ISSN 1855-5136 Bilten: glasilo Društva radioloških inženirjev Slovenije Bulletin: Newsletter of the Slovenian Society of Radiographers Izdajatelj / Publisher: Društvo radioloških inženirjev Slovenije Slovenian Society of Radiographers Urednik suplementa / Supplement Editor: Gašper Podobnik Uredniški odbor suplementa / Supplement editorial board: Janez Podobnik Lektorica / Proofreader of Slovenian version: Veronika Lipovec Prevajalka in lektorica angleškega jezika / Translator and proofreader of English version: Nina Bostic Bishop Prispevki so recenzirani z zunanjo recenzijo / The articles are reviewed by external review Recenzije so anonimne / Reviews are anonymous Naklada / Number of copies: 250 izvodov / 250 copies Oblikovanje naslovnice / Cover design: Ana Marija Štimulak Graficno oblikovanje in tisk / Graphic design and print: Tisk 24 d.o.o., 1000 Ljubljana, Slovenia Avtorji so odgovorni za vse navedbe v svojih prispevkih / The authors are responsible for all statements in their papers Revija je natisnjena na brezkislinski papir / This journal is printed on acid-free paper Predgovor Spoštovane kolegice in kolegi, Kongres Društva radioloških inženirjev Slovenije je že nekaj casa naše tradicionalno srecanje, na katerem se zberemo vsako drugo leto. Tudi letos vas je veliko prijavljenih, kar me veseli, saj dokazuje, da se zelo zanimate za razvoj stroke, kateremu skromna prispevka sta tudi tokratni kongres in zbornik, ki ga izdajamo ob tej priložnosti. Cas, ki ga namenjamo svojemu poklicnemu udejstvovanju, naj si bo to izobraževanje, delo ali strokovni sestanki po interesnih skupinah, je dragoceni sestavni del našega vsakdana. V društvu se skozi 64-letno zgodovino trudimo, da povezujemo clane, nadgrajujemo odnose in nas združujemo. Že naši predhodniki in ustanovitelji društva so se zavedali, da so le povezani mocni, da le povezani lahko uspejo. Zato smo poleg strokovnih srecanj, ki so že leta utecena in dobro obiskana, v zadnjem letu poizkusili tudi na podrocju neformalnih druženj narediti premike in tako organizirali piknik, ki je bil odlicno sprejet. Društvo se in se bo tudi v bodoce trudilo, da svojim clanom nudi strokovnost in povezanost. V bogati zgodovini društva so se zvrstili seminarji, sestanki, kongresi. Da pa smo vse to lahko organizirali, se moramo zahvaliti požrtvovalnim clanom, ki so in še skrbijo za organizacijo dogodkov. Cenjene kolegice in kolegi. Živimo v casu, kjer so pomembni dejavniki strokovnost, znanstveno raziskovanje, vseživljenjsko ucenje, delavnost, razgledanost in cloveška toplina. Za naš poklic je pomembno vse od naštetega. Verjamem, da se vsakodnevno soocate z izzivi, ki jih bolj ali manj uspešno premagujete. Da bo naš poklic še naprej rasel in se strokovno in znanstveno razvijal, je potrebno poskrbeti že danes. Moramo se strokovno izpopolnjevati, se boriti za naše pravice in stopiti skupaj, kadar je to potrebno. Spoštovani! Želim vam, da se z veliko mero strokovnosti predajate poklicu, skrbite za soljudi in pomagate lepšati naš planet. Hvala Vam v imenu vseh, ki jim pomagate! Uroš Gacnik, predsednik Društva radioloških inženirjev Slovenije. Ljubljana, maj 2018 Uvod Ob 4. Kongresu Društva radioloških inženirjev Slovenije 2018 se je strokovni odbor odlocil, da neposredno ob kongresu izdamo samo zbornik povzetkov predavanj in plakatov, posamezna predavanja pa bodo v obliki clankov objavljena v naslednjih številkah Biltena. V želji, da bi se bolj približali radiološkim inženirjem, ki delajo na razlicnih podrocjih našega poklica, smo sestavili štiri tematske sklope predavanj. Tri sklope smo zaupali nosilcem sklopov. Kot nosilce smo izbrali in povabili izkušene radiološke inženirje, ki imajo bogate izkušnje tako iz prakse kot tudi iz podrocja objavljanja strokovnih in znanstvenih prispevkov. Zaupali smo jim odgovornost za izbor tem predavanj, predavateljev in objavljenih povzetkov v njihovem sklopu. V cetrtem sklopu pa so strokovno-znanstveni prispevki prostih tem, tako da se je lahko prijavil vsak radioloških inženir, ki je želel predstaviti svoje raziskave oziroma delo v obliki predavanja na kongresu in clanka v Biltenu. V prvem sklopu, posvecenemu radioterapiji, so tri predavanja. Najprej bo pregledno predstavljena radioterapija pri raku prebavil, nato pa stranski ucinki, ki jih povzroca uporaba bolusa pri obsevanju raka danke in analnega kanala, kako so le-ti izraženi in kdaj se pojavljajo. V drugem predavanju se bomo seznanili z uporabo specifi cnih protokolov pri slikanju z magnetno resonanco v radioterapiji, v tretjem pa s sistemom za nadzor dihanja pri bolnici z rakom na levi dojki. Drugi sklop je posvecen poklicu radiološkega inženirja. Tako bomo v prvem predavanju poslušali o razvoju poklica: zgodovinski pregled, bistvene spremembe izobraževalnih programov in nazivov skozi cas ter podrocja delovanja in opis delovnih nalog, kot jih v poklicu poznamo danes. V drugem predavanju bomo izvedeli, kako prepoznaven je poklic radiološkega inženirja med dijaki in v splošni javnosti. V tretjem bo avtor razmišljal o vseživljenskem strokovnem poklicnem razvoju in mnenju ter pripravljenosti radioloških inženirjev zanj. Ta sklop predavanj bo dober uvod v okroglo mizo, ki bo obravnavala aktualne probleme našega poklica, na kateri bodo sodelovali predstavniki inštitucij, ki so za radiološke inženirje pomembne (Zbornica radioloških inženirjev Slovenije, Radiološko društvo Mile Kovac, Sindikat sevalcev Slovenije, Zdravstvena fakulteta – oddelek za radiološko tehnologijo in Društvo radioloških inženirjev Slovenije). Sledi osvežitveni sklop s podrocja diagnosticne dozimetrije. V tem sklopu bo prvo predavanje posveceno optimizaciji CT preiskav in prepoznavi pomembnosti poznavanja tehnologije racunalniškega tomografa. V drugem predavanju se bomo seznananili z implementacijo DR sistema v klinicno prakso, pri cemer bomo spoznali dozne indikatorje in razlicne komponente slikovnih sprejemnikov, ki omogocijo diagnosticno uporabno sliko. V tretjem predavanju bodo predstavljeni razlicni slikovni sprejemniki v intervencijski radiologiji in parametri, ki vplivajo na kvaliteto slike in dozo. Sledil bo še strokovno-znanstveni sklop, v katerem bomo najrej poslušali predavanje, ki je na letošnjem Evropskem kongresu na Dunaju prejelo nagrado za najboljše predavanje med radiološkimi inženirji. Sledilo bo predavanje v katerem bo predstavljena raziskava, ki opredeljuje vpliv CT slikanja na kvaliteto scintigramov in sevalno obremenitev bolnikov. V tretjem predavanju bodo avtorji govorili o bolnišnicnih diagnosticnih referencnih ravneh za izbrane travmatološke posege in primerjavi le-teh z enakimi preiskavami iz literature, v cetrtem pa o možnostih za dozno optimizacijo CT vodenih punkcij. Rad bi se zahvalil vsem sodelujocim avtorjem ter strokovnemu in organizacijskemu odboru 4. Kongresa DRI za ves trud in znanje, ki so ga vložili v organizacijo in aktivno udeležbo pri tradicionalnem najvecjem strokovno-znanstvenem dogodku za radiološke inženirje v Sloveniji. Uvodnik zakljucujem z željo, da bomo z novo obliko strokovnega dela kongresa (vabljeni nosilci sklopov, obravnava aktualnih tem, prikaz z dokazi podprte prakse, priložnost za predstavitev znanstvenih raziskav širši strokovni javnosti) in z razširjeno debato na okrogli mizi zbudili zavedanje in željo po še vecji aktivni udeležbi na tovrstnih dogodkih pri nas in v tujini. urednik supplementa Biltena Gašper Podobnik vsebina Irena Oblak RADIOTERAPIJA RAKA PREBAVIL RADIOTHERAPY OF GASTROINTESTINAL CANCER Razboršek Anej, Štrljic Karmen, Verstovšek Ester, Žager Marciuš Valerija POJAVNOST STRANSKIH UCINKOV PRI OBSEVANJU RAKA DANKE IN ANALNEGA KANALA Z UPORABO BOLUSA OCCURRENCE OF SIDE EFFECTS DURING RADIOTHERAPY TREATMENT OF RECTAL AND ANAL CANAL CANCERS WITH A BOLUS Marko Zaletelj, Andrej Breznik MAGNETNO RESONANCNO SLIKANJE V PROCESU NACRTOVANJA OBSEVANJA MAGNETIC RESONANCE IMAGING IN THE PROCESS OF RADIATION THERAPY PLANNING Katja Rožic, Valerija Žager Marciuš, Aleš Posl POMEN TEHNIKE GLOBOKEGA ZADRŽANEGA VDIHA PRI OBSEVANJU LEVE DOJKE THE SIGNIFICANCE OF DEEP