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Abstract

We restate theorems of Hutchinson [4] on list-colouring extendability for outerplanar
graphs in terms of non-vanishing monomials in a graph polynomial, which yields an Alon-
Tarsi equivalent for her work. This allows to simplify her proofs as well as obtain more
general results.
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1 Introduction
In his famous paper [8] Thomassen proved that every planar graph is 5-choosable. Actually,
to proceed with an inductive argument, he proved the following stronger result.

Theorem 1.1 ([8]). Let G be any plane near-triangulation (every face except the outer one
is a triangle) with outer cycle C. Let x, y be two consecutive vertices on C. Then G can
be coloured from any list of colours such that the length of lists assigned to x, y, any other
vertex on C and any inner vertex is 1, 2, 3, and 5, respectively.

In other words vertices x and y can be precoloured in different colours. Basically,
this theorem implies that any outerplanar graph is 3-choosable. Moreover, lists of any two
neighbouring vertices can have a deficiency. To formalise this fact we say that a triple
(G, x, y), where G is outerplanar graph, x, y ∈ V (G) are neighbouring vertices is (1, 2)-
extendable in the sense that G is colourable from any lists whose length is 1, 2 and 3 for
vertex x, y and any other vertex, respectively.
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Hutchinson [4] analysed extendability of outerplanar graphs, in the case when the se-
lected vertices are not adjacent, showing that for any two vertices x, y of outerplanar graph
G a triple (G, x, y) is (2, 2)-extendable. Of course, it is enough to prove this for outerplane
2-connected near-triangulation only, as each outerplane graph can be extended to such a
graph just by adding some edges. The main theorem was the following.

Theorem 1.2 ([4]). Let G be outerplane 2-connected near-triangulation and x, y ∈ V (G),
x ̸= y. Let C : V (G) → {1, 2, 3} be any proper 3-colouring of G. Then

(i) (G, x, y) is not (1, 1)-extendable;

(ii) (G, x, y) is (1, 2)-extendable if and only if C(x) ̸= C(y);

(iii) (G, x, y) is (2, 2)-extendable.

Indeed, it is enough to prove the above theorem for near-triangulations with exactly 2
vertices of degree 2 and to let x and y be these degree 2 vertices. Hutchinson called such
configurations fundamental subgraphs. Such a configuration can be obtained by succes-
sively shrinking the outerplane near-triangulation along some chord (inner edge) that sepa-
rates the component of the graph not containing vertices x and y (in case when xy ∈ E(G)
this reduces to an edge xy). The general result follows now by succesive colouring of
shrank parts using Theorem 1.1 — the chord is an outer edge of the shrank component
and its endpoins (already coloured) are these 2 precoloured vertices. The details are in [4].
Also in [4], Hutchinson provided further results about extendability of general outerplanar
graphs, for which the conditions are more relaxed than those of Theorem 1.2, allowing for
(1, 1)-extendability.

One important thing is that the proper 3-colouring C mentioned in the theorem above is
not in any way connected to possible list colouring of G, but is rather an inherent property
of the graph. This is due to the fact that every 2-connected outerplane near triangulation has
an unique (up to permutation) 3-colouring, i.e the vertices graph can be uniquely partitioned
into 3 groups so that in every proper 3-colouring of the graph the vertices in the same group
will always have the same colour (the groups in this partition are called colour classes, as
the partition defines an equivalence relation). The reason for this is that the graph consists
entirely of triangles, and every vertex of a given triangle needs to be of different colour.

The situation of particular importance is when two vertices are in the same colour class.
This can be forced in two ways. One, mentioned in [4], is the so called chain of diamonds,
where the diamond is understood as K4 minus an edge. It is obviously a 2-connected
outerplane near triangulation, and the two non-neighbouring vertices are always of the same
colour. Therefore is we link diamonds together glueing them by the vertices of degree 2,
each of the linking vertices will have the same colour. The second way is to attach a
diamond to diamond along the common edge (cf. [6]). Both of those ways can be seen on
Figure 1.

Recently, Zhu [10] strengthened the theorem of Thomassen in the language of graph
polynomials showing that Alon-Tarsi number of any planar graph G satisfies AT (G) ≤ 5.
His approach utilizes a certain polynomial arising directly from the structure of the graph.
This graph polynomial is defined as:

P (G) =
∏

uv∈E(G),u<v

(u− v),
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where the relation < fixes an arbitrary orientation of graph G. Here we understand u and
v both as the vertices of G and variables of P (G), depending on the context. Notice that
the orientation affects the sign of the polynomial only. Therefore individual monomials
and the powers of the variables in each monomials are orientation-invariant. We refer the
reader to [1, 2, 7] for the connection between list colourings and graph polynomials. The
approach of Zhu may be described in the following form, analogous to Theorem 1.1.

Theorem 1.3 ([10]). Let G be any plane near-triangulation, let e = xy be a boundary edge
of G. Denote other boundary vertices by v1, . . . , vk and inner vertices by u1, . . . , um.
Then the graph polynomial of G − e contains a non-vanishing monomial of the form
ηx0y0vα1

1 . . . vαk

k uβ1

1 . . . uβm
m with αi ≤ 2, βj ≤ 4 for i ≤ k, j ≤ m.

The main tool connecting graph polynomials with list colourings is Combinatorial Null-
stellensatz [1]. It implies that for every non-vanishing monomial of P (G), if we assign to
each vertex of G a list of length greater than the exponent of corresponding variable in that
monomial, then such list assignment admits a proper colouring.

We note that this approach can be continued, allowing one to obtain stronger equivalents
of already known results for list-colouring. Moreover, in [3] where it is proven that every
planar graph G contains a matching M such that AT (G−M) ≤ 4, one can find an example
that with this approach it is possible to get results that are not known (or hard to prove) for
ordinary list colouring.

