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Abstract 

In many surveys, characteristic of interest is sparsely distributed but 

highly aggregated; in such situations the adaptive cluster sampling is very 

useful. Examples of such populations can be found in fisheries, mineral 

investigations (unevenly distributed ore concentrations), animal and plant 

populations (rare and endangered species), pollution concentrations and 

hot spot investigations, and epidemiology of rare diseases. Ranked Set 

Sampling (RSS) is another useful technique for improving the estimates of 

mean and variance when the sampling units in a study can be more eas ily 

ranked than measured. Under equal and unequal allocation, RSS is found to 

be more precise than simple random sampling, as it contains information 

about each order statistics. This paper deal with the problem in which the 

value of the characteristic under study on the sampled places is low or 

negligible but the neighbourhoods of these places may have a few scattered 

pockets of the same. We proposed an adaptive cluster sampling theory 

based on ranked sets. Different estimators of the population mean are 

considered and the proposed design is demonstrated with the help of one 

simple example of small populations. The proposed procedure appears to 

perform better than the existing procedures of adaptive cluster sampling.  

1 Introduction 

Thompson (1990) introduced the Adaptive cluster sampling as an efficient 

sampling procedure for estimating totals and means of rare and clustered 

populations. In adaptive cluster sampling, an initial sample of units is selected by 

some ordinary sampling scheme, and, whenever the variable of interest of a unit in 
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the sample satisfies a previously specified condition „C‟, neighbouring units are 

added to the sample. If any of the newly added units satisfy „C‟, units in their 

neighbourhoods are also added until the sample includes all  the neighbours of any 

unit satisfying the condition „C‟. As noted by Thompson (1990), an adaptive 

cluster sampling scheme can be used to investigate a rare contagious disease. First 

of all, a simple random sample of people are selected and tested for the disease. If 

a person tests positively, then all the friends and contacts of that person are also 

tested. If one of the contacts tests positively, then all that person‟s contacts are 

tested, and so on. Roesch (1993) used the design for a survey of forest trees. 

Thompson and Seber (1996) described some examples of rare species, rare 

diseases and environmental pollution studies where the use of adaptive sampling 

scheme can be highly beneficial. The condition for extra sampling might be the 

presence of the rare animal or plant species, high abundance of a spatially 

clustered species, detection of “hot spots” in an environmental pollution study, 

high concentration of mineral ore or fossil fuel, observation of a rare characteristic 

of interest in a household survey, and so on. For more details on adaptive cluster 

sampling, one may refer to Thompson (1991a, 1991b), Chaudhuri et al. (2004), 

Salehi and Seber (2004), Thompson and Seber (1996), Blanke (2006) and Hu and 

Su (2007). 

The procedure for selecting initial sample is most important to increase the 

precision of the estimates of mean and variance. While most of the researchers 

have used the method of simple random sampling to select the initial sample, we 

investigated the possibility of using Ranked Set Sampling (RSS) in selecting the 

initial sample. RSS, introduced by McIntyre (1952), is a sampling scheme that can 

be utilized to potentially increase precision and reduce costs when actual 

measurement of the variable of interest is costly or time-consuming but the 

ranking of the set of items according to the variable can be done without actual 

measurements. Such situations normally arise in environmental monitoring and 

assessment that require observational data. For example, the assessment of the 

status of hazard waste sites is usually costly. But, often, a great deal of knowledge 

about hazard waste sites can be obtained from records, photos and certain physical 

characteristics that can be used to rank the hazard waste sites. In certain cases, the 

contamination levels of hazardous waste sites can be indicated either by visual 

inspection such as defoliation or soil discoloration, or by inexpensive indicators 

such as special chemically-responsive papers, or electromagnetic reading. RSS is a 

two-phase sampling design that identifies sets of field locations, utilizes 

inexpensive measurements to rank locations within each set, and selects one 

location from each set for sampling.  

