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Abstract

Let D be a 2-(v, k, λ) design with λ ≥ (r, λ)2. If G ≤ Aut(D) is flag-transitive, then
G cannot be of simple diagonal or twisted wreath product type, and if G is product type
then the socle of G has exactly two components and G has rank 3. Furthermore, we prove
that if D is symmetric, then G must be an affine or almost simple group.
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1 Introduction
A 2-(v, k, λ) design is an incidence structure D = (P,B) where P is a set of v points
and B is a set of b blocks with incidence relation such that every block is incident with
exactly k points, and every 2-element subset of P is incident with exactly λ blocks. Let r
be the number of blocks incident with a given point. The numbers v, b, r, k, and λ are the
parameters of D. A design D is called simple if it has no repeated blocks, and is called
symmetric if v = b, and nontrivial if 2 < k < v − 1. Here we always assume that D is
simple and nontrivial. An automorphism of D is a permutation of the points which also
permutes the blocks and preserves the incidence relation. The set of all automorphisms of
D with the composition of maps is a group, denoted by Aut(D). Let G ≤ Aut(D). If
G is a primitive permutation group on the point set P , then G is called point-primitive,
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otherwise point-imprimitive. A flag in a design is an incident point-block pair, and G is
called flag-transitive if G is transitive on the set of flags.

There are many research works on flag-transitive 2-designs. It was shown in [1] that if
a linear space admits a flag-transitive automorphism group G, then G is either of affine or
almost simple type. Then the classification of flag-transitive linear spaces was announced
in [2], and the complete proof was given by Liebeck [11] for affine type and Saxl [15] for
almost simple type. In 1988, Zieschang [19] proved that if G is a flag-transitive automor-
phism group of a 2-design with (r, λ) = 1, thenG is an affine or almost simple group. This
paper study flag-transitive 2-(v, k, λ) designs under the condition that λ ≥ (r, λ)2. This
condition has significance in design theory. On the one hand, the condition λ ≥ (r, λ)2

and the flag-transitivity of G implies that G is primitive [5, (2.3.7)] (also see Lemma 2.3
below), so we can use the O’Nan-Scott Theorem to analyze this type of designs. On the
other hand, there exists many flag-transitive 2-designs satisfying the conditions λ ≥ (r, λ)2

and (r, λ) > 1. Before stating our main results, we give an example in the following.

Example 1.1. Let P = {1, 2, 3, 4, 5, 6}, G = 〈(3546), (162)(345)〉 ∼= S5 be a primitive
group of degree 6 acting on P . Let B = {1, 2, 4}. It is easily known that

BG =
{
{1, 2, 4}, {1, 3, 5}, {4, 5, 6}, {1, 3, 4}, {1, 2, 6}, {2, 3, 6}, {1, 2, 5}, {2, 4, 6},
{1, 4, 6}, {3, 5, 6}, {2, 3, 4}, {1, 2, 3}, {1, 5, 6}, {3, 4, 5}, {1, 4, 5}, {1, 3, 6},
{2, 5, 6}, {2, 4, 5}, {2, 3, 5}, {3, 4, 6}

}
,

and GB = 〈(124)(356), (12)(56)〉 ∼= D6 is transitive on B. Let B = BG. Then D =
(P,B) is a 2-(6, 3, 4) design, and G acts flag-transitively on it.

More examples of flag-transitive 2-designs with λ ≥ (r, λ)2 and (r, λ) > 1 can be
found in [18]. Our main theorem is the following partial improvement of Zieschang’s
result.

Theorem 1.2. Let D be a 2-(v, k, λ) design with λ ≥ (r, λ)2. If G is a flag-transitive
automorphism group of D, then G is of affine, almost simple type, or product type with
Soc(G) ∼= T × T , where T is a nonabelian simple group and G has rank 3.