INSPIRATION BREATH HOLD WHILE IRRADIATING LEFT BREAST Katja Kupljenik UMETNA INTELIGENCA IN NJEN RAZVOJ V ZDRAVSTVU ARTIFICIAL INTELLIGENCE IN RADIOLOGY Matej Podsedenšek, Nataša Pfeifer, Barbara Steblovnik Cater RAZVOJ POKLICA RADIOLOŠKI INŽENIR SKOZI CAS DEVELOPING THE PROFESSION OF A RADIOLOGICAL ENGINEER TROUGH TIME Nina Djuric PREPOZNAVNOST POKLICA RADIOLOŠKI INŽENIR RECOGNITION OF THE RADIOGRAPHY PROFESSION Monika Kunšic, Matic Kavcic, Tina Starc VSEŽIVLJENJSKI STROKOVNI POKLICNI RAZVOJ CONTINUING PROFESSIONAL DEVELOPMENT Tomaž Kavcic MR PRIHODNOSTI ŽE DANES MR FUTURE ALREADY TODAY vsebina Majer Karin, Patricija Jesih, Tina Starc PRIMERJAVA PROTOKOLOV RENTGENSKEGA SLIKANJA HRBTENICE PO PROGRAMU ZA SKOLIOZO MED ZDRAVSTVENIMI USTANOVAMI V SLOVENIJI COMPARISON OF PROTOCOLS IN SCOLIOSIS IMAGING BET WEEN HEALTHCARE INSTITUTIONS IN SLOVENIA Tina Robida NASTAVITEV RAVNIN PRI MAGNETNO RESONANCNEM SLIKANJU SRCA PLANNING THE CARDIAC VIEWS FOR MAGNETIC RESONANCE IMAGING Laura Kocet, Nika Zalokar, Katja Romaric MAPIRANJE T2 RELAKSACIJSKEGA CASA ZDRAVEGA HRUSTANCA KOLENA T2 MAPPING OF HEALTHY KNEE CARTILAGE Gregor Golja, Irena Snoj POMEN MAGNETNORESONANCNEGA SLIKANJA PRI DISEKCIJI NOTRANJE KAROTIDNE ARTERIJE SIGNIFICANCE OF MAGNETIC RESONANCE IMAGING IN INTERNAL CAROTID ARTERY DISSECTION Uroš Slamic DOSE MANAGMENT - KAKOVOST OSREDNJA SKRB V RADIOLOGIJI Tamara Kebec Ileršic Medrad Stellant injektor in brizge za 12-urno uporabo Sebastijan Rep, Marko Hocevar, Luka Ležaic PREDNOSTI PET/CT V DIAGNOSTIKI OBŠCITNICNIH ADENOMOV THE ADVANTAGES OF PET / CT IN THE DIAGNOSIS OF PARATHYROID ADENOMAS Katja Korez, Damijan Škrk DOLOCITEV BOLNIŠNICNIH DIAGNOSTICNIH REFERENCNIH RAVNI PRI IZBRANIH TRAVMATOLOŠKIH OPERATIVNIH POSEGIH SET TING HOSPITAL DIAGNOSTIC REFERENCE LEVELS FOR CHOSEN TRAUMA SURGICAL PROCEDURES Maja Fujan CT VODENA PUNKCIJA TAKO IN DRUGACE CT- GUIDED BIOPSY IN PERSPECTIVE Raditerapevtska tehnologija RADIOTERAPIJA RAKA PREBAVIL RADIOTHERAPY OF GASTROINTESTINAL CANCER Irena Oblak Onkološki inštitut Ljubljana, Oddelek za teleradioterapijo, Zaloška 2, 1000 Ljubljana Korespondenca/Correspondence: doc. dr. Irena oblak, dr. med. E-mail: ioblak@onko-i.si Prejeto/Recived: 08.11.2017 Sprejeto/Accepted: 19.3.2018 IZVLECEK Radioterapija je poleg kirurgije in sistemskega zdravljenja ena izmed temeljnih nacinov zdravljenja rakave bolezni. Pri radikalnem zdravljenju tumorjev prebavil, kjer je cilj ozdravitev bolnika, radioterapijo uporabljamo kot samostojno metodo ali pa jo kombiniramo z drugimi metodami v sklopu: 1. Adjuvantnega zdravljenja (pooperativno). Namen zdravljenja je prepreciti ponovitev bolezni. 2. Neoadjuvantnega zdravljenja (predoperativno). S tem zdravljenjem želimo zmanjšati tumor in omogociti popolno odstranitev ostanka bolezni. 3. Konkomitantnega zdravljenja. Socasno uporabljamo dve metodi zdravljenja, praviloma radiokemoterapijo. S kombinacijo dosežemo vecjo ucinkovitost, saj izkorišcamo njuna locena prijemališca delovanja. Med tumorji prebavil je najpogostejši adenokarcinom debelega crevesa in danke. Ob postavitvi diagnoze ima približno 60 odstotkov bolnikov lokalno in/ali podrocno napredovalo bolezen brez oddaljenih zasevkov, ki ima visoko tveganje za ponovitev. Njihovo petletno relativno preživetje je 60–70 odstotno. Obsevanje ima pomembno vlogo predvsem v sklopu predoperativnega zdravljenja napredovalega raka danke, kjer želimo izboljšati lokalno kontrolo, zmanjšati obseg bolezni in s tem omogociti popolno odstranitev ostanka bolezni. Pri nizko ležecih tumorjih tovrstno zdravljenje omogoca ohranitev analnega sfinktra, kar pri 50–75 odstotkov bolnikov. Pooperativno obsevanje bolnikov je umestno le takrat, ko so bili bolniki najprej operirani in se je kasneje ob pregledu patohistoloških vzorcev ugotovil višji patološki stadij bolezni. Zaradi spremenjene anatomije male medenice po operaciji, z vecjim deležem tankega crevesa v obsevalnem polju, vecjimi obsevalnimi volumni, ter brazgotinjenja s slabšo oksigeniranostjo tkiv, ima pooperativna radioterapija v primerjavi s predoperativno vec neželenih ucinkov zdravljenja. V letu 2017 smo na Onkološkem inštitutu Ljubljana radikalno obsevali 204 bolnike z rakom danke, 180 predoperativno in 24 pooperativno. Kljucne besede: radioterapija, tumorji prebavil ABSTRACT In addition to surgery and systemic treatment, radiography is one of the basic methods of cancer treatment. In radical treatment where the purpose is to cure the patients, radiotherapy can be used alone or in combination with other methods such as: 1. Adjuvant treatment (post-operative). The purpose of the treatment is to prevent locoregional recurrence of the disease. 2. Neoadjuvant treatment (pre-operative). The purpose of this treatment is to achieve tumor downstaging and complete removal of the rest of the disease. 3. Concomitant treatment. It refers to a simultaneous use of two treatment methods, usually radiochemotherapy. By combining the methods, greater efficacy is achieved by exploiting their separate operating points. The most common gastrointestinal tumor is colorectal adenocarcinoma. At diagnosis, approximately 60 % of patients have a local and/or regional advanced disease without distant metastases, with a high risk of disease recurrence. The 5-year relative survival is 60-70 %. The radiotherapy plays an important role especially in the pre-operative treatment of advanced rectal cancer, where the aim is to improve local control, reduce the extent of the disease, and enable complete removal of the rest of the disease. In low-lying rectal tumors, this treatment allows the anal sphincter preservation in 50-75 % of the patients. Post-operative radiotherapy is only relevant if the patients were first operated and a higher pathological stage of the disease was later found in the examination of pathohistological samples. Due to the changed anatomy of the small pelvis and a larger proportion of the small intestine in the irradiation field, greater irradiation volumes and tissue scarring with poor oxygenation of the tissues, post-operative radiotherapy compared to pre-operative treatment has more side effects. In 2017 we radically treated 204 patients with rectal cancer, of whom 180 were treated pre-operatively and 24 post-operatively. Keywords: radiotherapy, gastrointestinal tumors Oblak I / Radioterapija raka prebavil LITERATURA Anderluh F, Oblak I, Ocvirk J et al. (2009). Tumorji prebavil. V: Onkologija - raziskovanje, diagnostika in zdravljenje raka, 316–27. Rak v Sloveniji 2014. Ljubljana: Onkološki inštitut Ljubljana, Epidemiologija in register raka, Register raka Republike Slovenije, 2017. Velenik V, Oblak I, Brecelj E et al. (2017). Priporocila za obravnavo bolnikov z rakom debelega crevesa in danke. Onkologija 21(2): 26–49. Raditerapevtska tehnologija POJAVNOST STRANSKIH UCINKOV PRI OBSEVANJU RAKA DANKE IN ANALNEGA KANALA Z UPORABO BOLUSA OCCURRENCE OF SIDE EFFECTS DURING RADIOTHERAPY TREATMENT OF RECTAL AND ANAL CANAL CANCERS WITH A BOLUS Razboršek Anej 1, Štrljic Karmen, Verstovšek Ester, Žager Marciuš Valerija 1,2 1 Onkološki inštitut Ljubljana, Oddelek za teleradioterapijo, Zaloška 2, 1000 Ljubljana 2 Univerza v Ljubljani, Zdravstvena fakulteta, Oddelek za radiološko tehnologijo, Zdravstvena pot 5, 1000 Ljubljana Korespondenca/Correspondence: dr. Žager Marciuš Valerija, univ. dipl. org. in dipl. inž. rad. E-mail: valerija.zager@zf.uni-lj.si; zagerv@onko-i.si Prejeto/Recived: 08.11.2017 Sprejeto/Accepted: 14.03.2018 IZVLECEK Uvod in namen: Rak danke in analnega kanala predstavljata enega izmed vodilnih vzrokov smrti v današnjem casu. Metoda zdravljenja je tudi radioterapija. Zaradi površinsko ležecih tumorjev in znacilnosti fotonskega snopa v globini bolnika, se uporabi bolus, ki omogoci dvig doze proti površju, vendar so stranski ucinki na koži in sluznici izrazitejši. Namen raziskave je ugotoviti, katere stranske ucinke povzroca uporaba bolusa pri obsevanju omenjenih rakov, kako so izraženi in kdaj se pojavijo. Metode dela: V raziskavi smo uporabili deskriptivno metodo dela s sistematicnim pregledom literature. Retrospektivno smo pridobili podatke v programu Webdoctor in sistemu Mosaiq obsevalnega aparata (Clinac 2100 C/D) Varian na radioterapevtskem oddelku Onkološkega inštituta Ljubljana od 1. 