In the simplest form of RSS or RSS with equal allocation, first a simple 

random sample of size k is drawn from the population and the k sampling units are 

ranked with respect to the variable of interest, say X, without actual 

measurements. Then the unit with rank 1 is identified and taken for the actual 

measurement of X. The remaining units of the sample are discarded. Next, another 
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simple random sample of size k is drawn and the units of the sample are ranked by 

judgment, the unit with rank 2 is now taken for the measurement of X and the 

remaining units and discarded. This process is continued until a  simple random 

sample of size k is taken and ranked and the unit with rank k is taken for 

measurement of X. This whole process is referred to as a cycle. This cycle is then 

repeated m times which yields a ranked set sample of size mkn  . In this 

procedure each order statistics is repeated same number of times i.e. m. If this 

number is not same for some or all order statistics the procedure is referred as RSS 

with unequal allocation. The relative precision (RP) of RSS compared with SRS is 

always an increasing function of set size (k). Use of appropriate allocation model 

for all order statistics further increases the gain in RSS. 

RSS has been satisfactorily used to estimate pasture yield by McIntyre (1952, 

1978), forage yields by Halls and Dell (1966), mass herbage in a paddock by 

Cobby et al. (1985), shrub phytomass by Martin et al. (1980) and Muttlak and 

McDonald (1992), tree volume in a forest by Stokes and Sager (1988), root weight 

of Arabidopsis thaliana by Barnett and Moore (1997) and bone mineral density in a 

human population by Nahhas, Wolfe, and Chen (2002). Patil, Sinha, and Taillie 

(1994) discussed some other situations where RSS may be applied. A complete 

review of the applications and theoretical work on RSS can be found in Kaur et  al. 

(1995) and Chen, Bai, and Sinha (2004). 

When carrying out environmental pollution studies, the following situation 

may commonly encounter. In most of the sampled places, the pollution is low or 

negligible. However, the neighbourhoods of these places may have a few scattered 

pockets of high pollution. Under such situations, Thompson (1996) proposed an 

adaptive design based on order statistics in which an initial simple random sample 

of pollution readings on n sites was taken, yielding the ordered readings 

     nyyy  ........21 . This design is helpful to choose the criterion C but there is 

a good chance that most of the pockets of high pollution are missed. To overcome 

this difficulty, there arises a need of an adaptive scheme in which each order 

statistics are considered. This is achieved with the help of the proposed design in 

which we use the technique of ranked set sampling to select the initial sample.  

To demonstrate the applicability of the proposed procedure, we consider a real 

life situation. In determining the estimate of density and distribution of rare or  

endangered plant species, generally the information about the abundance is not 

available to us. But these types of species are found in the form of  clusters. Also 

there is a large variation in the areas of clusters and there may be a good chance 

that neighbourhoods of small clusters may have clusters with larger areas. Under 

such circumstance the strategy to use SRS or other sampling procedures in first 

phase is not appropriate.  Because we may omit such clusters while using these 

designs, which may have come in the final sample using RSS. The reverse  

situation may also exist i.e. the neighbourhood of larger area clusters may have 

very small clusters. When we use RSS, the probability of omitting such clusters 
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becomes more than the other procedures. Using RSS in the first phase of the 

design, all type of clusters from smallest to largest are considered and due to the 

variations in the neighbourhood of the clusters in the proposed design, we are in  a 

position to consider high abundance of rare plant species with minimum cost and 

time. 

In the present paper, we propose an adaptive cluster sampling theory based on 

ranked sets. In this theory the initial sample is selected by the method of ranked 

set sampling and if the measured values of the units in initial sample satisfies the 

pre-specified condition C then their neighbourhoods are added as well. The 

proposed theory appears to be highly appropriate for the environmental situations 

discussed in the penultimate paragraph. Since the relative precision of RSS 

compared with SRS is always an increasing function of set size (k), the proposed 

procedure yields higher precision as compared to existing procedures as k 

increases. 

Details of the proposed design with the notations used are given in the Section 

2. Section 3 describes the estimators of the population mean. In Section 3.1, the 

estimator based on only initial sample, has been considered. Section 3.2 deals with 

an estimator based on initial intersection probabilities along the lines of Thompson 

(1990). Improvement of the estimators using the Rao-Blackwell theorem has been 

attempted in Section 3.3. In Section 4, the proposed design is demonstrated with 

the help of a simple example taken from a small artificial population. Section 5 

concludes the findings of the present paper. 

