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Abstract

It is proved that in a finite field F of prime order p, where p is not one of finitely many
exceptions, for every polynomial f(x) ∈ F [x] of degree 4 that has a nonzero constant
term and is not of the form αg(x)2 there exists a primitive root β ∈ F such that f(β)
is a quadratic residue in F . This refines a result of Madden and Vélez from 1982 about
polynomials that represent quadratic residues at primitive roots.
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1 Introduction
The motivation for this paper is twofold: first refining the result of Madden and Vélez
about polynomials that represent quadratic residues at primitive roots [9], and in doing so
obtaining a tool with which hamiltonicity of certain families of vertex-transitive graphs of
order a product of two primes is proved via a structural analysis of their quotients with
respect to an automorphism of prime order. Such a connection between algebraic graph
theory and finite fields is not surprising, see, for example, [6, 14] for a similar application
of finite fields.

In 1969 Lovász [8] asked for a construction of a finite connected vertex-transitive graph
without a Hamilton path, that is, a path containing all vertices of the graph. This problem
has spurred quite a bit of interest in the mathematical community, resulting in a number of
papers affirming the existence of Hamilton paths and in some cases even Hamilton cycles
(see the survey paper [7]). The main obstacle to making a substantial progress with regards
to this problem is a lack of structural results for such graphs. Consequently, tools and
methods from other areas of mathematics applicable in this context are more than welcome.
Such is, for example, the case with the so-called polycirculant conjecture which states that
every 2-closed group contains a fixed-point-free automorphism of prime order (see, for
example, [3, 4, 10, 12, 13]). Fixed-point-free automorphism of prime order have been of
great practical use in constructions of Hamilton cycles in vertex-transitive graphs via the
so-called lifting cycle technique [1, 11]. And it is precisely here that the results of this
paper are of crucial importance as they allow a successful application of this technique for
a complete solution of Lovász problem for connected vertex-transitive graphs of order a
product of two primes (see [5]).

More precisely, the goal of this paper is to obtain a novel result on polynomials of
degree 4 over finite fields of prime order with regards to a polynomial representation of
quadratic residues at primitive roots, thus refining results from [9] (see Theorem 1.1). (The
set of nonzero quadratic residues modulo r, that is, nonzero elements of a finite field F of
order r that are congruent to a perfect square modulo r, will be called squares.)

Theorem 1.1. Let F be a finite field of prime order p, where p is an odd prime not given
in Tables 1 and 2. Then for every polynomial f(x) ∈ F [x] of degree 4 that has a nonzero
constant term and is not of the form αg(x)2 there exists a primitive root β ∈ F such that
f(β) is a square in F .

2 Polynomials of degree 4 over finite fields representing quadratic
residues

In early eighties, motivated by a question posed by Alspach, Heinrich and Rosenfeld [2]
in the context of decompositions of complete symmetric digraphs, Madden and Vélez [9]
investigated polynomials that represent quadratic residues at primitive roots. They proved
that, with finally many exceptions, for any finite field F of odd characteristic, for every
polynomial f(x) ∈ F [x] of degree r ≥ 1 not of the form αg(x)2 or αxg(x)2, there
exists a primitive root β such that f(β) is a nonzero square in F . It is the purpose of this
paper to refine their result for polynomials of degree 4. This will then be used in [5] in
the constructions of Hamilton cycles for some of the basic orbital graphs arising from the
action of PSL(2, p) on cosets of Dp−1. This refinement, stated in Theorem 1.1, will be
proved following a series of lemmas.
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The following result, proved in [9], is a basis of our argument and will be used through-
out this section.

Proposition 2.1 ([9, Corollary 1]). Let F be a finite field with pn elements. If s and t are
integers such that

(i) s and t are coprime,

(ii) a prime q divides pn − 1 if and only if q divides st, and

(iii) 2φ(t)/t > 1 + (rs− 2)pn/2/(pn − 1) + (rs+ 2)/(pn − 1),

then, given any polynomial f(x) ∈ F [x] of degree r, square-free and with nonzero constant
term, there exists a primitive root γ ∈ F such that f(γ) is a nonzero square in F .

