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Abstract

In this paper we introduce the category CU in which the compact
metric spaces are objects and upper semicontinuous functions from X

to 2
Y are morphisms from X to Y . We also introduce the category

ICU of inverse sequences in CU . Then we investigate the induced
functions between inverse limits of compact metric spaces with upper
semicontinuous bonding functions. We provide criteria for their exis-
tence and prove that under suitable assumptions they have surjective
graphs. We also show that taking such inverse limits is very close to
being a functor (but is not a functor) from ICU to CU , if morphisms
are mapped to induced functions. At the end of the paper we give a
useful application of the mentioned results.
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1 Introduction

A function f : X → 2Y , where X and Y are compact metric spaces, is upper
semicontinuous function from X to 2Y (abbreviated u.s.c. function) if for
each open set V ⊆ Y the set {x ∈ X | f(x) ⊆ V } is an open set in X.
We will interpret such a function f : X → 2Y as a morphism f : X ( Y
and thus obtain a category, which we will denote by CU . Then ICU is the
standard category of inverse sequences in CU .
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Consider two inverse sequences {Xn, fn}
∞
n=1 and {Yn, gn}∞n=1 of compact

metric spaces and morphisms of CU . Let for each positive integer i, ϕi be
a u.s.c. function from Xi to 2Yi . In this paper we study the question which
u.s.c. functions from lim←−{Xn, fn}

∞
n=1 to 2

lim←−{Yn,gn}∞n=1 can be interpreted as
induced by ϕ1, ϕ2, ϕ3, . . . ; we also study the problem of existence of such
induced functions as well as their properties. The special case when ϕ1, ϕ2,
ϕ3, . . . are single-valued continuous functions was studied in [8, 15]. In their
paper [15], Ingram and Mahavier showed that if X and Y are inverse limits
of inverse sequences with u.s.c. bonding functions and each ϕi : Xi → Yi is
a homeomorphism, then the function induced by the functions ϕi is a home-
omorphism. In [8] it was shown under suitable assumptions, if each of the
functions ϕi are surjective, one-to-one, or a homeomorphism respectively,
then also the induced mapping is surjective, one-to-one, or a homeomor-
phism, respectively.

In the present paper we assume that each ϕi is a u.s.c. function from Xi

to 2Yi and show that even in such more general situation the notion of an
induced function

Φ : lim←−{Xn, fn}
∞
n=1 → 2

lim←−{Yn,gn}∞n=1

can be defined in such a way that it is a u.s.c. function (if certain mild condi-
tions are satisfied). Further we show that if each of the ϕi’s has a surjective
graph, then under certain additional conditions also Φ has a surjective graph.

It is a well-known fact that if {Xn, fn}
∞
n=1 and {Yn, gn}∞n=1 are inverse

sequences of compact metric spaces and continuous single-valued bonding
functions, and if for each positive integer i, ϕi is a continuous single-valued
function from Xi to Yi, then the transformation

{Xn, fn}
∞
n=1 7−→ lim←−{Xn, fn}

∞
n=1

and
(ϕ1, ϕ2, ϕ3, . . .) 7−→ lim←−ϕi

is a functor from the category of inverse sequences in the category of compact
metric spaces with continuous single-valued functions (i.e. from the category
in which inverse sequences of compact metric spaces with continuous single-
valued bonding functions are objects, and sequences (ϕ1, ϕ2, ϕ3, . . .) of single-
valued mappings having certain commutativity property are morphisms), to
the category of compact metric spaces and continuous functions.

In the present paper we prove that in the case when the inverse sequences
{Xn, fn}

∞
n=1 and {Yn, gn}∞n=1 are inverse sequences in CU (i.e. Xn, Yn are

compact metric spaces, and fn : Xn+1 ( Xn, gn : Yn+1 ( Yn are morphisms
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in CU , meaning that fn : Xn+1 → 2Xn , gn : Yn+1 → 2Yn are u.s.c. functions)
and each ϕi is a u.s.c. function from Xi to 2Yi , the transformation

{Xn, fn}
∞
n=1 7−→ lim←−{Xn, fn}

∞
n=1

and
(ϕ1, ϕ2, ϕ3, . . .) 7−→ lim←−ϕi

is not a functor from the category ICU of inverse sequences in CU to the
category CU , but is very close to being one.

In the last section we give a useful application of the mentioned results.

2 Definitions and notation

Our definitions and notation mostly follow Nadler [19], Ingram [14], and
Ingram and Mahavier [15].

A map is a continuous function.
A continuum is a nonempty, compact and connected metric space.
If (X, d) is a compact metric space, then 2X denotes the set of all nonempty

closed subsets of X. Let for each ε > 0 and each A ∈ 2X

Nd(ε, A) = {x ∈ X | d(x, a) < ε for some a ∈ A}.

The set 2X will be always equipped with the Hausdorff metric Hd, which is
defined by

Hd(H,K) = inf{ε > 0 | H ⊆ Nd(ε,K), K ⊆ Nd(ε,H)},

for H,K ∈ 2X . Then (2X , Hd) is a metric space, called the hyperspace of the
space (X, d). For more details see [13, 19].