In this paper we provide a graph polynomial analogue to the result of Hutchinson,
obtaining a characterisation of polynomial extendability for outerplanar graphs, which may
be presented in the form of the following theorem.

Theorem 1.4. Let G be any outerplanar graph with V (G) = {x, y, v1, . . . , vn}. Then
in P (G) there is a non-vanishing monomial of the form ηxβyγ

∏n
i=1 v

αi
i with αi ≤ 2,

β, γ ≤ 1 satisfying:

(i) β = γ = 1 when every proper 3-colouring C of G forces C(x) = C(y);

(ii) β + γ = 1 when every proper 3-colouring C of G forces C(x) ̸= C(y);

(iii) β = γ = 0 otherwise.

We note that our proofs are simpler than the ones of Hutchinson, which show the
strength of the graph polynomial method for graph colouring problems. All considered
graphs are simple, undirected, and finite. For background in graph theory see [9].

2 Outerplane near-triangulations
In this section we provide a graph polynomial analogue to Theorem 1.2. The main tool is
the following theorem.

Theorem 2.1. Let G be a triangle or any 2-connected, outerplane near-triangulation with
exactly two vertices of degree 2. Let z ∈ V (G) be any neighbour of a degree 2 vertex.
Denote V (G) = {x, y, z, v1, . . . , vn}, where deg(x) = deg(y) = 2, yz ∈ E(G), y, z ̸= x.
Then

P (G) = Q(G) + η1xv
2
1 . . . v

2
ny

0z2 + η2xv
2
1 . . . v

2
ny

1z1 + η3xv
2
1 . . . v

2
ny

2z0,

where {η1, η2, η3} = {−1, 0, 1}, while Q(G) is a sum of monomials of the form
ηxαxvα1

1 . . . vαn
n yαyzαz , η ̸= 0, with (αx, α1, . . . , αn) ̸= (1, 2, . . . , 2).
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Figure 1: An example of a graph satisfying conditions of point ii) of Theorem 1.4. When
3-colouring the graph, vertices a and b need to be in different colours. Vertices x and c are
in the same colour class as a (an example of the chain of diamonds), while y and d are in
the same colour class as b (the diamonds are linked along an edge). Therefore x and y have
different colours in every proper 3-colouring of the graph. The black vertices are yet to be
coloured.

Proof. The proof is done by induction on n. For the base step (n = 0), let G be a triangle
on vertices {x, y, z}. It is easy to check, that:

P (G) = (x− y)(y − z)(x− z)

= x2y1z0 − x2y0z1 + x1y0z2 − x1y2z0 + x0y2z1 − x0y1z2

= Q(G) + x1y0z2 − x1y2z0,

hence we have η2 = 0 and {η1, η3} = {1,−1}, and with Q(G) having necessary form, G
is concordant with the assertion.

We now proceed with the induction. Let n ∈ N and suppose the theorem holds for
graphs on at most n+3 vertices. Let G′ be any 2-connected, outerplane near-triangulation
on n+ 4 vertices and x, y ∈ V (G′) be the only two vertices of degree 2. Notice that x and
y cannot be adjacent (their common neighbour would then be a cutvertex, thus violating
2-connectivity). Let z and vn+1 be the neighbours of y. There is deg(z), deg(vn+1) ≥ 3
and (because G′ is triangulated) zvn+1 ∈ E(G′). Now consider G = G′ − y. Note that
G remains 2-connected outerplane near-triangulation. As outerplanar graph should have
at least 2 vertices of degree at most 2, one of neighbours of y has now degree 2. Let us
name it ỹ, while the second one — z̃. Notice that due to triangularity and 2-connectiveness,
we have deg(z̃) > 2 (with an exception when G is a triangle), as ỹ and z̃ have a common
neighbour. Now, we may consider P (G) using the inductive assumption. There are three
possible cases:
1. η̃1 = 0. As η̃1 = 0 and {η̃2, η̃3} = {−1, 1}, we know that:

P (G) = Q(G) + η̃2xv
2
1 . . . v

2
nỹ

1z̃1 + η̃3xv
2
1 . . . v

2
nỹ

2z̃0

= Q(G) + η̃2xv
2
1 . . . v

2
nỹ

1z̃1 − η̃2xv
2
1 . . . v

2
nỹ

2z̃0

= Q(G) + η̃2xv
2
1 . . . v

2
n(ỹ

1z̃1 − ỹ2z̃0).
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Now, P (G′) = P (G)(ỹ − y)(z̃− y) = P (G)(ỹz̃− ỹy − z̃y + y2), thus:

P (G′) = (Q(G) + η̃2xv
2
1 . . . v

2
n(ỹ

1z̃1 − ỹ2z̃0))(ỹz̃− ỹy − z̃y + y2)

= Q(G)(ỹz̃− ỹy − z̃y + y2) + η̃2xv
2
1 . . . v

2
n(ỹ

2z̃2y0 − ỹ2z̃1y1−
− ỹ1z̃2y1 + ỹ1z̃1y2 − ỹ3z̃1 + ỹ3y1 + ỹ2z̃1y1 − ỹ2z̃0y2)

= Q′(G′) + η̃2xv
2
1 . . . v

2
n(ỹ

2z̃2y0 − ỹ1z̃2y1 − ỹ2z̃0y2)

Now either z = ỹ and vn+1 = z̃, respectively, or the inverse may occur. In the first case,
we have:

P (G′) = Q′(G′) + η̃2xv
2
1 . . . v

2
n(v

2
n+1y

0z2 − v2n+1y
1z1 − v0n+1y

2z2),

thus {η1, η2} = {−1, 1} and η3 = 0, with the last monomial going into Q′(G′). With
analogous calculations, in the second case we have {η1, η3} = {−1, 1} and η2 = 0. As
Q′(G′) obviously contains only monomials of the form ηxαxvα1

1 . . . v
αn+1

n+1 yαyzαz , η ̸=
0, (αx, α1, . . . , αn+1) ̸= (1, 2, . . . , 2), it can assume the role of Q(G), and the case is
finished.
2. η̃2 = 0. As η̃2 = 0 and {η̃1, η̃3} = {−1, 1}, we know that:

P (G) = Q(G) + η̃1xv
2
1 . . . v

2
nỹ

0z̃2 + η̃3xv
2
1 . . . v

2
nỹ

2z̃0

= Q(G) + η̃1xv
2
1 . . . v

2
nỹ

0z̃2 − η̃1xv
2
1 . . . v

2
nỹ

2z̃0

= Q(G) + η̃1xv
2
1 . . . v

2
n(ỹ

0z̃2 − ỹ2z̃0).

