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Abstract

We introduce a new method for producing both maximal green and reddening se-
quences of quivers. The method, called component preserving mutations, generalizes the
notion of direct sums of quivers and can be used as a tool to both recover known reddening
sequences as well as find reddening sequences that were previously unknown. We use the
method to produce and recover maximal green sequences for many bipartite recurrent quiv-
ers that show up in the study of periodicity of T -systems and Y -systems. Additionally, we
show how our method relates to the dominance phenomenon recently considered by Read-
ing. Given a maximal green sequence produced by our method, this relation to dominance
gives a maximal green sequence for infinitely many other quivers. Other applications of
this new methodology are explored including computing of quantum dilogarithm identities
and determining minimal length maximal green sequences.
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1 Introduction

Quiver mutation is the fundamental combinatorial process which determines the genera-
tors and relations in Fomin and Zelevinsky’s cluster algebras [15]. Cluster algebras have
arisen in a variety of mathematical areas including Poisson geometry, Teichmüller theory,
applications to mathematical physics, representation theory, and more. Quiver mutation
is a local procedure that alters a quiver and produces a new quiver. Understanding how
a quiver mutates is essential to understanding the corresponding cluster algebra. We will
consider the problem of explicitly constructing sequences of mutations with some special
properties.

1.1 Some history of the problem

A maximal green sequence, and more generally a reddening sequence, is a special sequence
of quiver mutations related to quantum dilogarithm identities which was introduced by
Keller [28, 29]. Such sequences of mutations do not exist for all quivers and determining
their existence or nonexistence is an important problem. For a good introduction to the
study of maximal green and reddening sequences see the work of Brüstle, Dupont, and
Pérotin [3]. In addition to the role they play in quantum dilogrithm identities, these se-
quences of mutations are a key tool utilized in other cluster algebra areas. For example,
the existence of a maximal green sequence allows one to categorify the associated cluster
algebras following the work of Amiot [2]. Also the existence of a maximal green sequence
is a condition which plays a role in the powerful results of Gross, Hacking, Keel, and Kont-
sevich [25] regarding canonical bases. These results use the notion of scattering diagrams
to prove the positivity conjecture for a large class of cluster algebras. Additionally the ex-
istence of a reddening sequence is thought to be related to when a cluster algebra equals its
upper cluster algebra [5, 34]. Maximal green sequences are also related to representation
theory [3] and in the computation of BPS states in physics [1]. Our notion of a component
preserving sequence of mutations, which will be defined in Section 3, is closely related to
what has been called a factorized sequence of mutations [9, 10, 12] in the physics litera-
ture where particular attention has been paid to ADE Dynkin quivers. Our definition is
more general which allows for use with both maximal green sequences and reddening se-
quences. Being able to work with reddening sequences is desirable since the existence of a
reddening sequence is mutation invariant while the existence of a maximal green sequence
is not [35]. Hence, the existence of a reddening sequences ends up being a invariant of the
cluster algebra as opposed to just the quiver.

In general it can be a difficult problem to determine if a quiver admits a maximal green
or reddening sequence. These sequences have been found or shown to not exist in the case
of finite mutation type quivers by the work of a variety of authors [1, 4, 7, 33, 40] leaving
the question of existence only to quivers that are not of finite mutation type. This makes
finding these sequences particularly difficult as the exchange graph for such quivers can
be very complicated. Additionally there are branches of the exchange graph, in which no
amount of mutations can lead to a maximal green sequence; meaning random computer
generated mutations are extremely unlikely to produce maximal green sequences for these
quivers. In addition to finite mutation type quivers, headway has been made on specific
families of quivers such as minimal mutation-infinite quivers [32] and quivers which are
associated to reduced plabic graphs [17]. This gives us many quivers for which we know
reddening or maximal green sequences for. This provides a foundation to produce redden-
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ing and maximal green sequences for quivers which are built out of these.
When a quiver does admit a maximal green or reddening sequence it is desirable to have

an explicit and well understood construction of the sequence. Having the specific sequence
of mutations and understanding the corresponding c-vectors gives us a product of quan-
tum dilogarithms [28, 29] and an expression for the Donaldson-Thomas transformation of
Kontsevich and Soibelman [31]. The method which we present in this paper allows one to
explicitly produce the sequence so that it can be used to for the corresponding computation.

Work by Garver and Musiker [22], as inspired by [2] and [1], and later by Cao and Li [8]
looked at using what has been called direct sums of quivers to produce maximal green and
reddening sequences when the induced subquivers being summed exhibit the appropriate
sequences. This heuristic approach of building large sequences of mutations from subquiv-
ers is essentially the direction we want to expand upon in this paper. Component preserving
mutations are a way of taking known maximal green and reddening sequences for induced
subquivers (which we will call components) and combining them together to obtain a max-
imal green or reddening sequence for the whole quiver. The direct sum procedure becomes
a particular instance of the theory of component preserving mutations.

The methodology presented has an assortment of applications. It can be used to produce
maximal green sequences for bipartite recurrent quivers, recover known results regarding
admissible source mutation sequences for acyclic quivers, and show that the existence of a
maximal green or reddening sequence is an example of a certain dominance phenomena in
the sense of recent work by Reading [37].

1.2 Summary of the methodology

The goal of this paper is to develop a methodology which allows one to use reddening
sequences of subquivers of a given quiver to build reddening sequences for larger quivers.
Since mutation is a local procedure, only affecting neighboring vertices, this is a natural
approach. Moreover, it is known that when a quiver has a maximal green or reddening se-
quence, then the same is true for any induced subquiver [35]. Hence, developing a method
to produce a maximal green or reddening sequence from induced subquivers is a type of
converse to this fact.

The method starts by breaking the quiver, Q, into subquivers which we call compo-
nents; each of which has a known reddening sequence. The components will partition the
vertices of the quiver, giving a partitioned quiver (Q, π), where π := π1/π2/ · · · /π` is
a partition of the vertices of Q. We label the components Qi. We start with the framed
quiver, where we partition all of the frozen and mutable pairs into the same parts. We call
this quiver the framed partition quiver (Q̂, π̂). We then try to shuffle the respective red-
dening sequences together to see if they form a reddening sequence for the entire quiver.
It is not the case that one can always find a shuffle which works on the entire quiver. To
guarantee that they do build a reddening sequence, we must check that at each mutation
step the mutation vertex satisfies the component preserving condition which will be given
in Definition 3.6. If this condition holds the main result of this paper shows that you have
constructed a reddening sequence for the larger quiver.

Theorem 1.1 (Main Result). Let (Q̂, π̂) be a framed partition quiver where for each Q̂i
we have a reddening sequence σi. Let τ be a shuffle of the σi such that at every mutation
step of the sequence τ we have that k is component preserving with respect to π. Then τ is
a reddening sequence for Q̂.
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This main result is proven in Section 3 where is it restated in Theorem 3.11. This ap-
proach gives one a starting point as to where to search for reddening sequences given an
arbitrary quiver. First break the quiver into subquivers you are comfortable constructing
reddening sequences for; and then attempt to shuffle these sequences. This approach may
initially seem overwhelming as you could consider any partition of the quiver into sub-
quivers along with any shuffle of reddening sequences. However, as we explored utilizing
this technique what we realized was that there are often very natural shuffles and partitions
present in many commonly studied quivers. For instance, this concept generalizes the idea
of direct sums of quivers where the shuffle takes the particular simple form of concate-
nation. Additionally, it can be used to give short and effective constructions of maximal
green sequences for bipartite recurrent quivers, and many more examples where some well
behaved properties of a specific quiver provides the recipe for how to shuffle and partition
the vertices.