Flag-transitive symmetric designs with λ small have been investigated by many re-
searchers, including Kantor [10] for finite projective planes, Regueiro [13] for λ ≤ 3, Fang
et al. [8] and Regueiro [14] for λ = 4, Tian and Zhou [16] for λ ≤ 100. In all these cases, it
was proved that if a 2-(v, k, λ) symmetric designD admits a flag-transitive, point-primitive
automorphism group G, then G must be of affine or almost simple type. As an application
of Theorem 1.2, we get the following theorem on symmetric designs.

Theorem 1.3. Let D be a 2-(v, k, λ) symmetric design with λ ≥ (r, λ)2, which admits a
flag-transitive automorphism group G. Then G is an affine or almost simple group.

The structure of the paper is organized as follows. Section 2 gives some preliminary
lemmas on flag-transitive designs and permutation groups that will apply directly to our
situation. In Section 3, we prove Theorem 1.2. Our strategy is based on the O’Nan-Scott
Theorem [12] on finite primitive permutation groups, so we deal with the simple diagonal
type, the twisted wreath product type, and the product type in Subsections 3.1, 3.2 and 3.3,
respectively. In Section 4, we give a proof of Theorem 1.3.
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2 Preliminaries
The following lemma is well known.

Lemma 2.1. The parameters v, b, k, r, λ of a 2-(v, k, λ) design satisfy the following con-
ditions:

(i) vr = bk.

(ii) λ(v − 1) = r(k − 1).

(iii) b ≥ v and k ≤ r.

Lemma 2.2. LetD be a 2-(v, k, λ) design, andG be a flag-transitive automorphism group
of D. Then

(i) v ≤ λv < r2.

(ii) r | λ(v − 1, |Gα|), where Gα is the stabilizer of a point α.

(iii) r | λd for all nontrivial subdegrees d of G, i.e., the lengths of the Gα-orbits.

Proof. (i) By Lemma 2.1(ii), we have λv = r(k − 1) + λ = rk − (r − λ), and the result
follows by combining it with k ≤ r and 1 ≤ λ < r.

(ii) SinceG is flag-transitive and λ(v−1) = r(k−1), we have r | |Gα| and r | λ(v−1).
It follows that r divides (λ(v − 1), |Gα|), and hence r | λ(v − 1, |Gα|).

For (iii), r | λd was proved in [4] and [3, p. 91].

The following lemma first appears in [5, (2.3.7)].

Lemma 2.3. Let D be a 2-(v, k, λ) design with λ ≥ (r, λ)2. If G ≤ Aut(D) acts flag-
transitively on D, then G is point-primitive.

Proof. Suppose that G ≤ Aut(D) is flag-transitive and {C1, C2, ..., Ct} is a system of t
sets of imprimitivity each of size s. Then v = st. The set of imprimitivity containing a
point α is a union of Gα-orbits, one of which is {α}, hence by Lemma 2.2(iii) we have
s ≡ 1 (mod r

(r,λ) ). Then v = st ≡ t (mod r
(r,λ) ), which implies t ≡ r(k−1)

λ + 1 ≡ 1

(mod r
(r,λ) ). Now let s = σ r

(r,λ) + 1 and t = τ r
(r,λ) + 1. Then

v =
r(k − 1)

λ
+ 1 = st = (σ

r

(r, λ)
+ 1)(τ

r

(r, λ)
+ 1)

and thus

στ
rλ

(r, λ)2
+ (σ + τ)

λ

(r, λ)
= k − 1. (2.1)

Since G is flag-transitive and imprimitive, we must have a solution of (2.1) with στ 6= 0.
Hence if λ ≥ (r, λ)2, then (2.1) implies r ≤ στr < k − 1 < k, a contradiction.

