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Abstract. It is well known that unconstrained single-energy partial wave analysis
(USEPWA) gives many equivalent discontinuous solutions, so a constraint to some theo-
retical model must be used to ensure the uniqueness. It can be shown that it is a direct con-
sequence of not specifying the angle-dependent part of continuum ambiguity phase which
mixes multipoles, and by choosing this phase we restore the uniqueness of USEPWA, and
obtain the solution in a model independent way. Up to now, there was no reliable way to
extract pole parameters from so obtained SE partial waves, but a new and simple single-
channel method (Laurent + Pietarinen expansion) applicable for continuous and discrete
data has been recently developed. It is based on applying the Laurent decomposition of
partial wave amplitude, and expanding the non-resonant background into a power series
of a conformal-mapping, quickly converging power series obtaining the simplest analytic
function with well-defined partial wave analytic properties which fits the input. The gen-
eralization of this method to multi- channel case is also developed and presented. Unifying
both methods in succession, one constructs a model independent procedure to extract pole
parameters directly from experimental data without referring to any theoretical model.

1 Introduction

It is well known that unconstrained single-energy partial wave analysis (USEPWA)
gives many equivalent discontinuous solutions, so a constraint to some theoret-
ical model must be used to ensure the uniqueness. It can be shown that it is a
direct consequence of not specifying the angle-dependent part of continuum am-
biguity phase which mixes multipoles, and by choosing this phase we restore the
uniqueness of USEPWA, and obtain the solution in a model independent way [1].
Up to now, there was no reliable way to extract pole parameters from so obtained
SE partial waves, but a new and simple single-channel method (Laurent + Pietari-
nen expansion) applicable for continuous and discrete data has been recently de-
veloped [2–4]. It is based on applying the Laurent decomposition of partial wave
amplitude, and expanding the non-resonant background into a power series of a
conformal-mapping, quickly converging power series obtaining the simplest an-
alytic function with well-defined partial wave analytic properties which fits the



44 Alfred Švarc

input. The method is particularly useful to analyse partial wave data obtained
directly from experiment because it works with minimal theoretical bias since it
avoids constructing and solving elaborate theoretical models, and fitting the final
parameters to the input, what is the standard procedure now. The generalization
of this method to multi- channel case is also developed and presented.

2 Angular dependent continuum ambiguity

Let us recall that observables in single-channel reactions are given as a sum of
products involving one (helicity or transversity) amplitude with the complex con-
jugate of another, so that the general form of any observable is O = f(Hk · H∗l ),
where f is a known, well-defined real function. The direct consequence is that any
observable is invariant with respect to the following simultaneous phase trans-
formation of all amplitudes:

Hk(W,θ)→ H̃k(W,θ) = e
i φ(W,θ) ·Hk(W,θ)

for all k = 1, · · · , n (1)

where n is the number of spin degrees of freedom (n=1 for the 1-dim toy model,
n=2 for pi-N scattering and n=4 for pseudoscalar meson photoproduction), and
φ(W,θ) is an arbitrary, real function which is the same for all contributing ampli-
tudes.

As resonance properties are usually the goal of such studies, and these are
identified with poles of the partial-wave (or multipole) amplitudes, we must an-
alyze the influence of the continuum ambiguity not upon helicity or transversity
amplitudes, but upon their partial wave decompositions. To simplify the study
we introduce partial waves in a simplified version than those found in Ref. [5]:

A(W,θ) =

∞∑
`=0

(2`+ 1)A`(W)P`(cos θ) (2)

where A(W,θ) is a generic notation for any amplitude Hk(W,θ), k = 1, · · ·n. The
complete set of observables remains unchanged when we make the following
transformation:

A(W,θ)→ Ã(W,θ) = e i φ(W,θ)

×
∞∑
`=0

(2`+ 1)A`(W)P`(cos θ)

Ã(W,θ) =

∞∑
`=0

(2`+ 1)Ã`(W)P`(cos θ) (3)