Throughout this section let p be an odd prime and let q1 = 2, q2, . . . , qm be the increas-
ing sequence of prime divisors of p− 1 = qi11 q

i2
2 · · · qimm . As in [9] we define the following

functions with respect to this sequence:

d(n,m) = 2

(
1− 1

qn

)(
1− 1

qn+1

)
· · ·
(

1− 1

qm

)
, (2.1)

cr(n,m) = 2r

√
q1q2 · · · qn−1
qnqn+1 · · · qm

, (2.2)

and k(m) as the unique integer such that d(k(m) − 1,m) ≤ 1 < d(k(m),m). Hence
k(m) ≥ 2. Analogously the functions d and cr can be defined for any positive integers
r ≥ 1, n < m and an arbitrary sequence {q1, . . . , qm} of primes. The following lemma is
a generalization of [9, Lemma 3].

Lemma 2.2. Let {2 = q1, q2, . . . , qm} be a finite sequence of primes satisfying m ≥
2k(m) + 2, and let r = 4. Then

d(k(m) + 1,m)− cr(k(m) + 1,m) > 1. (2.3)

Proof. Since 2 ≤ k(m) ≤ m
2 − 1, we have m ≥ 6. Since

d(k(m) + 1,m) =

(
1 +

1

qk(m) − 1

)
d(k(m),m) > 1 +

1

qk(m) − 1
,

(2.3) holds if

1 +
1

qk(m) − 1
− 2r

(
q1q2 · · · qk(m)

qk(m)+1qk(m)+2 · · · qm

) 1
2

> 1,

which may be rewritten in the following form

q2q3 · · · qk(m)(qk(m) − 1)2 <
1

128
qk(m)+1 · · · qm−1qm, (2.4)

in view of the fact that r = 4 and q1 = 2.
We divide the proof into two cases, depending on whether m ≥ 7 or m = 6.
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Case 1. m ≥ 7.

Let Ω be the increasing sequence of all prime numbers and let

Jq = {q1 = 2, q2, q3, . . . , ql = q, ql+1, . . . , qm}

be a subsequence of Ω. Then we shall in fact prove a more general result:

q2q3 · · · ql(ql − 1)2 <
1

128
ql+1 · · · qm−1qm,

where m ≥ 7 and l ≤ m
2 − 1 is any integer. To show this for the sequence Jq we define

a subsequence Iq = {w1 = 2, w2, w3, . . . , wl = q, wl+1, . . . , wm} of Ω not missing any
prime in Ω from the interval [w2, wm]. Then the lemma will be proven in case we show
that the following holds:

w2w3 · · ·wl(wl − 1)2 <
1

128
wl+1 · · ·wm−1wm, (2.5)

where m ≥ 7 and l ≤ m
2 − 1 is any integer. If wm ≥ 128, then (2.5) is clearly true. So we

only need to consider primes that are smaller than or equal to 127. If

(m− l)− (l − 1 + 2) = m− 2l − 1 ≥ 2, (2.6)

then (2.5) holds provided wm−1wm > 128 holds. Note that this is true if wm ≥ 13, which
is the case since m ≥ 7. Next, note that for either m being even and l < m

2 − 2 or m being
odd, (2.6) holds. So we may assume that m is even and that l = m/2− 1 ≥ 2.

Now we prove that (2.5) holds under this assumption for any even integer m ≥ 8 by
induction. Suppose first that m = 8. Then l = 3 and (2.5) rewrites as

w2w3(w3 − 1)2 <
1

128
w4w5w6w7w8. (2.7)

A computer search shows that (2.7) holds for all primes w8 ≤ 127. Suppose now that (2.5)
is true for an even integer m ≥ 8. Then we have

w2w3w4 · · ·wlwl+1(wl+1 − 1)2 = w2(w3 · · ·wlwl+1(wl+1 − 1)2)

< w2(wl+2wl+3 · · ·wmwm+1)

< (wl+2wl+3 · · ·wmwm+1)wm+2.