And then:

P (G′) = (Q(G) + η̃1xv
2
1 . . . v

2
n(ỹ

0z̃2 − ỹ2z̃0))(ỹz̃− ỹy − z̃y + y2)

= Q(G)(ỹz̃− ỹy − z̃y + y2) + η̃1xv
2
1 . . . v

2
n(ỹ

1z̃3y0 − ỹ1z̃2y1 − ỹ0z̃3y1+

+ ỹ0z̃2y2 − ỹ3z̃1y0 + ỹ3z̃0y1 + ỹ2z̃1y1 − ỹ2z̃0y2)

= Q′(G′) + η̃1xv
2
1 . . . v

2
n(ỹ

0z̃2y2 − ỹ1z̃2y1 − ỹ2z̃0y2 + ỹ2z̃1y1)

Continuing as in case 1, when z = ỹ and vn+1 = z̃, respectively, we have {η2, η3} =
{−1, 1} and η1 = 0. In the inverse case, when vn+1 = ỹ and z = z̃, there is {η2, η3} =
{1,−1} and η1 = 0. Q′(G′) can again assume the role of Q(G), and this case is also done.
3. η̃3 = 0. This case is handled analogously as η̃1 = 0, interchanging the roles of ỹ and z̃.
Here we have:

P (G) = Q(G) + η̃1xv
2
1 . . . v

2
nỹ

0z̃2 + η̃2xv
2
1 . . . v

2
nỹ

1z̃1

= Q(G) + η̃2xv
2
1 . . . v

2
nỹ

1z̃1 − η̃2xv
2
1 . . . v

2
nỹ

0z̃2

= Q(G) + η̃2xv
2
1 . . . v

2
n(ỹ

1z̃1 − ỹ0z̃2).

And then:

P (G′) = (Q(G) + η̃2xv
2
1 . . . v

2
n(ỹ

1z̃1 − ỹ0z̃2))(ỹz̃− ỹy − z̃y + y2)

= Q(G)(ỹz̃− ỹy − z̃y + y2) + η̃2xv
2
1 . . . v

2
n(ỹ

2z̃2y0 − ỹ2z̃1y1 − ỹ1z̃2y1+

+ ỹ1z̃1y2 − ỹ1z̃3 + ỹ1z̃2y1 + z̃3y1 − ỹ0z̃2y2)

= Q′(G′) + η̃2xv
2
1 . . . v

2
n(ỹ

2z̃2y0 − ỹ2z̃1y1 − ỹ0z̃2y2)
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Finally, when z = ỹ and vn+1 = z̃, respectively, we have {η1, η3} = {−1, 1} and η2 = 0.
In the inverse case, when vn+1 = ỹ and z = z̃, there is {η1, η2} = {−1, 1} and η3 = 0.

Therefore, in each case we have the desired form of the polynomial, thus completing
the inductive argument.

Recall that by Combinatorial Nullstellensatz, (i, j)-extendability of (G, x, y) can be
expressed as the fact that there is a non-vanishing monomial in P (G) where exponents of
x and y are i−1 and j−1, respectively, and every other exponent is less than 3. We obtain
an analogue to Theorem 1.2 as the following

Corollary 2.2. Let G be any 2-connected, outerplane near-triangulation with V (G) =
{x, y, v1, . . . , vn}. Let C : V (G) → {1, 2, 3} be any proper 3-colouring of G. Then in the
graph polynomial P (G)

(i) there is no monomial of the form ηx0y0
∏n

i=1 v
αi
i with αi ≤ 2;

(ii) the monomial of the form ηx1y0
∏n

i=1 v
αi
i with αi ≤ 2 does not vanish if and only if

C(x) ̸= C(y);

(iii) there is non-vanishing monomial of the form ηxβyγ
∏n

i=1 v
αi
i with αi ≤ 2, β, γ ≤ 1.

Proof. For the first point, simply note that outerplane near-triangulation on n + 2 vertices
has 2n+ 1 edges, while the sum of the exponents of the given monomial is at most 2n.

For the second point and for the third one: when x and y are adjacent one may apply
Theorem 1.3 directly; otherwise, by the Hutchinson’s shrinking argument it is enough to
verify an existence of a suitable monomial for G having exactly 2 vertices of degree 2,
when x and y are these vertices.

Indeed, suppose otherwise and consider any chord (inner edge) ab of G that separates
the component H of the graph not containing vertices x and y. Such a chord exists, unless
x and y are the only degree 2 vertices of G. Let G1 = G[V (G) \ V (H)] and G2 =
G[V (H) ∪ {a, b}]. By Theorem 1.3 P (G2 − ab) contains non-vanishing monomial of
the form s2 = ηa0b0vα1

1 . . . vα
k

k with αi ≤ 2. Note, that common variables in P (G1)
and P (G2 − ab) are a and b only and that the sum of the exponents in any monomial in
P (G2 − ab) is fixed. Hence, any other monomial in P (G2 − ab) has different exponents
for some of v1, . . . vk. Therefore, as there is P (G) = P (G1)P (G2 − ab), G with x and
y satisfies the second (or the third one, respectively) point of the corollary if and only if
G1 with x and y does. Actually, the existence of desired monomials s in P (G) and s1 in
P (G1), respectively, is equivalent by identity s = s1s2.