2 The proposed sampling design 

Suppose that we have a finite population of N units with labels 1, 2…N and with 

associated variables of interest  Nyyy .........,, 21y . Our interest is to estimate the 

population mean of the y-values, given by 



N

i

iy
N 1

.
1

 . To define the 

neighbourhood of each unit i , we say that if i  is a neighbourhood of the unit j 

then unit j is also the neighbourhood of unit i . A typical neighbourhood might be 

the unit itself together with the four units with common boundaries, when the 

whole population is arranged in a systematic grid pattern. Thus a neighbourhood of 

unit i consists of five units in a cross shape shown in Figure 1. The 

neighbourhoods do not depend on the y-values of population. The unit i  is said to 

satisfy the condition of interest C if the associated y-value ( iy ) is in a specified set 

C. 
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Figure 1: Neighbourhood of unit i for grid pattern population. 

The proposed design, for selecting the final sample, can be classified into two 

phases as follows: 

The first phase of an adaptive cluster sampling design based on ranked sets 

consists of selecting a ranked set sample of size n from the population of N units. 

Throughout this paper, we have taken m=1 without any loss of generality.  

In the second phase of the proposed design we add neighbourhoods adaptively 

of the measured units in the first phase if the units satisfy the pre-specified 

condition of interest C. If any of these added units satisfies C then there 

neighbourhoods are also added and so on until we end up with a cluster that has a 

boundary of units that do not satisfy C. These boundary units of each cluster are 

called edge units. The final sample then consists of n (not necessarily distinct) 

clusters, one for each unit selected in the initial sample.  

An example is illustrated in Figure 2, in which the aim is to estimate the 

concentration of the contamination level of the pollution over a specified site. The 

population (site) is divided into 1010  square plots; each plot is a unit of the 

population. The y-value of unit i  represents the contamination level and is 

demonstrated in each cell in Figure 2. A unit satisfies the condition of interest C if 

it contains contamination level greater than or equal to 1, i.e. 1iy . Three random 

sets of units each of size 3 are drawn without replacement from the population and 

ranked according to the y-value. The units of the first, second and third sets are 

shown in Figure 2 by „bold‟, „underlined‟ and „bold and underlined’, 

respectively. The units taken for measurement in the initial sample is the first 

smallest, the second smallest and the largest from the first, second and third sets 

respectively. This initial sample of units is shown in the Figure 3 by ‘red bold’ 

outline. Applying the second phase of the design gives the final sample, which is 

shown in Figure 3 by „bold‟ and ‘red bold’ outline. 
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Figure 2: Ranked Sets (3) for initial sample. 

 

Figure 3: Final Sample (shown in bold red-bold digits). 

The population may be partitioned into K sets of units, termed as networks, 

such that selection in the initial sample of any unit in a network will result in 

inclusion in the final sample of all units in that network. Actually the network iA  

for unit i  is defined to be the cluster generated by unit i  but with the edge units 

removed. If unit i  is the only unit in a cluster satisfying C, then iA  consists of just 

unit i  and forms a network of size one. Any unit that does not satisfy C to be a 

network of size one, as its selection does not lead to the inclusion of any other 
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units. This means that all clusters of size one are also networks of size one. Here 

we should note that any cluster consisting of more than one unit can be split into a 

network and further networks of size one, as each edge units are the networks of 

size one. It is also clear that all the K networks are disjoint.  

Let the final reduced sample is denoted by the unordered set  21, sss  , where 

1s  is the set of n unordered labels from the initial sample (which are distinct, as 

sampling is without replacement in the first phase), and 2s  is the set of distinct 

unordered labels from the remainder of the sample s. The sampling design is a 

function  ysp  assigning a probability to every possible sample s. In designs such 

as those described in this paper, these selection probabilities depend on the 

population y-values. Let im  denote the number of units in iA , and let ia , denote 

the total number of units in networks of which unit i is an edge unit. If unit i 

satisfy C, then ia =0, while if unit i does not satisfies C, then 1im . The 

probability that the unit i is included in the sample 1s  is given by, 

 

    N

am
p ii i

 

The probability that unit i is included in the sample s is  
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                  (2.1)  

3 Estimators of the population mean 

Generally with the adaptive cluster sampling designs, standard est imators of the 

population mean and total are not unbiased. However, the classical estimators such 

as the sample mean Y  based on simple random sampling and Y  based on the 

clusters with selection probabilities proportional to cluster size are unbiased under 

the non-adaptive designs. In this Section some estimators are given that are 

unbiased with the adaptive cluster sampling design discussed in this paper. These 

unbiased estimators do not depend on any assumptions about the population. 