11. 2014 do 31. 1. 2017. Vkljucenih je bilo 30 bolnikov z rakom danke in analnega kanala, obsevanih s tehniko intenzitetno modulirane radioterapije. Z uporabo bolusa je bilo obsevanih 15 bolnikov, ostalih 15 bolusa niso imeli. Analiza je bila narejena s pomocjo racunalniškega programa Microsoft Office Excel 2016 in IBM SPSS 24. Rezultati in razprava: Rezultati so pokazali vec stranskih ucinkov pri obsevanih bolnikih z bolusom (radiodermatitis – RD, pekoce bolecine perianalno in v ingvinalnem predelu, pekoce ali ovirano uriniranje). Za ugotavljanje razlik med bolniki z in brez bolusa smo uporabili Hi-kvadrat test. Najpogosteje izražen RD se v vecji meri pojavlja pri bolnikih z bolusom  – 1. stopnja (53,3 %; p = 0,003), 2. stopnja (86,7 %; p < 0,001 ) in 3. stopnja (46,7; p = 0,010). Statisticno znacilne razlike so v pojavnosti RD pri vseh stopnjah glede na to, ali bolnike obsevajo z bolusom ali brez. Najpogosteje izražena stranska ucinka pri bolnikih brez bolusa sta diareja in disurija. Zakljucek: Bolus pri obsevanju površinsko ležecih tumorjev uporabimo z namenom, da tarcni volumen prejme optimalno dozo. Pomembno je, da se nastali stranski ucinki spoznajo in zdravijo takoj, ko se pojavijo. Kljucne besede: radioterapija, bolus, stranski ucinki, radiodermatitis ABSTRACT Introduction and purpose: Rectal and anal canal cancers are among the leading causes of death nowadays. One of the treatment methods is also radiotherapy. On account of surface tumors and due to the characteristics of the photonic beam at depth, a bolus is used in order to enable the dose to increase toward the surface; however, this also increases the prominence of side effects on the skin and mucous membrane. The purpose of the research is to determine which side eff ects are caused by the use of a bolus in irradiation of the above-mentioned cancers, how they present themselves, and when they appear. Methods: The descriptive method with a systematic literature review was used. The data were obtained retrospectively by means of the Webdoctor program and Mosaiq system of the Varian radiation system (Clinac 2100 C/D) at the Department of Radiotherapy, Institute of Oncology Ljubljana from 1 November 2014 to 31 January 2017. 30 patients with rectal and anal canal cancer, irradiated by intensity-modulated radiotherapy were included in the study. 15 patients were irradiated with a bolus, while the other 15 patients were irradiated without it. The analysis was made using Microsoft Office Excel 2016 and IBM SPSS 24 computer programs. Results and discussion: The results indicated multiple side effects in patients irradiated using a bolus (radiodermatitis - RD, burning pain in perianal and inguinal area, burning or obstructed urination). To determine the diff erences between the patients treated with and without a bolus, we used the chi-square test. The most pronounced was RD, which most often presents itself in patients treated with a bolus; namely first-degree (53.3 %; p = 0.003), second-degree (86.7 %; p < 0.001 ), and third-degree (46.7 %; p = 0.010). Statistically signifi cant differences were present in the onset of RD, in all degrees, depending on whether the patients were irradiated with or without a bolus. The most pronounced side eff ects in patients treated without a bolus were diarrhea and dysuria. Conclusion: In the irradiation of surface tumors, a bolus is used so that the target volume receives the optimum dose. It is crucial that the resulting side eff ects are recognized and treated as soon as they occur. Keywords: radiotherapy, bolus, side eff ects, radiodermatitis. Razboršek A in sod. / Pojavnost stranskih ucinkov pri obsevanju raka danke in analnega kanala z uporabo bolusa LITERATURA Bruheim K, Guren GM, Skovlund E et al. (2010). Late side effects and quality of life after radiotherapy for rectal cancer. Radiat oncol 76(4): 1005–11. http://dx.doi.org/10.1016/j. ijrobp.2009.03.010. Dostopno na: http://www.redjournal.org/ article/S0360-3016(09)00426-X/abstract <6. 4. 2017> Khan FM (2003). The physics of radiation therapy. 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 327. Miloševic M, Mlakar B (2008). Najpogostejše spolno prenosljive bolezni zadnjika in danke. In: Med Mesec 4(3–4): 105–16. Oblak I, Velenik F, Anderluh M et al. (2013). Smernice za obravnavo bolnikov s skvamoznocelicnim karcinomom analnega kanala in kože perinealno (analnega roba). Onkologija 17(2): 105–8. https://www.onko-i.si/fi leadmin/ onko/datoteke/dokumenti/Onkologija_Letnik_XVII_st_2/8_ smernice_za_obravnavo.pdf <5. 4. 2017> Ocvirk J, Anderluh F, Hlebanja Z et al. (2008). Rak debelega crevesa in danke: kaj morate vedeti o tej bolezni. Prenovljena izdaja. Ljubljana: Onkološki inštitut: 3–7. Dostopno na: http://w w w .onko -i.si/fileadmin/onko/dat o t e ke/ dokumenti/20111130-rak_debelega_crevesa_k njizica.pdf <6. 11. 2016> Petrovic J, Stanojevic G, Barišic G et al. (2008). Infl uence of Long Term Radiotherapy on Symptoms and Signs of Locally Advanced Primary Rectal Cancer of Distant Localisation. In: Acta Chir Iugosl 55(3): 61–7. Dostopno na: http://scindeks. ceon.rs/article.aspx?artid=0354-950X0803061P <5. 11. 2016> Primic- Žakelj M, Zadnik V, Žagar T et al. (2009). Preživetje bolnikov z rakom, zbolelih v letih 1991-2005 v Sloveniji. Ljubljana: Onkološki inštitut. 80–9. Dostopno na: http://www. onko-i.si/fi leadmin/onko/datoteke/dokumenti/Prezivetje.pdf <6. 11. 2016> Spies V, Wierenga RH, Bakker H et al. (2015). A dosimetric comparison of 3D-CRT, IMRT and VMAT techniques for locally advanced rectal carcinoma. Radiat Oncol 115(1): 901–2. doi: http://dx.doi.org/10.1016/S0167-8140(15)41635-4. Dostopno na: http://www.thegreenjournal.com/article/ S0167-8140(15)41635-4/pdf <7. 11. 2016> Tieu TM, Graham P, Browne L, Chin SY (2011). The eff ect of adjuvant postmastectomy radiotherapy bolus technique on local recurrence. Radiat oncol 81(3): 165–71. doi: http://dx.doi. org/10.1016/j.ijrobp.2011.01.002 Dostopno na: http://www. redjournal.org/article/S0360-3016(11)00036-8/abstract <6. 4. 2017> Velenik V, Oblak I, Reberšek M et al. (2011). Smernice za obravnavo bolnikov z rakom debelega crevesa in danke. Onkologija 15(1): 18–25. Dostopno na: http://www.onko-i.si/ fi leadmin/onko/datoteke/dokumenti/Onkologija_letnik_XV_ st1/Onkologija_junij_2011_web_2_7.pdf <6. 11. 2016> Vešligaj Z, Faj D, Margaretic D (2000). Uloga bolusa u radioterapiji. Radiološki vjesnik 30(2): 25–6. Dostopno na: http://hdimr.hr/hr/wp-content/uploads/2013/10/2000-br-2. pdf <6. 11. 2016> Wells M, Macmillan M, Raab G et al. (2004). Does aqueous or sucralfate cream affect the severity of erythematous radiation skin reactions? A randomised controlled trial. Radiother oncol 73(2): 153-62. doi: 10.1016/j.radonc.2004.07.032. Dostopno na: https://www.ncbi.nlm.nih.gov/pubmed/15542162 <10. 4. 2017> Zadnik V, Primic - Žakelj M, Žagar T (2016). Osnovni podatki o raku v Sloveniji. Ljubljana: Onkološki inštitut. Dostopno na: http://www.onko-i.si/fi leadmin/onko/datoteke/dokumenti/ RRS/Rak_v_Sloveniji.pdf <6. 11. 