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Abstract

We say that a finite Abelian group Γ has the constant-sum-partition property into t sets
(CSP(t)-property) if for every partition n = r1 + r2 + . . . + rt of n, with ri ≥ 2 for
2 ≤ i ≤ t, there is a partition of Γ into pairwise disjoint subsets A1, A2, . . . , At, such
that |Ai| = ri and for some ν ∈ Γ,

∑
a∈Ai a = ν for 1 ≤ i ≤ t. For ν = g0 (where

g0 is the identity element of Γ) we say that Γ has zero-sum-partition property into t sets
(ZSP(t)-property).

A Γ-distance magic labeling of a graph G = (V,E) with |V | = n is a bijection ` from
V to an Abelian group Γ of order n such that the weight w(x) =

∑
y∈N(x) `(y) of every

vertex x ∈ V is equal to the same element µ ∈ Γ, called the magic constant. A graph G
is called a group distance magic graph if there exists a Γ-distance magic labeling for every
Abelian group Γ of order |V (G)|.

In this paper we study the CSP(3)-property of Γ, and apply the results to the study of
group distance magic complete tripartite graphs.
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1 Introduction
All graphs considered in this paper are simple finite graphs. Consider a simple graph G
whose order we denote by n = |G|. We denote by V (G) the vertex set and E(G) the edge
set of a graph G. The open neighborhood N(x) of a vertex x is the set of vertices adjacent
to x, and the degree d(x) of x is |N(x)|, the size of the neighborhood of x.
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Let the identity element of Γ be denoted by g0. Recall that any group element ι ∈ Γ of
order 2 (i.e., ι 6= g0 such that 2ι = g0) is called an involution.

In [8] Kaplan, Lev and Roditty introduced a notion of zero-sum partitions of subsets
in Abelian groups. Let Γ be an Abelian group and let A be a finite subset of Γ − {g0},
with |A| = n− 1. We shall say that A has the zero-sum-partition property (ZSP-property)
if every partition n − 1 = r1 + r2 + . . . + rt of n − 1, with ri ≥ 2 for 1 ≤ i ≤ t and
for any possible positive integer t, there is a partition of A into pairwise disjoint subsets
A1, A2, . . . , At, such that |Ai| = ri and

∑
a∈Ai a = g0 for 1 ≤ i ≤ t. In the case that Γ is

finite, we shall say that Γ has the ZSP-property if A = Γ− {g0} has the ZSP-property.
They proved the following theorem for cyclic groups of odd order.

Theorem 1.1 ([8]). The group Zn has the ZSP-property if and only if n is odd.

Moreover, Kaplan, Lev and Roditty showed that if Γ is a finite Abelian group of even
order n such that the number of involutions in Γ is different from 3, then Γ does not have
the ZSP-property [8]. Their results along with results proved by Zeng [10] give necessary
and sufficient conditions for the ZSP-property for a finite Abelian group.

Theorem 1.2 ([8, 10]). Let Γ be a finite Abelian group. Then Γ has the ZSP-property if
and only if either Γ is of odd order or Γ contains exactly three involutions.

They apply those results to the study of anti-magic trees [8, 10].

We generalize the notion of ZSP-property. We say that a finite Abelian group Γ has
the constant-sum-partition property into t sets (CSP(t)-property) if for every partition n =
r1 + r2 + . . . + rt of n, with ri ≥ 2 for 2 ≤ i ≤ t, there is a partition of Γ into pairwise
disjoint subsets A1, A2, . . . , At, such that |Ai| = ri and for some ν ∈ Γ,

∑
a∈Ai a = ν

for 1 ≤ i ≤ t. For ν = g0 we say that Γ has zero-sum-partition property into t sets
(ZSP(t)-property).

In this paper we investigate also distance magic labelings, which belong to a large
family of magic type labelings.

A distance magic labeling (also called sigma labeling) of a graph G = (V,E) of order
n is a bijection ` : V → {1, 2, . . . , n} with the property that there is a positive integer k
(called the magic constant) such that

w(x) =
∑

y∈N(x)

`(y) = k for every x ∈ V (G),

where w(x) is the weight of vertex x. If a graph G admits a distance magic labeling, then
we say that G is a distance magic graph.