Repeating the above argument until there is no separating chord one can shrink G to
the claimed form. By Theorem 2.1 this finishes the proof of the third point as then one
has either η1 ̸= 0 or η2 ̸= 0. For the second point it is enough to notice that under the
assumption of Theorem 2.1 there is η1 = 0 if and only if C(x) = C(y). Note that there is
also η3 = 0 if and only if C(z) = C(x) and then η2 = 0 if and only if x, y and z have 3
different colours. One may prove this fact by a simple analysis of the inductive step in the
proof of Theorem 2.1.

Indeed, in the base case (a triangle xyz) we have η2 = 0. Further, when G is extended
to G′ by a triangle ỹz̃y then

1. η̃1 = 0 (C(ỹ) = C(x)) forces η3 = 0 (when z = ỹ) or η2 = 0 (when z = z̃),



P. Gordinowicz and P. Twardowski: The polynomial method for list-colouring extendability . . . 289

2. η̃2 = 0 forces η1 = 0 (C(x) = C(y)),

3. η̃3 = 0 (C(z̃) = C(x)) forces η3 = 0 (when z = z̃) or η2 = 0 (when z = ỹ).

3 Poly-extendability of general outerplanar graphs
The results of the previous section can be of course applied to any outerplanar graph, not
necessarily triangulated. This, however, leads to loss of information, as usually there is
more than one way to triangulate the graph, and different triangulations may lead to dif-
ferent types of extendability. Moreover, in the case of non-triangulated graphs, as well
as those that are not 2-connected, the counting argument behind point (i) of Corollary 2.2
does not work any more. Hence, it is possible for a general outerplanar graph to be (1, 1)-
extendable. At first, a formal definition of fundamental subgraphs is provided, followed by
three instrumental lemmas.

Definition 3.1. Let G be a 2-connected outerplane graph, x, y ∈ V (G) and let T (G) be
the weak dual of G. The fundamental x − y subgraph of G is the subgraph of G induced
by the vertices belonging to faces that have vertices representing them in T (G) lying on
the shortest path between vertices representing faces on which x and y lie. If xy ∈ E(G),
then the fundamental subgraph reduces to an edge xy.

Here, the assumption that the graph is outerplane is needed, as the construction of
weak dual requires a particular embedding to be chosen. Notice however that in case of 2-
connected outerplanar graphs there is, up to isomorphism, just one outerplane embedding,
hence every 2-connected outerplanar graphs has essentially a single weak dual. Therefore
in the rest of the paper we will assume the graphs to be outerplanar, as the choice of an
embedding is irrelevant for our purpose.

Definition 3.2. Let G be a connected outerplanar graph with cutvertices, and let BC(G)
be the block-cutvertex graph of G. Let x, y ∈ V (G) be vertices lying in two different
blocks of G. The fundamental x − y subgraph of G consists of all blocks that have ver-
tices representing them in BC(G) lying on the shortest path between vertices representing
blocks containing x and y, and each of those blocks is restricted to the fundamental a − b
subgraph, where a, b ∈ V (G) are the two cutvertices belonging to the given block and to
the shortest path between blocks containing x and y in BC(G).

Definition 3.3. An outerplanar graph G with x, y ∈ V (G) is xy-fundamental if its fun-
damental x − y subgraph is equal to G. An outerplanar graph G is fundamental if it is
xy-fundamental for some x, y ∈ V (G).

Lemma 3.4. Let G be a 2-connected xy-fundamental near-triangulation, such that C(x) =
C(y), where C : V (G) → {1, 2, 3} is any proper 3-colouring of G. Let v0 be the vertex
of G that has degree 2 in G − y, and v1, . . . , vn be the remaining vertices. Then in P (G)
there is a non-vanishing monomial of the form ηx0y2v10v

2
1 . . . v

2
n, with η ∈ {−1, 1}.

Proof. As C(x) = C(y), then C(x) ̸= C(v0). Hence by the second case of Corollary 2.2,
there is a non-vanishing monomial ηx0v10v

2
1 . . . v

2
n, with η ∈ {−1, 1} in P (G−y). Adding

y back, thus multiplying P (G − y) by (y − v0)(y − vn) = y2 − yv0 − yvn + v0vn, we
get the monomial specified in the statement, and as it is the only way to obtain it, it is
non-vanishing.
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Figure 2: Top: a connected, outerplanar graph G; Bottom: a fundamental x − y subgraph
of G.

Lemma 3.5. Let G,G′ be any two graphs, such that V (G) = {x, v1, . . . , vn}, V (G′) =
{x′, u1, . . . , um}. Let G′′ be the graph obtained from G and G′ by identifying x with x′,
thus creating vertex x′′, and carrying neighbouring relations from G,G′. Suppose there
are non-vanishing monomials ηxαΠvαi

i and η′x′βΠu
βj

j in P (G) and P (G′) respectively.

Then in P (G′′) there is a non-vanishing monomial A(G′′) = ηη′x′′α+βΠvαi
i Πu

βj

j .

Proof. As both η and η′ are non-zero, then the only way A(G′′) would vanish is that there
were a monomial A′(G′′) = νν′x′′α′+β′

Πvαi
i Πu

βj

j , where νν′ = −ηη′ and α′ + β′ =
α + β. But then in P (G) and P (G′) there would have to be respective non-vanishing
monomials νxα′

Πvαi
i and ν′x′β′

Πu
βj

j , and as the sum of exponents in every monomial in
a polynomial of given graph is fixed, we have that α = α′ and β = β′, a contradiction.
Thus A(G′′) is non-vanishing.

Lemma 3.6. Let G be a path of length n, n ≥ 2, where x, y are the endpoints and
v1, . . . , vn−1 are the internal vertices of G. Then in P (G) there is a non-vanishing mono-
mial of the form ηx0y0v21v

1
2 . . . v

1
n−1, where η ∈ {−1, 1}.