Therefore (2.5) is true for all even integers m ≥ 8 and then for all integers m ≥ 7. Hence
(2.4) holds, and so does (2.3).

Case 2. m = 6.

Now k(m) = 2. Inserting l = 2 and m = 6 in (2.5), we have

w2(w2 − 1)2 <
1

128
w3w4w5w6. (2.8)

A computer search for all the primes less than 131 shows that (2.8) does not hold only for

wk(m) = w2 ∈ {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 53, 59, 61, 67, 71}.
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For these exceptional cases, we go back to work on (2.3) directly. Let l = k(m) = 2 in
Jq . Let d(n,m)′ and c4(n,m)′ be the corresponding values for Iq as defined by functions d
and cr in (2.1) and (2.2). Then one can easily see that d(3, 6)′ ≤ d(3, 6) and that c4(3, 6)′ ≥
c4(3, 6), which implies d(3, 6)− c4(3, 6) ≥ d(3, 6)′ − c4(3, 6)′. Therefore, (2.3) holds for
Jq if it holds for Iq . So it suffices to check (2.3) for Iq . In fact, an additional computer
search for the set of primes less than 131 shows that for w1 = 2 and w2 being each of these
exceptional cases, (2.3) holds for Iq . This completes the proof of Lemma 2.2.

The following result proved in [9] will be needed in the next lemma.

Proposition 2.3 ([9, Lemma 5]). Let {2 = q1, q2, . . . , qm} be a finite sequence of primes
satisfying m ≤ 2k(m) + 1. Then m ≤ 9 and qk(m)−1 ≤ 5. In fact the sequence must
satisfy one of the following:

(i) k(m) = 4, qk(m)−1 = 5 and m = 9,

(ii) k(m) = 3, qk(m)−1 = 5 and m ≤ 7,

(iii) k(m) = 3, qk(m)−1 = 3 and m ≤ 7, or

(iv) k(m) = 2, qk(m)−1 = 2 and m ≤ 5.

Lemma 2.4. Let {2 = q1, q2, . . . , qm} be a finite sequence of primes satisfying m ≤
2k(m) + 1, and let p − 1 = qi11 q

i2
2 · · · qimm with qm ≥ 131. Then there exist s and t such

that

(i) s and t are coprime,

(ii) a prime q divides p− 1 if and only if q divides st, and

(iii) 2φ(t)/t > 1 + (4s− 2)
√
p/(p− 1) + (4s+ 2)/(p− 1).

Proof. Since m ≤ 2k(m) + 1 the four cases (i) – (iv) of Proposition 2.3 need to be con-
sidered. In each case, as in [9, Lemma 7], we will prescribe a choice for s (which then
determines t uniquely) and use the conditions in each of these four cases to find the lower
bound α for the expression (2φ(t)t−1 − 1), that is, (2φ(t)t−1 − 1) ≥ α. We will then be
able to use the assumption qm ≥ 131 to show that

α >
(4s− 2)

√
p+ 4s+ 2

p− 1
. (2.9)

Suppose first that Proposition 2.3(i) holds, that is, k(m) = 4, qk(m)−1 = 5 and m = 9.
Then q9 ≥ 131. Also, one can easily see that such a sequence of primes must begin with
q1 = 2, q2 = 3 and q3 = 5. Let s = 2 · 3 · 5 and t = q4q5 · · · q9. Then

2
φ(t)

t
− 1 ≥ 2

(
1− 1

7

)(
1− 1

11

)(
1− 1

13

)(
1− 1

17

)(
1− 1

19

)(
1− 1

131

)
− 1

≥ 0.27287.

Thus p satisfies (2.9) with α = 0.27287 and s = 30 if and only if p > 187899. Suppose
now that there is a prime p ≤ 187899 that satisfies the conditions of the case under analysis.
We know that 2 ·3 ·5 · q9 divides p−1 with q9 ≥ 131. However this requires q4q5q6q7q8 <
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187899/(2 · 3 · 5 · 131) ≤ 48 which is clearly not possible, since q4q5q6q7q8 ≥ 7 · 11 · 13 ·
17 · 19 = 323323.

