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Abstract. The paper presents a comparative study of a linearizing control with classic PI and fuzzy PI controllers 

of the active and reactive stator power of a doubly fed induction generator (DFIG) applied to a wind-energy 

conversion systems (WECS). 

The paper discusses the operating principles of the power-generation scheme. Simulation results show that the 

preented input-output linearizing control provides a decoupled control, perfect tracking of the generated active 

and reactive power and robustness the active- and reactive-power variations. 
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Primerjalna študija poenostavljenega mehkega PI in 

klasičnega regulatorja pri dvojno napajanem 
asinhronskem generatorju v vetrnih elektrarnah 

V prispevku smo predstavili primerjalno študijo uporabe 
klasičnega in mehkega regulatorja PI za linearizirano 
krmiljenje delovne in jalove moči pri dvojno napajanem 
asinhronskem generatorju v vetrnih elektrarnah. Predstavili 
smo principe delovanja obeh regulatorjev. Rezultati simulacije 

potrjujejo, da predlagano krmiljenje ponuja nadzor odklopa, 
beleženje proizvedene delovne in jalove moči in stabilnost pri 
odstopanju proizvedene moči. 

1 INTRODUCTION 

Wind energy is one of the most important and 

promising  sources of the renewable energy all over the 

world, mainly because it is considered to be non- 

polluting and economically viable. At the  same time, 

there has been a  rapid development of the related wind- 
energy conversion technology [1].  

In terms of the wind-power generation technology, 

because of the  numerous   technical  benefits  (higher 

energy   yield, reduced    power  loses  and improved    

supply),  the  modern MW-size  wind turbines always 

use a variable-speed operation which is achieved by 

the converter system [2]. 

The used converters  are  typically   associated  

with individual generators and they contribute 

significantly sto the costs of wind turbines. Among 

the variable-speed wind-turbine generators, doubly- 
fed induction generators (DFIGs) and permanent- 

magnet synchronous generators (PMSGs) with 

primary converters are emerging as the preferred 

technologies [2]. 

DFIG is widely used for the variable-speed 

generation, and it is one of the most important 

generators for the wind-energy conversion systems. 

Both the grid-connected and stand-alone operation 

are feasible through an AC/DC/AC frequency converter 

[1, 3]. The major DFIG advantage is that the power 

electronic equipment has to handle a fraction (20-30%) 
of the total system power in order to guarantee the 

stability in acceptable conditions [1, 4]. 

In order to improve control of the active and reactive 

power generated by DFIG [1], the paper proposes a 

robust simplified input-output linearizing Fuzzy-PI 

controller. The controller exhibits excellent dynamics 

and steady-state performances. 

The paper presents a comparative analysis of a 

simplified input-output linearizing control with a 

proportional integral (PI) controller and a fuzzy-PI 

controller for the doubly-fed induction wind-energy 
conversion system (WECS). Theoretical analysis, 

modeling and simulation results are provided. A control 

strategy is developed to control the active and reactive 

power in order to maximize the wind energy production. 

Fig.1 shows the DFIG wind-energy conversion 

system structure 

 
Figure 1. Wind-energy conversion-system-based DFIG. 
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2 TURBINE MODEL 

Wind turbines convert the wind kinetic energy into 

mechanical energy by producing a torque. Since the 

wind-energy is in the form of the kinetic energy, its 

magnitude depends on the air density and the wind 

speed.The wind power developed by the turbine is given 

by equation (1) [15, 16]: 

  32

2

1
VRCP pt                                              (1) 

where ρ is the air density, R is the radius of the wind 

turbine, V is the speed of the wind, Cp (λ,β) is the power 
coefficient, β is the blade pitch angle, and λ is the tip 

speed ratio of the rotor blade tip speed to the wind speed 

and is defined by [1]: 

V

Rt
                                                                    (2) 

The expression of the turbine torque: 

2

1

3),(
2

1
VRCC mt                                     (3) 

In the model, the Cp ( ,β) value of the turbine rotor is  

approximated using a non-linear function according to 

[1]. 
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Figure 2. Power coefficient as a function of the speed ratio (λ) 
and the angle (β). 