Proof. Suppose at first that n = 2. Then P (G) = (x−v1)(y−v1) = xy−xv1−yv1+v21 ,
and the last monomial is the one fulfilling the assertion. Now suppose that the lemma
holds for n = k − 1. Then in P (G), where G is a path xv1 . . . vk−1, there is a monomial
ηx0v21v

1
2 . . . v

1
k−2v

0
k−1. Now adjoining vk to vk−1, thus multiplying P (G) by (vk−1 − vk)

we obtain a monomial ηx0v21v
1
2 . . . v

1
k−2v

1
k−1v

0
k for path of length k, hence completing the

induction.

3.1 Near-triangulations with cutvertices

The following theorem is a polynomial analogue of [4, Theorem 5.3] that characterizes
extendability of outerplanar near-triangulations with cutvertices.
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Figure 3: Illustration for Lemma 3.5. Top: graphs G (left) and G′ (right); Bottom:
graph G′′.

Theorem 3.7. Let G be a fundamental x − y subgraph with cutvertices {v1, . . . , vj−1},
CV (G) = (x, v1, . . . , vj−1, y) be the sequence consisting of x, y and the cutvertices of
G in order that they occur on any of the paths from x to y, and ui,k being the remaining
vertices in the i-th block. Then in P (G):

(i) there is a non-vanishing monomial of the form η1x
1y1Πvαm

m Πu
βi,k

i,k , αm, βi,k ≤ 2 if
every vertex from CV (G) is in the same colour class;

(ii) there is a non-vanishing monomial of the form η2x
0y1Πvαm

m Πu
βi,k

i,k , αm, βi,k ≤ 2
if there is a single pair of successive vertices in CV (G) that are in different colour
classes;

(iii) there is a non-vanishing monomial of the form η3x
0y0Πvαm

m Πu
βi,k

i,k , αm, βi,k ≤ 2
if there are at least two pairs of successive vertices in CV (G) that are in different
colour classes;

Figure 4: An example of labelling described in Theorem 3.7.
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Proof. Start with partitioning G by its cutvertices into separate, 2-connected, vi−1vi-funda-
mental outerplanar near-triangulations B1, . . . , Bj . To each of these graphs, Theorem 2.1
applies, and P (G) = P (B1) . . . P (Bj). If in each of those blocks the colour class of
degree 2 vertices is the same, then in each of their polynomials there is a non-vanishing
monomial such that exponents of degree 2 vertices are equal to 1, with other exponents no
larger than 2. Thus case 1 is just a repeated use of Lemma 3.5.

In the second case, let Bi be the block with degree 2 vertices in different colour classes.
If i = 1, then in P (B1) there is a non-vanishing monomial of the form η0x

0v11Πu2
1,k.

Hence again by Lemma 3.5 we get the desired monomial. If i > 1, then we apply
Lemma 3.4 to each block B1 to Bi−1, thus by Lemma 3.5 obtaining monomial with x0

and v2i−1. As vi−1 and vi are in different colour classes, P (Bi) contains a non-vanishing
monomial ηiv0i−1v

1
iΠu2

i,k, hence through Lemma 3.5 we finish the case.
The last case is starts analogously to the second one, with Bi, Bl, i < l being two blocks

with endpoints in different colour classes. Let G′ be the vi−1vl-fundamental subgraph of
G. By Theorem 2.1 there is a non-vanishing monomial in P (Bi) with v0i−1 and v1i and a
monomial in P (Bl) with v1l−1 and v0l . As every block between Bi and Bl has a monomial
with endpoints in power 1, by Lemmas 3.4 and 3.5 there is a monomial in P (G′) with both
vi−1 and vl in power 0. Again by Lemmas 3.4 and 3.5 we can now adjoin remaining parts
of G to G′, with their suitable monomials creating a desired monomial in P (G).

3.2 2-connected outerplanar graphs with non-triangular faces

The following three theorems are jointly analogous to [4, Theorem 4.3].

Theorem 3.8. Let G be a 2-connected xy-fundamental graph with exactly one non-tri-
angular interior face, and that face contains x and does not contain y. Let V (G) =
{x, y, a, b, v1, . . . , vn}, where a, b are the two vertices of non-triangular face belonging to
the neighbouring interior face. Let C(v) be the colour class of vertex v in the 3-colouring
of the graph induced by all of the triangular faces. Then in P (G):

(i) there is a non-vanishing monomial of the form η1x
0y1aαabαbΠvαi

i , αk ≤ 2 if
d(x, a) = 1 and C(a) = C(y) OR d(x, b) = 1 and C(b) = C(y);

(ii) there is a non-vanishing monomial of the form η2x
0y0aαabαbΠvαi

i , αk ≤ 2 other-
wise.

Proof. Suppose that d(x, a) = 1 and C(a) = C(y). Let G′ be the subgraph of G created
by deleting all the vertices on the non-triangular face except for a and b. As G′ is an
outerplanar near-triangulation Theorem 2.1 applies, and as C(a) = C(y), then in P (G′)
there is a non-vanishing monomial with a1 and y1. If we now adjoin vertex x to a, creating
graph G′′, then it P (G′′) there is a non-vanishing monomial with x0, a2 and y1. Now
adding a path between x and b, thus reconstructing G (notice that the length of this path is
at least 2, as the face is not a triangle), by Lemma 3.6 we obtain a desired monomial. The
case when d(x, b) and C(b) = C(y) is handled analogously.