For a function f : X → 2Y and a subset A ⊆ X, we use f [A] =
⋃

x∈A f(x)
to denote the image of A under f .

The graph Γ(f) of a function f : X → 2Y is the set of all points (x, y) ∈
X × Y such that y ∈ f(x) (as defined in [14, p. 2]).

A function f : X → 2Y has a surjective graph if for each y ∈ Y there is
an x ∈ X, such that y ∈ f(x), i.e. if f [X] = Y (as defined in [14, p. 2]).

A function f : X → 2Y , where X and Y are compact metric spaces, is
upper semicontinuous function from X to 2Y (abbreviated u.s.c.) if for each
open set V ⊆ Y the set {x ∈ X | f(x) ⊆ V } is an open set in X.

The following is a well-known characterization of u.s.c. functions (see [15,
p. 120, Theorem 2.1]).
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Theorem 2.1. Let X and Y be compact metric spaces and f : X → 2Y a
function. Then f is u.s.c. if and only if its graph Γ(f) is closed in X × Y .

A sequence {Xk, fk}
∞
k=1 is an inverse sequence of compact metric spaces

and u.s.c. bonding functions if each Xk is a compact metric space and each
fk is a u.s.c. function fk : Xk+1 → 2Xk .

The inverse limit of an inverse sequence {Xk, fk}
∞
k=1 of compact metric

spaces and u.s.c. bonding functions is defined to be the subspace of the
product space

∏∞
k=1Xk of all x = (x1, x2, x3, . . .) ∈

∏∞
k=1Xk, such that

xk ∈ fk(xk+1) for each k. The inverse limit of {Xk, fk}
∞
k=1 is denoted by

lim←−{Xk, fk}
∞
k=1.

In the present paper we will interpret inverse sequences {Xk, fk}
∞
k=1 of

compact metric spaces and u.s.c. bonding functions as inverse sequences in
CU and study lim←− as a possible functor from ICU to CU .

The notion of the inverse limit of an inverse sequence with u.s.c. bonding
functions was introduced by Mahavier in [18] and Ingram and Mahavier in
[15]. Since the introduction of such inverse limits, there has been much
interest in the subject and many papers appeared [1, 2, 3, 4, 5, 6, 7, 9, 12,
16, 17, 11, 18, 20, 21, 22, 23, 24], as well as the book [14].

On the product space
∞
∏

n=1

Xn, where (Xn, dn) is a compact metric space

for each n, and the set of all diameters of (Xn, dn) is majorized by 1, we use
the metric

D(x, y) = sup
n∈{1,2,3,...}

{

dn(xn, yn)

2n

}

,

where x = (x1, x2, x3, . . .), y = (y1, y2, y3, . . .). It is well known that the

metric D induces the product topology on
∞
∏

n=1

Xn [10, p. 190].

The set N denotes the set of all positive integers {1, 2, 3, . . .}.

3 The categories CU and ICU

In this section we give detailed descriptions of the following two categories:

1. CU : the category of compact metric spaces and u.s.c. functions;

2. ICU : the category of inverse sequences in CU .

For any category K, the class of objects of K is denoted by Ob(K), and for
any X, Y ∈ Ob(K), the set of morphisms of K from X to Y is denoted by
Mor(K)(X, Y ).
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3.1 CU

The category CU of compact metric spaces and u.s.c. functions consists
of the following objects and morphisms:

1. Ob(CU) is the class of compact metric spaces;

2. The set of morphisms Mor(CU)(X, Y ) from X to Y is the set of u.s.c.
functions X → 2Y . The u.s.c. function f : X → 2Y as a morphism of
CU is denoted by f : X ( Y . This can be reformulated as

Mor(CU)(X, Y ) = {f : X ( Y | f : X → 2Y is u.s.c.}.

We also define the partial binary operation ◦ (the composition) on the class
of morphisms of CU as follows. For each f ∈ Mor(CU)(X, Y ) and each
g ∈Mor(CU)(Y, Z) we define g ◦ f ∈Mor(CU)(X,Z) by

(g ◦ f)(x) = g[f(x)] =
⋃

y∈f(x)

g(y)

for each x ∈ X. It is easy to see that for each u.s.c. function f : X → 2Y

and each u.s.c. function g : Y → 2Z , the composition g ◦ f defined above is
again a u.s.c. function X → 2Z [14, p. 4]. That means that if f : X ( Y
and g : Y ( Z, then g ◦ f : X ( Z. Therefore ◦ is well-defined. It is also
easy to see that ◦ is associative.

Theorem 3.1. CU is a category.

Proof. All that is left to show is that for each X ∈ Ob(CU) there is a mor-
phism 1X : X ( X such that 1X ◦ f = f and g ◦ 1X = g for any mor-
phisms f : Y ( X and g : X ( Z. We easily see that the u.s.c. function
1X : X → 2X , defined by 1X(x) = {x} for each x ∈ X satisfies the above
conditions.