This article is structured in the following way. Section 2 will give some preliminaries
for quiver mutation and the study of reddening sequences. In Section 3 we will present the
main results of the paper outlining how the component preserving procedure can produce
new maximal green and reddening sequences from induced subquivers. Within Section 3
we present a large amount of examples to try and illustrate how this procedure works. In the
sections following this we look at some applications of this procedure to produce interesting
and new results. Results related to dominance phenomena are in Section 4 and bipartite
recurrent quivers are considered in Section 5. In Section 6 we consider the computation
of Donaldson-Thomas invariants and minimal length maximal green sequences. We have
added a large amount of examples to the article in an effort to try and give the reader an
opportunity to become familiar with how one uses this method in a hands-on manner. This
is intentional, as from exploring these methods it appears that many reddening sequences
are built in this manner from small set of “basic reddening sequences.” The intuition of the
authors is that there may be a way to describe a list of “basic reddening sequences” from
which any reddening sequence can be built. It is our hope that this paper is the first step in
building the concrete theory behind this intuition.

2 Preliminaries
A quiver Q is a directed multigraph with vertex set V (Q) and whose edge set E(Q) con-
tains no loops or 2-cycles. Elements of E(Q) will typically be referred to as arrows. An
ice quiver is a pair (Q,F ) where Q is a quiver, F ⊆ V (Q), and Q contains no arrows
between elements of F . Vertices in F are called frozen while vertices in V (Q) \ F are
called mutable. The framed quiver associated to a quiver Q, denoted Q̂, is the ice quiver
whose vertex set, edge set, and set of frozen vertices are the following:

V (Q̂) := V (Q) t {i′ | i ∈ V (Q)},

E(Q̂) := E(Q) t {i→ i′ | i ∈ V (Q)},
F = {i′ | i ∈ V (Q)}.

The framed quiver corresponds to considering a cluster algebra with principal coefficients.
Given an ice quiver (Q,F ) for any mutable vertex i, mutation at the vertex i produces

a new quiver denoted by (µi(Q), F ) obtained from Q by doing the following:

(1) For each pair of arrows j → i, i → k such that not both i and j are frozen add an
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arrow j → k.

(2) Reverse all arrows incident on i.

(3) Delete a maximal collection of disjoint 2-cycles.

Mutation is not allowed at any frozen vertex. Since mutation does not change the set of
frozen vertices we will often abbreviate an ice quiver (Q,F ) byQ and (µi(Q), F ) by µi(Q)
where the set of frozen vertices is understood from context. We will be primarily focused
on framed quivers and quivers which are obtained from a framed quiver by a sequence of
mutations. In fact, whenever we have an ice quiver with a nonempty set of frozen vertices
we will assume it is obtainable from a framed quiver by some sequence of mutations. So,
the set of frozen vertices will be of a very particular form.

A mutable vertex is green if it there are no incident incoming arrows from frozen ver-
tices. Similarly, a mutable vertex is red if there are no incident outgoing arrows to frozen
vertices. If we start with an initial quiver Q and perform mutations at mutable vertices
of the framed quiver Q̂, then any mutable vertex will always be either green or red. The
result is known as sign-coherence and was established by Derksen, Weyman,and Zelevin-
sky [13]. For each vertex i in a quiver obtained from Q̂ by some sequence of mutations, the
corresponding c-vector is defined by its jth entry being the number of arrows from i to j′

(with arrows j′ to i counting as negative). In these terms sign-coherence says a c-vector’s
entries are either nonnegative or nonpositive. Notice also that all vertices are initially green
when starting with Q̂. Keller [28, 29] has introduced the following types of sequences of
mutations which will be our main interest. A sequence mutations is called a reddening
sequence if after preforming this sequence of mutations all mutable vertices are red. A
maximal green sequence is a reddening sequence where each mutation occurs at a green
vertex. When a sequence of mutations is a reddening sequence we may say it is a reddening
sequence for either Q or Q̂. In terms of being a reddening sequence or not, the quiver Q
and the framed quiver Q̂ are equivalent data.

We may write a maximal green or reddening sequence as either a sequence of vertices
(read from left to right) or as a composition of mutations (read from right to left as is usual
with composition of functions). For a quiver Q we will let green(Q) denote the set of
maximal green sequences for Q. If we consider the quiver Q = 1 → 2 there are exactly
two maximal green sequences and we can record them either as

green(Q) = {(1, 2), (2, 1, 2)}

in sequence of vertices notation or as

green(Q) = {µ2µ1, µ2µ1µ2}

in composition notation.
We will need to modify and combine sequences of vertices when producing maximal

green and reddening sequences. This is done by shuffling mutation sequences together.

Definition 2.1. A shuffle of two sequences (a1, a2, . . . , ak) and (b1, b2, . . . , b`) is any se-
quence whose entries are exactly the elements of {a1, a2, . . . , ak} ∪ {b1, b2, . . . , b`} (con-
sidered as a multiset) with the relative orders of (a1, a2, . . . , ak) and (b1, b2, . . . , b`) are
preserved.
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For example there are 6 shuffles of the sequences (1, 2) and (a, b). They are the se-
quences (1, 2, a, b), (1, a, 2, b), (1, a, b, 2), (a, 1, 2, b), (a, 1, b, 2), and (a, b, 1, 2). In the
next section we will define component preserving mutations and show how by checking
for the component preserving property you can create shuffles of reddening sequences on
induced subquivers whose result is a reddening sequence for a larger quiver.

3 Component preserving mutations
We start by establishing some basic definitions and notation of what we mean by a compo-
nent of the quiver.

Definition 3.1. Let Q be an ice quiver with vertex set V . Then let π = π1/π2/ · · · /π` be
a set partition of V . Then let Qi be the induced subquiver of Q obtained by deleting every
vertex v 6∈ πi. We will call the Qi the components of Q and the pair (Q, π) a partitioned
quiver.

Definition 3.2. When (Q, π) is a partitioned quiver with π = π1/π2/ · · · /π`, we will
define π̂ as the partition of V̂ where each π̂i = {v, v̂ | v ∈ πi}. Then (Q̂, π̂) will be called
a partitioned ice quiver.

Remark 3.3. In other words, for each mutable vertex v, the frozen copy of a vertex, v̂, lies
in the same component as v. It is straight forward to see that (̂Qi) = (Q̂)i.

Definition 3.4. Mutation of a partitioned ice quiver is defined as the following:

µk((Q, π)) := (µk(Q), π).

Definition 3.5. Let (Q, π) be a partitioned ice quiver. A bridging arrow a → b is any
arrow in Q in which a and b are in different components.

Now we can talk about the definition that is crucial to all the results in the rest of
the paper. This is the notion of component preserving vertices and component preserving
mutations.

Definition 3.6. A vertex k ∈ Qi is component preserving with respect to π when one of
the following occurs:

• If ∃ k → j′ for a frozen vertex j′, then ∀ a→ k we have a ∈ V (Qi); or

• If ∃ j′ → k for a frozen vertex j′, then ∀ k → a we have a ∈ V (Qi).

Remark 3.7. Another way of thinking about component preserving mutations is in terms
of sign-coherence. One can think of a component preserving vertex, k, as a vertex where
freezing each mutable vertex outside of its component results in an ice quiver in which
the extended exchange matrix is still sign-coherent with respect to this larger set of frozen
vertices. In this way one can think of component preserving mutations as being a type of
locally sign-coherent mutation.

Remark 3.8. Another observation to make is that whenever one starts from a framed
quiver, mutation at component preserving vertices does not result in creating bridging ar-
rows that involve frozen vertices. This means that any quiver which is the result of a se-
quence of component preserving mutations starting from a framed quiver has the support
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k

j′

Qi

k

j′

Qi

Figure 1: An illustration of a component preserving vertex k ∈ Qi on the left with arrow
k → j′ and on the right with arrow j′ → k.

of all of its c-vectors contained entirely within a component. In terms of the quiver, this
means that the sequence of component preserving mutations results in a quiver in which all
arrows involving frozen vertices are between mutable vertices and frozen vertices within
the same component.