Let S denote the set of all possible samples. The expected value of an 

estimator t is defined in the design sense and is defined as,  

                         



Ss

s spt)t(E y ,                         (3.1) 
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where st  is the value of the estimate for the sample s. 

3.1 The initial sample mean 

If the final sample of the proposed design is selected in the first phase only, the 

estimator of population mean µ is unbiased as ranked set sample mean is always 

unbiased estimator of µ for finite population. This estimator ignores all units 

adaptively added to the sample. 

Let 
):( niy  is the measured y-value of the thi  smallest unit in the thi  set, an 

unbiased estimator of µ based on the initial sample is  

 

              




n

i

niy
n

t
1

):(1

1
 .               (3.2) 

As each 
):( niy  is independent and identical with mean  ni: (say), the variance 

of 
1t  is given by 
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where 2  is the population variance. Generally  ni: , ni .....,2,1  are unknown and 

can be estimated by the average of the thi  smallest ranked unit of each set. 

3.2 An estimator based on initial intersection probabilities 

If we know the inclusion probability i  that unit i is included in the sample s for 

all the sampled units, we can use the Horvitz-Thompson estimator, given by 

 

 
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si

N

i i
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Iy

N
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N 1

11
ˆ


  ,            (3.4) 

 

where iI  is the indicator variable which takes the value 1 when unit i is included 

in the sample and 0 otherwise. Unfortunately, although im
 
is known in (2.1) for all 

the units in s, but some of the ia ‟s are unknown. For example, if unit i is an edge 

unit for some clusters in the sample, then all the clusters in which it belongs to, 

would not generally be sampled, so that ia  will be unknown for those clusters. To 
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get around this problem Thompson (1990) dropped ia  from i  and considered the 

partial inclusion probability 
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Thus observations that do not satisfy the condition C are ignored if they are 

not included in 1s . He used the sample of n networks (some of which may be 

same), rather than the n clusters, for estimating µ. The probability /

i  can then be 

interpreted as the probability that the initial sample 1s  intersects iA , the network 

for unit i.  

The unbiased estimator 2t  based on the initial intersection probabilities takes 

the form  
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where /

iI  takes the value 1 (which probability /

i  ) if 1s  intersects iA  , and 0 

otherwise. 

It is more convenient to write the summation part of the estimator  2t  in (3.6) 

in terms of the distinct networks, as the intersection probability /

i  is same (= k , 

say) for each unit i in the thk network. Hence  
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where *

ky  is the sum of the y-values for the network k, K is the total number of 

distinct networks in the population, /K  is the number of distinct networks in the 

sample s, and kJ takes a value of 1 (with probability k ) if the initial sample 

intersects the network k, and 0 otherwise. If there are kx  units in the network k, 

then 
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Also letting jkp =P ( thj  and thk  network not intersected), then 
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Therefore the probability that the networks j and k are both intersected is  
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With the convention that jjj   , the variance of 2t  is 
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An unbiased estimator of the variance of 2t  is 
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provided that none of the joint probabilities jk  is zero. 

Just as the Horvitz-Thompson estimator has small variance when the y-values 

are approximately proportional to the inclusion probabilities, the estimator 2t  
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should have low variance when the network totals *

ky ‟s are proportional to the 

intersection probability k . 

3.3 Improvement of the estimators using the Rao-Blackwell 

method 

The estimators 1t  and 2t  of µ are although unbiased but are not the function of the 

minimal sufficient statistic, and so each may be improved by the Rao-Blackwell 

theorem by taking conditional expectation, given the minimal sufficient statistic. 

For finite population Basu (1969) suggested that the minimal sufficient statistic D 

is the unordered set of distinct, labelled observations, that is, 
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An initial sample that gives rise through the design to the given value D of the 

minimal sufficient statistic is called compatible with D. Let the thg  indicator 

variable ( gI ) takes the value 1 if the thg  combination could give rise to D (i.e., is 

compatible with D), and 0 otherwise. The number of compatible combinations is 

then 

                  




G

g

gI
1

 .            (3.13) 

Now the estimator t may be improved using Rao-Blackwell theorem and is the 

average of the values of t obtained over all those initial samples that are 

compatible with D. This improved estimator RBt  is 

 

                     

  





 1

1

g

gRB tDtEt  

or 
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g

G

g

gRB Itt 



1

1


        (3.14) 

and its variance is given by 

 

   
      DtVarEtVartVar RB  .           (3.15) 

An unbiased estimator of the variance of RBt  due to Thompson (1990) is given by 

 

     
g

G

g

RBggRB ItttVartVar 










1

2
^^ 1


.       (3.16) 

4 Example 

To demonstrate the utility of the proposed procedure and its superiority over the 

existing procedures, we use a small artificial population of five units with y-values 

 /4,15,3,500,2y . The neighbourhood of each unit includes its immediately 

adjacent units (of which there are either one or two units). The condition C is 

defined by C= 5: yy and the initial sample size n=2. 