If this is not the case, then either d(x, a) > 1 and d(x, b) > 1, or d(x, a) = 1 and
C(a) ̸= C(y) (or analogously d(x, b) = 1 and C(b) ̸= C(y)). In the first case, then
by Theorem 2.1 and Lemma 3.4 in P (G′) (with G′ defined as previously) there is a non-
vanishing monomial with y0 and all other powers less than 3. Now as we join x with a and
b with previously deleted paths, Lemma 3.6 gives us a monomial with x0, y0 and all other
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Figure 5: Examples of labelling as in Theorem 3.8. Left: example to point (i); Right:
example to point (ii).

powers less than 3. In the second case, as C(a) ̸= C(y), by 2.1 there is a monomial in
P (G′) where y has power 0 and a has power 1. Adjoining x to a, we obtain a monomial
with x0, y0 and a2, and as we join x with b by a path, Lemma 3.6 gives us a desired
monomial. Case when d(x, b) = 1 and C(b) ̸= C(y) is again analogous to the last one.

Theorem 3.9. Let G be a 2-connected xy-fundamental graph with exactly one non-trian-
gular interior face, and that face does not contain x nor y. Let V (G) = {x, y, a, b, c, v1,
. . . , vn}, where a, b and a, c are the two pairs of vertices of non-triangular face belonging
to the neighbouring interior faces, and let C(v) be the colour class of vertex v in the 3-
colouring of the subgraph of G created by deleting the path connecting b and c. Then in
P (G):

(i) there is a non-vanishing monomial of the form η1x
1y1aαabαbcαcΠvαi

i , αk ≤ 2, if
C(x) = C(a) = C(y);

(ii) there is a non-vanishing monomial of the form η2x
0y1aαabαbcαcΠvαi

i , αk ≤ 2, if
C(x) ̸= C(a) = C(y) or C(x) = C(a) ̸= C(y);

(iii) there is a non-vanishing monomial of the form η3x
0y0aαabαbcαcΠvαi

i , αk ≤ 2, if
C(x) ̸= C(a) ̸= C(y);

Proof. Let G′ be the subgraph of G obtained by deleting path connecting b and c from G.
Obviously G′ is an outerplanar near-triangulation with a single cutvertex a, hence Theo-
rem 3.7 applies to it. Notice moreover, that the first case of the above theorem leads to the
first case of Theorem 3.7, and the second and third case also relate similarly. As Theo-
rem 3.7 gives us suitable monomials, when we add back the path we previously deleted, an
application of Lemma 3.6 finishes the proof.

Theorem 3.10. Let G be a 2-connected xy-fundamental graph with exactly one non-
triangular interior face, and that face does not contain x nor y. Let V (G) = {x, y, a, b, c, d,
v1, . . . , vn}, where a, b and c, d are the two pairs of vertices of the non-triangular face be-
longing to the neighbouring interior faces with ab ∈ E(G) and cd ∈ E(G), and let C(v)
be the colour class of vertex v in the 3-colouring of the subgraphs of G created by deleting
the paths connecting a with c and b with d. Then in P (G):
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Figure 6: An example of labelling described in Theorem 3.9.

(i) there is a non-vanishing monomial of the form η1x
0y1aαabαbcαcdαdΠvαi

i , αk ≤ 2,
if d(a, c) = 1, C(x) = C(a) and C(y) = C(c) OR d(b, d) = 1, C(x) = C(b) and
C(y) = C(d);

(ii) there is a non-vanishing monomial of the form η2x
0y0aαabαbcαcdαdΠvαi

i , αk ≤ 2
otherwise;

Figure 7: An example of labelling described in Theorem 3.10.

Proof. Suppose at first that C(x) = C(a) and C(y) = C(c). We can connect vertex a
with d, and if d(b, d) > 1, also with every interior vertex on the path connecting b with
d, thus obtaining an xy-fundamental 2-connected near triangulation G′. If d(a, c) = 1,
then C(a) ̸= C(c), thus C(x) ̸= C(y), and by Corollary 2.2 P (G′) contains a non-
vanishing monomial with x0, y1 and every other exponent equals 2. As neither x nor y
were affected by addition of edges to G, P (G) contains a non-vanishing monomial of the
form η1x

0y1aαabαbcαcdαdΠvαi
i , αk ≤ 2. If d(a, c) > 1, then G′ fulfils the conditions

of Theorem 3.9, with d serving as vertex a in the statement of that theorem. Moreover, as
C(x) = C(a) and C(y) = C(c), and d neighbours both a and c in G′, then in colouring
of G′ C(x) ̸= C(d) and C(y) ̸= C(d). Hence by Theorem 3.9 P (G′) contains a non-
vanishing monomial with x0, y0 and every other exponent no larger than 2, and this again
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implies that there is a non-vanishing monomial of the form η2x
0y0aαabαbcαcdαdΠvαi

i ,
αk ≤ 2 in P (G). The case when C(x) = C(b) and C(y) = C(d) is analogous.

Suppose now that C(x) ̸= C(a) and C(y) = C(c). Start by removing the paths from
a to c and b to d from G. This leaves us with two separate, 2-connected near triangu-
lations G′ and G′′ with {x, a, b} ∈ V (G′) and {y, c, d} ∈ V (G′′). As C(y) = C(c),
then C(y) ̸= C(d), and by Corollary 2.2 in P (G′′) there is a non-vanishing monomial
of the form η1y

0d1c2Πv2i . Now as C(x) ̸= C(a), there exists a non-vanishing monomial
η1x

0a1b2Πu2
i in P (G′), as the polynomial of xa-fundamental subgraph of G′ contains a

non-vanishing monomial with x0 and a1, and as G′ is a 2-connected near triangulation,
every other exponent must be equal to 2. Now add back the previously removed paths.
Each of them contains in its graph polynomial a non-vanishing monomial with every ex-
ponent equal to 1, except for one of its endpoints, which has power 0. We will call that
monomial oriented towards the endpoint with non-zero exponent. Add paths connecting a
with c and b with d to G′ and G′′, and by multiplication of the monomials described above
we obtain a monomial of the form η2x

0y0aαabαbcαcdαdΠvαi
i , αk ≤ 2 in P (G), where

exponent of each of the vertices a, b, c, d is equal to 2. This monomial does not vanish,
as the only other way to get this monomial would require us to orient both of the paths
in the opposite direction, but this would imply that there were a non-vanishing monomial
η1y

0d2c1Πv2i in P (G′′), which is not the case as C(y) = C(c). Cases where C(x) = C(a)
and C(y) ̸= C(c), C(x) ̸= C(b) and C(y) = C(d) or C(x) = C(b) and C(y) ̸= C(d) are
sorted out in the same manner.