The concept of distance magic labeling has been motivated by the construction of magic
rectangles, since we can construct a distance magic complete r-partite graph with each part
size equal to n by labeling the vertices of each part by the columns of the magic rectangle.
Although there does not exist a 2× 2 magic rectangle, observe that the partite sets of K2,2

can be labeled {1, 4} and {2, 3}, respectively, to obtain a distance magic labeling. The
following result was proved in [9].

Observation 1.3 ([9]). There is no distance magic r-regular graph with r odd.
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Froncek in [7] defined the notion of group distance magic graphs, i.e., the graphs allow-
ing a bijective labeling of vertices with elements of an Abelian group resulting in constant
sums of neighbor labels.

A Γ-distance magic labeling of a graph G = (V,E) with |V | = n is a bijection ` from
V to an Abelian group Γ of order n such that the weight w(x) =

∑
y∈N(x) `(y) of every

vertex x ∈ V is equal to the same element µ ∈ Γ, called the magic constant. A graph G
is called a group distance magic graph if there exists a Γ-distance magic labeling for every
Abelian group Γ of order |V (G)|.

The connection between distance magic graphs and Γ-distance magic graphs is as fol-
lows. Let G be a distance magic graph of order n with the magic constant µ′. If we replace
the label n in a distance magic labeling for the graphG by the label 0, then we obtain a Zn-
distance magic labeling for the graph G with the magic constant µ = µ′ (mod n). Hence
every distance magic graph with n vertices admits a Zn-distance magic labeling. However
a Zn-distance magic graph on n vertices is not necessarily a distance magic graph. More-
over, there are some graphs that are not distance magic while at the same time they are
group distance magic (see [4]).

A general theorem for Γ-distance magic labeling similar to Observation 1.3 was proved
recently.

Theorem 1.4 ([5]). Let G be an r-regular graph on n vertices, where r is odd. There
does not exist an Abelian group Γ of order n with exactly one involution ι such that G is
Γ-distance magic.

Notice that the constant sum partitions of a group Γ lead to complete multipartite
Γ-distance magic labeled graphs. For instance, the partition {0}, {1, 2, 4}, {3, 5, 6} of
the group Z7 with constant sum 0 leads to a Z7-distance magic labeling of the com-
plete tripartite graph K1,3,3. More general, let G be a complete t-partite graph of order
n with the partition sets V1, V2, . . . , Vt. Note that G is Γ-distance magic if and only if∑t
i=1,i6=j

∑
x∈Vi `(x) = µ for j ∈ {1, 2, . . . , t} which implies that

∑
x∈Vj `(x) = ν for

j ∈ {1, 2, . . . , t} and some ν ∈ Γ. Therefore we can see that G is Γ-distance magic if and
only if Γ has the CSP(t)-property. The following theorems were proven in [3].

Theorem 1.5 ([3]). Let G = Kn1,n2,...,nt be a complete t-partite graph and n = n1 +
n2 + . . .+ nt. If n ≡ 2 (mod 4) and t is even, then there does not exist an Abelian group
Γ of order n such that G is a Γ-distance magic graph.

Theorem 1.6 ([3]). The complete bipartite graph Kn1,n2
is a group distance magic graph

if and only if n1 + n2 6≡ 2 (mod 4).

Therefore it follows that an Abelian group Γ of order n has the CSP(2)-property if and
only if n 6≡ 2 (mod 4).

In this paper we study the CSP(3)-property of Γ, and apply the results to an investi-
gation of the necessary and sufficient conditions for complete tripartite graphs to be group
distance magic. This work will also be potentially useful for group theorists working on
Abelian groups.
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2 Preliminaries
Assume Γ is an Abelian group of order nwith the operation denoted by +. For convenience
we will write ka to denote a + a + . . . + a (where the element a appears k times), −a to
denote the inverse of a and we will use a− b instead of a+ (−b). Recall that a non-trivial
finite group has elements of order 2 if and only if the order of the group is even. The
fundamental theorem of finite Abelian groups states that a finite Abelian group Γ of order
n can be expressed as the direct product of cyclic subgroups of prime-power order. This
implies that