With the proposed design in which the initial sample is selected by ranked set 

sampling, there are 30
2

3

2

5

















 possible combinations of units; each combination 

has two sets, each of size 2. All 30 possible initial samples from these 

combinations are given in the first column of Table 1. The final sample is given in 

the second column of the Table 1. In this population the 1
st

, 2
nd

 and 3
rd

 units, with 

y-values 2, 500, and 3, form a cluster consisting of 3 networks each of size 1.  

In the first row of the Table 1, the 1
st

 and 2
nd

 units of the population, with y-

values 2 and 500, are selected initially. Since 5500  , the single neighbour of the 

2
nd

 unit, having y-value 3, is then added to the sample. The other neighbours of 2
nd

 

unit, having y-value 2 is selected as a member of initial sample, hence is not 

selected again. Ignoring the edge units, the results for the estimators of first 

sample (i.e. of the first row of Table 1) are given below:  

The initial sample mean 251t1  .  

The values 1  and 2 are 4.01  and 7.02  , leading to 2t 251.  

The classical estimators are 3.168y   and 3.168y  .  

The values of the Rao-Blackwell version of any of the estimators for each 

sample are obtained by averaging the value of the corresponding estimator over 

those samples that are compatible with D. For the first sample of this example  

25.251t RB1   and 25.251t RB2  . 
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Table 1: Observations under the proposed procedure. 

 

The population mean is 104.8, and the population variance is 48834.7.  From 

Table 1, it is clear that the estimators 1t , 2t  , RBt1  and  RBt2  are unbiased, whereas 

the estimators y  and y , used with adaptive design are biased. 