3.2 ICU

The sequence {Xn, fn}
∞
n=1 is an inverse sequence in CU if each Xn is

an object of CU and each fn is a morphism from Mor(CU)(Xn+1, Xn) (i.e.
fn : Xn+1 ( Xn, meaning that fn is a u.s.c. function fn : Xn+1 → 2Xn).

The category ICU of inverse sequences in CU consists of the following
objects and morphisms:
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1. Ob(ICU) is the class of inverse sequences {Xn, fn}
∞
n=1 in CU ;

2. For any two objects X = {Xn, fn}
∞
n=1 and Y = {Yn, gn}

∞
n=1 of ICU ,

the set Mor(ICU)(X, Y ) consists of all sequences ϕ = (ϕ1, ϕ2, ϕ3, . . .),
where each ϕi is a morphism in CU from Xi to Yi (i.e. it is a u.s.c.
function from Xi to 2Yi), such that gi ◦ ϕi+1 = ϕi ◦ fi for each positive
integer i.

We also define the partial binary operation � (the composition) as fol-
lows. Let X = {Xn, fn}

∞
n=1, Y = {Yn, gn}

∞
n=1, Z = {Zn, hn}

∞
n=1 be any

objects of ICU , and let ϕ = (ϕ1, ϕ2, ϕ3, . . .) ∈ Mor(ICU)(X, Y ), and ψ =
(ψ1, ψ2, ψ3, . . .) ∈ Mor(ICU)(Y , Z) be any morphisms of ICU . Then we
define ψ�ϕ by

ψ�ϕ = (ψ1 ◦ ϕ1, ψ2 ◦ ϕ2, ψ3 ◦ ϕ3, . . .).

Theorem 3.2. ICU is a category.

Proof. Using the above notation we see that for each i, ψi ◦ ϕi : Xi → 2Zi is
a u.s.c. function, i.e. ψi ◦ ϕi : Xi ( Zi is a morphism of CU .

Next we see that for each positive integer i,

hi ◦ (ψi+1 ◦ ϕi+1) = (ψi ◦ ϕi) ◦ fi,

since
hi ◦ (ψi+1 ◦ ϕi+1) = (hi ◦ ψi+1) ◦ ϕi+1 = (ψi ◦ gi) ◦ ϕi+1 =

ψi ◦ (gi ◦ ϕi+1) = ψi ◦ (ϕi ◦ fi) = (ψi ◦ ϕi) ◦ fi.

That proves that ψ�ϕ ∈ Mor(ICU)(X,Z), as required. Since ◦ is associa-
tive, it easily follows that � is also associative.

Also, from the properties of functions 1Xi
it easily follows that for any

inverse sequence X = {Xn, fn}
∞
n=1 the morphism 1X = (1X1

, 1X2
, 1X3

, . . .) :
X → X satisfies the conditions

1X�ϕ = ϕ and ψ�1X = ψ,

for any morphisms ϕ : {Yn, gn}
∞
n=1 → X and ψ : X → {Zn, hn}

∞
n=1.

4 Induced functions and induced morphisms

We begin this section with the definition of functions induced by sequences
of u.s.c. functions.
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Definition 4.1. Let {Xn, fn}
∞
n=1 and {Yn, gn}

∞
n=1 be any inverse sequences

of compact metric spaces and u.s.c. bonding functions (i.e. inverse sequences
in CU), and let for each n, ϕn : Xn → 2Yn be a u.s.c. function. Let for each
(x1, x2, x3, . . .) ∈ lim←−{Xn, fn}

∞
n=1,

Φ(x1, x2, x3, . . .) = (ϕ1(x1)× ϕ2(x2)× ϕ3(x3)× · · · ) ∩ lim←−{Yn, gn}
∞
n=1. (1)

If Φ is a u.s.c. function from lim←−{Xn, fn}
∞
n=1 to 2

lim←−{Yn,gn}∞n=1, then we say
that it is induced by (ϕ1, ϕ2, ϕ3, . . .).

Theorem 4.2 provides a simple criterion for recognizing induced functions.

Theorem 4.2. We use the notation from Definition 4.1. Then Φ is induced
by (ϕ1, ϕ2, ϕ3, . . .) if and only if Φ(x1, x2, x3, . . .) 6= ∅ for each (x1, x2, x3, . . .) ∈
lim←−{Xn, fn}

∞
n=1.

Proof. Let us denote
H = lim←−{Xi, fi}

∞
i=1

and
K = lim←−{Yi, gi}

∞
i=1.

If Φ : H → 2K is induced by (ϕ1, ϕ2, ϕ3, . . .), then for each (x1, x2, x3, . . .) ∈
H, Φ(x1, x2, x3, . . .) ∈ 2K . Therefore Φ(x1, x2, x3, . . .) 6= ∅.

Now assume that Φ(x1, x2, x3, . . .) 6= ∅ for each (x1, x2, x3, . . .) ∈ H. Since
Φ(x1, x2, x3, . . .) is compact it is closed in K. Therefore the function Φ : H →
2K is well-defined.

