by the driver location, were
considered by the ITS at design-time. Therefore, the soft-
ware designer has to modify the code of the Route service
to include the weather in the context profile, and to incor-
porate the new Car Parking service into the ITS. Our ap-
proach will reconfigure dynamically the new full system
to allow to the Users (drivers) to carry on communicating
correctly with the Route service, and to discover the new
service when they require it. The new CA-STS interfaces
corresponding to the User and the Route, Map and Parking
services are shown in Figure 8.

Note that the modifications are represented by dashed
lines and bold text (e.g., weather). In addition, conditions
have been added (e.g., [user - - "passenger"] in lu3) to de-
termine that only user profile driver will request the parking
service. The designer needs to know about the system and
our approach to perform these kinds of modifications.

We continue focusing on the interaction between the
User and Route service, but now also including the Parking
service. Then, software adaptation is applied in the new
service interfaces, by generating a new adaptation contract
to avoid the new mismatches. Below we present the set of
vectors (labels lu1, lr1, etc., are represented in Figure 8),
and the tuple-LTS (Figure 9).
{v1 - (lu1, lr1), v2 - (lu2 , lr2), v3 - (lu3, lr3),

v4 - (lu4 , lr4), v5 - (lu5, lp1), v6 - (lu6, lp2),
v7 - (lu7 , lp3), v8 - (lu8, lp4), v9 - (lu9, lr3),
v 1 0 - (lu10, l p 5) }

60 Informatica 35 (2011) 51-62 J. Cubo et al.

User

lu 5=

' [user=="driver"]
mjearchP!

route, dèst

i - , * issenger"] ^u,
)|fR'route,dev lue=geif?

park.dist

tlyii1'
cancelP!

luT=[dist<"1kni"]
bookPlparl^

•er=='drtr&']
} showR!
route, dëv ^"Vjs^

parK, otsi
^ ̂ ¡ujp=fdi£t>'Jkm"! ^

(uÇ canceTP! tu_6'

- %

?? •
lug*

Route Service Map Service
Route Service

Protocol [R)

ln=setR?dest,
'oc, user,weather ©
lr2=sendR! route

Context
Profile

loc (dyn)
user (static)
traffic (dyn)
dev (static)
weather(dyr\)

Ir3=disb ay R? route,
dev

k4=cohfirmR!

Map Service
Protocol (M)

lmi\=setM?dest,
loc, user,
weather

ImfcsendM!
route_map

lm3=WsplayM ?
rout€%map, dev

lm4=bonflrmM!

¡ P a r k i n q i P a r k i n 9 Service Protocol (P)
¡Service ••Hpi» , p 3 = r e s T e £bjœ= S
| l h f f i n d P ?
| Context I 4 rra.lorfosl ! W ?

=sendP'park

Figure 8: CA-STS of User and Route, Map and Parking
services after applying our process in A) and B)

" < " , # > " r

{v i -

V3

V6

V9

A'! ,v2

v3'v4
» V?, V?

> V4, v5

v2 >v3
v5 >v6

> V3, V? V5,

» V6, v6

v6 >v7
» V7,

rv6'v10 , ->• Vio, V7

rv7,vg
->• vs, Vs

rW9 ,
Vg,

">• V4, Vio > V4}

Figure 9: Tuple-LTS indicating the interaction order be-
tween the User and the Route and Parking services

Finally, we can generate an adaptor for the interaction
between the User and Route and Parking services.

- C) This case considers the modifications performed in
the previous cases. Our error recovery algorithm is applied
here, since a suspension of the Route service during the
service interaction occurred.

Before performing our algorithm, we generate the vec-
tor dependencies and the interaction sets corresponding to
the communication between the User and the Route and
Parking services, by means of the tuple-LTS presented in
Figure 9.

We assume properties PVjiVj are defined correctly accord-
ing to the requirements of the user's request. The in-
teraction sets are as follows: Iu,r = {vi,v?,V3,V4,V9} and
hi,P = {V5,V6,V7,V8,V10}, corresponding to the communi-
cation of the User with the Route service and the User with
the Parking service, respectively.