The choice of terminology is because performing mutation at a component preserving
vertex, k, does not affect Qi unless k ∈ πi. We will prove this fact and then show how one
can use this fact to shuffle maximal green sequences together if at every mutation step you
mutated at a component preserving vertex.

3.1 Preservation proof

Now that we have the language to talk about components of the quiver, we want to set up
a condition on a vertex, k, which forces µk to only affect the component which contains
k and none of the other induced subquivers. This is exactly the property that component
preserving vertices have.

Lemma 3.9. Let (Q, π) be a partitioned ice quiver. If k is a component preserving vertex
then µk(Q)i = µk(Qi) ∀ 1 ≤ i ≤ `.

Proof. First notice that these are in fact two ice quivers on the same set of vertices. To
check that the lemma holds we need to see that each step of mutation has the same effect
on the subquivers µk(Q)i and µk(Qi) for each i. The key step of mutation to check is
where new arrows are created, which is step one in our definition of mutation. There are
two cases to consider:

Case 1: k ∈ πi. Let a → b be an arrow in µk(Qi) created by mutation at vertex k. Then
since Qi is the quiver Q restricted to the component πi we know that a, b along with k
are elements of V (Qi). Therefore the arrows a → k and k → b are elements of E(Qi).
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Therefore all of these arrows are present in Q and hence the arrow a → b is present in
µk(Q). Since both endpoints of the arrow are in πi the arrow a → b is also created in the
mutation µk(Q)i.

We will now show this is a biconditional relationship. Assume a → b is an arrow in
µk(Q)i which is created from mutation. This occurs if and only if a → k → b is present
in Q and a, b ∈ πi. Since we have assumed that k ∈ πi we know that a, b, k ∈ πi and the
arrow a→ b is also created in µk(Qi).

Case 2: k 6∈ πi. Since k is not a vertex in Qi we will not be able to mutate the quiver Qi in
direction k. Therefore µk(Qi) = Qi. Now what we must check is that no arrow a → b is
created in µk(Q)i by step (1) of mutation.

By way of contradiction, assume that a → b in µk(Q)i is created by the composition
of mutation and restriction. Then a→ k → b is present in Q and also a, b ∈ πi. But since
k is not in the same component as a and b, arrows a → k and k → b are bridging arrows
in opposite directions. This is a contradiction since each component preserving vertex is
incident to bridging arrows in at most one direction.

3.2 Applications to reddening sequences and maximal green sequences

We have seen that if k is a component preserving vertex, then µk only affects arrows in
Qi and possibly bridging arrows. This can be extremely useful in the context of redden-
ing sequences. The goal is to utilize reddening sequences on each component to create a
reddening sequence for the larger quiver. This turns out to be possible if at each mutation
step you are performing a component preserving mutation. The following is a useful con-
sequence which follows directly from the sign-coherence of c-vectors as presented in [13]
and Remark 3.8 on the support of c-vectors.

Lemma 3.10. Let (Q̂, π̂) be a partitioned framed quiver. Let σ be any sequence of compo-
nent preserving mutations. Also, let v be a vertex in the component πi. Then the color of a
vertex v in µσ(Q̂) is the same as the color of the vertex v in µσ(Q̂)i.

Theorem 3.11. Let (Q̂, π̂) be a framed partition quiver where for each Q̂i we have a
reddening sequence σi. Then let τ be a shuffle of the σi such that at every mutation step
of the sequence τ we have that k is component preserving with respect to π. Then τ is a
reddening sequence for Q̂.

Proof. Let (Q̂, π̂) be a framed partition quiver. Then since each mutation in τ is component
preserving you have from the Lemma 3.9 that

µτ (Q̂)i = µτ (Q̂i) = µσi
(Q̂i).

Meaning that for each i any vertex v ∈ π is red in µτ (Q̂)i since it is the result of
running a reddening sequence. It then follows from Lemma 3.10 that v is red in the larger
quiver µτ (Q̂).

Corollary 3.12. Furthermore if additionally you have that each σi is a maximal green
sequence for the component Q̂i then you have that τ is a maximal green sequence for Q̂.

Proof. By Theorem 3.11 we know we have a reddening sequence. By Lemma 3.10 and
Lemma 3.9 to decide if a mutation step occurred at a green vertex we only need to look at
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the component containing that vertex. Then we consider that each σi is a maximal green
sequence and it follows from the same equation:

µτ (Q̂)i = µτ (Q̂i) = µσi
(Q̂i).

This can be quite useful. In practice what it tells you is that if you partition your
quiver up into components, and you know a reddening (or maximal green) sequence for
each component then you can try and shuffle the sequences together. If every mutation
in the shuffle is component preserving, then you have successfully created a reddening
(or maximal green) sequence for the larger quiver. In the sections that follow we will
show some of the applications of using this approach to find maximal green and reddening
sequences for a variety of quivers. Before showing new applications of the component
preserving mutation method, we first provide some examples of previously known maximal
green sequences that come from component preserving mutations. These known examples
serve to show that our framework unifies many known maximal green sequences. Also
the following examples aim to demonstrate that applications of Corollary 3.12 occur “in
nature” and thus Definition 3.6 is not too restrictive as it includes many naturally occurring
examples.

3.3 Example: Admissible source sequences

A sequence of vertices (i1, i2, . . . , in) of a quiver Q with n vertices is called an admissible
numbering by sources if {i1, i2, . . . , in} = V (Q) and ij is a source of µij−1

◦ · · · ◦µi1(Q).
It is well known that any acyclic quiver Q admits an admissible numbering by sources
and that any such admissible numbering by sources (i1, i2, . . . , in) is a maximal green
sequence [3, Lemma 2.20]. In terms of component preserving mutations, (i1, i2, . . . , in)
being an admissible numbering by sources means that τ = µin ◦µin−1

◦ · · · ◦µi1 is a com-
ponent preserving sequence of mutations with respect to the partition {i1}/{i2}/ · · · /{in}
of V (Q) into singletons. Corollary 3.12 states (i1, i2, . . . , in) is a maximal green sequence
in this special case. Figure 2 shows an example of an acyclic quiver where (4, 1, 2, 3, 5) is
a maximal green sequence from an admissible numbering by sources with the vertices as
labeled in the figure.

1 2

3

4

5

Figure 2: An acyclic quiver with maximal green sequence (4, 1, 2, 3, 5).

3.4 Example: Direct sum

A direct sum of quivers A and B is any quiver Q with

V (Q) = V (A) t V (B)

E(Q) = E(A) t E(B) t E
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where E is any set of arrows such which has for any i → j ∈ E implies i ∈ V (A) and
j ∈ V (B). In other words, a direct sum of quivers simply takes the disjoint union of the
two quivers then adds additional arrows between the quivers with the condition that all
arrows are directed from one quiver to the other. We can take the partition V (A)/V (B)
of V (Q) and the consider the concatenation τ = τBτA for any reddening sequence τA of
A and τB of B. Then τ will be component preserving and hence a reddening sequence by
Theorem 3.11

An example of a direct sum of quivers A and B where V (A) = {1, 2} and V (B) =
{4, 5, 6} is given in Figure 3. We can take the maximal green sequences (2, 1, 2) and
(4, 6, 5) on the components and obtain maximal green sequence (2, 1, 2, 4, 6, 5) on the
direct sum. We will not prove that such sequences of mutations are component preserving
since proofs for maximal green sequences and reddening sequences of direct sums are
already in the literature [22, Theorem 3.12], [8, Theorem 4.5].

1

2

4

5

6

Figure 3: A direct sum of quivers with maximal green sequence (2, 1, 2, 4, 6, 5).