2016> Raditerapevtska tehnologija MAGNETNO RESONANCNO SLIKANJE V PROCESU NACRTOVANJA OBSEVANJA MAGNETIC RESONANCE IMAGING IN THE PROCESS OF RADIATION THERAPY PLANNING Marko Zaletelj, Andrej Breznik Onkološki inštitut Ljubljana, Zaloška cesta 2, 1000 Ljubljana Korespondenca/Correspondence: Marko Zaletelj, dipl. inž. rad. E-mail: mazaletelj@onko-i.si Prejeto/Recived: 08.11.2017 Sprejeto/Accepted: 14.03.2018 IZVLECEK Uvod: Magnetno resonancno slikanje (MR slikanje) v radioterapiji predstavlja številne uporabne prednosti v procesu nacrtovanja in izdelave obsevalnega nacrta. Namen MR slikanja v radioterapiji je pridobitev in združitev MR slik predhodno že natancno dolocenega anatomskega podrocja v specifi cnem radioterapevtskem položaju, z uporabo ustreznih fi ksacijskih pripomockov in tuljav, ki se uporabljajo v procesu RT, s serijo slik racunalniške tomografi je (CT ). Na podrocju MR slikanja so radioterapevtski oddelki za potrebe radioterapije vzpostavili ustrezne protokole za izvedbo radioterapevtskega slikanja. Namen: Namen raziskave je bila vzpostavitev ustreznih radioterapevtsko specificnih protokolov za MR slikanje za namen radioterapije na radioterapevtskem oddelku sektorja radioterapije na Onkološkem inštitutu Ljubljana. Metode dela: Uporabila sva deskriptivno metodo dela s pregledom obstojecih strokovnih clankov, protokolov MR slikanja v radioterapiji, ki jih uporabljajo referencni radioterapevtski oddelki po svetu in sicer bolnišnice Liverpool and Macarthur Cancer Therapy Centre (Sydney, Avstralija), Sahlgrenska University Hospital (Gothenburg, Švedska) in University of Michigan (Ann Arbor, ZDA) in predstavljajo smernice za MR slikanje v radioterapiji. Rezultati in razprava: Rezultati najinega raziskovalnega dela predstavljajo optimizacijo obstojecih protokolov in vzpostavitev novih protokolov zaradi uvedbe MR slikanja dodatnih lokalizacij v procesu radioterapije. Optimizirani so bili protokoli za klinicno izvajanje MR slikanja v procesu brahiradioterapije, pri stereotakticnemu obsevanju glave, medtem ko so bili na novo vzpostavljeni protokoli za MR slikanje pri stereotakticnem obsevanju hrbtenjace ter za potrebe teleradioterapevtskega obsevanja tumorjev v predelu glave in vratu, uroloških, ginekoloških in gastrointestinalnih tumorjev. Zakljucek: Vzpostavitev protokolov prilagojenih radiotera­pevtskemu posegu je nujno potrebna za optimalno izvedbo magnetnoresonancnega slikanja pri nacrtovanju obsevanja. Kljucne besede: magnetno resonancni simulator, radioterapija, planiranje v radioterapiji, magnetno resonancno slikanje ABSTRACT Introduction: In radiotherapy, magnetic resonance imaging (MRI) offers many useful advantages in the process of radiation treatment planning. In RT, the purpose of MRI is to acquire images and merge them with a series of CT images of a previously precisely-defined anatomical area in a specifi c radiotherapeutic position, using appropriate fi xation and coils in the RT process itself. In the fi eld of MRI in RT, various radiotherapy departments have already established protocols for RT imaging. Purpose: The purpose of the study was to establish appropriate protocols for MRI in RT at the Department of Teleradiotherapy at the Institute of Oncology Ljubljana. Work methods: We used the descriptive method of work in the search and review of existing professional literature, namely MRI protocols that are used by the reference radiotherapy departments around the world, Liverpool Hospital and Macathur Therapeutic Center (Sydney, Australia), University Hospital Sahlgrenska (Gothenburg, Sweden) at Universiy Michigan (Ann Arbor, USA) and represent the guidelines for MRI in radiotherapy At a later stage, we used the methods of analysis and synthesis on the existing protocols, drawing up new protocols for MRI in radiotherapy. Results and discussion: The result of our research work is the optimization of existing protocols and establishment of new protocols for the implementation of MRI additional localization in the RT process. Protocols for the clinical imaging of MRI in barchytherapy process (BRT ) and for stereotactic radiosurgery of the head were optimized, while protocols for MRI of the spinal cord stereotactic radiosurgery, and for the needs of external beam therapy of tumors in the head and neck area, urological, gynecological, and gastrointestinal tumors were newly established. Conclusion: The establishment of protocols adapted to radiotherapy is essential for optimal magnetic resonance imaging in irradiation planning. Keywords: magnetic resonance simulator, radiotherapy, radiotherapy planning, magnetic resonance imaging. Zaletelj M in Breznik A / Magnetno resonancno slikanje v procesu nacrtovanja obsevanja LITERATURA Cao Y (2017). Head and Neck 4. Head and Neck 2. MR-integrated Workflows in Radiation Therapy for MAGNETOM Systems. Siemenes Healthineers Headquarters. Erlangen. Dostopno na: https://www.healthcare.siemens.com.au/ magnetic-resonance-imaging/magnetom-world/hot-topics/ mri-in-radiation-therapy/protocols <10.12.2017>. Devic S (2012). MRI simulation for radiotherapy treatment planning. Med Phys 39(11): 6701–11. doi: 10.1118/1.4758068. Dimopoulos JCA, Petrow P, Tanderup K et al. (2012). Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV ): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol 103(1): 113–122. doi: 10.1016/j.radonc.2011.12.024. Glide-Hurst CK, Low DA in Orton CG (2014). MRI/CT is the future of radiotherapy treatment planning. Med Phys 41 (11): 110601-1-3. doi: 10.1118/1.4894495. Hotker AM, Garcia-Aguilar J in Gollub MJ. (2014). Multiparametric MRI of rectal cancer in the assessment of the response to therapy: a systematic review. Dis Colon Rectum (57): 790–9. doi: 10.1097/DCR.0000000000000127. Jonsson J (2013). Integration of MRI into the radiotherapy workflow. Doktorska dizertacija. Umeĺ: Umeĺ University Medical Dissertations: 13–18. Kim Y, Hsu I C, Lessard E, Kurhanewicz J, Noworolski S M in Pouliot J (2008). Class solution in inverse planned HDR prostate brachytherapy for dose escalation of DIL defi ned by combined MRI/MRSIM. Radiother Oncol 88(1): 148–55. doi: 10.1016/j.radonc.2007.11.024. Mazaheri Y, Shukla-Dave A, Muellner A et al. (2011). MRI of the prostate: Clinical relevance and emerging applications. J Magn Reson Imaging 33(2): 258–74. doi: 10.1002/jmri.22420. Menard C, Cote JC, Delouya G, Barkati M, Boudman K, Lambert C et al. (2017). Prostate 1 in Head and Neck 2. MR-integrated Workflows in Radiation Therapy for MAGNETOM Systems. Siemenes Healthineers Headquarters. Erlangen. Dostopno na: https://www.healthcare.siemens.com.au/magnetic­resonance -imaging/magnetom-world/hot-topics/mri-in­radiation-therapy/protocols <10.12.2017>. Metcalfe P, Liney GP, Holloway et al. (2013). The Potential for an Enhanced Role for MRI in Radiation-therapy Treatment Planning. Technol Cancer Res Treat 12(5): 429–46. doi: 10.7785/ tcrt.2012.500342. Powell C (2012). Changes in functional imaging parameters following induction chemotherapy have important implications for individualised patients-based treatment regiments for advanced head-and-neck cancer. Radiother Oncol 106(1): 112–7. doi.org/10.1155/2014/231090. Rai R, Liney G (2017). Glioma 1. MR-integrated Workfl ows in Radiation Therapy for MAGNETOM Systems. Siemenes Healthineers Headquarters. Erlangen. Dostopno na: https:// w w w.healthcar e .siemens .c om.au/mag netic-r esonanc e ­imag ing/magnetom-w o rld/hot-t opics/mri-in-radiation­therapy/protocols <10.12.2017>. Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV (1999). Definition of the prostate in CT and MRI: A multi-observer study. Int J Radiat Oncol Biol 43(1): 57–66. Riches SF, Payne GS, de Souza NM et al. (2014). Eff ects on terapeutic ratio of planning a boosted radiotherapy dose to the dominant intraprostatic tumour lesion within the prostate based on multifunctional MR parameters. Br J Radiol 87(1037): 20130813. doi: 10.1259/bjr.20130813. Schmidt MA, Payne GS (2015). Radiotherapy planning using MRI. Phys Med Biol 60(22): 23–61. doi: 10.1088/0031­9155/60/22/R323. Sohlin M in Gustafsson C (2017a). Glioma 2 and Head and Neck 3. MR-integrated Workflows in Radiation Therapy for MAGNETOM Systems. Siemenes Healthineers Headquarters. Erlangen. Dostopno na: https://www.healthcare.siemens. com.au/magnetic-resonance-imaging/magnetom-world/hot­topics/mri-in-radiation-therapy/protocols <10.12.2017>. Sohlin M in Gustafsson C (2017b). Prostate 2. MR-integrated Workflows in Radiation Therapy for MAGNETOM Systems. Siemenes Healthineers Headquarters. Erlangen. https://www. healthcare.siemens.com.au/magnetic-resonance -imaging/ mag net om-w o rld/hot-t opics/mri-in-radiation-therap y/ protocols <10.12.2017>. Tan J, Lim Joon D, Fitt G et al. (2010). The utility of multimodality imaging with CT and MRI in defining rectal tumour volumes for radiotherapy treatment planning: a pilot study. J Med Imag Radiat Oncol 54(6): 562–8. doi.org/10.1111/j.1754­9485.2010.02212.x.. Taylor A, Pawell ME (2008). An assessment of interfractional uterine and cervical motion: implications for radiotherapy target volume definition in gynecologycal cancer. Radiother Oncol 88(2): 250–7. doi: 10.1016/j.radonc.2008.04.016. Viswanathan AN, Dimopoulos J, Kirisits C, Berger D, Potter R (2007). Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brahytherapy: results of a prospective trial and preliminary guidelines for standardized contours. Int J Radiat Biol Phys 68(2): 491–8. Zwahlen D, Jezioranski J, Chan P et al. (2009). Magnetic resonance imaging-guided intracavity brachytherapy for cancer of the cervix. Int J Radiat Oncol Biol Phys 74(4): 1157– 64. doi: 10.1016/j.ijrobp.2008.09.010. Wang P, Popovtzer A, Eisbruch A in Cao Y (2012). An approach to identify, from DCE MRI, significant subvolumes of tumours related to outcomes in advanced head-and-neck cancer. Med Phys 39(8): 5277–85. doi: 10.1118/1.4737022. Raditerapevtska tehnologija POMEN TEHNIKE GLOBOKEGA ZADRŽANEGA VDIHA PRI OBSEVANJU LEVE DOJKE THE SIGNIFICANCE OF DEEP INSPIRATION BREATH HOLD WHILE IRRADIATING LEFT BREAST Katja Rožic1, Valerija Žager Marciuš1,2, Aleš Posl1 1 Onkološki inštitut Ljubljana, Oddelek za teleradioterapijo, Zaloška 2, 1000 Ljubljana 2 Univerza v Ljubljani, Zdravstvena fakulteta, Oddelek za radiološko tehnologijo, Zdravstvena pot 5, 1000 Ljubljana Korespondenca/Correspondence: Katja Rožic, dipl. inž. rad. E-mail: krozic@onko-i.si Prejeto/Recived: 08.11.2017 Sprejeto/Accepted: 21.03.2018 IZVLECEK Uvod in namen: Zaradi porasta deleža obsevanih bolnic pri raku dojke in daljšega preživetja, se število bolnic izpostavljenih tveganju za razvoj akutnih in poznih zapletov obsevanja povecuje. Pri obsevanju raka leve dojke se povprecna doza na srce in s tem kardiotoksicnost lahko zmanjša z razlicnimi pristopi. Na radioterapevtskem oddelku Onkološkega inštituta Ljubljana se za povecanje razdalje med srcem in prsno steno pri obsevanju leve dojke uporablja sistem za nadzor dihanja, Active Breathing Coordinator (ABC sistem). Namen raziskave je predstaviti ABC sistem, pripravo na obsevanje ter obsevanje bolnice z rakom leve dojke s tehniko globokega zadržanega vdiha in na podlagi razlicnih primerov obsevanja ugotoviti uporabnost omenjenega sistema. Metode dela: V raziskavi smo uporabili deskriptivno metodo dela s pregledom strokovne literature. Retrospektivno smo pridobili podatke za opis primerov obsevanja leve dojke z ABC sistemom (Elekta Limited Linac House, Fleming Way, Crawley) v programu Webdoctor in sistemu Mosaiq. Rezultati in razprava: Obsevanje s tehniko globokega zadržanega vdiha se izvaja pri bolnicah z rakom leve dojke, ki so glede na uvajanje in pripravo na tovrstno obsevanje primerne kandidatke. So primeri, pri katerih se kljub uspešni predpripravi zaradi subjektivnih razlogov obsevanje z ABC sistemom ne more izvesti v celoti. V tovrstnih primerih se obsevalni plan za bolnico spremeni. Takšnih situacij je v praksi zelo malo, vecinoma se s slikovno vodeno radioterapijo ugotovi optimalna ponovljivost v mejah tolerance (1,5 mm). Zakljucek: Uporaba ABC sistema s tehniko globokega zadržanega vdiha predstavlja velik doprinos za kvaliteto življenja bolnic po koncanem zdravljenju raka leve dojke zaradi zmanjšanja povprecne doze na srce pri obsevanju in zato je le­ta že rutinsko uvedena v praksi. Kljucne besede: rak leve dojke, sistem za nadzor dihanja, globoki zadržani vdih ABSTRACT Introduction and purpose: Due to an increase in the proportion of female breast-cancer patients treated with irradiation and a higher survival rate, the number of patients at risk for developing acute and late radiation-treatment complications is on the rise. With the irradiation of left-breast cancer, the average cardiac dose and associated cardiotoxicity can be decreased by employing approaches. At the Department of Teleradiotherapy at the Institute of Oncology Ljubljana, the Active Breathing Coordinator (ABC) system is used to increase the distance between the heart and chest wall during left-breast irradiation. The purpose of the study was to present the ABC system, the preparation procedure for irradiation, and radiation therapy with deep inspiration breath-hold technique; and also, to determine the usefulness of this system on the basis of various cases of irradiation. Methods: In the study the descriptive method with the literature review was used. Data for describing individual cases of left-breast irradiation were obtained with the ABC system (Elekta Limited Linac House, Fleming Way, Crawley) retrospectively, that is by means of the Webdoctor program and the Mosaiq system of the Elekta radiation system ( Versa HDTM). Results and discussion: Irradiation with the deep inspiration breath-hold technique is performed in those left-breast cancer patients who are appropriate candidates for such irradiation in terms of induction and preparation procedures. There are certain cases where, despite successful preparation, the ABC system cannot be used in its entirety on account of subjective reasons. In such cases, the patient’s radiation treatment plan is modified. Such situations are quite scarce in practice and, in most cases, image-guided radiation treatment can determine the optimal repeatability within the tolerance range (1.5 mm). Conclusion: By reducing the average cardiac dose in the process of irradiation, the ABC system with the deep inspiration breath-hold technique benefits the patient’s quality of life after they have completed their treatment of left-breast cancer; therefore, it has already become a routinely-used practice. Keywords: left-breast cancer, breath control system, deep inspiration breath hold. Rožic K in sod. / Pomen tehnike globokega zadržanega vdiha pri obsevanju leve dojke LITERATURA Cuzick J, Stewart H, Rutqvist L (1994). Cause-specifi c mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol 12(3): 447–53. Marinko T (2013). Vloga radioterapije pri zdravljenju raka dojke. V: Pacientke z rakom dojk – trendi in novosti. Ljubljana: Sekcija medicinskih sester in zdravstvenih tehnikov v onkologiji pri Zbornici zdravstvene in babiške nege, 84–8. doi: 10.1186/ s13014-015-0573-7. Mittauer KE, Deraniyagala R, Li JG et al. (2015). Monitoring ABC-assisted deep inspiration breath hold for left-sided breast radiotherapy with an optical tracking system. Med Phys 42(1): 134–43. doi: 10.1118/1.4903511. Onkološki inštitut Ljubljana (2017). Rak v Sloveniji 2013. Ljubljana: Onkološki inštitut, Epidemiologija in register raka, Register raka 38–90. Perhavec A (2014). Smernice diagnostike in zdravljenja raka dojk. Ljubljana: Onkološki inštitut 57–9. Dostopno na: http:// w w w.onko -i.si/fileadmin/_mig rat ed/c ont e nt_uploads/ Smernice_diagnostike_in_zdravljenja_raka_dojk_2014.pdf <12. 11. 