Γ ∼= Zpα1
1
×Zpα2

2
× . . .× Zpαkk where n = pα1

1 · p
α2
2 · . . . · p

αk
k

and pi for i ∈ {1, 2, . . . , k} are not necessarily distinct primes. This product is unique up
to the order of the direct product. When t is the number of these cyclic components whose
order is a multiple of 2, then Γ has 2t−1 involutions. In particular, if n ≡ 2 (mod 4), then
Γ ∼= Z2×A for some Abelian group A of odd order n/2. Moreover every cyclic group of
even order has exactly one involution. The sum of all the group elements is equal to the
sum of the involutions and the neutral element.

The following lemma was proved in [6] (see [6], Lemma 8).

Lemma 2.1 ([6]). Let Γ be an Abelian group.

1. If Γ has exactly one involution ι, then
∑
g∈Γ g = ι.

2. If Γ has no involutions, or more than one involution, then
∑
g∈Γ g = g0.

Anholcer and Cichacz proved the following (see [1], Lemma 2.4).

Lemma 2.2 ([1]). Let Γ be an Abelian group with involutions set
I∗ = {ι1, ι2, . . . , ι2k−1}, k > 1 and let I = I∗ ∪ {g0}. Given positive integers n1,
n2 such that n1 + n2 = 2k. There exists a partition A = {A1, A2} of I such that

1. n1 = |A1|, n2 = |A2|,
2.

∑
a∈Ai a = g0 for i = 1, 2,

if and only if none of n1, n2 is 2.

3 Constant sum partition of Abelian groups
Note that if Γ has odd order, then it has the ZSP-property by Theorem 1.2, thus one can
check that it has the ZSP(3)-property. We now generalize Lemma 2.2.

Lemma 3.1. Let Γ be an Abelian group with involutions set I∗ = {ι1, ι2, . . . , ι2k−1},
k > 2 and let I = I∗∪{g0}. Given positive integers n1, n2, n3 such that n1+n2+n3 = 2k.
There exists a partition A = {A1, A2, A3} of I such that

1. n1 = |A1|, n2 = |A2|, n3 = |A3|,
2.

∑
a∈Ai a = g0 for i ∈ {1, 2, 3},

if and only if n1, n2, n3 6∈ {2, 2k − 2}.
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Proof. For ni = nj = 1 we have that
∑
a∈Ai a 6=

∑
a∈Aj a. For ni = 2, it is easy to see∑

a∈Ai a 6= g0.
Let ι0 = g0. Recall that since I = {ι0, ι1, . . . , ι2k−1} is a subgroup of Γ, we have

I ∼= (Z2)k. One can check that the lemma is true for k ∈ {3, 4}. The sufficiency will
be proved then by induction on k. Namely, suppose the assertion is true for some m =
k ≥ 4. We want to prove it is true for m = k + 1. Let (n1, n2, n3) be a triple such that
n1, n2, n3 6∈ {2, 2k+1 − 2} and n1 + n2 + n3 = 2k+1. For i ∈ {1, 2, 3} let ni = 4qi + ri,
where ri ∈ {1, 3, 4, 5, 6} and 1 appears at most once as a value of some ri. Observe
that r1 + r2 + r3 ≤ 18, but because n1 + n2 + n3 ≡ 0 (mod 4) and n1 + n2 + n3 =
4(q1 + q2 + q3) + r1 + r2 + r3, we must have r1 + r2 + r3 ≡ 0 (mod 4), which implies
that r1 + r2 + r3 ≤ 16. Thus 4(q1 + q2 + q3) ≥ 2k.

Now we select t1, t2, t3 such that ti ≤ qi and 4(t1+t2+t3) = 2k. Denote n′i = ni−4ti
and n′′i = 4ti. Obviously, n′1 +n′2 +n′3 = n′′1 +n′′2 +n′′3 = 2k and n′i /∈ {0, 2, 2k − 2} for
any i ∈ {1, 2, 3}.