Next we prove that Φ is a u.s.c. function. It is sufficient to prove that the
graph Γ (Φ) of Φ is a closed subset of H ×K. It follows from the definition
of Φ that

Γ (Φ) = {((x1, x2, x3, . . .) , (y1, y2, y3, . . .)) ∈ H ×K | ∀i ∈ N, yi ∈ ϕi (xi)} .

Let α : H ×K → (X1 × Y1)× (X2 × Y2)× · · · be defined by

α (x, y) = ((x1, y1), (x2, y2), . . .) ,

for all x = (x1, x2, x3, . . .) ∈ H and y = (y1, y2, y3, . . .) ∈ K.
Note that A : H ×K → Imα defined by A (x, y) = α (x, y) is a homeo-

morphism.
We prove that A (Γ (Φ)) is closed in ImA = A(H ×K).

A (Γ (Φ)) = {((x1, y1), (x2, y2), . . .) | x ∈ H, y ∈ K, ∀i ∈ N, yi ∈ ϕi (xi)}

= {((x1, y1), (x2, y2), . . .) | x ∈ H, y ∈ K, ∀i ∈ N, (xi, yi) ∈ Γ (ϕi)}

= {((x1, y1), (x2, y2), . . .) ∈ Γ (ϕ1)× Γ (ϕ2)× · · · | x ∈ H, y ∈ K}

= (Γ (ϕ1)× Γ (ϕ2)× · · · ) ∩ {((x1, y1), (x2, y2), . . .) | x ∈ H, y ∈ K}

= (Γ (ϕ1)× Γ (ϕ2)× · · · ) ∩ A(H ×K).
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The product
Γ (ϕ1)× Γ (ϕ2)× Γ (ϕ3)× · · ·

is a closed subset of (X1 × Y1)×(X2 × Y2)×· · · , therefore A (Γ (Φ)) is closed
in A(H ×K). It follows that Γ (Φ) is closed in H ×K.

The next theorem presents a commutativity-like condition under which
Φ is induced.

Theorem 4.3. Let {Xn, fn}
∞
n=1 and {Yn, gn}

∞
n=1 be any inverse sequences of

compact metric spaces and u.s.c. bonding functions (i.e. inverse sequences in
CU), and let for each n, ϕn : Xn → 2Yn be a u.s.c. function. If

ϕn[fn(x)] ⊆ gn[ϕn+1(x)]

for each positive integer n and each x ∈ Xn+1, then Φ defined by (1) is
induced by (ϕ1, ϕ2, ϕ3, . . .).

Proof. By Theorem 4.2 it suffices to prove that Φ(x) is nonempty for arbi-
trary x ∈ lim←−{Xn, fn}

∞
n=1.

For arbitrary x ∈ lim←−{Xn, fn}
∞
n=1 we construct a point y = (y1, y2, y3, . . .) ∈

Φ(x) by an inductive construction of coordinates yi. More precisely, by in-
duction on i ∈ N, we construct a sequence yi ∈ Yi satisfying yi ∈ ϕi (xi) and
yi ∈ gi (yi+1) for each i.

We choose any y1 ∈ ϕ1(x1); it can be done since ϕ1(x1) is nonempty.
Assume next that we have already constructed yi ∈ ϕi (xi). Now we

construct yi+1 ∈ ϕi+1 (xi+1) such that yi ∈ gi (yi+1).
It follows from x ∈ lim←−{Xn, fn}

∞
n=1 that xi ∈ fi (xi+1). Therefore

yi ∈ ϕi(xi) ⊆ ϕi [fi (xi+1)] ⊆ gi [ϕi+1 (xi+1)] =
⋃

t∈ϕi+1(xi+1)

gi (t) .

Hence, there exists a point t0 ∈ ϕi+1 (xi+1) such that yi ∈ gi (t0). We take
any such t0 for yi+1.

This immediately leads to the following corollary.

Corollary 4.4. Let {Xn, fn}
∞
n=1 and {Yn, gn}

∞
n=1 be any objects of ICU , and

let the sequence (ϕ1, ϕ2, ϕ3, . . .) be any morphism of ICU from {Xn, fn}
∞
n=1 to

{Yn, gn}
∞
n=1. Then Φ : lim←−{Xn, fn}

∞
n=1 → 2

lim←−{Yn,gn}∞n=1, defined by (1), is in-
duced by (ϕ1, ϕ2, ϕ3, . . .), meaning that Φ : lim←−{Xn, fn}

∞
n=1 ( lim←−{Yn, gn}

∞
n=1

is a morphism in CU .
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Definition 4.5. The function Φ from Corollary 4.4 is called the morphism
of CU induced by the morphism (ϕ1, ϕ2, ϕ3, . . .) of ICU and is denoted by
Φ = lim←−ϕi.