Lemma 2.4 ([6, Lemma 2.5]). LetD be a symmetric design and assume thatG ≤ Aut(D)
is a primitive rank 3 permutation group on points and blocks. If N = Soc(G) is non-
abelian, then N is simple.
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3 Proof of Theorem 1.2
In this section, we will assume that D is a 2-(v, k, λ) design with λ ≥ (r, λ)2 and G ≤
Aut(D) is flag-transitive. By Lemma 2.3, G is point-primitive. The O’Nan-Scott Theorem
classifies primitive groups into five types: (i) Affine type; (ii) Almost simple type; (iii) Sim-
ple diagonal type; (iv) Product type; (v) Twisted wreath product type, see [12] for details.
We will rely on the O’Nan-Scott Theorem to prove Theorem 1.2 by dealing with the cases
of simple diagonal action, twisted wreath product action and product action separately.

3.1 Simple diagonal action

Proposition 3.1. Let D be a 2-(v, k, λ) design with λ ≥ (r, λ)2. If G is a flag-transitive
automorphism group of D, then G is not of simple diagonal type.

Proof. Suppose that G is of simple diagonal type. Then

G ≤W = {(a1, . . . , am)π | ai ∈ Aut(T ), π ∈ Sm, ai ≡ aj mod Inn(T ) for all i, j},

and there is α ∈ P such that

Gα ≤ {(a, . . . , a)π | a ∈ Aut(T ), π ∈ Sm} ∼= Aut(T )× Sm,

and
Mα = D = {(a, . . . , a) | a ∈ Inn(T )}

is a diagonal subgroup of M = T1× · · · × Tm ∼= Tm. Put Σ = {T1, . . . , Tm}, where Ti is
identified with the group {(1, 1, . . . , t, . . . , 1) | t ∈ T} where t is in the i-th position. Then
G acts on Σ [12]. Moreover the set P of points can be identified with the set M/D of right
cosets ofD inM so that α = D(1, . . . , 1), v = |P| = |T |m−1, and for β = D(t1, . . . , tm),
s = (s1, . . . , sm) ∈M , σ ∈ Aut(T ), π ∈ Sm, we have the actions

βs = D(t1s1, . . . , tmsm), βσ = D(tσ1 , . . . , t
σ
m), βπ = D(t1π−1 , . . . , tmπ−1).

Since M EG and G is primitive on P , M is transitive on P . Since T1 EM it follows that
T1 acts 1

2 -transitively on P ([17, Theorem 10.3]), and so all its orbits have equal length
c > 1. Let Γ1 be the orbit of T1 containing the point α. For any t1 = (t, 1, . . . , 1) ∈ T1,
we have αt1 = D(t, 1, . . . , 1), so that

Γ1 = αT1 = {D(t, 1, . . . , 1) | t ∈ T}

and |Γ1| = |T | = c. Similarly, define Γi = αTi for 1 < i ≤ m. Clearly Γi ∩ Γj = {α} for
i 6= j provided that m ≥ 2.

Choose an orbit ∆ of Gα in P − {α} such that |∆ ∩ Γ1| = d 6= 0. Let m1 =
|Gα : NGα(T1)|. Since Gα . Aut(T ) × Sm and GΣ is transitive on Σ, it follows that
m1 ≤ m, and thus

|∆| = m1d ≤ m|T |.

Lemma 2.2(iii) implies r | λm1d, so r ≤ (r, λ)m1d ≤ (r, λ)m|T |. From λv < r2 and
λ ≥ (r, λ)2 we have

λ|T |m−1 < r2 ≤ ((r, λ)m|T |)2 ≤ λm2|T |2.
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As T is a nonabelian simple group, we have

60m−3 ≤ |T |m−3 < m2,

from which it follows that m ≤ 3. Since T ∼= Mα E Gα . Aut(T )× Sm and r | |Gα|, r
also divides |T ||Out(T )|m!. Let a = (r, λ), so that ra (k− 1) = λ

a (|T |m−1− 1). It follows
that ra divides |T |m−1−1, and so ( ra , |T |) = 1, which implies r

a | |Out(T )|m!. Therefore,

|T |m−1 = v ≤ λv

a2
<
r2

a2
≤ (|Out(T )|m!)2.