We now consider the other three cases of Proposition 2.3, that is, suppose that Propo-
sition 2.3(ii), (iii) or (iv) holds. In all three cases k(m) ≤ 3. By assumption q1 = 2, and
we now consider the various possibilities for q2. First, assume that q2 = 3 (note that this is
possible in the last two cases) and therefore m ≤ 7. We set s = 2 · 3 and t = q3q4q5q6q7.
Thus

2
φ(t)

t
− 1 ≥ 2

(
1− 1

5

)(
1− 1

7

)(
1− 1

11

)(
1− 1

13

)(
1− 1

131

)
− 1 ≥ 0.14206.

Now p satisfies (2.9) with α = 0.14206 and s = 6 if and only if p ≥ 24351. If p < 24351
we see that q3q4 · · · qm−1 < 24351/(2·3·131) < 31. Since qi ≥ 5 for i ∈ {3, 4, . . . ,m−1}
one can see that either m = 3 or m = 4. In other words, either t = q3 or t = q3q4, and
thus we can improve the value for α with

2
φ(t)

t
− 1 ≥ 2

(
1− 1

5

)(
1− 1

131

)
− 1 ≥ 0.58778.

In this case p satisfies (2.9) with α = 0.58778 if and only if p > 1490. If p ≤ 1490
observe that the assumption that 6qm divides p − 1 with qm ≥ 131 implies that q3 < 2, a
contradiction.

We now use the same approach for the case q2 = 5. We choose s = 2 · 5 and t =
q3q4 · · · qm. Here we have

2
φ(t)

t
− 1 ≥ 2

(
1− 1

7

)(
1− 1

11

)(
1− 1

13

)(
1− 1

17

)(
1− 1

131

)
− 1 ≥ 0.34361.

Hence p satisfies (2.9) with α = 0.34361 if and only if p > 12475. If, however, p ≤ 12475
then since 10qm divides p − 1 we have that q3 < 10, and so either m = 3 or m = 4 and
q3 = 7. In both cases we can improve the value for α since t = q2q3 or t = q3q4. In
particular,

2
φ(t)

t
− 1 ≥ 2

(
1− 1

7

)(
1− 1

131

)
− 1 ≥ 0.70119956.

In this case p satisfies (2.9) with α = 0.70119956 if and only if p > 3057. If p ≤ 3057
observe that the assumption that 10qm divides p− 1 with qm ≥ 131 implies that q3 < 3, a
contradiction.

Finally we consider the case q2 ≥ 7. Then, by Proposition 2.3, we have k(m) = 2 and
m ≤ 5. Here we choose s = 2 and use the same technique as above to complete the proof.
In particular, we have

2
φ(t)

t
− 1 ≥ 2

(
1− 1

7

)(
1− 1

11

)(
1− 1

13

)(
1− 1

131

)
− 1 ≥ 0.42758.

In this case p satisfies (2.9) with α = 0.42758 if and only if p > 243. If p ≤ 243
observe that the assumption that 2qm divides p − 1 with qm ≥ 131 implies that q3 < 2, a
contradiction.

In summary we have seen that given any finite sequence of primes with qm ≥ 131 we
can choose n in such a way that when s = q1q2 · · · qn and t = qn+1qn+2 · · · qm we have

2φ(t)

t
> 1 +

(4s− 2)
√
st+ 1

st
+

4s+ 2

st
, (2.10)
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completing the proof of Lemma 2.4.

In order to proceed with the proof of Theorem 1.1 we now need to identify all those se-
quences {2 = q1, q2, . . . , qm} with qm < 131 for which one cannot choose s = q1q2 · · · qn
and t = qn+1qn+2 · · · qm so as to satisfy (2.10). Since Lemma 2.2 holds for each qm we can
assume that for each of these sequences Proposition 2.3 applies. A computer search of these
finitely many sequences yields the exceptional sequences which are listed in Tables 1 and 2.
For each of these exceptional sequences we fix s = q1q2 · · · qn and t = qn+1qn+2 · · · qm,
and we then search for a constant k such that x > k implies the inequality

2φ(t)

t
> 1 +

2(2s− 1)
√
x

x− 1
+

4s+ 2

x− 1
. (2.11)

For each of these sequences Tables 1 and 2 give the smallest bound k obtained in this
way. The third column of these tables indicates for which choice of t the given bound k is
obtained:

Type 1 means that the bound k was obtained with t = qm−1qm,

Type 2 means that the bound was obtained with t = qm, and

Type 3 means that the bound was obtained with t = 1.