2017> Steinacher M, Ratoša I (2016). Obsevanje v globokem zadržanem vdihu po operaciji raka dojk. Onkologija 20(1): 15–21. Wong JW, Sharpe MB, Jaffray DA (1999). The use of active breathing control (ABC) to reduce margin for breathing motion. Int. J. Radiat Oncol Bil. Phys 44(4): 911–9. Sponzorsko predavanje – Siemens Sponzorski clanek / Sponsor article UMETNA INTELIGENCA IN NJEN RAZVOJ V ZDRAVST VU ARTIFICIAL INTELLIGENCE IN RADIOLOGY Katja Kupljenik Siemens Healthcare d.o.o., E-mail: katja.kupljenik@siemens-healthineers.com UVOD Pojem umetne inteligence poznamo že vrsto let, v zadnjih letih pa se pojavlja na dnevnem redu razlicnih razprav in clankov. Vedno vecji razmah ta tehnologija doživlja tudi v praksi. Inteligentni racunalniški algoritmi so že nekaj casa v uporabi internetnih brskalnikov, v analizah genericnih podatkov, fotografskih slik, pri izdelavi samovozecih avtomobilov, v zaznavanju jezika na pametnih telefonih, pri izdelavi cloveških robotov in še bi lahko naštevali. Zelo odmevni primer velikega napredka umetne inteligence je zmaga racunalnika z uporabo programa »AlphaGo« nad svetovnim prvakom v abstraktni strateški miselni namizni igri Go. Kot umetno inteligenco razumemo kognitivno ucenje racunalnikov, na podlagi zajemanja velike kolicine podatkov in konstantnega posodabljanja »znanja«. Racunalniki, s pomocjo kompleksnih algoritmov »znajo« vsak dan vec, umetna nevronska omrežja pa se razvijajo na podoben princip kot cloveški možgani. Algoritmi se razvijajo cedalje hitreje, kar posledicno pomeni tudi vedno boljše in natancnajše rezultate UMETNA INTELIGENCA V ZDRAVSTVU V naslednjih desetih letih se pricakujejo fundamentalne spremembe tudi v zdravstvu, predvsem na podrocju slikovne diagnostike. Trendi v današnji medicini že nekaj let težijo k principu »value­based healthcare«, kar pomeni inovacije za cimbolj zanesljive rezultate s cim manj stroški in prav umetna inteligenca je kljuc za doseganje tega cilja. Uporaba umetne inteligence na podrocju obcutljivega in predvsem zahtevnega zdravstva je vsekakor tema, ki sproža veliko razlicnih mnenj in vprašanj, tako pozitivnih kot negativnih. Predvsem se postavlja vprašanje, kako se lahko racunalniki primerjajo s strokovno usposobljenim zdravstvenim osebjem, njihovim znanjem in izkušnjami. Bodo racunalniki v prihodnosti nadomestili klinicno osebje? To in še mnogo podobnih vprašanj se poraja z uvajanjem umetne inteligence. UMETNA INTELIGENCA IN SIEMENS HEALTHINEERS Z ucenjem racunalnikov se Siemens Healthineers ukvarja vse od leta 1990. Trenutno ima naš super racunalnik v Edisonu, New Jersey moc 1.0 PetaFLOPS oz. zmore 1.000.000.000.000.000 operacij na sekundo. Naš razvoj na podrocju umetne inteligence obsega izboljšavo sistemov in aparatov, ki bodo radiologom v pomoc pri diagnozah predvsem v smislu kvalitativnih biomarkerjev. Cilj ni tekmovanje med clovekom in racunalnikom, ampak sodelovanje med njima. To bo prineslo konkretne klinicne izboljšave. V praksi se kaže, da lahko te klinicne izboljšave clovek doseže samo z uporabo tovrstnih sistemov. Najvecje prednosti, ki jih pricakujemo pri takšnem sodelovanju so: - pospešitev klinicnih procesov, - preprecevanje diagnosticnih napak, - natancnejši rezultati, - natancnejši prognosticni izracuni tveganj. Na podrocju zdravstva ima umetna inteligenca pomembno vlogo na petih podrocjih: 1. Faza preiskave. Inteligentni in avtomatizirani postopki skeniranja nam že mocno pomagajo pri zajemanju slik, v prihodnosti pa pricakujemo še višjo stopnjo avtomatizacije in s tem optimizacije radioloških preiskav. Raziskave na podrocju CT preiskav so pokazale, da bi kar v 95% lahko izboljšali izocentricno pozicioniranje pacientov in s tem optimizirali dozo, ki jo prejme pacient, ter tudi izboljšali kakovost zajetih slik. V ta namen je Siemens Healthineers razvil tako imenovan »FAST Integrated Workflow« - sistem 3D in infrardece kamere, ki v kombinaciji s kompleksnimi algoritmi zaznajo in avtomatsko detektirajo smer, obliko in pozicioniranje pacientov ter priporoceno dozo. CT aparat tako avtomatsko glede na izbiro preiskave pacienta natancno pozicionira in pripravi za slikanje. 2. Faza detekcije. Umetna inteligenca nam na tem podrocju nudi pomoc z meritvami, oznacevanjem in segmentacijo. V radioterapiji umetna inteligenca pomaga avtomatsko obarvati organe, za hitrejše in natancnješe planiranje dolocitve ogroženih organov in tako nudi tudi ogromen prihranek pri casu. Pri skoraj vseh modalitetah pa je prisotno anatomsko zaznavanje, meritve in procesiranje. 3. Karakteriazcija, kjer s pomocjo umetne inteligence veliko pridobimo pri iskanju anomalij, vse pa lahko primerjamo s celotno populacijo, katerih podatke zajemamo. 4. Umetna inteligenca nam pomaga pri vseh racunalniških operacijah, zajetih odkritjih, diagnozah in tudi bolezenskih biomarkerjih. 5. Umetna inteligenca si utira pot tudi v fazi odlocitev glede nadaljnjih terapij, izboljšave ucinkovitosti le-teh in pomoci pri zdravljenju kronicnih bolezni. Uporaba umetne inteligence bi zelo veliko pripomogla tudi v državah z omejenimi resursi zdravstvenega osebja. Za primer lahko vzamemo študijo tuberkuloze na pljucih, kjer so za analizo rentgenskih slik uporabili umetno inteligenco. Slike so bile analizirane s pomocjo dveh razlicnih algoritmicnih postopkov Sponzorsko predavanje – Siemens in rezultati so 97% obcutljivost s 100% zanesljivosto. Samo slike pri katerih se algoritma nista popolnoma strinjala je potem pregledal tudi radiolog (Lakhani & Sundaram 2017). PRIHODNOST UMETNE INTELIGENCE V PODJETJU SIEMENS HEALTHINEERS Kako pa se Siemens Healthineers razvija s pomocjo umetne inteligence? Že danes umetno inteligenco uporabljamo v mnogih naših sistemih in inovacijah. To pomaga avtomatizirati, standardizirati in individualizirati vaše delo, skrb za paciente in vsakodnevne procese. S pravilno uporabo umetne inteligence lahko revolucioniziramo naše razumevanje poteka in zdravljenja bolezni ter tako naredimo ogromen korak v medicini. Siemens Healthineers je na tem podrocju naprimer razvil algoritem propoznavanja vzorcev, ALPHA (Automatic Landmarkind and Parsing of Human Anatomy) za 3D diagnosticni program syngo.via, ki avtomaticno zazna anatomske strukture, neodvisno oštevilci vretenca in rebra in tudi pomaga pri natancnem preslikavanju med razlicnimi preiskavami in tudi preiskavami razlicnih modalitet. Vse to mocno vpliva na poenostavitev postopkov v slikovni diagnostiki. Nadalje smo razvili tudi nagrajene algoritme kot je »CT Bone Reading« za virtualno razgrnitev reber (reformatiranje v 2D) ali pa »eSie valve« za socasno 3D vizualizacijo srcnih zaklopk in pretoka krvi. Mogoce eno izmed najzanimivejših inovacij, ki jo Siemens Healthineers ponuja, je del programske opreme syngo.via – »Cinematic VRT ( Volume Rendering Technique)« oziroma rekonstrukcija CT in MR slik s pomocjo kompleksnih algoritmov, ki modelirajo medsebojno interakcijo med žarki in tkivom, da dobimo fotorealisticne 3D anatomske slike. Algoritmi podatke crpajo iz postopkov skeniranja in vkalkulirajo svetlobo, kot ce bi ta penetrirala in se absorbirala v prikazana tkiva in ne samo kot odsev na površini. Revolucionarna tehnika, se je razvila iz filmske industrije, za potrebe zdravstva pa dodatno optimizirala in tako smo dobili nov realisticen vpogled v cloveško telo samo na podlagi zajetih slik. Tovrstne slike nam kot prvo omogocajo enostavnejšo predstavo cloveške anatomije in patologije ter so odlicna podlaga za ucenje, program nam namrec omogoca tudi odstranitev dolocenih delov telesa s slike, kot so mehka tkiva, mišice, žile,.. Slike nam omogocajo tudi lažjo komunikacijo s pacienti in napotnimi zdravniki, veliko prednost pa v tem vidijo predvsem kirurgi, saj jim mocno pomagajo v predoperativnem planiranju. ZAKLJUCEK Naštetih je le nekaj primerov inovacij, ki vkljucujejo umetno inteligenco, vsekakor pa jih v prihodnosti lahko pricakujemo samo še vec. Hitrost razvoja je lepo razvidna iz podatka, da Siemens dnevno prijavi kar 4 patente. Smo na pravi poti napredka v umetni inteligenci – zbiranje podatkov iz ogromnih zbirk podatkov iz celega sveta in na podlagi tega personalilzacija postopkov celotnega poteka zdravljenja od prvega obiska pri zdravniku, do zakljucka potrebnega zdravljenja. Vse opisano nam torej omogoca natancen in individualen pristop z najboljšimi možnimi rezultati za vse uporabnike. Vec literature lahko najdete na povezavi: https://w w w.healthcare.siemens.com/infrastruc ture -it/ artifi cial-intelligence# Radiološka tehnologija RAZVOJ POKLICA RADIOLOŠKI INŽENIR SKOZI CAS DEVELOPING THE PROFESSION OF A RADIOLOGICAL ENGINEER TROUGH TIME Matej Podsedenšek, Nataša Pfeifer, Barbara Steblovnik Cater Radiološki oddelek, Splošna bolnišnica Celje, Oblakova ulica 5, 3000 Celje Korespondenca/Correspondence: Matej Podsedenšek, mag. zdrav.