If also n′′i 6= 0, then both triples (n′1, n
′
2, n
′
3) and (n′′1 , n

′′
2 , n
′′
3) satisfy the inductive hy-

pothesis and there exist partitions of (Z2)k into sets S′1, S
′
2, S
′
3 and S′′1 , S

′′
2 , S

′′
3 of respective

orders n′1, n
′
2, n
′
3 and n′′1 , n

′′
2 , n
′′
3 . If we now replace each element (x1, x2, . . . , xk) of (Z2)k

in any S′i by the (x1, x2, . . . , xk, 0) of (Z2)k+1, it should be clear that the sum of elements
in each S′i is the identity of (Z2)k+1.

Similarly, we replace each element (y1, y2, . . . , yk) of (Z2)k in any S′′i by the element
(y1, y2, . . . , yk, 1) of (Z2)k+1. Now because the order of each S′′i is even, the ones in last
entries add up to zero and the sum of elements in each S′′i is again the identity of (Z2)k+1.
Now set Si = S′i ∪ S′′i to obtain the desired partition of (Z2)k+1.

The case when n′′i = 0 and n′′j , n
′′
l 6= 0 can be treated using Lemma 2.2, and the case

when n′′i = n′′j = 0 and n′′l = 2k is obvious.

Theorem 3.2. Let Γ be an Abelian group of even order n. Γ has the CSP(3) -property if
and only if Γ 6∼= (Z2)t for some positive integer t. Moreover, Γ 6∼= (Z2)t has the ZSP(3)-
property if and only if Γ has more than one involution.

Proof. For a given partition n = n1+n2+n3 we will construct a partition Γ = A1∪A2∪A3

such that Ai = {ai0, ai1, . . . , aini−1} for i ∈ {1, 2, 3}. Let Γ = {g0, g1, . . . , gn−1}. Recall
that by g0 we denote the identity element of Γ.

Assume first that Γ ∼= (Z2)t for t > 1 has the CSP(3)-property. Let A1, A2, A3 be the
desired partition of Γ for n2 = 2. Hence

∑
a∈Ai a = ι 6= g0 for i ∈ {1, 2, 3}. Therefore∑

g∈Γ g =
∑3
i=1

∑
a∈Ai a = 3ι = ι 6= g0, a contradiction with Lemma 2.1.

Suppose now that Γ has the ZSP(3)-property and there is the only one involution ι ∈ Γ.
Let A1, A2, A3 be the desired partition of Γ, therefore

∑
a∈Ai a = g0 for i ∈ {1, 2, 3}.

Hence, g0 =
∑3
i=1

∑
a∈Ai a =

∑
g∈Γ g, on the other hand by Lemma 2.1 we have∑

g∈Γ g = ι, a contradiction.

We will prove sufficiency now. Let us consider two cases on the number of involutions
in Γ.
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Case 1. There is exactly one involution ι in Γ.
Notice that in that case |Γ| ≥ 6. By fundamental theorem of finite Abelian groups

Γ ∼= Z2α1 ×Zpα2
2
× . . .× Zpαkk where n = 2α1 · pα2

2 · . . . · p
αk
k , α1 ≥ 1

and pi ≥ 3 for i ∈ {2, 3, . . . , k} are not necessarily distinct primes. Since |Γ| ≥ 6 we
have Γ ∼= Z2m×A for m ≥ 3 and some Abelian group A of order n/2m. Let g1 = ι and
gi+1 = −gi for i ∈ {2, 4, 6, . . . , n − 2}. Using the isomorphism ϕ : Γ → Z2m×A, we
can identify every g ∈ Γ with its image ϕ(g) = (j, ai), where j ∈ Z2m and ai ∈ A for
i ∈ {0, 1, . . . , n

2m −1} and a0 is the identity element in A. Observe that g1 = ι = (m, a0).
Because m > 2 we can set g2 = (1, a0), g3 = (2m − 1, a0), g4 = (m − 1, a0),
g5 = (m+ 1, a0).
Without loss of generality we can assume that n1 is even and n2 ≥ n3. Let a1

0 = g2,
a1

1 = g4 and a1
i = gi+4 for i ∈ {2, 3, . . . , n1 − 1}.