We are interested in rotated partial wave amplitudes Ã`(W), defined by Eq.(3),
and are free to introduce the Legendre decomposition of an exponential function
as:

e i φ(W,θ) =

∞∑
`=0

L`(W)P`(cos θ). (4)
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After some manipulation of the product P`(x)Pk(x) (see refs. [6, 7] for details of
the summation rearrangement) we obtain:

Ã`(W) =

∞∑
` ′=0

L` ′(W) ·
` ′+∑̀

m=|` ′−`|

〈` ′, 0; `, 0|m, 0〉2 Am(W)

(5)

where 〈` ′, 0; `, 0|m, 0〉 is a standard Clebsch-Gordan coefficient.
To get a better insight into the mechanism of multipole mixing, let us expand

Eq. (5) in terms of phase-rotation Legendre coefficients L` ′(W):

Ã0(W) = L0(W)A0(W) + L1(W)A1(W) + L2(W)A2(W) + . . . , (6)

Ã1(W) = L0(W)A1(W) + L1(W)

[
1

3
A0(W) +

2

3
A2(W)

]

+L2(W)

[
2

5
A1(W) +

3

5
A3(W)

]
+ . . . ,

Ã2(W) = L0(W)A2(W) + L1(W)

[
2

5
A1(W) +

3

5
A3(W)

]

+L2(W)

[
1

5
A0(W) +

2

7
A2(W) +

18

35
A4(W)

]
+ . . . .

...

The consequence of Eqs. (5) and (6) is that angular-dependent phase rotations
mix multipoles.

Conclusion:

Without fixing the free continuum ambiguity phaseφ(W,θ), the partial wave
decomposition A`(W) defined in Eq. (2) is non-unique. Partial waves get mixed,
and identification of resonance quantum numbers might be changed. To compare
different partial-wave analyses, it is essential to match the continuum ambiguity
phase; otherwise the mixing of multipoles is yet another, uncontrolled, source
of systematic errors. Observe that this phase rotation does not create new pole
positions, but just reshuffles the existing ones among several partial waves.

3 Using angular-dependent phase ambiguity to obtain
up-to-a-phase unique, unconstrained, single-energy solution
in η photoproduction

We perform unconstrained, Lmax = 5 truncated single-energy analyses on a
complete set of observables for η photoproduction given in the form of pseudo-
data created using the ETA-MAID15a model [8]: dσ/dΩ, Σdσ/dΩ, T dσ/dΩ,
F dσ/dΩ,Gdσ/dΩ, P dσ/dΩ, Cx ′ dσ/dΩ, andOx ′ dσ/dΩ. All higher multipoles
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are put to zero. The fitting procedure finds solutions which are non-unique, and
we obtain many solutions depending on the choice of initial parameters in the
fit. In Fig. 1 we show a complete set of pseudo-data with the error of 1 % created
at 18 angles (red symbols), and the typical SE fit (full line) at one representative
energy ofW = 1769.80MeV.

Fig. 1. (Color online) Complete set of observables for η photoproduction given in the form
of pseudo-data created at 18 angles with the error bar of 1 % using the ETA-MAID15a
model (red symbols) and a typical fit to the data (full line).

In Fig. 2 we show an example of three very different sets of multipoles which
fit the complete pseudo-data set equally well to a high precision: two discrete
and discontinuous ones obtained by setting the initial fitting values to the ETA-
MAID16a [9] (SE16a) and Bonn-Gatchina [10] (SEBG) model values (blue and red
symbols respectively), and the generating ETA-MAID15a model [8] which is dis-
played as full and dashed black continuous lines.

We know from Eq.(1) that equivalent fits to a complete set of data must be
produced by helicity amplitudes with different phases. Therefore, in Fig. 3, we
construct the helicity amplitudes corresponding to all three sets of multipoles
from Fig. 2 at one randomly chosen energyW = 1660.4MeV.

We see that all three sets of helicity amplitudes are indeed different, but the
discontinuity of multipole amplitudes, observed in Fig. 2-left is not reflected in a
plot of helicity amplitudes at a fixed single energy. If instead we plot an excitation
curve of all four helicity amplitudes at a randomly chosen angle, which is arbi-
trarily set to the value cos θ = 0.2588, we obtain the result shown in Fig. 3-right.