3.5 Example: Square products

The square product of two Dynkin quivers is considered by Keller in his work on periodic-
ity [30]. For two type A quivers the square product is a grid with all square faces oriented
in a directed cycle. In Figure 4 we show a square product of type (A2, An). Consider the
partition π = B/B′ of the quiver in Figure 4 where B is the set of vertices in the top row
and B′ is the set of vertices in the bottom row. Then the quiver restricted to either B or
B′ is an alternating path which has a maximal green sequence of repeatedly applying sink
mutations. A component preserving shuffle for these quivers can be found by alternating
between mutations in B and B′ until you have completed both maximal green sequences.
This example generalizes to many other quivers in a family called bipartite recurrent quiv-
ers. Maximal green sequences for bipartite recurrent quivers will be investigated in more
depth in Section 5.

Figure 4: An arbitrary length square product of type (A2, An).
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3.6 Example: Dreaded torus

Let Q be the quiver shown in Figure 5 which comes from a triangulation of the torus
with one boundary component and a single marked point on the boundary. With vertices
as labeled in the figure we can take the partition {1, 4}/{2, 3} and the maximal green
sequences (1, 4, 1) and (3, 2, 3) on the two components. The sequence (1, 3, 4, 2, 1, 3) is
component preserving and hence a maximal green sequence by Corollary 3.12. The quiver
Q is an example of a quiver which admits a maximal green sequence, and hence a reddening
sequence, but is not a member of the class P of Kontsevich and Soibelman [31]. So, Q
should be included in a solution to a question posed by the first two authors which seeks
to identify a collection of quivers which generate all quivers with reddening sequences by
using quiver mutation and the direct sum construction [5, Question 3.6].

1 2

3

4

Figure 5: The quiver for the torus with one boundary component and one marked point. A
maximal green sequence for this quiver is (1, 3, 4, 2, 1, 3).

3.7 Example: Cremmer-Gervais

In the Gekhtman, Shapiro, and Vainshtein approach to cluster algebras with Poisson ge-
ometry there is an exotic cluster structure on SLn known as the Cremmer-Gervais cluster
structure [23, 24]. The mutable part of the quiver defining this cluster structure for the case
n = 3 is shown in Figure 6. The cluster algebra has the interesting property that whether
or not it agrees with its upper cluster algebra is ground ring dependent [6, Proposition 4.1].
A maximal green sequence for the quiver in Figure 6 is (2, 3, 4, 1, 5, 1, 6, 3) which can be
obtained by considering the partition {1, 2, 5}/{3, 6}/{4} along with maximal green se-
quences (2, 1, 5, 1), (3, 6, 3), and (4). The authors believe it would be interesting to try the
technique of component preserving maximal green sequences on quivers for the Cremmer-
Gervais cluster structure for larger values for n.

4

3 6

1 2 5

Figure 6: The mutable part of the quiver defining the Cremmer-Gervais cluster structure.
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4 Applications to quiver dominance
One natural question that arises when discussing any algebraic object is to ask questions
about what information can be extracted from considering the smaller sub-objects inside
your larger object. The methods we have presented thus far give a way of producing red-
dening sequences on larger quivers by considering reddening sequences on quivers with
fewer vertices. In this section we will give a way of producing reddening sequences on
larger quivers by considering reddening sequences on quivers with fewer arrows but the
same number of vertices.

Component preserving mutations give rise to a dominance phenomenon of quivers. In
terms of matrices dominance is given by the following definition. One obtains a definition
of dominance in quivers by considering its skew-symmetric exchange matrix.

Definition 4.1. Given n × n exchange matrices B = [bij ] and A = [aij ], we say B
dominates A if for each i and j, we have bijaij ≥ 0 and |bij | ≥ |aij |.

An initiation of a systematic study of dominance for exchange matrices was put forth
by Reading [37]. Dominance had previously been considered by Huang, Li, and Yang [26]
as part of their definition of a seed homomorphism. One instance of the dominance phe-
nomenon observed by Reading is the following observation about scattering fans.

Phenomenon 4.2 ([37, Phenomenon III]). Suppose that B and B′ are exchange matrices
such that B dominates B′. In many cases, the scattering fan of B refines the scattering fan
of B′.

Remark 4.3. Following [25] to any quiver one can associate a cluster scattering diagram
inside some ambient vector space. Reddening sequences and maximal green sequences
then correspond to paths in the ambient vector space subject to certain restrictions coming
from the scattering diagram. A cluster scattering diagram partitions the ambient vector into
a complete fan called the scattering fan [38]. Hence, the phenomenon that the scattering
fan of B often refines the scattering fan of B′ when B dominates B′ means that it should
be more difficult to find a reddening sequence for B since the scattering diagram of B has
additional walls imposing more constraints. However, we will find certain conditions for
when a reddening sequence for B′ will still work as a reddening sequence for B.

In this section we will apply the results of Section 3 to show that the existence of a
reddening (maximal green) sequence passes through the dominance relationship in many
cases. The interesting aspect of this result is it appears to go in the wrong direction; the
property is passed from the dominated quiver to the dominating quiver. Let B dominate
A. If A has a reddening (maximal green) sequence then, we wish to produce a reddening
(maximal green) sequence for B. This is not a true statement in general, but if we put some
restrictions on howB dominatesA and extra conditions on the reddening or maximal green
sequence this turns out to be true. Going forward we will consider dominance in terms of
the quivers instead of exchange matrices. A reformulation of dominance is the following.

Definition 4.4. Given quivers B and A on the same vertex set we say that B dominates A
if:

• for every pair of vertices (i, j) any arrows between i and j in A are in the same
direction as any arrow between i and j in B; and
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• for every pair of vertices (i, j) the number of arrows in B involving vertices i and j
is greater than or equal to the number of arrows in A involving i and j.

For an example of quiver dominance see Figure 7 where multiplicity of an arrow greater
than 1 is denoted by the number next to the arrow. We now need to establish the notion of
π-dominance. This is a restrictive form of dominance, where we the quivers A and B have
the same component subquivers with respect to a partition π but have the multiplicity of
the bridging arrows altered in a consistent way.

2 3 4 5

Figure 7: An example where the quiver on the right dominates the quiver on the left.

Definition 4.5. Let (A, π) and (B, π) be two partitioned ice quivers with the same vertex
set and same set partition π. We say that B π-dominates1 A if:

• the component quivers Ai = Bi for each i;

• for all u ∈ Bi and v ∈ Bj with i 6= j we have the #(u → v in B) is equal to
dij ×#(u → v in A), where dij is a positive integer that is the same for the entire
i-th and j-th components.

The dij are called the dominance constants associated to (B, π) and (A, π). As usual in
Definition 4.5 arrows in the opposite direction are counted as negative. A practical way of
thinking about π-dominance is that B is obtained from the A by scaling up the multiplicity
of the bridging arrows between components by the appropriate dominance constant. Notice
that the dominance constants are always positive, and hence bridging arrows are always in
the same direction after scaling by the dominance constants. An example of π-dominance
can be seen in Figure 8. This example has the type (A2, A4) square product on the left side
and the Q-system quiver of type A4 on the right side.

2 2 2 2

Figure 8: This is π-dominance where the components are the horizontal rows of the quiver.
The right hand quiver π-dominates the left hand quiver and d12 = 2.

Theorem 4.6. Let k be a component preserving vertex in (A, π) and (B, π) be an ice
quiver which π-dominates A with dominance constants dij . Then µk(B) dominates µk(A)
with dominance constants dij .

Proof. Since k is a component preserving vertex in (A, π) we know that k is also a compo-
nent preserving vertex in (B, π) since the direction of the bridging arrows is unchanged by
scaling by the multiple dij . Also as k is component preserving in both A and B we know

1This is a more restrictive version of the dominance phenomena presented by Reading. In general, not all
quivers B which dominate a quiver A will π-dominate the quiver.
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by Lemma 3.9 that µk(A)i = µk(Ai) = µk(Bi) = µk(B)i. Therefore we only need to
consider the bridging arrows between components.