Case 1.1. n2, n3 are both odd.
Let: a2

0 = g0, a2
1 = g3, a2

2 = g5 and g1
i = an1+1+i for i ∈ {3, 4, . . . , n2 − 1}.

a3
0 = g1 and a3

i = gn1+n2+i for i ∈ {1, 2, . . . , n3 − 1}.

Case 1.2. n2, n3 are both even.
Let: a2

0 = g3, a2
1 = g5 and a1

i = gn1+2+i for i ∈ {2, 3, . . . , n2 − 1}.
a3

0 = g0, a3
1 = g1 and a3

i = gn1+n2+i for i ∈ {2, 3, . . . , n3 − 1}.

Note that in both Cases 1.1 and 1.2 we obtain that
∑
a∈Ai a = (m, a0) = ι for

i ∈ {1, 2, 3}.

Case 2. There is more that one involution ι in Γ.
By fundamental theorem of finite Abelian groups Γ has 2t− 1 involutions ι1, ι2, . . . , ι2t−1

for t > 1. Let gi = ιi for i ∈ {1, 2, . . . , 2t − 1}, and gi+1 = −gi for i ∈ {2t, 2t + 2, 2t +
4, . . . , n − 2}. By the above arguments on necessity we obtain that Γ 6∼= (Z2)t, therefore
2t ≤ n/2. One can check, that we can choose integers t1, t2 and t3 such that:

t1 + t2 + t3 = 2t,

with

ni − ti ≡ 0 (mod 2), ti ≥ 0, ti 6∈ {2, 2t − 2} for i ∈ {1, 2, 3}.

By Lemmas 2.2 and 3.1 it follows that there exists a partition B = {B1, B2, B3} of
I = {g0, g1, . . . , g2t−1} such that t1 = |B1|, t2 = |B2|, t3 = |B3|, and if Bi 6= ∅, then∑
b∈Bi b = g0 for i ∈ {1, 2, 3}. Let Bi = {bi0, bi1, . . . , biti−1} for i ∈ {1, 2, 3}. Let us set

now:
a1
i = b1i for i ∈ {1, 2, . . . , t1 − 1} and a1

i = gi+t2+t3 for i ∈ {t1, t1 + 1 . . . , n1 − 1},
a2
i = b2i for i ∈ {1, 2, . . . , t2 − 1} and a2

i = gi+t3+n1 for i ∈ {t2, t2 + 1 . . . , n2 − 1},
a3
i = b3i for i ∈ {1, 2, . . . , t3 − 1} and a3

i = gi+n1+n2 for i ∈ {t3, t3 + 1 . . . , n3 − 1}.
In this case

∑
a∈Ai a = g0 for i ∈ {1, 2, 3}.

4 Group distance magic graphs
Observe that for G being an odd regular graph of order n, by hand shaking lemma n is
even. Thus, the below theorem is a generalization of Theorem 1.4.
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Theorem 4.1. LetG have order n ≡ 2 (mod 4) with all vertices having odd degree. There
does not exist an Abelian group Γ of order n such that G is a Γ-distance magic graph.

Proof. Assumption n ≡ 2 (mod 4) implies that Γ ∼= Z2×A for some Abelian group A of
odd order n/2 and there exists exactly one involution ι ∈ Γ. Let gn/2 = ι, gn/2+i = −ai
for i ∈ {1, 2, . . . , n/2− 1}. Let V (G) = {x0, x1, . . . , xn−1}.

Suppose that ` is a Γ-distance labeling for G and µ is the magic constant. Without
loss of generality we can assume that `(xi) = ai for i ∈ {0, 1, . . . , n − 1}. Recall that
ng = 0 for any g ∈ Γ and deg(xn/2)gn/2 = gn/2 = ι since deg(xn/2) is odd. Notice that
deg(xi) − deg(xn−i) = 2di for some integer di for i ∈ {1, 2, . . . , n/2 − 1}, because all
vertices have odd degree. Let now

w(G) =
∑

x∈V (G)

∑
y∈N(x)

w(y) =

n−1∑
i=0

deg(xi)gi =

n/2−1∑
i=1

deg(xi)gi + deg(xn/2)gn/2 +

n/2−1∑
i=1

deg(xn−i)gn−i =

n/2−1∑
i=1

deg(xi)gi −
n/2−1∑
i=1

deg(xn−i)gi + gn/2 =

n/2−1∑
i=1

(deg(xi)− deg(xn−i))gi + gn/2 = 2

n/2−1∑
i=1

digi + gn/2

On the other hand, w(G) =
∑
x∈V (G) w(x) = n · µ = g0. Therefore we obtain that

2υ = gn/2 for some element υ ∈ Γ. Since n/2 is odd and Γ ∼= Z2×A, such an element υ
does not exist, a contradiction.

