Charmonium-like states and K* resonances from lattice QCD

Saša Prelovšek^{a,b}

^a Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

^b Department of Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

Abstract. I presented the first evidence for X(3872) from lattice QCD, the first search for $Z_c^+(3900)$ and the first extraction of $K^*(892)$ strong decay width.

The charmonium-like state X(3872) with $J^{PC} = 1^{++}$ has never been unambigously identified from the lattice, since it was not established in addition to the discrete scattering states like DD*. These should namely appear as energy levels with the same quantum number $J^{PC} = 1^{++}$ and are particularly important as X(3872) lies almost on top of DD* threshold. In the simulation [1] we established X(3872) with I = 0 in addition to all the nearby DD* and $J/\psi \omega$ scattering states for the first time. We found large and negative DD* scattering length, which agrees with the presence of a very shallow bound state X(3872) in view of the Levinson's theorem. We did not find X(3872) in the I = 1 channel in our simulation with exact isospin.

We performed the first lattice QCD search for manifestly exotic $Z_c(3900)$ [2]. During 2013, the experiments BESIII, Belle and CLEOc reported a discovery of $Z_c^+(3900)$ in the decay to $J/\psi \pi^+$, while J and P are experimentally unknown. We simulated the most popular channel with $J^{PC} = 1^{+-}$ and I = 1, and we did not find a candidate for $Z_c^+(3900)$. Instead, we only found discrete scattering states $D\bar{D}^*$ and $J/\psi \pi$, which inevitably have to be present in a dynamical QCD. The possible reasons for not finding Z_c^+ may be that its quantum numbers are not 1^{+-} or that the employed interpolating fields were not diverse enough. A simulation with additional interpolating fields will be required for a more conclusive result.

The simulation of $K\pi$ scattering in p wave with I = 1/2 was aimed at calculating the scattering phase shift [3]. This was determined from each energy level using Luscher's relation, where we simulated scattering system with three choices of total momenta P = 0, $\frac{2\pi}{L}e_z$, $\frac{2\pi}{L}(e_x+e_y)$. The Breit Wigner type fit of the resulting phase shift lead the mass and the decay width (or rather the $K^* \rightarrow K\pi$) coupling that agrees with the experimental values within the errors. This presents the first lattice determination of the $K^*(892)$ strong decay width.

References

- 1. Sasa Prelovsek and Luka Leskovec, arXiv:1307.5172.
- 2. Sasa Prelovsek and Luka Leskovec, arXiv:1308.2097.
- 3. Sasa Prelovsek, Luka Leskovec, C.B. Lang and Daniel Mohler, Phys. Rev. D88 (2013) 054508, arXiv:1307.0736.