It follows that |T | < 4|Out(T )|2 when m = 2, and |T | < 6|Out(T )| when m = 3. By
[16, Lemma 2.3], T is isomorphic to one of following groups:

L2(q) for q = 5, 7, 8, 9, 11, 13, 16, 27, or L3(4).

However, from the facts |Out(L3(4))| = 12, |Out(L2(q))| = 2 for q ∈ {5, 7, 8, 11, 13,
16, 27} and |Out(L2(9))| = 4 that |T | > 4|Out(T )|2 > 6|Out(T )|, a contradiction.

3.2 Twisted wreath product action

Proposition 3.2. Let D be a 2-(v, k, λ) design with λ ≥ (r, λ)2. If G is a flag-transitive
automorphism group of D, then G is not of twisted wreath product type.

Proof. By Lemma 2.3, G is primitive on P . Suppose G has a twisted wreath product
action. Then

G = T twrQ P = QB o P

where P is a transitive permutation group on {1, . . . ,m} with m ≥ 6 (see [7, Theo-
rem 4.7B(iv)]), Q = P1 and M = Soc(G) = QB = T1 × · · · × Tm ∼= Tm. Put Σ =
{T1, . . . , Tm}, where Ti is identified with the group {(1, 1, . . . , t, . . . , 1; 1) | t ∈ T} ∼= T
where t is in the i-th position. Then G acts on Σ (see [12]). Moreover, the set P of points
can be identified with G\P , the set of right cosets of P in G, so that G acts transitively on
P . Define α = P , so that Gα = P and v = |P| = |T |m.

Similarly to the case of simple diagonal action, let Γ1 = αT1 = {P (t, 1, . . . , 1; 1) | t ∈
T} so that |Γ1| = |T |, and define Γi = αTi for 1 < i ≤ m. Clearly Γi ∩ Γj = {α} for
i 6= j.

Choose an orbit ∆ of Gα in P − {α} such that |∆ ∩ Γ1| = d 6= 0. Let m1 =
|Gα : NGα(T1)|. Since Gα = P and GΣ is transitive on Σ, it follows that m1 ≤ m, and
thus |∆| = m1d ≤ m|T |. Lemma 2.2(iii) implies r

(r,λ) | m1d, and then r ≤ (r, λ)m1d ≤
(r, λ)m|T |. On the other hand, by λv < r2 and λ ≥ (r, λ)2, we have λ|T |m < r2 ≤
((r, λ)m|T |)2. It follows that

60m−2 ≤ |T |m−2 < m2.

Thus, m ≤ 2. However, this contradicts the fact that m ≥ 6.

3.3 Product action

Proposition 3.3. Let D be a 2-(v, k, λ) design with λ ≥ (r, λ)2 admitting a flag-transitive
automorphism group G and G is of product type. Then Soc(G) = T1 × T2 (where Ti ∼= T
is a nonabelian simple group) and G has rank 3.
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Suppose that G has a product action on P . Then there is a group K with a primitive
action (of almost simple or diagonal type) on a set Γ of size v0 ≥ 5, where

P = Γm, G ≤ Km o Sm = K o Sm and m ≥ 2.

The proof of Proposition 3.3 follows from the next two lemmas.

Lemma 3.4. If G acts flag-transitively on a 2-(v, k, λ) design with λ ≥ (r, λ)2 and G is of
product type, then m = 2.

Proof. Let H = K oSm, and let Sm act on M = {1, 2, . . . ,m}. As G is flag-transitive, by
Lemma 2.2(iii) we get [Gα : Gαβ ] ≥ r

(r,λ) for any two distinct points α, β. Since H ≥ G,
it follows that

[Hα : Hαβ ] ≥ [Gα : Gαβ ] ≥ r

(r, λ)
=

λ(v − 1)

(r, λ)(k − 1)
. (3.1)

