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In this paper, we propose a novel high magnification

factor face hallucination model that incorporates identity

priors into the learning procedure. The model consists of

i) a cascaded super-resolution network that upscales the

low-resolution images, and ii) an ensemble of face recog-

nition models that act as identity priors during training.

Our network uses a cascade of SR models that progres-

sively upscale the low-resolution images using steps of

2×. This allows us to apply appearance and recogni-

tion supervision at different resolutions. Our model is

able to upscale (very) low-resolution images captured in

unconstrained conditions and produce visually convinc-

ing results. We evaluate the proposed model on a large

dataset of facial images and report superior performance

compared to the state-of-the-art.

1 Introduction

Face hallucination represents a domain specific super-

resolution (SR) problem where the goal is to recover high-

resolution (HR) face images from low-resolution (LR) in-

puts [1]. It has important applications in image enhance-

ment, compression and face recognition [2], but also surveil-

lance and security [3, 4].

Like other single-image super-resolution tasks, face

hallucination is inherently ill-posed. Given a fixed image-

degradation model, every LR facial image can be shown

to have many possible HR counterparts. Thus, the solu-

tion space for SR problems is extremely large and exist-

ing solutions commonly try to produce plausible recon-

structions by ”hallucinating” high-frequency information

based on the provided LR evidence. While significant

progress has been made in recent years in the area of

super-resolution and face hallucination [5, 6, 7, 8, 9, 10,

11, 12], super-resolving arbitrary facial images, especially

at high magnification factors, is still an open and chal-

lenging problem, mainly due to:

• The ill-posed nature of the face hallucination prob-

lem, where the solution space is known to grow

exponentially with an increase in the desired mag-

nification factor [3].

• The difficulty of integrating priors beyond solely

the visual quality of the reconstructions. Most of

the existing priors utilized for super-resolution re-

late to image characteristics such as gradient distri-

Figure 1: Results generated with the proposed method.

bution [13], total variation [14] and smoothness [15].

If discernibility of the semantic content is the goal

of the SR procedure, such priors may not be the

most optimal choice.

The outlined limitation are most evident for challeng-

ing face hallucination problems where very low-resolution

images (e.g., 24 × 24 pixels) of arbitrary characteristics

need to be super-resolved at high magnification factors

(e.g., 8×). In this paper, we try to address some of these

limitations with a new hallucination model build using

convolutional neural networks (CNNs). Our model uses

a cascade of simple super-resolution models (referred to

as SR modules hereafter) for image upscaling and iden-

tity priors in the form of pretrained recognition networks

as constraints for the training procedure. The SR mod-

els super-resolve the LR input images in magnification

increments of 2× and, consequently, allow for interme-

diate supervision at every scale. This intermediate super-

vision confines the explosion of the solution space size

and contributes towards more accurate hallucination re-

sults. The recognition models are trained to respond only

to the hallucinated high-frequency parts of the SR images

and ensure that the added facial details are not only plau-

sible, but as close to the true details as possible. Due

to availability of intermediate SR results, we incorporate

the identity constraints at multiple scales in the proposed

model.

Overall, we make the following main contributions:

1. We propose a new face hallucination model, that

integrates identity priors at multiple scales into the

training procedure of a super-resolution network.

To the best of our knowledge, this is the first at-

tempt to exploit multi-scale identity information to

constrain the solution space of deep-learning based

SR models.

2. We introduce a cascaded SR network architecture

that super-resolves images in magnification steps

of 2× and offers a convenient and transparent way

of incorporating supervision signals an multiple scales.
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Once trained, the SR network is able to upsample

24 × 24 pixel LR images at magnification factors

of 8× and produce realistic and visually convinc-

ing hallucination results as illustrated in Fig. 1.

2 Proposed method

Our face hallucination model consists of two main com-

ponents: i) a generative SR network for image upscaling,

and ii) an ensemble of face recognition models that serve

as identity priors. In the following sections we describe

all components of the proposed model in detail and elab-

orate on the training procedure used to learn the model

parameters.

2.1 The cascaded SR network

The generative part of our proposed model is a 53-layer

deep convolutional neural network (CNN) that takes a LR

facial image as input and super-resolves it at a magnifi-

cation factor of 8×. The network progressively upscales

the images using a cascade of SR modules. Each module

upscales the image by a factor of 2×, which allows us

to apply a loss function on the intermediate results. The

cascaded architecture allows us to solve a series of bet-

ter conditioned problems using repeated bottom-up infer-

ence with top-down supervision instead of one complex

problem with an overwhelming amount of possible solu-

tions.

We design our SR network around a fully-convolutional

architecture that relies heavily on residual blocks [16] for

all processing within one SR module and sub-pixel con-

volutions [17] for image upscaling. Our design choices

are motivated by the success of fully-convolutional CNN

models in various vision problems [16, 18, 19] and the

state-of-the-art performance ensured by the sub-pixel con-

volutions in prior SR work [17, 10]. Similarly to [10], the

residual blocks of the SR modules consist of two (convo-

lution, batch-norm, activation) sub-blocks, followed by a

post-activation element-wise sum.