Note that if (ϕ1, ϕ2, ϕ3, . . .) is not a morphism of ICU but the induced
function Φ is a morphism of CU (that happens when (ϕ1, ϕ2, ϕ3, . . .) satisfies
the conditions of Theorem 4.2) lim←−ϕi does not exist.

The induced morphism lim←−ϕi : lim←−{Xn, fn}
∞
n=1 ( lim←−{Yn, gn}

∞
n=1 cannot

be defined simply by the formula

lim←−ϕi(x1, x2, x3, . . .) = ϕ1(x1)× ϕ2(x2)× ϕ3(x3)× · · · (2)

since the right hand side product of (2) is not necessarily a subset of lim←−{Yn, gn}
∞
n=1,

as shown by Example 4.6.

Example 4.6. Let Xi = Yi = [0, 1], let fi = gi = 1[0,1], where 1[0,1] : [0, 1]→
2[0,1] is the u.s.c. function, defined by 1[0,1](x) = {x} for each x ∈ [0, 1], and
let ϕi : [0, 1] → 2[0,1] be defined by its graph: Γ (ϕi) = [0, 1] × [0, 1], for each
positive integers i. Then ϕ1(x1) × ϕ2(x2) × ϕ3(x3) × · · · is not a subset of
lim←−{Yn, gn}

∞
n=1.

Proof. Obviously, gi ◦ϕi+1 = ϕi ◦ fi holds true for any positive integer i, and
therefore (ϕ1, ϕ2, ϕ3, . . .) is a morphism of ICU .

Also, lim←−{Xn, fn}
∞
n=1 = lim←−{Yn, gn}

∞
n=1 = {(t, t, t, . . .) | t ∈ [0, 1]}, and

therefore

ϕ(x1, x2, x3, . . .) = ϕ1(x1)×ϕ2(x2)×ϕ3(x3)×· · · = [0, 1]× [0, 1]× [0, 1]×· · ·

is not a subset of lim←−{Yn, gn}
∞
n=1 (and therefore it is not an element of

2
lim←−{Yn,gn}∞n=1).

This example shows also that (2) cannot replace (1) in the definition of
induced functions.

In the following theorem we prove that if each of the ϕi’s has a surjective
graph, then also lim←−ϕi has a surjective graph. Note that it is not required
that any of the functions fn and gn has a surjective graph.

Theorem 4.7. Let {Xn, fn}
∞
n=1 and {Yn, gn}

∞
n=1 be any objects of ICU and

let the sequence (ϕ1, ϕ2, ϕ3, . . .) be a morphism of ICU from {Xn, fn}
∞
n=1 to

{Yn, gn}
∞
n=1 such that ϕi : Xi → 2Yi has a surjective graph for each positive

integer i. Then lim←−ϕi has a surjective graph.
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Proof. Let y = (y1, y2, y3, . . .) ∈ lim←−{Yn, gn}
∞
n=1 be arbitrary. We construct a

point x ∈ lim←−{Xn, fn}
∞
n=1 such that y ∈ lim←−ϕi(x).

Let n be any positive integer. Since ϕn : Xn → 2Yn has a surjective graph,
there is a point xnn ∈ Xn such that yn ∈ ϕn(x

n
n). We choose and fix such an xnn.

Then by downwards induction we prove that for any k ∈ {1, 2, 3, . . . , n− 1}
there is xnk ∈ Xk such that yk ∈ ϕk(x

n
k) and xnk ∈ fk(x

n
k+1).

Let k be any integer from {1, 2, 3, . . . , n − 1}. Assume that xnk+1 has
already been chosen in such a way that yk+1 ∈ ϕk+1(x

n
k+1). Note that this

assumption is fulfilled for k = n− 1.
Since yk ∈ gk(yk+1) and yk+1 ∈ ϕk+1(x

n
k+1), it follows that

yk ∈ gk[ϕk+1(x
n
k+1)] = ϕk[fk(x

n
k+1)].

Therefore there is a point xnk ∈ Xk such that xnk ∈ fk(x
n
k+1) and yk ∈ ϕk(x

n
k)

and we fix one such xnk .
This construction yields

xn = (xn1 , x
n
2 , x

n
3 , . . . , x

n
n−1, x

n
n, z

n
n+1, z

n
n+2, z

n
n+3, . . .) ∈

∞
∏

i=1

Xi,

where zni ∈ Xi is arbitrarily chosen for each i > n. Then {xn}∞n=1 is a sequence
in the compact metric space (

∏∞
i=1Xi, D). Let x = (x1, x2, x3, . . .) ∈

∏∞
i=1Xi

be any accumulation point of the sequence {xn}∞n=1.
Next we prove that x ∈ lim←−{Xn, fn}

∞
n=1 and that y ∈ lim←−ϕi(x). Let

{in}
∞
n=1 be a strictly increasing sequence of integers such that

lim
n→∞

xin = x.