Let α = (γ, γ, . . . , γ), γ ∈ Γ, β = (δ, γ, . . . , γ), γ 6= δ ∈ Γ and let B ∼= Km be the
base group of H . Then Bα = Kγ × · · · × Kγ , Bαβ = Kγδ × Kγ × · · · × Kγ . Now
Hα = Kγ o Sm, and Hαβ ≥ Kγδ × (Kγ o Sm−1). Suppose K has rank s on Γ with s ≥ 2.
We can choose a δ satisfying [Kγ : Kγδ] ≤ v0−1

s−1 , so that

[Hα : Hαβ ] =
|Hα|
|Hαβ |

≤ |Kγ |m ·m!

|Kγδ||Kγ |m−1 · (m− 1)!
≤ mv0 − 1

s− 1

and hence by Equation (3.1),

λ(v − 1)

(r, λ)(k − 1)
≤ [Gα : Gαβ ] ≤ mv0 − 1

s− 1
. (3.2)

So
vm0 − 1

v0 − 1
≤ m (r, λ)(k − 1)

λ(s− 1)
. (3.3)

Now (k − 1)2 ≤ (r − 1)(k − 1) < r(k − 1) = λv. Thus

vm−1
0 < mv

m
2

0

(r, λ)

λ
1
2

≤ mv
m
2

0 .

Hence m ≤ 2, or m = 3 and v0 < 9.

If m = 3, from Equation (3.3) we have v2
0 + v0 + 1 <

3v
3
2
0

s−1 , so that v0 = 5 or 6 and

s = 2. Now, from (k − 1)2 ≤ λv we have (k−1)2

v30
≤ λ. On the other hand, Equation (3.3)

and λ ≥ (r, λ)2 imply v2
0 + v0 + 1 ≤ 3(k−1)

λ
1
2

, so that λ ≤ 9(k−1)2

(v20+v0+1)2
. It follows that

(k − 1)2

v3
0

≤ λ ≤ 9(k − 1)2

(v2
0 + v0 + 1)2

,

where v0 = 5 or 6. Now G ≤ K o S3 ≤ Sv0 o S3 implies that G is a {2, 3, 5}-group,
so by flag-transitivity, k divides |GB |, and hence the only primes dividing k are 2, 3 or 5.
The only integers v0, k, λ satisfying these conditions are v0 = 5, k = 32, λ = 8 or 9, by
using the software package GAP [9]. Then r = 32 or 36 which contradicts the condition
λ ≥ (r, λ)2. Hence m = 2.
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Lemma 3.5. If G acts flag-transitively on 2-(v, k, λ) design with λ ≥ (r, λ)2 and G is of
product type, then G is a point-primitive rank 3 group and v is an odd number.

Proof. Since G is of product type, then m = 2 by Lemma 3.4. From Equation (3.3), we
have

v0 + 1 ≤ 2(r, λ)(k − 1)

λ(s− 1)
<

2(r, λ)v0

λ
1
2 (s− 1)

≤ 2v0

s− 1
.

This implies s = 2. It follows that K acts 2-transitively on Γ, and H = K o S2 has rank 3
with subdegrees 1, 2(v0 − 1), (v0 − 1)2.

Now G ≤ H , so each subdegree of H is the sum of some subdegrees of G and so
r

(r,λ) | 2(v0 − 1). If r
(r,λ) 6= 2(v0 − 1), then r

(r,λ) ≤ v0 − 1, so that

r2 ≤ (r, λ)2(v0 − 1)2 < (r, λ)2v2
0 ≤ λv

which is a contradiction. Thus r
(r,λ) = 2(v0− 1), by Equation (3.2), we obtain that G must

have a subdegree 2(v0 − 1) and it follows that G induces a 2-transitive group G ≤ K on
Γ. We conclude that G itself has rank 3 on P with subdegrees: 1, 2(v0 − 1), (v0 − 1)2.
Therefore, r

(r,λ) | (v0 − 1)2, i.e., 2 | v0 − 1. So v = v2
0 is an odd number.

Proof of Theorem 1.2. Follows immediately from Propositions 3.1, 3.2 and 3.3.