We see that the excitation curve of helicity amplitudes in this case remains
continuous only for the generating model ETA-MAID15a. For both single-energy
solutions it is different, and at the same time shows notable discontinuities be-
tween neighbouring energy points. This leads to the following understanding of
this, apparently very different multipole solutions:



From Experimental Data to Pole Parameters . . . 47

Fig. 2. (Color online) Plots of the E0+, M1−, E1+, and M1+ multipoles. Full and dashed
black lines give the real and imaginary part of the ETA-MAID15a generating model. Dis-
crete blue and red symbols are obtained with the unconstrained, Lmax = 5 fits of a
complete set of observables generated as numeric data from the ETA-MAID15a model
of ref. [8], with the initial fitting values taken from the ETA-MAID16a [9] and the Bonn-
Gatchina [10] models respectively. Filled symbols represent the real parts and open sym-
bols give the imaginary parts.

Fig. 3. (Color online) Left we show three sets of helicity amplitudes for all three sets of
multipoles at one randomly chosen energy W = 1660.4 MeV, and right for we show the
excitation curves for all three sets of multipoles, at one randomly chosen value of cos θ =

0.2588MeV. The figure coding is the same as in Fig. 2.

When we perform an unconstrained SE PWA, each minimization is performed in-
dependently at individual energies, and the phase is chosen randomly. So, at each energy
the fit chooses a different angle dependent phase, and creates different, discontinuous nu-
merical values for each helicity amplitude, producing discontinuous sets of multipoles.

However, the invariance with respect to phase rotations offers a possible so-
lution. Let us show the procedure.

We introduce the following angle-dependent phase rotation simultaneously
for all four helicity amplitudes:

H̃SEk (W,θ) = HSEk (W,θ) · eiΦ
15a
H2

(W,θ)− iΦSEH2
(W,θ)

k = 1, . . . , 4 (7)

whereΦSEH2(W,θ) is the phase of any single-energy solution andΦ15aH2 (W,θ) is the
phase of generating solution ETA-MAID15a. Applying this rotation we replace
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the discontinuous ΦSEH2(W,θ) phase from any SE solution with the continuous
Φ15aH2 (W,θ) ETA-MAID15a phase.

Fig. 4. (Color online) Up we show all three sets of rotated helicity amplitudes at one ran-
domly chosen energy W = 1660.4 MeV, and down three sets of rotated multipoles. The
figure coding is the same as in Fig. 2.

The resulting rotated single-energy helicity amplitudes are compared with
generating ETA-MAID15a amplitudes in Fig. 4.

We see that rotated helicity amplitudes of both single-energy solutions are
now identical to the generating ETA-MAID15a helicity amplitudes.

Thus, the previously different sets of discrete, discontinuous single-energy
multipoles different from the generating solution ETA-MAID15a and given in
Fig. 2, are after phase rotation transformed into continuous multipoles now iden-
tical to the generating solution, and given in lower part of Fig. 4.

So, we have constructed a way to generate up-to-a-phase unique solutions
in an unconstrained PWA of a complete set of observables generated as pseudo-
data.

4 Laurent + Pietarinen expansion

The driving concept behind the Laurent-Pietarinen (L+P) expansion was the aim
to replace an elaborate theoretical model by a local power-series representation of
partial wave amplitudes [2]. The complexity of a partial-wave analysis model is
thus replaced by much simpler model-independent expansion which just exploits
analyticity and unitarity. The L+P approach separates pole and regular part in
the form of a Laurent expansion, and instead of modeling the regular part in
some physical model it uses the conformal mapping to expand it into a rapidly
converging power series with well defined analytic properties. So, the method
replaces the regular part calculated in a model by the simplest analytic function
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which has correct analytic properties of the analyzed partial wave (multipole),
and fits the data. In such an approach the model dependence is minimized, and
is reduced to the choice of the number and location of branch-points used in the
model.