From the above Theorem 4.1 we obtain the following.

Theorem 4.2. If G have order n ≡ 2 (mod 4) with all vertices having odd degree, then
G is not distance magic.

Proof. The graph G is not Zn-distance magic by Theorem 4.1, therefore it is not distance
magic.

We prove now the following useful lemma.

Lemma 4.3. Let G = Kn1,n2,...,nt be a complete t-partite graph and n = n1 +n2 + . . .+
nt. If n1 ≤ n2 ≤ . . . ≤ nt and n2 = 1, then there does not exist an Abelian group Γ of
order n such that G is a Γ-distance magic graph.

Proof. Let G have the partition vertex sets Vi such that |Vi| = ni for i ∈ {1, 2, . . . , t}. Let
x ∈ V1 and y ∈ V2. Suppose that the graph G is Γ-distance magic for some Abelian group
Γ of order n and that ` is a Γ-distance magic labeling of G, then w(x) =

∑
g∈Γ g− `(x) =

w(y) =
∑
g∈Γ g − `(y). Thus `(y) = `(x), a contradiction.
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Theorem 4.4. LetG = Kn1,n2,n3 be a complete tripartite graph such that 1 ≤ n1 ≤ n2 ≤
n3 and n = n1 + n2 + n3. The graph G is a group distance magic graph if and only if
n2 > 1 and n1 + n2 + n3 6= 2p for any positive integer p.

Proof. Let G have the partition vertex sets Vi such that |Vi| = ni for i ∈ {1, 2, 3}. We can
assume that n2 > 1 by Lemma 4.3.

Suppose now that Γ ∼= (Z2)p for some integer p. Let n1 = 2 and ` be a Γ-distance
magic labeling of G. Thus

∑
x∈V1

`(x) = ι 6= g0. Since G is Γ-distance magic we obtain
that

∑
x∈Vi `(x) = ι for i ∈ {1, 2, 3}. Therefore

∑
g∈Γ g =

∑3
i=1

∑
x∈Vi `(x) = 3ι =

ι 6= g0, a contradiction with Lemma 2.1.

If Γ 6∼= (Z2)p and ni ≥ 2 for i ∈ {2, 3}, then the group Γ can be partitioned into pair-
wise disjoint setsA1, A2, A3 such that for every i ∈ {1, 2, 3}, |Ai| = ni with

∑
a∈Ai a = ν

for some element ν ∈ Γ by Theorem 1.2 or 3.2. Label the vertices from a vertex set Vi
using elements from the set Ai for i ∈ {1, 2, 3}.

Theorem 4.5. LetG = Kn1,n2,n3
be a complete tripartite graph such that 1 ≤ n1 ≤ n2 ≤

n3 and n1 + n2 + n3 = 2p, then

1. G is Γ-distance magic for any Abelian group Γ 6∼= (Z2)p of order n if and only if
n2 > 1,

2. G is (Z2)p-distance magic if and only if n1 6= 2 and n2 > 2.

Proof. Let G have the partition vertex sets Vi such that |Vi| = ni for i ∈ {1, 2, 3}.
We can assume that n2 > 1 by Lemma 4.3. If (n1 = 2 or n2 ≥ 2) and Γ ∼= (Z2)p then

Γ does not have a partition A = {A1, A2, A3} such that
∑
a∈Ai a = ν for i ∈ {1, 2, 3} by

Theorem 3.2. Thus one can check that then there does not exist a Γ-distance labeling of G.
If Γ 6∼= (Z2)p and ni ≥ 2 for i ∈ {2, 3}, or Γ ∼= (Z2)p for some integer p and n1 6= 2,

n2 > 2, then the group Γ can be partitioned into pairwise disjoint sets A1, A2, A3 such
that for every i ∈ {1, 2, 3}, |Ai| = ni with

∑
a∈Ai a = ν for some element ν ∈ Γ by

Theorem 3.2, or Lemma 3.1, resp. Label the vertices from a vertex set Vi using elements
from the set Ai for i ∈ {1, 2, 3}.