The network branches off after each SR module to al-

low for intermediate top-down supervision during train-

ing. Each branch applies a series of large-filter convo-

lutions to produce intermediate SR resolution results at

different scales (i.e., 2× and 4× the initial scale) that

are incorporated into the loss functions discussed in Sec-

tion 2.3. However, these branches are not used at test

time. The entire architecture of our network is illustrated

in detail in Fig. 2.

2.2 The identity prior

Using prior information to constrain the solution space of

SR models during training is a key mechanism in the area

of super-resolution [14, 15, 13]. The main motivation for

incorporating priors into SR models is to provide a source

of additional information for the learning procedure that

complements the commonly used reconstruction-oriented

objectives and contributes towards sharper and more ac-

curate SR results.

Identity is an exceptionally strong prior in this con-

text. In fact, it seems intuitive to think about SR in terms

of both i) an image enhancement and ii) content preser-

vation. While the image enhancement perspective is cov-

ered in our model by a reconstruction-based loss, the con-

tent preservation aspect is addressed through an ensemble

of face recognition models that ensure that identity infor-

mation is preserved.

We associate each recognition model with one of the

SR modules and use it as an identity prior for the corre-

sponding SR output, as illustrated in Fig. 2. Since each

SR module can be shown to add only high-frequency de-

tails to the input images, we train all recognition models

to respond only to the hallucinated details and ignore the

low-resolution content that is shared by the input and SR

images. By focusing exclusively on the added details, we

are able to directly link the recognition models to the de-

sired SR outputs and penalize the results in case they alter

the facial identity. This mechanism allows us to learn the

parameters of the SR network by considering an identity-

dependent loss in the overall learning objective.

We use SqueezeNet [20] models for this work. The

main reason for our choice is the lightweight architecture

of SqueezeNet, which does not impose significant run-

time slowdowns due to its relatively small memory and

FLOPS footprint.

2.3 Training details and SSIM loss

We train the model in two stages. In the first stage, we

learn the parameters of the SqueezeNet models for all

three SR outputs. In the second stage, we freeze the the

weights of the recognition models and train the SR net-

work with a combined loss.

Recognition-model training. Next to LR and HR

image pairs, we also require two intermediate reference

images between the lowest and the highest resolution to

learn the parameters of the recognition models and SR

modules. To this end, we apply a simple degradation

model on the available HR images xhr
i and generate N

image quadruplets for training, i.e., {xlr
i ,x

2×

i ,x4×

i ,xhr
i },

where xlr
i represents the LR input image, x2×

i and x
4×

i

stand for the intermediate SR results at 2× and 4× mag-

nification factors, respectively, and the HR image xhri cor-

responds to the ground truth for the magnification factor

of 8×. Our degradation model uses Gaussian blurring

followed by image decimation for down-sampling to pro-

duce training data.

To train the recognition models, we construct resid-

ual images that reflect the facial details that need to be

learned by the SR modules. The residual images are com-

puted by smoothing the ground truth images by a Gaus-

sian kernel and subtracting the smoothed image from the

original, i.e., ∆x
j
i = x

j
i − g ∗ xj

i , for j ∈ {2×, 4×, hr},

where σ values of σ2× = 1/3, σ2× = 1 and σ8× = 7/3
are used with images at 2×, 4×, and 8× the LR image

size, respectively. We train the SqueezeNet models based

on the generated residual images using categorical cross-

entropy LCE :

LCE(θSN ,∆x) = −

K
∑

k=1

p∆x(k) log p̂∆x(k), (1)
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Figure 2: The proposed model consists of a generative SR network and face recognition models that serve as identity priors.

where p∆x denotes the ground truth class probability dis-

tribution of the residual image ∆x (i.e., p∆x ∈ {0, 1}K

is a class-encoded one-hot vector), p̂∆x ∈ R
K stands for

the output probability distribution produced by SqueezeNet’s

softmax layer based on ∆x, i.e., K stands for the num-

ber of classes in the training data and θSN represents the

parameters of the network. We train the parameters of

all three recognition models by minimizing the LCE loss

over the training dataset. The result of this training stage

are three face recognition models θ̂2×SN , θ̂4×SN , θ̂hrSN , that

serve as identity constraints for the SR network. We use

the Adam [21] algorithm for training, with a batch size of

128 and an initial learning rate of 10−4. The learning rate

is multiplied by a factor of 1

3
every 20 epochs. To avoid

over-fitting, use random horizontal flipping and random

crops for data augmentation.

SR network training. Standard reconstruction ori-

ented loss functions used for training SR models, such

as MSE or MAE, are known to produce overly smooth

and often blurry SR results [10]. We therefore design a

new loss function for our SR network around the struc-

tural similarity index (SSIM, [22]), and integrate it di-

rectly into our learning algorithm. Specifically, we use

our SSIM approximation as a loss function for the hallu-

cination model.