A computer search then identifies those primes that are smaller than or equal to the bound
k, as summarized in the proposition below.

Proposition 2.5. Let {2 = q1, q2, . . . , qm} be a finite sequence of primes satisfying m ≤
2k(m) + 1, and let p − 1 = qi11 q

i2
2 · · · qimm with qm < 131. If p is not listed in Tables 1

and 2 then there exist s and t such that

(i) s and t are coprime,

(ii) a prime q divides p− 1 if and only if q divides st, and

(iii) 2φ(t)/t > 1 + (4s− 2)
√
p/(p− 1) + (4s+ 2)/(p− 1).

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. It follows by Proposition 2.1 that a polynomial f(x) represents a
nonzero square at some primitive root in F if there exist s and t satisfying the following
three conditions:

(i) s and t are coprime,

(ii) a prime q divides p− 1 if and only if q divides st, and

(iii) 2φ(t)/t > 1 + (4s− 2)
√
p/(p− 1) + (4s+ 2)/(p− 1).

Our goal is therefore to show that such s and t exist for all odd primes p that are not listed
in Tables 1 and 2.

Let {q1 = 2, q2, . . . , qm} be an increasing sequence of prime divisors of p − 1. If
m ≤ 2k(m) + 1 then Lemma 2.4 applies for qm ≥ 131, and Proposition 2.5 applies for
qm < 131.
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Table 1: The list of sequences not satisfying (2.10), part I.

p ≡ 1 (mod 4) ≤ k
Sequence T k Type p ≤ k with T with T , (p+ 1)/2 prime

2 55 3 3, 5, 17 5

2, 3, 5, 11 2458 1 331, 661, 991, 1321 661, 1321

2, 3, 5, 43 1622 1 1291 no
2, 3, 7, 17 1372 1 no no

2, 3, 5, 7, 13 7040 t = 455 2731 no
2, 3, 43 460 1 no no
2, 3, 31 496 1 373 no
2, 3, 61 435 1 367 no

2, 3, 5, 7, 23 5145 t = 805 4831 no
2, 3, 23 547 1 139, 277 277

2, 3, 67 430 1 no no
2, 3, 7, 13 1517 1 547, 1093 1093

2, 3, 17 632 1 103, 307, 409, 613 613

2, 3, 5, 13 2238 1 1171, 1951 no
2, 3, 11 788 2 67, 199, 397, 727 397

2, 7 99 2 29 no
2, 3, 13 739 2 79, 157, 313 157, 313

2, 3, 7 1023 2 43, 127, 337, 379, 673, 757

673, 757, 883, 1009

2, 23 65 2 47 no
2, 3, 5, 37 1656 1 no no

2, 5 133 2 11, 41, 101 no
2, 3, 5, 41 1632 1 1231 no
2, 3, 59 437 1 no no
2, 3, 53 444 1 no no

2, 3, 7, 19 1327 1 no no
2, 3, 5, 29 1727 1 no no

2, 17 69 2 no no
2, 11 78 2 23 no

2, 3, 5, 19 1921 1 571 no
2, 3, 41 464 1 no no

Suppose now that m ≥ 2k(m) + 2. Then, by Lemma 2.2, we have

d(k(m) + 1,m) > 1 + c4(k(m) + 1,m).