The bridging arrows incident to k are only affected by the step of mutation which
reverses arrows incident to k. Therefore dominance is preserved for these arrows because
they are reversed by mutation at k in both A and B.

Now we must check the number of bridging arrows created during mutation for both
µk(B) and µk(A). For some nonnegative integer α, we will use the notation i α→ j to
denote that there are α arrows from i to j in a quiver.

Assume s α→ k
β→ t is present in A with α, β ≥ 0. Then mutation will create arrows

from s → t with multiplicity αβ. Since we need only consider bridging arrows we will
assume the αβ many arrows from s to t created are bridging arrows. In the case that k
is green we know that s must be in the same component as k because k is component
preserving. Assume k, s ∈ V (Ai) and t ∈ V (Aj) for i 6= j. We now will show that µk(B)

creates dijαβ arrows from s to t. The presence of s α→ k
β→ t in A implies that there

is s α→ k
dijβ→ t in B. Therefore mutation at k in B creates dijαβ arrows s → t. Now

we can consider the multiplicity of bridging arrows resulting from cancellation of 2-cycles
mutation. In µk(A) the multiplicity of the arrows from s to t is αβ + γ, where γ is the
number of arrows from s to t in A (here we allow γ to be negative if there are arrows from
t to s). In µk(B) the multiplicity of arrows from s to t is dijαβ + dijγ since there are
dijγ arrows from s to t in B by the assumption that B π-dominates A. Therefore there are
exactly dij(αβ + γ) arrows from s to t in µk(B) which is exactly the condition needed to
say that µk(B) π-dominates µk(A).

The case where k is red is very similar. In this case t must be in the same component as

k because k is component preserving. The presence of s α→ k
β→ t in A now implies that

there is s
dijα→ k

β→ t in B. Again mutation at k in B creates dijαβ arrows s → t and the
rest of the argument follows the case where k was green.

We can now state our main result regarding dominance, that certain reddening se-
quences can be passed from a quiver A to a π-dominating quiver B.

Corollary 4.7. Let (A, π) be a partitioned quiver, with π = π1/π2/ · · · /π`. Let σ1, σ2, . . . ,
σ` be reddening sequences for A1, A2, . . . , A` respectively. If A admits a reddening se-
quence, τ , which is a component preserving shuffle of σ1, σ2, . . . , σ` and B π-dominates
A, then τ is also a reddening sequence for B. Moreover, if τ is a maximal green sequence
for A, then τ is a maximal green sequence for B.

Proof. Theorem 4.6 shows that each component preserving mutation in A is also a com-
ponent preserving mutation in B. Therefore the mutation sequence τ is a component
preserving sequence for B since it is a component preserving sequence for A. The def-
inition of π-dominance tells us that A1 = B1, A2 = B2, . . . , A` = B`. Therefore
since σ1, σ2, . . . σ` are reddening sequences for A1, A2, . . . , A`, they are also reddening
sequences for B1, B2, . . . , B`. Then by Theorem 3.11 and Corollary 3.12 we have that
they are in fact reddening sequences and additionally maximal green in the case where
each σi is a maximal green sequence.

Now we are equipped to use π-dominance to produce reddening and maximal green
sequences for the dominating quivers by having well behaved sequences on the dominated
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quiver. We conclude this section with a few examples each providing a family of applica-
tions of Corollary 4.7.

4.1 Examples of applying Corollary 4.7

Corollary 4.7 applies to any case where one can produce a maximal green or reddening
seqeunce using component preserving mutations. Thus, this result can be applied in many
cases to produce infinite families of examples. In this section we highlight a few examples.

Example 4.8 (Dreaded torus). Previously much attention has been paid to maximal green
sequences for finite mutation type quivers (see [33]). In Section 3.6 we saw one example
of a maximal green sequence for a finite mutation type quiver using component preserving
mutations. Now we revisit this example, except we can scale the bridging arrows between
the components and leave the case of finite mutation type. By Corollary 4.7 we know
that the original maximal green sequence for the dreaded torus will also be a maximal
green sequence for all π-dominating quivers. Therefore (1, 3, 4, 2, 1, 3) is a maximal green
sequence for all of the quivers in Figure 9, where a is a positive integer. This is an example
of a quiver where the shuffle is not one that can be obtained from direct sum results as
the partition does not form a direct sum of either the original quiver or the π-dominating
quivers.

1

a2a

a

a
2

3

4

Figure 9: For each positive integer a, Corollary 4.7 produces a maximal green sequence for
the quiver, which was the maximal green sequence from the dreaded torus. The maximal
green sequence is (1, 3, 4, 2, 1, 3).

Example 4.9 (The cycle). Another example of finite mutation type quiver is the directed
cycle quiver with vertex set {1, 2, . . . , n} and arrow set {i → (i + 1) : 1 ≤ i < n} ∪
{n→ 1}. In [4, Lemma 4.2] it is shown this quiver has the maximal green sequence

(1, 2, . . . , n− 2, n− 1, n, n− 2, n− 3, . . . , 2, 1)

which can be seen to be component preserving with respect to the partition {1, 2, . . . , n−3,
n − 2, n}/{n − 1}. By applying Corollary 4.7 we then obtain maximal green sequences
for many quivers of infinite mutation type. The case n = 6 is shown in Figure 10.

Example 4.10 (Q-systems). Consider Figure 11 when α = 2 in which we can produce a
maximal green sequence for theQ-system quiver of typeA4 by utilizing the maximal green
sequence from the square product quiver of type (A2, A4). This technique also produces
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1

2

34

5
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d

d

Figure 10: A quiver dominating the cycle which has the maximal green sequence
(1, 2, 3, 4, 5, 6, 4, 3, 2, 1).

maximal green sequences for other Q-system quivers (see [14, 27]) which are dominat-
ing quivers of square products. The next section will focus on producing maximal green
sequences for a variety of bipartite recurrent quivers.

1

2

3
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α α α α

Figure 11: This is π-dominance where the components are the horizontal rows of the quiver.
The square product quiver on the left has a maximal green sequence compatible with a π
component preserving shuffle of (2, 3, 6, 7, 1, 4, 5, 8, 2, 3, 6, 7, 1, 4, 5, 8, 2, 3, 6, 7). Corol-
lary 4.7 shows that the quiver on the left where α is any positive integer admits the same
maximal green sequence.

5 Bipartite recurrent quivers
In this section we consider certain quivers arising in the setting of T -systems and Y -
systems. An early application of cluster algebras was Fomin and Zelevinsky’s proof of peri-
odicity for Y -systems associated to root systems [16] which was conjectured by Zamolod-
chikov [42]. This has lead to many more applications of cluster algebra theory in periodicity
for T -systems and Y -systems. We will focus on work of Galashin and Pylyavskyy on bi-
partite recurrent quivers [18, 19, 20]. For certain bipartite recurrent quivers we will produce
maximal green sequences in Theorem 5.3. An important ingredient in our constructions of
maximal green sequences will be an extension of Stembridge’s bigraphs [41]. The pattern
for the maximal green sequences produced in this section was originally observed by Keller
in the case of square products [30]. For a quantum field theory perspective on the results
in this section we refer the reader to [10] where some of the same mutation sequences
we construct are also considered. The main contribution of this section is to demonstrate
how component preserving mutation neatly establishes the existence of a maximal green
sequence for all quivers in Galashin and Pylyavskyy’s classification of Zamolodchikov pe-
riodic quivers [18] as well as for some additional bipartite recurrent quivers.