-soc. manag, E-mail: sbc.rtg@sb-celje.si Prejeto/Recived: 10.02.2018 Sprejeto/Accepted: 02.03.2018 IZVLECEK Uvod in namen: Poklic radiološkega inženirja (RI), poleg zdravnika in drugih zdravstvenih delavcev in sodelavcev, spada v zdravstveni tim, katerega delovanje je usmerjeno v kakovostno zdravstveno obravnavo pacienta. RI v okviru svojih poklicnih kompetenc deluje na podrocju diagnosticne radiologije, nuklearne medicine in radioterapije, katerih nosilci so zdravniki radiologi, specialisti nuklearne medicine ali zdravniki radioterapevti onkologi. Namen strokovnega prispevka je kratka predstavitev razvoja poklica, ki zajema zgodovinski pregled, bistvene spremembe izobraževalnih programov in nazivov skozi cas, podrocja delovanja in opis delovnih nalog, kot jih v poklicu poznamo v današnjem casu. Metode dela: V strokovnem prispevku je uporabljena deskriptivna metoda dela, s katero smo pregledali obstojeco literaturo na temo razvoja poklica RI na Slovenskem in uporaba lastnih virov. Rezultati in razprava: Z odkritjem rentgenskih žarkov leta 1895 je nemški fi zik Wilhelm Conrad Röntgen postavil temelj razvoja radiologije v svetu. Na slovenskem leta 1923 zasledimo zapis o prvi bolnicarki-redovnici z nazivom rentgenska pomocnica. Skozi cas sledijo neformalna izobraževanja, kasnejši nekaj mesecni tecaji, ustanovitev prve šole za rentgenske pomocnike in prehod iz srednješolskega v višješolski izobraževalni program. Visoka šola za zdravstvene delavce postane Zdravstvena fakulteta in naziv diplomanta se iz diplomiranega inženirja radiologije spremeni v diplomiranega inženirja radiološke tehnologije, pridobljen po koncanem študijskem programu Radiološka tehnologija 1. stopnje bolonjskega sistema. Slednji omogoca nadaljevanje študija na drugostopenjskem študijskem programu Radiološka tehnologija. Radiološki inženir ima v okviru svoje strokovne usposobljenosti možnost delovati na treh podrocjih radiološke tehnologije (diagnosticna in intervencijska, nuklearno-medicinska in radioterapevtska tehnologija), ter na podrocju varstva pred sevanji in kontrole kvalitete. Zakljucek: Glede na zgodovinski pregled razvoja poklica RI lahko zakljucimo, da je njegova vloga pomembna in nepogrešljiva tudi danes. Ob bliskovitem razvoju na vseh podrocjih radiološke tehnologije, ostaja poklic radiološkega inženirja še kako potreben za uspešno delovanje slovenskega zdravstva, usmerjenega v dobrobit pacienta tudi v prihodnosti. Kljucne besede: radiološki inženir, poklic, razvoj, radiološka tehnologija ABSTRACT Introduction in purpose: Together with doctors and other health care workers, the profession of a radiographers is also a health care profession serving to offer patients high quality treatment. Within the framework of professional competences, a radiographer works in the field of diagnostic radiology, nuclear medicine and radiotherapy, lead by radiologists, specialists in nuclear medicine and radiotherapist oncologists. The purpose of the expert contribution is a brief presentation of the development of the profession with a historical overview, significant changes in educational programs and titles over time, as well as the fields of activity and description of work tasks. Methods: The descriptive method was used to conduct the literature review of the development of the profession of radiographers in Slovenia. Results and discussion: With the discovery of X rays in 1895, the German physicist Wilhelm Conrad Röntgen laid the foundation for the development of radiology. In 1923 the first mention of a nurse – a nun with the title ‘an X-ray assistant’ was found on the Slovene territory. There were informal types of schooling, followed by organized courses that took several months, the establishment of the first school for X-ray assistants and the transition from secondary to higher education programs. The College of Medical Workers then became the Faculty of Medicine and the name of a graduate student was changed from a graduated radiology engineer to a graduate engineer of radiological technology acquired after the completion of the study program Radiological Technology of the Bologna 1st cycle study program. The latter enables the continuation of studies at the 2nd cycle study program Radiological Technology. Within the framework of its professional competence, a radiological engineer can work in three fi elds of radiological technology (diagnostic and interventional, nuclear medicine and radiotherapy technology), as well as in the field of radiation protection and quality control. Conclusion: According to the historical overview of the development of the radiography profession, we can conclude that the role of an radiographers is important and remains indispensable. With the rapid development in all areas of radiological technology, the occupation of the radiological engineer is still needed for the Slovenian health care system to be successful by focusing on the well-being of patients also in the future. Keywords: Radiological engineer, profession, development, radiological technology Podsedenšek M in sod. / Razvoj poklica radiološki inženir skozi cas LITERATURA Društvo radioloških inženirjev Slovenije in Zbornice radioloških inženirjev Slovenije (2010). Kodeks etike. Bilten 27(2): 25. Dostopno na: http://radioloski-inzenirji.si/radioloski-inzenir-v-sloveniji/ <8. 2. 2018> Glaser E (1998). Sto let rentgenskih žarkov skozi prizmo medicine, veterine in medikohistorikov. Maribor: Medikohistoricna sekcija Slovenije SZD, 11–27, 101–103, 239– 249. Krumpak B (2016). Prepoznavnost poklica diplomirani radiološki inženir med uporabniki radioloških storitev. Magistrsko delo. Ljubljana: Zdravstvena fakulteta. Lipovec V (2005). Rentgenske slikovne metode in protokoli. Ljubljana: Univerza v Ljubljani, Visoka šola za zdravstvo, 4–5. Univerza v Ljubljani. Zdravstvena fakulteta. Predstavitev študijskega programa Radiološka tehnologija prva stopnja. Dostopno na: http://w w w2.zf .uni-lj .si/si/1st opnja-2-2-1/radiolosk a­t ehnolog ija-2-2-1-6/pr edsta vit ev-studijskega­programa-2-2-1-6-1 .<8. 2. 2018> Univerza v Ljubljani. Zdravstvena fakulteta. Predstavitev študijskega programa Radiološka tehnologija prva stopnja. Dostopno na: http://w w w2.zf .uni-lj .si/si/2st opnja-2-2-2/radiolosk a­t ehnolog ija-2-2-2-6/pr edsta vit ev-studijskega­programa-2-2-2-6-1.<8..2. 2017> Zupanic Slavec Z (2014). Zgodovina radiologije in Inštituta za radiologijo 1923–2013. Ljubljana: Klinicni Inštitut za radiologijo, 39–55, 101–106, 217–223. Radiološka tehnologija PREPOZNAVNOST POKLICA RADIOLOŠKI INŽENIR RECOGNITION OF THE RADIOGRAPHY PROFESSION Nina Djuric Univerzitetni klinicni center Ljubljana, Klinicni inštitut za radiologijo, Zaloška cesta 7, 1000 Ljubljana Korespondenca/Correspondence: Nina Djuric, mag. inž. rad. tehnol. E-mail: nina.djuric@gmail.com Prejeto/Recived: 08.02.2018 Sprejeto/Accepted: 04.04.2018 IZVLECEK Uvod: Radiološki inženirji so majhna poklicna skupina, ki pri svojem delu uporabljajo zaprte in odprte vire ionizirajocega sevanja v diagnosticne in terapevtske namene. Poleg tega izvajajo vse ukrepe v zvezi z varstvom pred sevanji ter zagotavljanjem in preverjanem kakovosti. Namen: Namen je bil ugotoviti, kako prepoznaven je poklic radioloških inženirjev v Sloveniji. Metode dela: Pregled obstojece domace literature na temo opis poklica radiološkega inženirja in prepoznavnost radioloških inženirjev v Sloveniji. Rezultati in razprava: V obdobju osmih let (2010-2018) je bilo na tem podrocju narejenih vec raziskav. Pri raziskavi med študenti Zdravstvene fakultete v Ljubljani in nakljucnimi mimoidocimi so ugotovili, da je prepoznavnost zaradi sorodnosti poklicev pri študentih vecja. Osebne izkušnje nakljucnih mimoidocih so umestile radiološkega inženirja na najrazlicnejša podrocja. V raziskavi, narejeni med dijaki Srednje zdravstvene šole in dijaki Gimnazije ter preiskovanci v Novogoriški regiji, je bila prepoznavnost najvecja med dijaki Srednje zdravstvene šole, kar lahko pripišemo njihovemu prakticnemu izobraževanju v zdravstvenih ustanovah, kjer imajo dijaki priložnost srecati radiološke inženirje. Raziskava narejena med dijaki Srednje zdravstvene šole v Ljubljani je pokazala, da nihce od dijakov ni znal pravilo poimenovati zdravstvenega delavca, ki opravlja rentgensko slikanje. Najvec srednješolcev je radiološke inženirje poimenovalo radiologi, kar je verjetno posledica premalo informacij o poklicni skupini radioloških inženirjev v