First we prove that x ∈ lim←−{Xn, fn}
∞
n=1. Let m be any positive integer. Then

(xikm+1, x
ik
m) ∈ Γ(fm) for each positive integer ik > m. Since lim

k→∞
(xikm+1, x

ik
m) =

(xm+1, xm) and since the graph Γ(fm) is closed in Xm+1×Xm, it follows that
(xm+1, xm) ∈ Γ(fm). Therefore x ∈ lim←−{Xn, fn}

∞
n=1.

Finally we prove that y ∈ lim←−ϕi(x). Let m be any positive integer. Then
ym ∈ ϕm(x

ik
m) for each positive integer ik > m. Therefore (xikm, ym) ∈ Γ(ϕm)

for each ik > m. Since lim
k→∞

(xikm, ym) = (xm, ym) and since the graph Γ(ϕm)

is closed in Xm × Ym, it follows that (xm, ym) ∈ Γ(ϕm), and therefore ym ∈
ϕm(xm).

It follows that (y1, y2, y3, . . .) ∈ lim←−ϕi(x1, x2, x3, . . .) and hence lim←−ϕi has
a surjective graph.

Next example shows that the function Φ induced by (ϕ1, ϕ2, ϕ3, . . .) need
not have a surjective graph if (ϕ1, ϕ2, ϕ3, . . .) is not a morphism of ICU , even
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if each ϕi, fi, and gi has a surjective graph and if gi ◦ ϕi+1 = ϕi ◦ fi holds
true for any positive integer i but i = 1.

Example 4.8. Let for each positive integer i and j > 1, Xi = Yi = [0, 1],
fi = gj = ϕi = 1[0,1], and let g1 : [0, 1] → 2[0,1] be defined by its graph:
Γ (g1) = [0, 1] × [0, 1]. Then the function Φ induced by (ϕ1, ϕ2, ϕ3, . . .) does
not have a surjective graph.

Proof. Obviously, gi ◦ϕi+1 = ϕi ◦ fi holds true for any positive integer i > 1,
and ϕ1◦f1(t) ⊆ g1◦ϕ2(t) for any t ∈ [0, 1]. Therefore (ϕ1, ϕ2, ϕ3, . . .) induces
Φ defined by (1) according to Theorem 4.3.

Obviously (0, 1, 1, 1, . . .) ∈ lim←−{Yn, gn}
∞
n=1 and lim←−{Xn, fn}

∞
n=1 = {(t, t, t, . . .) | t ∈

[0, 1]}. But Φ(t, t, t, . . .) = {(t, t, t, . . .)}, and therefore (0, 1, 1, 1, . . .) /∈ Φ(t, t, t, . . .)
for any t ∈ [0, 1].

In the rest of the section we study the transformation F : ICU → CU ,
defined by

{Xn, fn}
∞
n=1

F
7−→ lim←−{Xn, fn}

∞
n=1

(ϕ1, ϕ2, ϕ3, . . .)
F
7−→ lim←−ϕn .

In Theorem 4.9 we show that the transformation F is very close to being
a functor from ICU to CU . Example 4.10 follows after the theorem to show
that F is not a functor from ICU to CU .

Theorem 4.9. Let {Xn, fn}
∞
n=1, {Yn, gn}

∞
n=1 and {Zn, hn}

∞
n=1 be any objects

of ICU , and

ϕ = (ϕ1, ϕ2, ϕ3, . . .) : {Xn, fn}
∞
n=1 → {Yn, gn}

∞
n=1

and
ψ = (ψ1, ψ2, ψ3, . . .) : {Yn, gn}

∞
n=1 → {Zn, hn}

∞
n=1

its morphisms. Then

1. F (1X1
, 1X2

, 1X3
, . . .) = 1lim←−{Xn,fn}∞n=1

;

2. (F (ψ) ◦ F (ϕ))(x) ⊆ F (ψ�ϕ)(x) for all x ∈ lim←−{Xn, fn}
∞
n=1.

Proof. To prove (1), choose arbitrary x = (x1, x2, x3, . . .) ∈ lim←−{Xn, fn}
∞
n=1.

Then

F (1X1
, 1X2

, 1X3
, . . .)(x) = (1X1

(x1)×1X2
(x2)×1X3

(x3)×. . .)∩lim←−{Xn, fn}
∞
n=1 =

{x} = 1lim←−{Xn,fn}∞n=1
(x).
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To prove (2), let x ∈ lim←−{Xn, fn}
∞
n=1 and let

z ∈ (F (ψ) ◦ F (ϕ))(x) = F (ψ)[F (ϕ)(x)] =
⋃

y∈F (ϕ)(x)

F (ψ)(y)

be arbitrary. Then

z ∈
⋃

y∈(ϕ1(x1)×ϕ2(x2)×··· )∩lim←−{Yn,gn}∞n=1

(ψ1(y1)× ψ2(y2)× · · · ) ∩ lim←−{Zn, hn}
∞
n=1

and therefore there is a point y ∈ lim←−{Yn, gn}
∞
n=1 such that yn ∈ ϕn(xn)

and zn ∈ ψn(yn) for each positive n. It follows that zn ∈
⋃

t∈ϕn(xn)
ψn(t) =

ψn[ϕn(xn)] = (ψn◦ϕn)(xn) for each positive integer n and hence z ∈ F (ψ�ϕ)(x).