We call a quiver Q bipartite if there exists a map ε : V (Q) → {0, 1} such that ε(i) 6=
ε(j) for every arrow i→ j of Q. The choice of such a map ε when it exists for a quiver Q
is called a bipartition. Given a bipartition ε for Q a vertex i ∈ V (Q) will be called white
if ε(i) = 0 and black if ε(i) = 1. Let i1, i2, . . . , i` denote the white vertices and Q and
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j1, j2, . . . , jm denote the black vertices. We then let

µ◦ = µi1 ◦ µi2 ◦ · · · ◦ µi`

and
µ• = µj1 ◦ µj2 ◦ · · · ◦ µjm

denote the mutations at all white vertices or black vertices respectively. Since the quiver
is bipartite no white vertex is adjacent to any other white vertex and so the order of muta-
tion among the white vertices in µ◦ does not matter. Similarly the order among the black
vertices in µ• does not matter. A bipartite quiver Q is recurrent if both µ◦(Q) = Qop

and µ•(Q) = Qop where Qop denotes the quiver obtained from Q by reserving the di-
rection of all arrows. Thus for a bipartite recurrent quiver we have µ•(µ◦(Q)) = Q and
µ◦(µ•(Q)) = Q.

A bigraph is a pair (Γ,∆) of undirected graphs on the same underlying vertex set with
no edges in common. Let AΓ and A∆ denote the adjacency matrices of Γ and ∆ respec-
tively. Given any bipartite quiver Q with bipartition ε we obtain a bigraph (Γ(Q),∆(Q))
on vertex set V (Q) where Γ(Q) has an edge {i, j} for each arrow i→ j inQ with ε(i) = 0
and ∆(Q) has an edge {i, j} for each arrow i → j of Q with ε(i) = 1. By abuse of
notation we may also think of Γ(Q) and ∆(Q) as directed graphs with the direction of
edge inherited from the quiver. Galashin and Pylyavskyy have shown that a bipartite quiver
Q is recurrent if and only if AΓ(Q) and A∆(Q) commute [18, Corollary 2.3]. A bigraph
(Γ,∆) is called an admissible ADE bigraph if every component of both Γ and ∆ is an
ADE Dynkin diagram and the adjacency matrices of Γ and ∆ commute. In the case of an
admissible ADE bigraph, each connected component of Γ, and similarly of ∆, will be an
ADE Dynkin diagram will the same Coxter number [41, Corollary 4.4]. More generally,
we wish to also consider what we will refer to as half-finite bigraphs where for at least one
of Γ or ∆ each connected component is a ADE Dynkin diagram. Note the half-finite case
includes both the admissible ADE bigraph case (which are exactly those quivers which
are Zamolodchikov periodic [18]) as well as the affine � finite case in the classification
of Galashin and Pylyavskyy [20]. An example of a bipartite recurrent quiver is shown in
Figure 12. Let Q denote the bipartite recurrent quiver in Figure 12. The edges of Γ(Q)
correspond to the thick red arrows while the edges of ∆(Q) correspond to the thin blue
arrows.

Figure 12: An example of a bipartite recurrent quiver.

For an ADE Dynkin diagram Λ we denote its Coxeter number by h(Λ) and its number
of positive roots by |Φ+(Λ)|. These quantities will be important in the maximal green
sequences we construct. Table 1 shows the values for h(Λ) and |Φ+(Λ)| for each ADE
Dynkin diagram Λ. We now present a result due to Galashin and Pylyavskyy generalizing
the result for admissible ADE bigraphs.
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Table 1: Coxeter numbers and number of positive roots for ADE types.

Λ An Dn E6 E7 E8

h(Λ) n+ 1 2n− 2 12 18 30

|Φ+(Λ)|
(
n+1

2

)
n2 − n 36 63 120

Lemma 5.1 ([20, Corollary 1.1.9]). If (Γ,∆) is a half-finite bigraph so that each compo-
nent of Γ is an ADE Dynkin diagram, then the Coxeter number of each component of Γ
will be the same.

If Q is an orientation of an ADE Dynkin diagram Γ, then the length of the longest
possible maximal green sequence is |Φ+(Λ)| which has been shown in [3, Theorem 4.4]
and [36, Proposition 7.3]. A quiver Q is an alternating orientation of an ADE Dynkin
diagram Λ if it is an orientation of Λ so that every vertex is either a source or sink. In
the case we have an alternating orientation, we will be interested in a certain maximal
green sequence of length |Φ+(Λ)| coming from bipartite dynamics. We may assume we
have a bipartition of Q such that all sinks are the white vertices and all sources are the
black vertices. The maximal green sequence in the following lemma was first observed by
Keller [29].

Lemma 5.2 ([29]). Let Q be an alternating orientation of an ADE Dynkin diagram with
Coxeter number h. If h = 2k, then (µ•µ◦)

k is a maximal green sequence. If h = 2k + 1,
then µ◦(µ•µ◦)k is a maximal green sequence.

We are ready to state and prove our theorem which gives a maximal green sequence
for any half-finite bipartite recurrent quiver. Notice the assumption that Γ(Q) consists of
connected components which are all ADE Dynkin diagrams can easily be exchanged for
the assumption that ∆(Q) consists of connected components which are all ADE Dynkin
diagrams. Also the assumption on white vertices is only to allow us to explicitly state the
maximal green sequences. An easy modification gives the correct statement of the theorem
with the roles of black and white vertices reversed.

Theorem 5.3. Let Q be a half-finite bipartite recurrent quiver. Assume that Γ(Q) consists
of connected components which are all ADE Dynkin diagrams. Further assume that with
the orientation induced by Q the white vertices are sinks in Γ(Q) and sources is ∆(Q). Let
h be the Coxeter number of some component of Γ(Q). If h = 2k is even, then (µ•µ◦)

k is
a maximal green sequence of Q. If h = 2k + 1 is odd, then µ◦(µ•µ◦)k is a maximal green
sequence of Q.

Proof. We will construct a maximal green sequence forQ via component preserving muta-
tions where components are given by the connected components of Γ(Q). By construction
within each component every vertex will be either a source or sink. Under our assump-
tions white vertices are initially sinks while black vertices are initially sources within each
component. Since Q is a bipartite recurrent quiver µ◦(Q) = Qop and µ•(µ◦(Q)) = Q.
Initially, mutation at any white vertex will be component preserving as each white vertex
is a sink within its component and thus all arrows to other components will be outgoing.
Mutation at a given white vertex will not change the fact another white vertex is compo-
nent preserving. For the same reason mutation at any black vertex is component preserving
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in Qop. It follows that (µ•µ◦)
m and µ◦(µ•µ◦)

m are component preserving sequences
of mutations for any m. By Lemma 5.1 each component has the same Coxeter number.
Lemma 5.2 says that we do indeed have maximal green sequences on each component and
therefore the theorem is proven by appealing to Corollary 3.12.

6 Other applications
In this section we provide a variety of uses of the technique of component preserving mu-
tations.

6.1 Quantum dilogarithms

We will review Keller’s [28] association of a product of quantum dilogarithms with a se-
quence of mutations. We will then consider properties of such products of quantum dilog-
arithms which come from component preserving mutations. Let q

1
2 be an indeterminant.

We define the quantum dilogarithm as

E(y) = 1 +
q

1
2 y

q − 1
+ · · ·+ q

n2

2 yn

(qn − 1)(qn − q) · · · (qn − qn−1)
+ · · ·

which is consider as an element of the power series ring Q(q
1
2 )[[y]]. Keller has shown how

reddening sequences give identities of quantum dilogarithms in a certain quantum algebra
determined by a quiver.

Given a quiver Q with vertex set V and skew-symmetric adjacency matrix B = (buv)
we obtain a lattice Λ = ZV with basis {ev}v∈V . There is a skew-symmetric bilinear form
λ : Λ× Λ→ Z defined by

λ(eu, ev) := buv.