The last case is when C(x) ̸= C(a) and C(y) ̸= C(c). Observe at first, that we can
also assume that C(x) ̸= C(b) and C(y) ̸= C(d), as all the other cases were already
solved in previous arguments due to symmetries. Let G′ and G′′ be as in previous case. As
C(b) ̸= C(x) ̸= C(a), then in P (G′) there are non-vanishing monomials η1x

0a1b2Πv2i
and −η1x

0a2b1Πv2i . Similarly, there are non-vanishing monomials η2y
0c1d2Πu2

i and
−η2y

0c2d1Πu2
i in P (G′′). Now reconstruct G as previously, orienting path connecting

a and c towards a and path connecting b and d towards d. To comply with requirements
of the assertion, we have to use the first and fourth monomial from those specified above,
thus in P (G) we have a monomial −η1η2x

0y0a2b2c2d2Πv2i . The only other way to reach
this set of exponents is to use the second and third monomial, and orient paths in opposite
directions, but as a simultaneous switch of orientations preserves sign, we again obtain
−η1η2x

0y0a2b2c2d2Πv2i , so those monomials do not annihilate each other, but rather dou-
ble the coefficient. As all cases are now addressed, the proof is complete.

3.3 General outerplanar graphs

The three theorems above can be combined with Theorem 3.7 to obtain a general character-
isation of (i, j)-extendability of outerplanar graphs. We will start with some technicalities.

Definition 3.11. Let G be an outerplanar graph. A non-triangular inner face of G will be
called type 0 if it is as defined in Theorem 3.8 (with possibly y belonging to that face instead
of x), type 1 if it is as defined in Theorem 3.9 and type 2 if it is as defined in Theorem 3.10.
In case of type 1 faces, the vertex belonging to the two neighbouring faces will be called
an apex of that face.

Lemma 3.12. Let G be a connected outerplanar graph with V (G) = {x, y, v1, . . . , vi}
and let G′ be a supergraph of G obtained by adding a path of the length 2 to G in a way
that preserves outerplanarity. Then the monomial xαxyαyΠvαi

i does not vanish in P (G) if
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and only if the monomial xαxyαyΠvαi
i z2 does not vanish in P (G′), where z is the middle

vertex of the added path.

Proof. The implication from P (G) to P (G′) is obvious and was shown to be true and uti-
lized multiple times in this paper. Suppose there is a non-vanishing monomial xαxyαyΠvαi

i z2

in P (G′). As P (G′) = P (G)(ab−az−bz+z2), where a, b are the endpoints of the added
path, and none of the monomials from P (G) contains z due to the fact that z /∈ V (G), then
the only way to obtain the monomial above is by multiplying xαxyαyΠvαi

i by z2, thus the
former must occur in P (G).

Definition 3.13. Let G be a 1-connected fundamental outerplanar graph. For every cutver-
tex of G that is not an endpoint of any bridge add a path of length 2, connecting the pair of
some neighbours of that cutvertex without disrupting outerplanarity, thus creating a non-
triangular face of type 0. Then for every bridge or chain of bridges of G add a path of the
length 2 connected to the pair of the neighbours of the endpoints of that bridge or chain
of bridges (or to the neighbour and the endpoint if it has degree 1) in a way that preserves
outerplanarity, creating a face of type 2 (or type 0). Finally, if G is a path, connect end-
points of that path with a path of length 2. The resulting supergraph of G will be called a
2-connection of G. The 2-connection of A 2-connected graph would be the graph itself.

Notice, that the 2-connection of a 1-connected graph is not unique — for example, the
graph on Figure 8 has 8 different 2-connections. However, each of the 2-connections has
the same relevant properties — namely the color classes of the cutvertices and types of the
newly created non-triangular faces.

Figure 8: Top: a connected, outerplanar graph G; Bottom: a possible 2-connection of G.

The following remark is a direct consequence of Lemma 3.12.

Remark 3.14. Let G be a connected xy-fundamental outerplanar graph, V (G) = {x, y,
v1, . . . , vm} and let G′ be its 2-connection, V (G′) = {x, y, v1, . . . , vm, u1, . . . , un}. There
is a non-vanishing monomial xαxyαyΠvαi

i in P (G) if and only if there is a non-vanishing
monomial xαxyαyΠvαi

i Πu2
j in P (G′).
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The following theorem presents a full characterisation of the polynomial extendability
of connected fundamental outerplanar graphs.

Theorem 3.15. Let G be a connected xy-fundamental outerplanar graph, V (G) = {x, y,
v1, . . . , vi}, and let G′ be a 2-connection of G. Then in P (G):

(i) there is a non-vanishing monomial of the form x1y1Πvαi
i , αk ≤ 2 if G is a 2-

connected near-triangulation with C(x) = C(y) OR G is as in point 1 of Theo-
rem 3.7 OR every non-triangular face of G′ is of type 1 and every apex, x and y have
the same colour in every 3-colouring of G.

(ii) there is a non-vanishing monomial of the form x0y1Πvαi
i , αk ≤ 2 if G is a 2-

connected near-triangulation with C(x) ̸= C(y) OR G is as in point 2 of Theo-
rem 3.7 OR G′ is as in point 1 of Theorem 3.8 OR G′ is as in point 1 of Theorem 3.10
OR every non-triangular face of G′ is of type 1 and in every 3-colouring of G′ there
is exactly one pair of consecutive apexes (or either x or y with the closest apex) with
different colours OR only one of the non-triangular faces of G′ is not of the type 1
and conditions of point 1 of Theorem 3.10 are fulfilled on that face.