Now, to illustrate the algorithm, we assume that during
the interaction between the User and the Route and Park-
ing services, a failure occurs in vector V4 (of the previous
contract) corresponding to the confirmation of the Route
service, i.e., the correspondence between /„4 = cickR! and
/,4 = confirmRl). Therefore, our process changes to
i n t _ e x e c u t i o n all the vectors involved in that error,

and automatically selects another service previously con-
sidered and discovered, i.e., the Map service, which re-
places the Route service at run-time. This is possible be-
cause the designer developed the ITS to support a possible
connection loss of the Route service, so a reconfiguration
of the system is unnecessary, which reduces effort and cost.

A new adaptation contract (vectors and tuple-LTS), with
its corresponding adaptor, is generated to solve the new
mismatch problems in the interaction of the User and the
Map and Parking services.
{Vl = (J 11 -11111 / - V'2 = (/«2 , lm2) ? V3 = (Ju{ -1m {) •

V4 = (hi4 , lm4), V5 = (hi5 ,lpi), V6 = (lu6, lp2 };
V7 = (h,7 ,1 Pi) > VS = (k,s, lP4), V9 = (lug, lm3),
VIO = {hno,lP5)}
The corresponding tuple-LTS is equivalent to that pre-

sented in Figure 9, but replacing the synchronisation vec-
tors V1,V2,V3,V4,V9 of the previous contract (with Route
service) with the vectors vi, v?, V3, V4,vg related to the new
contract (with Map service).

5 Related work
This section compares our approach with related works
in software composition, especially those which focus on
model-based transformation, software adaptation and/or
evolution, and error recovery.

With respect to the relationship between existing pro-
gramming languages and platforms, the work presented
in [5] outlines a methodology for the automated genera-
tion of adaptors capable of solving behavioural mismatches
between BPEL processes (some interaction scenarios can-
not be resolved). In [3], the authors present techniques to
provide semi-automated support for identification and res-
olution of mismatches between service interfaces and pro-
tocols, and generate adaptation behavioural specifications
based on SCA architecture. Compared to these works, we
generate WF adaptor services that consider not only signa-
ture and protocol mismatches, but also context-aware and
semantic issues. In addition, our approach is able to re-
order messages among services when required, since our
discovery process allows this facility automatically. This
is necessary to ensure correct interaction in the case where
communicating entities have messages which are not or-
dered as required.

Some research works have tackled software adapta-
tion and evolution in an architecture-driven style [22],
or repair programs by means of recommending adaptive
changes [11]. Another important dimension is using formal
methods to describe software systems more formally and to
understand the cause of changes (domain structure) [8, 21],
In [19], several approaches for supporting static or dynamic
adaptability and evolvability by means of a wide diversity
of research domains (requirements, architecture, data, run-
time and language evolution, SOAs), are presented. In our
approach, we take advantage of both adaptation and/or evo-
lution, in a model-based approach, depending on the needs
of anticipated and unanticipated adaptation, and the four

MODEL-BASED DEPENDABLE COMPOSITION OF. Informatica 35 (2011) 51-62 61

categorising features, when, where, what, and how.
As regards fault tolerance mechanisms, one of the most

beneficial ways of applying fault tolerance is by associating
its measures with system structuring units [24]. Structuring
units, which decrease system complexity and make it easier
for developers to apply fault tolerance, can be: distributed
transactions and atomic actions. Distributed transactions
use backward error recovery [18] as the main fault toler-
ance measure in order to satisfy the ACID (atomicity, con-
sistency, isolation, durability) properties. Transactions sup-
pose a powerful abstraction to address failures occurring in
closed systems. However, they impose highly severe con-
straints over systems in open environments such as SOA
(e.g., real-time systems do not have time to go back). In
our approach, we use atomic actions, that allow program-
mers to apply both backward and forward error recovery to
satisfy certain properties for composing service as a failure
occur. Forward error recovery uses appropriate exception
handling without impacting on the autonomy of services
whilst exploiting their possible support for dependability.
In addition, to handle exceptions optimally, our error re-
covery mechanism specifies that services return exceptions
quickly, since notification delay can affect the SOA perfor-
mance, especially in complex workflow systems.