The L+P expansion is based on the Pietarinen expansion used in some for-
mer papers in the analysis of pion-nucleon scattering data [11–14], but for the
L+P model the Pietarinen expansion is applied in a different manner. It exploits
the Mittag-Leffler expansion1 of partial wave amplitudes near the real energy
axis, representing the regular, but unknown, background term by a conformal-
mapping-generated, rapidly converging power series called a Pietarinen expan-
sion2. The method was used successfully in several few-body reactions [3, 4, 17],
and recently generalized to the multi-channel case [18]. The formulae used in
the L+P approach are collected in Table 1. In the fits, the regular background
part is represented by three Pietarinen expansion series, all free parameters are
fitted. The first Pietarinen expansion with branch-point xP is restricted to an un-
physical energy range and represents all left-hand cut contributions. The next
two Pietarinen expansions describe the background in the physical range with
branch-points xQ and xR respecting the analytic properties of the analyzed par-
tial wave. The second branch-point is mostly fixed to the elastic channel branch-
point, the third one is either fixed to the dominant channel threshold, or left free.
Thus, only rather general physical assumptions about the analytic properties are
made like the number of poles and the number and the position of branch-points,
and the simplest analytic function with a set of poles and branch-points is con-
structed. The method is applicable to both, theoretical and experimental input,
and represents the first reliable procedure to extract pole positions from experi-
mental data, with minimal model bias.

The generalization of the L+P method to a multichannel L+P method is per-
formed in the following way: i) separate Laurent expansions are made for each
channel; ii) pole positions are fixed for all channels, iii) residua and Pietarinen co-
efficients are varied freely; iv) branch-points are chosen as for the single-channel
model; v) the single-channel discrepancy function Dadp (see Eq. (5) in ref. [17])
which quantifies the deviation of the fitted function from the input is generalized
to a multi-channel quantityDdp by summing up all single-channel contributions,
and vi) the minimization is performed for all channels in order to obtain the final
solution.

The formulae used in the L+P approach are collected in Table 1.

1 Mittag-Leffler expansion [15]. This expansion is the generalization of a Laurent expan-
sion to a more-than-one pole situation. For simplicity, we will simply refer to this as a
Laurent expansion.

2 A conformal mapping expansion of this particular type was introduced by Ciulli and
Fisher [11, 12], was described in detail and used in pion-nucleon scattering by Esco
Pietarinen [13, 14]. The procedure was denoted as a Pietarinen expansion by G. Höhler
in [16].
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Table 1. Formulae defining the Laurent+Pietarinen (L+P) expansion.

Ta(W) =

Npole∑
j=1

xaj + ı yaj
Wj −W

+

Ka∑
k=0

cak X
a(W)k +

La∑
l=0

dal Y
a(W)l +

Ma∑
m=0

eam Z
a(W)m

Xa(W) =
αa −

√
xaP −W

αa +
√
xaP −W

; Ya(W) =
βa −

√
xaQ −W

βa +
√
xaQ −W

; Za(W) =
γa −

√
xaR −W

γa +
√
xaR −W

Dadp =
1

2NaW −Napar

NaW∑
i=1

{[
Re Ta(W(i)) − Re Ta,exp(W(i))

ErrRe
i,a

]2

+

[
Im Ta(W(i)) − Im Ta,exp(W(i))

ErrIm
i,a

]2}
+ Pa

Pa = λac

Ka∑
k=1

(cak)
2 k3 + λad

La∑
l=1

(dal )
2 l3 + λae

Ma∑
m=1

(eam)2m3 ; Ddp =

all∑
a

Dadp

a . . . channel index Npole . . . number of poles Wj,W ∈ C
xai , y

a
i , c

a
k , d

a
l , e

a
m, α

a, βa, γa . . . ∈ R
Ka, La, Ma . . . ∈ N number of Pietarinen coefficients in channel a.

Dadp . . . discrepancy function in channel a

NaW . . . number of energies in channel a

Napar . . . number of fitting parameters in channel a

Pa . . . Pietarinen penalty function

λac , λ
a
d, λ

a
e . . . Pietarinen weighting factors

xaP, x
a
Q, x

a
R ∈ R (or ∈ C).

ErrRe, Im
i,a . . . minimization error of real and imaginary part respectively.
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