S.No 
1s  2s  1t  2t  RBt1  RBt2  y  y  

1 (2, 500) (2, 500,3) 251.0 251.0 251.3 251.3 168.3 168.3 

2 (2, 15) (2, 15,3,4) 8.5 8.5 8.5 8.5 6.0 4.7 

3 (2, 500) (2, 500,3) 251.0 251.0 251.3 251.3 168.3 168.3 

4 (2, 500) (2, 500,3) 251.0 251.0 251.3 251.3 168.3 168.3 

5 (2, 4) (2, 4) 3.0 3.0 3.0 3.0 3.0 3.0 

6 (2, 500) (2, 500,3) 251.0 251.0 251.3 251.3 168.3 168.3 

7 (2, 15) (2, 15,3,4) 8.5 8.5 8.5 8.5 6.0 4.7 

8 (2, 4) (2, 4) 3.0 3.0 3.0 3.0 3.0 3.0 

9 (2, 15) (2, 15,3,4) 8.5 8.5 8.5 8.5 6.0 4.7 

10 (2, 15) (2, 15,3,4) 8.5 8.5 8.5 8.5 6.0 4.7 

11 (2, 500) (2, 500,3) 251.0 251.0 251.3 251.3 168.3 168.3 

12 (2, 500) (2, 500,3) 251.0 251.0 251.3 251.3 168.3 168.3 

13 (3, 500) (3, 500,2) 251.5 251.5 251.3 251.3 168.3 168.3 

14 (3, 15) (3, 15,4) 9.0 9.0 9.3 9.3 22.0 7.3 

15 (3, 500) (3, 500,2) 251.5 251.5 251.3 251.3 168.3 168.3 

16 (15, 3) (15, 3,4) 9.0 9.0 9.3 9.3 22.0 7.3 

17 (4, 3) (4, 3) 3.5 3.5 3.5 3.5 3.5 3.5 

18 (4, 3) (4, 3) 3.5 3.5 3.5 3.5 3.5 3.5 

19 (3, 15) (3, 15,4) 9.0 9.0 9.3 9.3 22.0 7.3 

20 (3, 15) (3, 15,4) 9.0 9.0 9.3 9.3 22.0 7.3 

21 (4, 15) (4, 15,3) 9.5 9.5 9.3 9.3 168.3 7.3 

22 (3, 500) (3, 500,2) 251.5 251.5 251.3 251.3 168.3 168.3 

23 (3, 500) (3, 500,2) 251.5 251.5 251.3 251.3 168.3 168.3 

24 (4, 500) (4, 500,2,3) 252.0 252.0 252.0 252.0 127.3 86.2 

25 (3, 4) (3, 4) 3.5 3.5 3.5 3.5 3.5 3.5 

26 (3, 4) (3, 4) 3.5 3.5 3.5 3.5 3.5 3.5 

27 (15, 4) (15, 4,3) 9.5 9.5 9.3 9.3 168.3 7.3 

28 (4, 15) (4, 15,3) 9.5 9.5 9.3 9.3 168.3 7.3 

29 (4, 500) (4, 500,2,3) 252.0 252.0 252.0 252.0 127.3 86.2 

30 (15, 4) (15, 4,3) 9.5 9.5 9.3 9.3 168.3 7.3 

 MEAN  104.8 104.8 104.8 104.8 91.4 65.1 

BIAS  0.0 0.0 0.0 0.0 -13.4 -39.7 
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With the adaptive design in which the initial sample is selected by SRS 

without replacement, there are 10
2

5









 possible samples, each having probability 

1/10. The final sample and the values of each estimator with mean and variance 

are listed in Table 2.  

 

Table 2: Observations under Thompson‟s adaptive design. 

 

 

From Table 1 and Table 2, it may be concluded that for this small artificial 

example, the proposed procedure gives more average yield for almost all the 

estimators in comparison to that given by the procedure of Thompson (1990).  

5 Conclusion 

When the measurements of units are very costly and time consuming and there is 

heterogeneity between the units of the population, the simple random sampling 

become useless. In such situations, RSS is a cost-effective and precise method of 

sample selection. In this discussion, we have used the technique of RSS to select 

the initial sample under adaptive sampling. The proposed design is more efficient 

than adaptive cluster sampling based on simple random sampling for estimating 

rare and endangered population, under the assumption that ranking of sampling 

units are easier than actual measurements. It also contains the information about 

all order statistics.  Relative precision of RSS compared with SRS is an increasing 

function of set size (k). It shows that the efficiency of proposed design increases as 

k in the first phase of the design increases. We have demonstrated theoretically as 

well as with the help of an artificial example that the proposed procedure is more 

advantageous in comparison to existing procedures of adaptive sampling in the 

S.No. 2s  1t  2t  RBt1  RBt2  y  

1 (2, 500,3) 
251.00 143.86 251.25 144.11 168.33 

2 (2, 3) 
2.50 2.50 127.00 73.43 2.5 

3 (2, 15, 4) 
8.50 5.29 4.25 2.64 7 

4 (2, 4) 
3.00 3.00 127.50 73.93 3 

5 (500, 3, 2) 
251.50 144.36 251.25 144.11 168.33 

6 (500, 15, 2, 3, 4) 
257.50 147.14 257.50 147.14 104.8 

7 (500,4, 2) 
252.00 144.86 254.75 146.00 168.67 

8 (3, 15, 4) 
9.00 5.79 8.75 6.04 7.33 

9 (3,4) 
3.50 3.50 7.00 5.19 3.5 

10 (15, 4, 3) 
8.50 6.29 8.75 6.04 7.33 

 MEAN 
104.70 60.66 129.80 74.86 64.08 
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sense that it provides unbiased estimators as well as it give equal importance to all 

the rank orders and as such it is more informative. The proposed design also 

establishes a bridge between the ranked set sampling and adaptive cluster 

sampling and uses the advantage of both the schemes. However, data availability 

in the form of ranked clusters has to be determined in advance. As there are only 

few sampling procedures in the area of rare species estimation as well as when the 

measurement of units are difficult and costly in comparison to the ranking of units 

by inexpensive techniques including visual inspection, the doors are open in future 

to develop the strategy for extracting the benefits of the two schemes. The 

proposed procedure has also particular relevance to assess the effects of human 

induced activities in the flora, fauna etc., that increase species rarity.  
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