(iii) there is a non-vanishing monomial of the form x0y0Πvαi
i , αk ≤ 2 otherwise.

Proof. We will omit every case that is covered already by previous theorems, leaving us
only with the cases when there are multiple non-triangular faces. Suppose all of those are
of type 1. It is easy to see (with some help of Lemma 3.6) that for every such face removal
of all vertices belonging only to this (and outer) face produces a cutvertex, simultaneously
changing nothing in terms of extendability-relevant monomials. Hence apply Theorem 3.7,
with each apex acting as a cutvertex.

Suppose now there is a face of type either 0 or 2 in G′. Theorems 3.8 and 3.10 show
that the only cases where there is no monomial in P (G′) (and thus in P (G)) with both x
and y in power 0 is when 3-colouring G′ we cannot avoid a situation described in point 1
of either of these theorems on any of such faces, and in those cases there is a non-vanishing
monomial with x0 and y1. Observe that this is not the case when there are at least two
faces of type 0 or 2, as we can avoid this situation by either permuting the colours, or by
changing them on vertices of degree 2 (as in case of type 0 faces at least one such vertex
other than x and y definitely exists). So there are only two cases when we cannot avoid
that. The first is when in G′ there is only one face of type 2, no faces of type 0, there is
a pair of neighbouring vertices belonging to this face such that the only other face of G′

they belong to simultaneously is the outer face, and in any 3-colouring of G (and thus also
G′) each of those vertices has the same colour as x or y, depending on which of those
vertices lies on the same ”side” of that face. Label the vertex from this pair lying closer to
x as vx, and the one being closer to y as vy . The case of C(x) = C(vx) can occur either
when on one side there are only triangular faces between x and vx, with the structure of
that triangulation forcing the same colour of those vertices, or when for every type 1 face
between those vertices, the triangular structure between neighbouring faces or between x
(or vx) and the nearest such face forces the same colour on each of those vertices. The same
is true for y and vy , with the restriction that the former situation cannot occur for both of
those pairs. The second case is when there is exactly one face of type 0 in G′ (without loss
of generality we can assume that x lies on that face), no faces of type 2, x has a neighbour
(v0) that lies also on adjacent inner face, and the colour of that vertex is the same as colour



298 Ars Math. Contemp. 21 (2021) #P2.08 / 283–299

of y in every 3-colouring of G′. This can be only caused by the fact that the apex of every
type 1 face is forced to have the same colour as the others, as well as y and v0.

Finally, we prove that Theorem 3.15 can be restated as Theorem 1.4.

Proof of Theorem 1.4. Neither the graph polynomial nor the colouring depends on a partic-
ular graph embedding. Therefore, let G be any outerplanar graph with V (G) = {x, y, v1,
. . . , vn}. At first notice, that if G is not connected and x and y are in different connected
components, one may use Theorem 1.3 directly to obtain a monomial with β = γ = 0, so
then obviously the third case occurs.

For x and y in one component observe that by the Hutchinson’s shrinking argument it is
enough to prove theorem for G being xy-fundamental graph. See the proof of Corollary 2.2
for details. Now consider consequences of each of the situations described in the statement
of Theorem 3.15 in terms of 3-colourings. In every case of point (i) we obviously have that
C(x) = C(y). Moving to the second point, the first condition again directly states that
C(x) ̸= C(y). If G is as in point 2 of Theorem 3.7 or every non-triangular face of G′ is
of type 1 and in every 3-colouring of G′ there is exactly one pair of consecutive apexes (or
either x or y with the closest apex) with different colours, as the colour class changes only
once on the cutvertices/apexes, then obviously classes of terminal vertices x and y have to
be different. If G′ is as in point 1 of Theorem 3.8, then it is directly stated that the colour
of one of terminal vertices is the same as the colour of one of the neighbours of the other
terminal vertex, thus the colours of terminal vertices have to be different. Finally, if G′ is
as in point 1 of Theorem 3.10 or only one of the non-triangular faces of G′ is not of the
type 1 and the conditions of point 1 of Theorem 3.10 are fulfilled on that face, the vertices
x and y are in the same colour class as vertices a and c (or b and d), respectively, and those
vertices are adjacent, hence their colours cannot possibly be the same.

Finally, observe that in any other case the colour classes of x and y are independent
— the structure of the graph permits the colours to be rearranged in some parts without
changing the colours in the other parts, therefore the graph can be properly 3-coloured with
both C(x) = C(y) and C(x) ̸= C(y). As an example consider point (ii) of Theorem 3.8,
other cases are analogous. Starting with the triangulated part of the graph (i.e. the graph
minus internal vertices of the path between a and b containing x) already coloured, analyse
possible proper 3-colourings of the path from a to b. If min(d(x, a), d(x, b)) > 1, then
we can colour x with any of the 3 colours. Otherwise, suppose without loss of generality
that d(x, a) = 1 and hence d(x, b) > 1. Then x can be coloured with any colour except
C(a), but there is C(a) ̸= C(y). Therefore, again x can get colour of y or some different
one.

4 Further work
Extendability is naturally transformed into plane graphs by allowing interior vertices to
have a list of colours of length 5. In [5] and [6] Postle and Thomas provided results that
may be summarized in the following theorem.

Theorem 4.1. Let G = (V,E) be any plane graph, let C ⊆ V be the set of vertices on the
outer face, x, y ∈ C, x ̸= y. Then

(i) (G, x, y) is (1, 2)-extendable if and only if there exists a proper colouring c : C →
{1, 2, 3} such that c(x) ̸= c(y);
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(ii) (G, x, y) is (2, 2)-extendable.

One may ask, whether is it possible to restate the above theorem in the terms of a graph
polynomial, i.e. to extend, at least partially Theorem 1.4 to planar graphs. Our partial
results suggest that it is possible.
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