Given a ground truth image x and the corresponding

SR network prediction x̂ = fθSR
(x), we compute the

SSIM-based loss as follows:

LSSIM (θSR,x) =
1

2

(

1− Ex

[

ˆSSIM(x, x̂)
])

, (2)

where the SR network f is parametrized by θSR, Ex [·]
stands for the expectation operator over the spatial coor-

dinates and ˆSSIM(x, x̂) is a spatial similarity map be-

tween x and x̂ defined as:

ˆSSIM(x, x̂) =
(2µ12 + C1)⊙ (2σ12 + C2)

(µ2
1
+ µ2

2
+ C1)⊙ (σ2

1
+ σ2

2
+ C2)

,

(3)

where we model the means µ1 and µ2 as convolu-

tions of local patches with a Gaussian kernel, µ12 as their

entry-wise product, and σ2
1 , σ2

2 and σ12 as xx, x̂x̂ and xx̂

convolved with the same kernel, respectively.

The open parameters C1 and C2 are defined as per the

SSIM reference implementation provided by the authors

of [23], i.e., C1 ≈ 6.55, C2 ≈ 58.98.

Based on the pre-trained SqueezeNet models and the

loss introduced above, we defined the overall loss of our

face hallucination model as follows:

L(θSR, {x
j}) =

∑

j∈D

LSSIM (θSR,x
j)+αLCE(θ

j
SN ,∆x

j),

(4)

where D = {2×, 4×, hr}, α is a weight parameter that

balances the relative impact of the reconstruction- and

recognition-based losses and θSR stands for the param-

eters of the SR network that we aim to learn.

We again use the Adam [21] algorithm for training,

minimizing (4) with α = 0.001. Due to the large mem-

ory footprint of the SR network and the face recognition

models, we use a relatively small batch size of 8. We set

the initial learning rate to 10

3
× 10−3 and multiply it by 1

3

at the end of epochs 10, 25, 50 and 80.

Once the training is complete, we remove the recog-

nition models and network branches used to generate the

intermediate SR results. The final SR network takes an

image xlr of size 24 × 24 pixels as input and returns a

192× 192 facial image xhr.

3 Experiments

We select two datasets for our experiments. To train the

model we use the CASIA WebFace dataset [24] which

features 494, 414 images of 10, 575 identities, (i.e., N =
494, 414; K = 10, 575). The CASIA WebFace images

are blurred and sub-sampled to produce the necessary im-

age quadruplets for training the recognition models and

the SR network. For testing, we use the Labeled Faces in

the Wild (LFW) [25] dataset with 13, 233 facial images

and 5, 749 subjects. The two datasets are selected for

the experiments because they feature images of variable

quality captured in unconstrained conditions and thus rep-

resent a significant challenge for SR models. More im-

portantly, they are designed to contains zero overlap in

terms of identity, which is paramount to ensure a fair and

unbiased evaluation of the model.

We compare our proposed model with 6 SR and face

hallucination models, i.e.: the Naive Bayes Super-Resolution
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Figure 3: Qualitative comparison of state-of-the-art SR models on sample images from the LFW dataset.

Table 1: PSNR and SSIM scores over the LFW dataset.
Model Bicubic NBSRF [8] SRCNN [7] VDSR [5]

PSNR 24.256 25.092 24.812 25.415

SSIM 0.7060 0.7268 0.7187 0.7411

Model ℓp [9] SRGAN [10] URDGN [26] our model

PSNR 26.985 25.669 25.575 27.164

SSIM 0.7903 0.6993 0.7516 0.8171

Forest (NBSRF) from [8], the Super-Resolution Convo-

lutional Neural Network (SRCNN) from [7], the Very

Deep Super Resolution Network (VDSR) from [5], the

perceptual-loss based SR model (ℓp) from [9], the Super-

Resolution Generative Adversarial Network from [10],

and the Ultra Resolving Discriminative Generative Net-

work (URDGN) from [26]. We train all models with the

same data and use open-source implementations of the

authors (where available) for a fair comparison. For ℓp
we use features from the fire2, fire3 and fire4 layers of

SqueezeNet for the learning criterion. We include results

for bicubic interpolation as a baseline. We present the

quantitative results in terms of average PSNR and SSIM

scores in the table 1. A few sample SR images are pre-

sented in Fig. 3. We see that with magnification factors

of 8×, interpolation methods are insufficient and result

in the loss of facial details. Furthermore, general SR

models, such as NBSRF, SRCNN and VDSR, fail to pro-

vide substantial improvements and are seen to amplify

noise present in the LR images. These models fail to

make use of the available facial context due to their rel-

atively low receptive fields. The SRGAN, URDGN and

ℓp models improve on this by including secondary net-

works as constraints during SR training. ℓp is consistently

the best-performing model included in our comparison,

only slightly behind our model. However, we notice it

often adds high-frequency noise when trying to minimize

the perceptual loss of the convolutional maps of the sec-

ondary network. We speculate the reason our model is

not susceptible to these errors is the global cross-entropy

loss of the secondary networks as opposed to the local

conv features exploited by ℓp.
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