F is a functor if and only if (F (ψ) ◦ F (ϕ))(x) = F (ψ�ϕ)(x) holds
true for all x ∈ lim←−{Xn, fn}

∞
n=1 and all objects {Xn, fn}

∞
n=1, {Yn, gn}

∞
n=1

and {Zn, hn}
∞
n=1 and all morphisms ϕ = (ϕ1, ϕ2, ϕ3, . . .) : {Xn, fn}

∞
n=1 →

{Yn, gn}
∞
n=1 and ψ = (ψ1, ψ2, ψ3, . . .) : {Yn, gn}

∞
n=1 → {Zn, hn}

∞
n=1 of ICU .

Example 4.10 shows that this is not the case, hence F is not a functor.

Example 4.10. We use the notation from Theorem 4.9. Let for each positive
integer n, Xn = Yn = Zn = [0, 1] and let f, g : [0, 1] → 2[0,1] be u.s.c.
functions defined by f(t) = {t} and g(t) = [0, 1] for each t ∈ [0, 1]. Also let
f1 = h1 = ψ1 = ϕn = g for each n ≥ 2 and let ϕ1 = fn+1 = gn = hn+1 =
ψn+1 = f for each n ≥ 1. Let x = (1, 0, 0, 0, . . .) ∈ lim←−{Xn, fn}

∞
n=1. Then

(F (ψ) ◦ F (ϕ))(x) 6= F (ψ�ϕ)(x).

Proof. Let z = (1, 0, 0, 0, . . .) ∈ lim←−{Zn, hn}
∞
n=1. Obviously z ∈ F (ψ�ϕ)(x).

Then, since ϕ1(t) = {t} for each t ∈ [0, 1], y = (1, 1, 1, . . .) is the only
element in lim←−{Yn, gn}

∞
n=1 such that y ∈ F (ϕ)(x). But, since F (ψ)(y) =

[0, 1] × {1} × {1} × · · · and z2 = 0 it follows that z /∈ F (ψ)(y). Therefore
z /∈ (F (ψ) ◦ F (ϕ))(x) and hence (F (ψ) ◦ F (ϕ))(x) 6= F (ψ�ϕ)(x).

5 An application

In the final section we study the following diagram.

Theorem 5.1. Let Xj
i be compact metric spaces, and let f j

i : Xj
i+1 → 2X

j
i ,

gji : X
j
i+1 → 2X

j
i be u.s.c. functions, for all positive integers i and j. Let also

for each j
Lj = lim←−{X

j
i , f

j
i }

∞
i=1
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X1
1 X1

2 X1
3 X1

4 · · · L1

f 1
1 f 1

2 f 1
3 f 1

4

b b b b

X2
1 X2

2 X2
3 X2

4 · · · L2

f 2
1 f 2

2 f 2
3 f 2

4

b b b b

X3
1 X3

2 X3
3 X3

4 · · · L3

f 3
1 f 3

2 f 3
3 f 3

4
...

b b b b

...
...

...
... L

K1 K2 K3 · · · K
f1 f2 f3

b b b

�
�

�
���H

b b b b b

g11 g12 g13 g14 g1

b b b b b

g21 g22 g23 g24 g2

b b b b

g31 g32 g33 g34

and for each i
Ki = lim←−{X

j
i , g

j
i }

∞
j=1.

If for each integer n, fn is the function induced by (f 1
n, f

2
n, f

3
n, . . .) and gn is

the function induced by (gn1 , g
n
2 , g

n
3 , . . .), then

L = lim←−{L
j, gj}∞j=1

and
K = lim←−{Ki, fi}

∞
i=1.

are homeomorphic.

Proof. Define the function H : K → L as follows:

H
((

x11, x
2
1, x

3
1, . . .

)

,
(

x12, x
2
2, x

3
2, . . .

)

,
(

x13, x
2
3, x

3
3, . . .

)

, . . .
)

= (3)
((

x11, x
1
2, x

1
3, . . .

)

,
(

x21, x
2
2, x

2
3, . . .

)

,
(

x31, x
3
2, x

3
3, . . .

)

, . . .
)

,

where (x1i , x
2
i , x

3
i , . . .) ∈ Ki and (x1i , x

2
i , x

3
i , . . .) ∈ fi

(

x1i+1, x
2
i+1, x

3
i+1, . . .

)

for each positive integer i.
We will prove that H is a homeomorphism.
First, we prove that H is well-defined. We need to show that the right

side of (3) is a point of L. The proof is in the following steps.
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1.
(

xj1, x
j
2, x

j
3, . . .

)

∈ Lj, for arbitrary j ∈ N;

2.
(

xj1, x
j
2, x

j
3, . . .

)

∈ gj
(

xj+1
1 , xj+1

2 , xj+1
3 , . . .

)

, for arbitrary j ∈ N.