 

 

3 MATHEMATICAL MODEL OF THE TURBINE 

DFIG MODEL 

The most significant feature of the wound-rotor 

machine, which is widely used for the wind-power 

generation, is that it has to be fed from both the stator 

and the rotor side. Normally, the stator is directly 
connected to the grid and the rotor is interfaced  through 

a variable-frequency back-to-back AC- DC- AC power 

converter to provide a bidirectional rotor power flow 

[5]. 

The DFIG operating principle can be analyzed using 

the classical theory of rotating fields and the well 

known d-q model, as well as both the three-to-two and 

the two-to-three axes transformation. In order to deal 

with the machine dynamic behavior in the most realistic 

possible way, both the stator and rotor variables are 

referred to their corresponding natural reference frames 
in the developed model. In other words, the stator-side 

current and voltage components are referred to a 

stationary reference frame, while the rotor-side current 

and voltage components are referred to a reference 

frame rotating at the rotor electrical speed [5,6]. 

The stator and rotor voltage components are: 
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where: 

sdV , sqV , rdV , rqV , sdI , sqV , rdV , rqV
 

represent the 

direct and quadrature voltage and current for the stator 

and rotor respectively. 

The magnetic equations are: 
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The expression of the electromagnetic torque based 

on the dq stator fluxes and dq rotor currents is: 

)II(
L

L
pC sdrqsqrd

s

m
e                                       (8) 

The DFIG active and reactive power of the stator 

and rotor of the are: 
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4 GENERAL CONCEPT OF THE INPUT-OUTPUT 

LINEARIZING CONTOL  
In order to linearize the system, the MIMO system is 
considered [8]: 
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where x is the state vector; u is the output; f and g are 

smooth vector fields; h is a smooth scalar function. 

In order to obtain the input-output linearization of the 
multi-input multi-output system, output y of the system 

is differentiated until the inputs appear: 

uxhLxhLy gf )()(                                         (11) 

where Lf and Lg represent the Lie derivative of h(x) with 

respect to f(x) and g(x) respectively. If Lgihj(x)=0 for all 
i, then the inputs do not appear and we have to 

differentiate again [8]: 

uxhLxhLy gf
r )()(1                                            (12) 

 

 

 

 

 
Figure 3. Schematic diagram of the input-output linearizing 
control. 

 

where r is the relative rank of y. Performing the above 

procedure for each input yi, we get a total of m 

equations in the above form written as [8]. 
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where the m*m matrix E(x) is defined as [8-9]: 
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Matrix E(x) is the decoupling matrix for the system. 

If E(x) is nonsingular, then original input u is controlled 

by the coordinate transformation [7]: 

vxExAxEu )()()( 11                                               (16) 

where  

 Tmvvv ......1                                          (17) 

Substituting (15) into (13) provides a linear differential 

relation between the output y and new input v: 
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The procedure of the input-output linearizing control is 

shown in Fig. 1. 

 

5 A SIMPLIFIED INPUT-OUTPUT LINEARIZING 

CONTROL WITH A PI CLASSIC CONTROLLER   

In the stator flux-field-oriented frame 

ssd   and 0sq                                              (19) 
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Substituting (19) into (7) yields: 
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According to (21) the direct and quadrature 

components of the stator and rotor currents are linear 

and so the state vectors are [7]: 

   Trqrd

T
iixxx  21                                 (22)                                      

By substituting (7), (19), and (21) into (6), we get 
the following aquations hold: 
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Arranging (23) as in (10): 

v 
Nonlinear  System 

u 

Linearization  Controller 

u   E 
-1 
(x)A(x)  E 

-1 
(x)v x·    f(x)  g  u y  h( x)   
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Defining the input of the DFIG system:   

   Trqrd

T
uuuuu  21                              (25) 

Since the rotor-side controller decouples the active 

and reactive power, the stator active and reactive 

powers are selected as the output [7-9]: 
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From (21) and (26) it follows: 
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Differentiating (27) until the input appears: 
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Rewriting (28) in the form of (13): 
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where:
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Since E(x) is nonsingular, the control scheme is given 

from (16) as: 
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To track the control and to obtain a robust control of 
the parameter variations, the input system is[8]: 
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where e1 is the error between the demanded and the 

achieved active power, and e2 is  related  to the reactive 
power [6-7]. 