The completed quantum algebra of the quiver Q, denoted by ÂQ, is then the noncommu-
tative power series ring modulo relations defined as

ÂQ := Q(q
1
2 )〈〈yα, α ∈ Λ : yαyβ = q

1
2λ(α,β)yα+β〉〉.

For any sequence σ = (i1, i2, . . . , iN ) of vertices in Q we define

Qσ,t := µit ◦ µit−1
◦ · · · ◦ µi1(Q)

for 0 ≤ t ≤ N where Qσ,0 = Q. We then define the product EQ,σ ∈ ÂQ as

EQ,σ := E(yε1β1)ε1E(yε2β2)ε2 · · ·E(yεNβN )εN

where βt is the c-vector corresponding to vertex it inQσ,t−1 and εt ∈ {±1} is the common
sign on the entries of βt. If σ is a reddening sequence, then EQ,σ is known as the combi-
natorial Donaldson-Thomas invariant of the quiver Q. If σ and σ′ are two reddening se-
quences, then we have the quantum dilogarithm identity EQ,σ = EQ,σ′ [29, Theorem 6.5].

In the case that α =
∑
i∈I ei where I = {i1, i2, . . . , i`} we may write yi1i2···i` in place

of yα. Using this abbreviated notation, the well known pentagon identity is

E(y1)E(y2) = E(y2)E(y12)E(y1) (6.1)
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and can be seen by looking at the two maximal green sequences for the quiver Q = (1 →
2). Now consider the quiver in Figure 13 which is an alternating orientation of the Dynkin
diagram A3. The two maximal green sequences

(2, 1, 3)

and
(1, 3, 2, 1, 3, 2)

give the quantum dilogarithm identity

E(y2)E(y1)E(y3) = E(y1)E(y3)E(y123)E(y23)E(y12)E(y2). (6.2)

Reineke [39] has given quantum dilogarithm identities associated to any alternating ori-
entation of an ADE Dynkin diagram which generalize Equations (6.1) and (6.2). Using
cluster algebra theory, Keller [29] has further generalized these identities to square prod-
ucts associated to pairs of ADE Dynkin diagrams. Even more general identities follow
from Theorem 5.3 since we have now produced two maximal green sequences for any
Zamolodchikov periodic quiver.

1 2 3

Figure 13: An alternating orientation of the Dynkin diagram A3.

Let us give a few properties of quantum dilogarithm products coming from component
preserving mutations. For α =

∑
i aiei ∈ Λ we define its support to be Supp(α) := {i :

ai 6= 0}. Consider a quiver Q, a subset of vertices C ⊆ V (Q), and a sequence of vertices
σ = (i1, i2, . . . , iN ). Define σ|C to be the restriction of σ to C (i.e. σ where all vertices
not in C have been deleted). Again write

EQ,σ = E(yε1β1)ε1E(yε2β2)ε2 · · ·E(yεNβN )εN

and define (EQ,σ)|C to be the product EQ,σ (taken in the same order) with the terms
E(yεtβt)εt removed whenever it 6∈ C. We now provide a proposition which tells us that
when a reddening sequence of component preserving mutations is performed, there is a re-
striction on the support of the c-vectors occurring in the combinatorial Donaldson-Thomas
invariant. The proposition follows readily from the definitions and Remark 3.8. When π is
a set partition of a set X and x ∈ X is an element of that set, we will use π(x) to denote
the block of the set partition π which contains x.

Proposition 6.1. Let (Q, π) be a partitioned quiver so that σ = (i1, i2, . . . , iN ) is a com-
ponent preserving sequence of vertices. If C = Qj is some component, then EQ,σ|C =
(EQ,σ)|C . Moreover, we have that Supp(βt) ⊆ π(it) for each 1 ≤ t ≤ N .

When Q is such that (Γ(Q),∆(Q)) is an admissible ADE bigraph we can obtain a
second maximal green sequence from Theorem 5.3 by exchanging the roles of Γ(Q) and
∆(Q). A square product of two ADE Dynkin diagrams produces a quiver Q such that
(Γ(Q),∆(Q)) is an admissible ADE bigraph. For square products of ADE Dynkin dia-
grams Keller [29] has previously produced the maximal green sequences in Theorem 5.3.
The square product ofA3 andA4 is shown in Figure 12. Stembridge’s classification [41] of
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admissible ADE bigraphs includes more than just those bigraphs encoding square products
of ADE Dynkin diagrams. Thus, Theorem 5.3 provides new quantum dilogarithm iden-
tites which can be thought of as generalizations of the pentagon identity. An infinite family
examples of quivers which are not square products are the twists of an ADE Dynkin dia-
grams [41, Example 1.4]. The quiver Q which is the twist of A3 is shown in Figure 14. On
the left of Figure 14 the quiver is pictured to indicated the bigraph (Γ(Q),∆(Q)), and on
the right we show the quiver with vertex labels. The two expressions of the combinatorial
Donaldson-Thomas invariant of Q obtain from the maximal green sequences constructed
in Theorem 5.3 are

E(y1)E(y3)E(y4)E(y6)E(y123)E(y456)E(y23)E(y12)E(y56)E(y45)E(y2)E(y4) (6.3)

and

E(y2)E(y5)E(y15)E(y35)E(y24)E(y26)E(y246)E(y135)E(y1)E(y3)E(y4)E(y6). (6.4)

These expressions are equal and give one example of the quantum dilogarithm identities
obtained from Theorem 5.3. Looking at supports we can verify Proposition 6.1 in this
example. Expression (6.3) comes from considering {1, 2, 3} and {4, 5, 6} as components
while Expression (6.4) comes from considering {1, 3, 5} and {2, 4, 6} as components. The
maximal green sequences corresponding to the products of quantum dilogarithms in Equa-
tions (6.3) and (6.4) are

(1, 3, 4, 6, 2, 5, 1, 3, 4, 6, 2, 5)

and
(2, 5, 1, 3, 4, 6, 2, 5, 1, 3, 4, 6)

respectively.

1

2

3

4

5

6

Figure 14: The quiver obtained from the twist of A3.

6.2 Minimal length maximal green sequences

There has been recent interest in finding maximal green sequences of minimal possible
length for a given quiver [11, 21]. We will now show how minimal length maximal green
sequences can be constructed with component preserving mutations. In additional to being
a natural question to ask about maximal green sequences, it has been observed by Garver,
McConville, and Serhiyenko that the minimal possible length of a maximal green sequence
may be related to derived equivalence of cluster tilted algebras (see [21, Question 10.1]).
The following result is a component preserving generalization of [21, Proposition 4.4]
which considers the direct sum case.
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Lemma 6.2. Let (Q, π) be a partitioned quiver with π = π1/π2/ · · · /π`. Also let σi be a
minimal length maximal green sequence for Qi for each 1 ≤ i ≤ `. If τ is a component
preserving shuffle of σ1, σ2, . . . , σn, then τ is a minimal length maximal green sequence
for Q.

Proof. Let Li be the length of a minimal length maximal green sequence of Qi for each
1 ≤ i ≤ ` and let L = L1 + L2 + · · · + L`. By Corollary 3.12 we know that τ is a
maximal green sequence and will have length L. So, we now need to show that there are no
shorter maximal green sequences. Consider any maximal green sequence τ ′ for Q. By [21,
Theorem 3.3] it follows that for each 1 ≤ i ≤ ` there is a subsequence of mutations in τ ′

at vertices in Qi which is a maximal green sequence of Qi. This means τ ′ must mutate at
vertices of Qi at least Li times for each 1 ≤ i ≤ `. Since π is a partition, Qi and Qj share
no vertices when i 6= j. It follows that τ ′ has length at least L = L1 + L2 + · · ·+ L`.