Let us prove (1).
Since (x1i , x

2
i , x

3
i , . . .) ∈ fi

(

x1i+1, x
2
i+1, x

3
i+1, . . .

)

=
(

∏∞
j=1 f

j
i (x

j
i+1)

)

∩Ki, it

follows that xji ∈ f
j
i

(

xji+1

)

for each i and j. Hence,
(

xj1, x
j
2, x

j
3, . . .

)

∈ Lj.
It remains to prove (2).
Since (x1i , x

2
i , x

3
i , . . .) ∈ Ki, it follows that for each i and j xji ∈ g

j
i (x

j+1
i ).

Therefore
(

xj1, x
j
2, x

j
3, . . .

)

∈
(
∏∞

i=1 g
j
i (x

j
i )
)

∩ Lj = gj
(

xj+1
1 , xj+1

2 , xj+1
3 , . . .

)

for
all j.

Hence, ((x11, x
1
2, x

1
3, . . .) , (x

2
1, x

2
2, x

2
3, . . .) , (x

3
1, x

3
2, x

3
3, . . .) , . . .) ∈ L. So we

have proved that H : K → L is well defined.
In the same manner we prove that H ′ : L→ K defined by

H ′
((

x11, x
1
2, x

1
3, . . .

)

,
(

x21, x
2
2, x

2
3, . . .

)

,
(

x31, x
3
2, x

3
3, . . .

)

, . . .
)

=
((

x11, x
2
1, x

3
1, . . .

)

,
(

x12, x
2
2, x

3
2, . . .

)

,
(

x13, x
2
3, x

3
3, . . .

)

, . . .
)

,

is well defined. Since obviously H and H ′ are both continuous and inverses
to each other, it follows that they are homeomorphisms.

Corollary 5.2. We use the notation of Theorem 5.1. If for all positive
integers i and j

gji ◦ f
j+1
i = f j

i ◦ g
j
i+1,

then the spaces L and K are homeomorphic.

Proof. The claim follows by Theorem 5.1 since by Corollary 4.4 there are
induced functions fn and gn for each n.

We conclude the paper with the following example.

Example 5.3. Let X be any compact metric space and let f : X → X be a
surjective single-valued mapping. Let L′ = lim←−{X, f

−1}∞n=1, where f−1 is the

u.s.c. function f−1 : X → 2X defined by its graph

Γ(f−1) = {(x, y) ∈ X ×X | (y, x) ∈ Γ(f)}.

Let σ : L′ → L′ be the shift map, defined by

σ(t1, t2, t3, . . .) = (t2, t3, t4, . . .)

for each (t1, t2, t3, . . .) ∈ L
′.

Then the inverse limit lim←−{L
′, σ}∞n=1 is homeomorphic to lim←−{X, f}

∞
n=1.
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Proof. We show first that the mapping (t1, t2, t3, . . .) 7→ {σ(t1, t2, t3, . . .)} can
be interpreted as an induced function and then we use Theorem 5.1 to prove
that the inverse limit lim←−{L

′, σ}∞n=1 is homeomorphic to lim←−{X, f}
∞
n=1.

We use the notation that is used in Theorem 5.1. Let for all positive
integers i, j, Xj

i = X, gji (t) = {f(t)}, and f j
i (t) = f−1(t) for each t ∈ X.

Then gn(t1, t2, t3, . . .) = ({f(t1)}×{f(t2)}×{f(t3)}×. . .)∩L
′ = {(t2, t3, t4, . . .)} =

{σ(t1, t2, t3, . . .)} for any (t1, t2, t3, . . .) ∈ L
′. It follows that L = lim←−{L

n, gn}∞n=1 =
lim←−{L

′, σ}∞n=1.
Let K ′ = Kn = lim←−{X, f}

∞
n=1 for each positive integer n. Next we show

that K = lim←−{Kn, fn}
∞
n=1 = lim←−{K

′, σ′−1}∞n=1, where σ′ is the shift map from
K ′ to K ′. Note that σ′ is a homeomorphism, since f is single-valued, and
that σ′−1(t1, t2, t3, . . .) = (f(t1), t1, t2, t3, . . .) for each (t1, t2, t3, . . .) ∈ K

′.
Then fn(t1, t2, t3, . . .) = ({f−1(t1)}× {f

−1(t2)}× {f
−1(t3)}× . . .)∩K

′ =
{(f(t1), t1, t2, t3, . . .)} = {σ′−1(t1, t2, t3, . . .)} for any (t1, t2, t3, . . .) ∈ K ′. It
follows that K = lim←−{Kn, fn}

∞
n=1 = lim←−{K

′, σ′−1}∞n=1.
Since σ′−1 is a homeomorphism it follows that K = lim←−{K

′, σ′−1}∞n=1 is
homeomorphic to K ′ = lim←−{X, f}

∞
n=1. By Theorem 5.1 K is homeomorphic

to L, and that proves that lim←−{X, f}
∞
n=1 is homeomorphic to lim←−{L

′, σ}∞n=1.
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