 
Figure 4. DFIG control diagram using a simplified input-
output linearizing control  

 

6 SIMPLIFIED INPUT-OUTPUT LINEARIZING 

CONTROL WITH A FUZZY-PI CONTROLLER  

This type of control system is based on the fuzzy 

logic that makes use of the tolerance,  uncertainty,  

imprecision and fuzziness in the human decision-

making process, offers a very satisfactory 
performance with no need of a detailed  mathematical 

model of the system. 

 

 

 

 

 

 

 
Figure 5. Structure of the proposed fuzzy logic controller. 

As  shown in Fig. 5,  our  focus  is on  the  fuzzy 

logic control based on mamdani system. This system 

has three main parts. First, by using the input 

membership functions, the inputs are fuzzified, then 
based on the  rule base and inference system, outputs 

are produced and finally the fuzzy outputs are 

defuzzified and applied to the main control system. At 

any time interval,the error and the error change rate are 

chosen as inputs. Fig. 4 shows a block diagram where 

the fuzzy controllers are integrated into the rotor side 

converter to control the DFIG. The main objective of 

this part is to control the active and the reactive power. 
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7 FLC DESIGN   

The inputs of the fuzzy controller are the error (e) and 

the error change rate (Δe) and its output is (Δu). The 

universe of (e), (Δe),  and (Δu) are partitioned into three 

fuzzy sets, i.e. N (negative), Z (zero) and  P (positive). 

Each fuzzy set is represented by either a triangular or a 
trapezoidal membership function. 

The FLC  rule base contains nine rules based on IF-

THEN [4]. 

 

8 SIMULATION RESULTS AND DISCUSSION  
Some illustrations will be introduced now in order to 

show the dynamic performances of the proposed control 

system. The controllers are tested at reference tracking 

and robustness to parameter variations. Our simulations 

are made on a 1.5 MW generator connected to a 398 

V/50 Hz grid. 

The DFIG parameters are: 
Rs = 0.012 Ω, Ls = 0.0137 H, Rr =0.021 Ω, Lr = 0.0136 

H, Lm = 0.0135 H, F = 0.0024 Nm/s, J = 0.0031 kg. m2 

and R = 35.25 m. 

8.1 Pursuit test 

The aim of test is to the study the behaviour of the 

two   controllers at reference tracking with the machine 

speed constant at its nominal value. As seen from the 

simulation results shown in Fig.6, the active and 

reactive powers of the two controllers track almost 
perfectly their references, contrary to the FLC controller 

where the coupling effect between the two axes is very 

clear. 

8.2 Sensitivity to the speed variations 

The aim of  this  test  is  to  analyze the impact of  

speed variations on the DFIG active and reactive 

powers. 

Power curves at variation show important 

oscillations of the PI controller  system with, while they 
are almost negligible for the fuzzy PI system. Here, 

there are any variations and the power variations are 

very small. This result is attractive for the wind-energy 

applications for ensuring stability and quality of the 

generated power at speed variations. 
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Figure 6. Active and reactive powers for PI classic controller 
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Figure 7. Rotor currents at reference tracking for the PI classic 

controller 
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Figure 8. Active and reactive power for the PI fuzzy controller 
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Figure 9. Rotor currents at reference tracking for the PI-fuzzy 

controller 
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Figure 10. Active and reactive power at speed variations for PI 
classic and PI-fuzzy controller 

 

9 CONCLUSION  
A simplified input-output linearizing fuzzy control 

applied to a turbine DFIG is propose. A simulation 
study is made to use it on DFIG of a wind-energy 

conversion system. The performance of classic PI 

controller and fuzzy controller used in a wind-power 

generation are compared. While the design parameters 

of the PI classic controller have to be tested and 

adjusted, the fuzzy controller shows strong robustness to 

parameter of the control system. Comparing the 

simulation results shows that the fuzzy controller 

outperforms the PI classic controller. The results are 

highly consistent with the theoretical calculations and 

validate correctness of the presented simulation system. 
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