Summarising, our approach combines efforts to detect
and handle the different changes or faults arising in self-
adaptive systems, by modelling SOA, performing adapta-
tion and/or evolution when required, and monitoring fail-
ures with error recovery techniques.

6 Discussion and conclusions
Self-adaptive software requires high dependability, robust-
ness, adaptability, and availability. Our approach maintains
system consistency and integrity by examining each change
and removing those that render the system inconsistent or
unsafe. We focus on the development and maintenance
of reliable software systems through self-adaptive and er-
ror recovery techniques. In addition, we give model-based
SOA a push showing its usefulness to manage self-adaptive
systems.

On one hand, in many occasions, the necessary effort to
develop and maintain the reliable software intensive sys-
tems can be solved by using third-party services. In fact,
if we weigh up the cost-effectiveness in terms of the ef-
fort required to adapt the system to changes occurred, the
best solution is not modifying the code when it is not re-
quired, because an intrusive way always requires a recon-
figuration of the system that is less efficient, w.r.t. time
required, than fixing mismatch problems between services
by using an adaptor. Regarding this consideration, our pro-
posal always performs with the least effort possible to adapt
the system. This is illustrated in our case study, where our
approach generated an adaptor in all the situations to fix
mismatches and manage context changes. Only in a 50%
of cases (driver scenarios A) and B)), our approach needed
to modify the system and apply reconfiguration. In a 25%

of cases (driver scenario C)), it was necessary to apply error
recovery mechanisms.

On the other hand, the development and maintenance of
self-adaptive systems using a model-based SOA approach
turns out cost-effective. First, because our self-adaptive
system provides dependable services to the user, reduces
the strong dependence on human resources, and reacts to
different events more quickly, being capable of changing
its behavior at run-time depending on the context informa-
tion. Second, due to the model-based SOA facilities, such
as integration, interoperability, flexibility, and incorporat-
ing of new requirements. Therefore, our model transforma-
tion process provides a level of abstraction to tackle discov-
ery, planning, monitoring, adaptation and evolution issues
easily and independently of the development platform. Our
case study consisted of two kinds of users (with two pro-
files) and four services in total, so it was not difficult to
manage. But, when an organization has a large number of
services connected, the management of the service network
can become extremely difficult, since all the services are
directly connected, which can be unmanageable. In those
cases, a model-based SOA may be even more beneficial. A
first evaluation to check the scalability of our approach was
obtained validating it in several examples with up to 10 ser-
vices (a booking on-line system, a travel agency, an on-line
computer material store, or the case study presented in this
work) applied to the dependable composition of services
implemented using indistinctly BPEL and WF. In a not far
future, we hope that a wide number of companies adopt
model-based SOA to definitively bridge the gap between
business and information technology, by making the devel-
opment and maintenance of large software projects more
agile.

As regards future work, we plan to develop a full-scale
system to check our approach that we successfully applied
to a small-scale system. We also want to extend our pro-
posal to deal with security properties in the vector depen-
dencies, by improving the exception management in our
fault tolerance mechanism, and tackling in further depth
the quality of service. In addition, our approach has some
limitations, such as the need of studying how to manage the
complexity of the hand-code in case designers must modify
the system.

Acknowledgement
This work is partially supported by the project TIN2008-05932 funded by
the Spanish Ministry of Science and Innovation (MICINN) and FEDER.
The authors are grateful to the anonymous referees who helped to improve
the contents and quality of this article.

References
[1] T.Andrews et al.. Business Process Execution Language for Web

Services (WSBPEL). 2005.

[2] A. Arnold. Finite Transition Systems. International Series in Com-
puter Science. Prentice-Hall, 1994.