At the end of this section we put some observations that are implications of Theorem 1.2
for complete t-partite graphs. But first we need the following theorem proved in [2] (see
Theorem 2.2, [2]).

Theorem 4.6 ([2]). Let G be a graph for which there exists a distance magic labeling
` : V (G) → {1, 2, . . . , |V (G)|} such that for every w ∈ V (G) the following holds: if
u ∈ N(w) with `(u) = i, then there exists v ∈ N(w), v 6= u, with `(v) = |V (G)|+ 1− i.
The graph G is a group distance magic graph.

Observation 4.7. Let G = Kn1,n2,...,nt be a complete t-partite graph such that 1 ≤ n1 ≤
n2 ≤ . . . ≤ nt and n = n1 + n2 + . . . + nt. Let Γ be an Abelian group of order n with
exactly three involutions. The graph G is Γ-distance magic graph if and only if n2 > 1.

Proof. Let G have the partition vertex sets Vi = {xi1, xi2, . . . , xini} for i ∈ {1, 2, . . . , t}.
By Lemma 4.3 we can assume that n2 > 1.
Suppose first that n1 = n2 = . . . = nt = 2. Note that a labeling ` : V (G)→ {1, 2, . . . , 2t}
defined as `(xi1) = i, `(xi2) = 2t+ 1− i for i ∈ {1, 2, . . . , t} is distance magic, hence G is
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a group distance magic graph by Theorem 4.6. This implies that there exists a Γ-distance
magic labeling of G.
We can assume now that nt ≥ 3. If n1 > 1, then nt ≥ 4 or nt−1 = nt = 3. Therefore
there exists a zero-sum partitionA′1, A

′
2, . . . , A

′
t of the set Γ−{g0} such that |A′t| = nt−1

and |A′i| = ni for every 1 ≤ i ≤ t− 1 by Theorem 1.2. Set At = A′t ∪ {g0} and Ai = A′i
for every 1 ≤ i ≤ t− 1. If n1 = 1 then there exists a zero-sum partition A′2, A

′
3, . . . , A

′
t of

the set Γ− {g0} such that |A′i| = ni for every 2 ≤ i ≤ t by Theorem 1.2. In this case put
A1 = {g0} and Ai = A′i for every 2 ≤ i ≤ t. Label now the vertices from a vertex set Vi
using elements from the set Ai for i ∈ {1, 2, . . . , t}.

Observation 4.8. Let G = Kn1,n2,...,nt be a complete t-partite graph such that 1 ≤ n1 ≤
n2 ≤ . . . ≤ nt and n = n1 + n2 + . . .+ nt is odd. The graph G is a group distance magic
graph if and only if n2 > 1.

Proof. Let G have the partition vertex sets Vi such that |Vi| = ni for i ∈ {1, 2, . . . , t}.
We can assume that n2 > 1 by Lemma 4.3. If n1 > 1, then nt ≥ 3. Therefore there
exists a zero-sum partition A′1, A

′
2, . . . , A

′
t of the set Γ−{g0} such that |A′t| = nt − 1 and

|A′i| = ni for every 1 ≤ i ≤ t− 1 by Theorem 1.2. Set At = A′t ∪ {g0} and Ai = A′i for
every 1 ≤ i ≤ t − 1. If n1 = 1 then there exists a zero-sum partition A′2, A

′
3, . . . , A

′
t of

the set Γ− {g0} such that |A′i| = ni for every 2 ≤ i ≤ t by Theorem 1.2. In this case put
A1 = {g0} and Ai = A′i for every 2 ≤ i ≤ t. Label now the vertices from a vertex set Vi
using elements from the set Ai for i ∈ {1, 2, . . . , t}.
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