4 Proof of Theorem 1.3
In this section, we will apply Theorem 1.2 to symmetric designs. For this purpose, we first
give some basic facts on rank 3 permutation groups and symmetric designs. Lemma 4.1
first appears in [16, Lemma 1.5] with a sketch of proof. Since it is an important result for
symmetric designs, we provide its proof here for completeness.

Lemma 4.1. Let G be a finite imprimitive rank 3 permutation group on a set P . Let
P = {α} ∪ X ∪ Y be the decomposition into Gα-orbits. Assume |X| ≤ |Y |. Then
Q = {α} ∪ X is a block of the action of G. Set Ω = {Qg | g ∈ G}, then G acts
2-transitively on Ω.

Proof. Let M be a maximal subgroup of G containing Gα. Then Gα < M and M is not
transitive on P (otherwise, we have G = MGα = M a contradiction). From Gα < M ,
we have Mα = Gα ∩M = Gα and

1 + |X|+ |Y | = |G : Gα| = |G : Mα| = |G : M ||M : Mα| ≥ 2|M : Mα|. (4.1)

Let R = {αx | x ∈ M}. Since both X and Y are orbits of Gα, and Gα < M , there
exists m ∈M\Gα such that αm ∈ X or Y . If αm ∈ X , then X = αmGα ⊆ αM = R, so
that Q ⊆ R. We argue that Q = R. For if Q ( R, then there exists m′ ∈M\Gα such that
y = αm

′ ∈ R\Q ⊆ Y , from which it follows that Y ( R. Hence {α}∪X ∪Y = P ⊆ R,
and thus P = R which contradicts the fact that M is intransitive. Therefore, Q = R =
{α}∪X . Similarly, if αm ∈ Y , we haveR = {α}∪Y . Next, we prove that R 6= {α}∪Y ,
and R = Q is a block.

If R = {α} ∪ Y , since M is transitive on R, we have |R| = |M : Mα| = 1 + |Y |.
Equation (4.1) implies that 1+ |X|+ |Y | ≥ 2(1+ |Y |), so that |X| ≥ 1+ |Y | > |Y | which
contradicts the assumption. Thus we must have Q = {α} ∪ X = R. Since Q = R =
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{αx | x ∈ M}, if Qg ∩ Q 6= ∅ for some g ∈ G, then there exist x, y ∈ M such that
αxg = αy , so that xgy−1 ∈ Gα < M and g ∈M . Hence Qg = Q and Q is a block.

Since Q = {α} ∪X is a block and α ∈ Q, then Gα ≤ GQ, where GQ is the stabilizer
of the block Q. Let Ω = {Qg | g ∈ G} be a block system of imprimitivity of G. As Gα is
transitive on Y = P − Q, it follows that GQ acts transitively on Ω\{Q}, and thus G acts
2-transitively on Ω.

Lemma 4.2 ([16, Lemma 1.6]). Let D = (P,B) be a symmetric 2-(v, k, λ) design and
G ≤ Aut(D) be a point-primitive rank 3 group. Then G is also a block-primitive rank 3
group if one of the following holds for (G,P):

(a) The permutation group is of product or affine type.

(b) The group G is almost simple and G has no 2-transitive representation of degree d,
such that d properly divides v.

Now we begin the proof of Theorem 1.3.

Proof of Theorem 1.3. Assume D is a 2-(v, k, λ) symmetric design with λ ≥ (r, λ)2,
which admits a flag-transitive automorphism groupG. By Theorem 1.2,G is one of the fol-
lowing: (i) affine type, (ii) almost simple type, or (iii) product type with Soc(G) ∼= T × T
where T is a nonabelian simple group and G is a primitive rank 3 group. So we only need
to prove that case (iii) cannot occur.

Suppose for the contrary that G has a product action on the set of points. Here G is a
point-primitive rank 3 group, so we know from Lemma 4.2 that G is also a block-primitive
rank 3 group. By Lemma 2.4, we have m = 1. This contradicts the fact that m = 2 (see
Lemma 3.4). Hence G is of affine or almost simple type.
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