[3] H. R. M. Nezhad et al. Semi-Automated Adaptation of Service In-
teractions. In Proc. ofWWW'07, ACM, 2007.

62 Informatica 35 (2011) 51-62 J. Cubo et al.

[4] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are Two
Web Services Compatible? In Proc. ofTES'04, vol. 3324 of LNCS,
2004.

[5] A. Brogi and R. Popescu. Automated Generation of BPEL Adapters.
In Proc. ofICSOC'06, volume 4294 of LNCS, 2006.

[6] J. Buckley etal. Towards a Taxonomy of Software Change. Software
Maintenance and Evolution: Research and Practice, 17, 2005.

[7] J. Cámara, J.A. Martín, G. Salaün, J. Cubo, M. Ouederni, C. Canal,
and E. Pimentel. ITACA: An Integrated Toolbox for the Automatic
Composition and Adaptation of Web Services. In Proc. ofICSE'09,
IEEE CS, 2009.

[8] C. Canal, P. Poizat, and G. Salaün. Model-Based Adaptation of Be-
havioural Mismatching Components. IEEE Transactions on Soft-
ware Engineering, 34, 2008.

[9] J. Cubo, C. Canal, and E. Pimentel. Context-Aware Service Discov-
ery and Adaptation Based on Semantic Matchmaking. In Proc. of
ICIW'10. IEEE CS, 2010.

[10] J. Cubo et al. A Model-Based Approach to the Verification and
Adaptation of WF/.NET Components. In Proc. of FACS'07, vol.
215 of ENTCS, 2007.

[11] B. Dagenais and M.P. Robillard. Recommending Adaptive Changes
for Framework Evolution. In Proc. ofICSE'08, ACM, 2008.

[12] A. Dey and G. Abowd. Towards a Better Understanding of Context
and Context-Awareness. In Proc. of Workshop on the What, Who,
Where, When and How of Context-Awareness, 2000.

[13] T. Erl. Service-Oriented Architecture (SOA): Concepts, Technology,
and Design. Prentice Hall, 2005.

[14] H. Foster, S. Uchitel, and J. Kramer. LTSA-WS: A Tool for Model-
based Verification of Web Service Compositions and Choreography.
In Proc. ofICSE'06, ACM, 2006.

[15] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web
Services. In Proc. ofWWW'04, ACM, 2004.

[16] M. Hennessy and H. Lin. Symbolic Bisimulations. Theor. Comput.
Sci., 138, 1995.

[17] S. Kouadri and B. Hirsbrunner. Towards a Context-Based Service
Composition Framework. In Proc. of ICWS'03, 2003.

[18] S. KumarGupta et al. Backward Error Recovery Protocols in Dis-
tributed Mobile Systems: A Survey. Journal of Theor. and Applied
Inform. Technology, 4, 2008.

[19] T. Mens and S. Demeyer. Software Evolution. Springer-Verlag.
2008.

[20] R. Milner, J. Parrow, and D. Walker. Modal Logics for Mobile Pro-
cesses. Theor. Comput. Sci., 114, 1993.

[21] O. Nierstrasz et al. Model-Centric, Context-Aware Software Adap-
tation. In SEAMS, vol. 5525 of LNCS, 2009.

[22] P. Oreizy et al. An Architecture-Based Approach to Self-Adaptive
Software. IEEE Intelligent Systems, 14, 1999.

[23] A. Gorbenko et al. Experimenting with Exception Propagation
Mechanisms in Service-Oriented Architecture. In Proc. ofWEH'08,
ACM, 2008.

[24] F. Tartanoglu et al. Dependability in the Web Services Architecture.
In ADS, vol. 2677 of LNCS, 2003.

[25] C. Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Adisson-Wesley, 2nd edition, 2003.

[26] M. Zapletal. Deriving Business Service Interfaces in Windows
Workflow from UMM Transactions. In Proc. of ICSOC'08, vol.
5364 of LNCS, 2008.