If we let s = q1q2 · · · qk(m) and t = qk(m)+1 · · · qm we have 2φ(t)/t = d(k(m) + 1,m),
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Table 2: The list of sequences not satisfying (2.10), part II.

p ≡ 1 (mod 4) ≤ k
Sequence T k Type p ≤ k with T with T , (p+ 1)/2 prime

2, 3, 5, 7, 11 8160 t = 385 2311, 4621 4621

2, 3, 5 1432 2 31, 61, 151, 181, 61, 541, 1201

241, 271, 541, 601,

751, 811, 1201

2, 3, 5, 47 1604 1 no no
2, 3, 5, 31 1705 1 no no
2, 3, 7, 23 1265 1 967 no
2, 5, 17 180 1 no no

2, 3, 11, 13 1130 1 859 no
2, 13 74 2 53 no

2, 5, 11 218 1 no no
2, 5, 13 200 1 131 no
2, 3, 37 475 1 223 no
2, 3, 5, 7 3649 1 211, 421, 631, 1051, 421

1471, 2521, 3361

2, 3, 5, 7, 19 5580 t = 665 no no
2, 3 384 2 7, 13, 19, 37, 73, 13, 37, 73, 193

97, 109, 163, 193

2, 5, 7 315 1 71, 281 no
2, 3, 5, 23 1819 1 691, 1381 1381

2, 3, 47 453 1 283 no
2, 3, 5, 7, 17 5905 t = 595 3571 no

2, 3, 29 506 1 349 no
2, 3, 7, 11 1646 1 463 no
2, 3, 5, 17 1995 1 1021, 1531 no

2, 29 63 2 59 no
2, 3, 19 596 1 229, 457 457

2, 19 68 2 no no

and

c4(k(m) + 1,m) = 8 ·
√

q1q2 · · · qk(m)

qk(m)+1qk(m)+2 · · · qm

=
8s

√
q1q2 · · · qm

≥ 8s√
p− 1

Since s is even and 4(p− 1) ≥ 4s ≥ 3 we may apply [9, Lemma 6] to see that

(4s− 2)
√
p

p− 1
≤ 4s√

p− 1
.
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It follows that

2φ(t)

t
= d(k(m) + 1,m) ≥ 1 + c4(k(m) + 1,m) ≥ 1 +

8s√
p− 1

≥ 1 +
(4s− 2)

√
p

p− 1
+

4s+ 2

p− 1
.

(Note that the last inequality holds since p ≥ 7.)

For the sake of completeness we would like to add the following proposition (obtained
with a computer search) which deals with exceptional primes p not covered by Theorem 1.1
which are congruent to 1 modulo 4 and for which (p + 1)/2 is also a prime (primes given
in the last column of Tables 1 and 2). As is the case with Theorem 1.1 this proposition too
is used in the construction of Hamilton cycles in vertex-transitive graphs of order a product
of two primes in [5].

Proposition 2.6. Let F be a finite field of odd prime order p, and let k ∈ F . If

p ∈ {5, 13, 37, 61, 73, 157, 193, 277, 313, 397, 421, 457, 541,
613, 661, 673, 757, 1093, 1201, 1321, 1381, 4621}

then there exists a primitive root β of F such that f(β) = β4 + kβ2 + 1 is a square in F
except when

(p, k) ∈ {(5, 4), (13, 1), (13, 4), (13, 5), (13, 6), (13, 7), (13, 10),
(37, 3), (37, 28), (37, 29), (61, 18), (61, 37), (61, 40)}.

Amongst these exceptions only for (p, k) ∈ {(13, 1), (37, 28), (61, 18)} there exists ξ ∈
S∗ ∩ (S∗ + 1) such that k = 2(1 − 2ξ). In particular, ξ = 10 for (p, k) = (13, 1),
ξ = 12 for (p, k) = (37, 28), and ξ = 57 for (p, k) = (61, 18). Moreover, amongst these
exceptions only for (p, k) ∈ {(13, 1), (37, 28), (61, 18)} there exists ξ̄ ∈ S∗ ∩ (S∗ + 1)
such that k = −2(1 − 2ξ̄). In particular, ξ̄ = 4 for (p, k) = (13, 1), ξ̄ = 26 for (p, k) =
(37, 28), and ξ̄ = 5 for (p, k) = (61, 18).
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