To illustrate a use of Lemma 6.2, let Q be the quiver2 in Figure 15. We will take the set
partition {v1, v2, v3, v4, v5}/{u1, u2, u3, u4}. A minimal length maximal green sequence
for Q is then

(u1, u2, u3, v1, v2, v3, v4, v5, v3, v2, v1, u4)

which is a shuffle of (v1, v2, v3, v4, v5, v3, v2, v1) and (u1, u2, u3, u4). The first is a max-
imal green sequence for the cycle by [4, Lemma 4.2] and is of minimal length by [21,
Theorem 6.1]. The second is a maximal green sequence coming from an admissible num-
bering by sources.

v1

v2

v3

v4

v5

u1u2u3u4

Figure 15: A quiver where a minimal length maximal green sequence can be found by
component preserving mutations.

6.3 Exponentially many maximal green sequences for Dynkin quivers

In [3, Remark 4.2 (3)] the authors observe that the number of maximal green sequences of
the lineary oriented Dynkin quiver of type An seems to grow exponentially with n. The
main result of this section will affirm this observation. A Dynkin quiver of type An is any
orientation of the Dynkin diagram of type An. The linearly oriented Dynkin quiver of type
An has vertex set {i : 1 ≤ i ≤ n} and arrow set {i→ i+ 1 : 1 ≤ i < n}. Figure 16 shows
the linearly oriented Dynkin quiver of type A5. We will show that the number of maximal
green sequences of arbitrarily oriented Dynkin quiver of type An is at least expontential.
We give a simple and explicit proof of an exponential lower bound to | green(Q)| where Q

2The use of Lemma 6.2 readily generalizes to quivers similar to Q with longer cycle or longer path.
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is any Dynkin quiver of type An. After we will provide an improved bound in the case Q
is a linearly oriented Dynkin quiver of type An.

1 2 3 4 5

Figure 16: The linearly oriented Dynkin quiver A5.

Recall the Fibonacci numbers are defined by the recurrence F1 = 1, F2 = 2, and
Fn = Fn−1 + Fn−2 for n ≥ 2. A closed form expression for Fn is

Fn =
φn − ψn√

5

where

φ =
1 +
√

5

2
ψ =

1−
√

5

2
.

Proposition 6.3. If Q is a Dynkin quiver of type An for any n ≥ 1, then | green(Q)| ≥
Fn+1.

Proof. It can be easily checked that | green(Q)| = 1 = F2 for n = 1 and | green(Q)| =
2 = F3 for n = 2. For n ≥ 3 assume inductively that | green(Q)| ≥ Fm+1 for all
1 ≤ m < n. We first consider components of Q coming from the set partition C/C ′ where
C = {i : 1 ≤ i ≤ n− 1} and C ′ = {n}. Here Q is isomorphic to a direct sum of a Dynkin
quiver of type An−1 and a Dynkin quiver of type A1. Hence, Q has at least | green(Q|C)|
maximal green sequences by considering any maximal green sequence on Q|C with (n)
either appended or prepened depending of whether (n−1)→ n ∈ Q or n→ (n−1) ∈ Q.

Next consider components of Q coming from the set partition D/D′ where D = {i :
1 ≤ i ≤ n − 2} and D′ = {n − 1, n}. Now Q is isomorphic to a direct sum of Dynkin
quiver of type An−2 and a Dynkin quiver of type A2. Thus, Q has at least | green(Q|D)|
maximal green sequences by considering any maximal green sequence on D with:

• (n, n− 1, n) appended if (n− 2)→ (n− 1), (n− 1)→ n ∈ Q.

• (n, n− 1, n) prepended if (n− 1)→ (n− 2), (n− 1)→ n ∈ Q.

• (n− 1, n, n− 1) appended if (n− 2)→ (n− 1), n→ (n− 1) ∈ Q.

• (n− 1, n, n− 1) prepended if (n− 1)→ (n− 2), n→ (n− 1) ∈ Q.

We see that the set of maximal green sequences forQ coming from green(Q|C) are disjoint
from those coming from green(Q|D). In the former n is mutated at only once and is either
mutated first or last in the sequence. In the latter n is either mutated at twice or otherwise
is neither the first nor the last mutation. It follows that

| green(Q)| ≥ | green(Q|C)|+ | green(Q|D)| ≥ Fn + Fn−1 = Fn+1

and the proposition is proven.

For a linearly oriented Dynkin quiver Q of type An, we have the maximal green se-
quence

(n, n− 1, . . . , 1, n, n− 1, . . . , 2, . . . , n, n− 1, n)
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which we will call the long sequence.3 As an example in the case n = 4 the long seqeunce
is

(4, 3, 2, 1, 4, 3, 2, 4, 3, 4).

The long sequence is a maximal green sequence coming from a reduced factorization of
the longest element in the corresponding Coxeter group.

Proposition 6.4. IfQ is the linearly oriented Dynkin quiver of typeAn for any n ≥ 1, then
| green(Q)| ≥ 2n−1.

Proof. For n = 1 we have | green(Q)| = 1 and for n = 2 and | green(Q)| = 2. Given
n ≥ 3, assume inductively that | green(Q)| ≥ 2m−1 for all 1 ≤ m < n. Consider
components from the set partition C(k)/D(k) where C(k) = {1, 2, . . . , k} and D(k) =
{k+ 1, k+ 2, . . . , n} for 0 ≤ k < n. For each k, our quiver Q has at least | green(Q|C(k))|
many maximal green sequences by appending the long sequence of Q|D(k) to any maximal
green sequence of Q|C(k) . Here we count one maximal green sequence, the long sequence
for Q, when k = 0. In the long sequence for Q|D(k) vertex n is mutated at n − k times,
and thus the maximal green sequences coming from green(Q|C(k1)) and green(Q|C(k2))
are disjoint for k1 6= k2. So,

| green(Q)| ≥
n−1∑
k=0

| green(Q|C(k))| ≥ 1 +

n−1∑
k=1

2k−1 = 2n−1

and the proposition follows.

Let green(An) denote the set of maximal green sequences of a linearly oriented type
An quiver. Proposition 6.4 is constructive starting from knowing green(A1) = {(1)} and
green(A2) = {(1, 2), (2, 1, 2)}. The method in the proof of Proposition 6.4 produces

{(1, 2, 3), (2, 1, 2, 3), (1, 3, 2, 3), (3, 2, 1, 3, 2, 3)} ⊆ green(A3),

and we show in Table 2 the 8 maximal green sequences in green(A4) constructed by apply-
ing the proof of Proposition 6.4 one more time. The maximal green sequences in Table 2
are arranged according to the set partition C(k)/D(k).

Table 2: Maximal green sequences in green(A4) constructed in proof of Proposition 6.4
according to set partition C(k)/D(k).

k Maximal green sequences

0 (4, 3, 2, 1, 4, 3, 2, 4, 3, 4)

1 (1, 4, 3, 2, 4, 3, 4)

2 (1, 2, 4, 3, 4), (2, 1, 2, 4, 3, 4)

3 (1, 2, 3, 4), (2, 1, 2, 3, 4), (1, 3, 2, 3, 4), (3, 2, 1, 3, 2, 3, 4)

3There are many possible maximal green sequences of this maximal length. So, we should perhaps say a long
sequence instead of the long sequence. However, we wish to emphasize that in this section we will be using only
this particular sequence of mutations.
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[1] M. Alim, S. Cecotti, C. Córdova, S. Espahbodi, A. Rastogi and C. Vafa, N = 2 quantum field

theories and their BPS quivers, Adv. Theor. Math. Phys. 18 (2014), 27–127, doi:10.4310/atmp.
2014.v18.n1.a2.

[2] C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential,
Ann. Inst. Fourier (Grenoble) 59 (2009), 2525–2590, doi:10.5802/aif.2499.
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