casu njihovega izobraževanja. Raziskavo so naredili tudi med nakljucno izbranimi obiskovalci v Splošni bolnišnici Celje, ki je pokazala, da skoraj polovica prepozna naziv, vendar ne vedo, kakšne so delovne naloge radioloških inženirjev. Polovica jih ni nikoli prišla v stik z radiološkimi preiskavami oz. osebjem in so odgovarjali le na podlagi slišanega. Zakljucek: Prepoznavnost poklica radiološki inženir med dijaki in v javnosti je sorazmerno majhna. Povecali bi jo lahko z izdajo zgibank in s pomocjo plakatov s prikazom dela radiološkega inženirja, ki bi bili na voljo v cakalnicah zdravstvenih ustanov. Pri dijakih bi prepoznavnost povecali s predstavitvijo radioloških inženirjev v okviru predstavitve razlicnih poklicnih skupin. Najvec pa bi s predstavljanjem preiskovancem naredili radiološki inženirji sami. Morali bi vložiti vec truda v raziskovalno delo in morda organizirati recimo dan odprtih vrat. S tem bi privabili zanimanje medijev. Kljucne besede: radiološki inženir, poklic radiološkega inženirja, prepoznavnost radioloških inženirjev ABSTRACT Introduction: Radiographers are a small professional group, who use closed and open sources of ionizing radiation in their work for diagnostic and therapeutic purposes. In addition, they take the necessary measures related to radiation protection and quality control. Aim: The aim was to determine the level of recognition of the profession of radiographers in Slovenia. Methods: A review of the existing literature in the Slovene language about the occupation of a radiographer and recognition of radiographers in Slovenia. Results and discussion: Over the course of eight years (from 2010 to 2018) several research studies have been conducted. Recognition of the profession was studied among the students of the Faculty of Health Sciences in Ljubljana and random passers-by. The public opinion survey has found that the students of the Faculty of Health Sciences recognized the profession better than the general public due to the similarity of the professions. Personal experiences of the public have placed the radiographer in various professional fields. Another survey was carried out among the students of the vocational secondary school of nursing, students of a general high school and patients in Nova Gorica. Recognition was the highest among nursing students which can be attributed to their traineeship in health care institutions, where they might get the opportunity to meet radiographers. The recognition of radiographers was also researched among the students of the Secondary School of Nursing in Ljubljana. It was found that none of the interviewees knew the word for a professional who performs X-ray imaging. Most students referred to radiographers as radiologists, which may be the result of insufficient information on radiographers as a professional group in the course of their education. Research was also performed among randomly selected visitors at the Celje General Hospital which showed that nearly half of the participants recognized the name of the profession but did not know what kind of tasks radiographers actually perform. Half of the interviewees had never come into contact with Djuric N / Prepoznavnost poklica radiološki inženir radiographers and answered the questions based on what they had heard. Conclusion: The recognition of radiographers among the students and the general public is relatively low. It could be increased by issuing brochures and posters describing the work of a radiographer and placing these materials in waiting rooms of health care facilities. Recognition among students could be increased by introducing them to the occupation of a radiographer during their studies. However, the recognition of the profession could be increased most signifi cantly by radiographers themselves, who should put more eff ort in conducting research work and organizing open days. This might then attract the interest of the media. Keywords: radiographer, radiography profession, the recognition of radiographers LITERATURA Brown A (2004). Professionals under pressure: contextual influences on learning and development of radiographers in England. England: University of Warwick. Dostopno na: http://w w w .guidanc e -r esear ch.or g/blogs/ w o rk -r elat ed/entries/9099477010/5619092077/ k n exfile .2005-02-02.7165417691/attach/r evised%20 radiogs%20article%20LHSC%20draft2.pdf. <13.12.2017> Djuric N (2010). Prepoznavnost poklica radiološkega inženirja. Diplomsko delo. Ljubljana: Zdravstvena fakulteta. Griffiths M, King S, Stewart R, Dawson G (2010). Evaluating the fundamental qualities of a nuclear medicine radiographer for the provision of an optimal clinical service. Radiography 16(3): 238–-43. ISRRT: International society of radiographers and radiological technologists (2004). Guidelines for the Education Of Entry-level Professional Practice In Medical Radiation Sciences. Dostopno na: http://www.isrrt. org/isrr t/Education_Standards_EN.asp?SnID=1192227168. <1.12.2017> Krumpak B (2016). Prepoznavnost poklica diplomirani radiološki inženir med uporabniki radioloških storitev. Magistrsko delo. Ljubljana: Zdravstvena fakulteta. Komel M (2011). Poklic radiološkega inženirja v Sloveniji. Projektna naloga. Ljubljana: Zdravstvena fakulteta. Niemi A, Paasivaara L (2007). Meaning contents of radiographers’ professional identity as illustrated in a professional journal e A discourse analytical approach. Radiography 13(4): 258–64. Orehek M in Peterka N (2013). Osvešcenost dijakov Zdravstvene šole Ljubljana o prepoznavanju poklica radiološkega inženirja in zašcite pred ionizirajocim sevanje. Projektna naloga. Ljubljana: Zdravstvena fakulteta. Turk B (2012). (Ne)Prepoznavnost poklicev rentgenski tehnik, radiološki inženir, diplomirani inženir radiologije. Dostopno na: http://blog.zdravstvena.info/rentgenski-tehnik­pok lici-radiolosk i-inzenir-diplomiran-inzenir-radiologije/ <21.12.2017> Zavod RS za zaposlovanje (2010). Opisi poklicev: Radiološki inženir. Dostopno na: http://w w w .ess .go v .si/slo/ncips/opisipok lic ev/ RadioloskiInzenir.pdf. <17.12.2017> Radiološka tehnologija VSEŽIVLJENJSKI STROKOVNI POKLICNI RAZVOJ CONTINUING PROFESSIONAL DEVELOPMENT Monika Kunšic1, Matic Kavcic2, Tina Starc2 1 Univerzitetni klinicni center Ljubljana, Zaloška 7, 1000 Ljubljana 2 Zdravstvena fakulteta, Zdravstvena pot 5, 1000 Ljubljana Korespondenca/Correspondence: Monika Kunšic, dipl. inž. rad. E-mail: monika.kunsic@kclj.si Prejeto/Recived: 09.02.2018 Sprejeto/Accepted: 16.04.2018 IZVLECEK Uvod: Vseživljenjski strokovni poklicni razvoj ( VSPR) je izobraževanje po zakljucenem formalnem izobraževanju. V nekaterih državah je VSPR obvezen, v drugih prostovoljen. Obstajajo razlicne oblike VSPR: tecaji, konference, delavnice, seminarji, pisanje strokovnih in znanstvenih clankov, refleksija dela na delovnem mestu, obiski drugih oddelkov, opazovanje razlicnih tehnik in inovativnih modelov slikanja, samoizobraževanje, spletni webinarji, itd. Namen: Namen prispevka je bilo pridobiti mnenje radioloških inženirjev o VSPR. Metode dela: Kvantitativno presecna raziskava. Merski inštrument je bil spletni anketni vprašalnik 1ka, s katerim smo zajeli podatke o številu ur, ki so jih radiološki inženirji pripravljeni nameniti mesecno za VSPR, interesna podrocja VSPR, vpliv vodij na njegovo izvedbo, omejitve za udeležbo posameznika pri VSPR, itd. K sodelovanju smo povabili clane Društva radioloških inženirjev Slovenije. Povabilo k sodelovanju je prejelo 470 radioloških inženirjev. Rezultati in razprava: Nagovor k anketi je odprlo 50%, izpolnilo pa jih je 30% vseh povabljenih. 70% respondentov je bilo žensk in 30% moških, z delovno dobo od 2-41 let. 91% je zaposlenih za nedolocen cas, od tega 52% RI I, 11% RI II, 20 RI III, 13% je RI dozimetristov in RI svetovalcev. 80% anketiranih meni, da je VSPR pomemben. 50% anketirancev bi namenilo za VSPR do 5 ur casa, 44% pa vec kot 6 ur mesecno. Najvec anketirancev si želi izobraževanja na podrocju kakovosti, slikanja skeleta, CT in dozimetrije. Vec kot 85% anketirancev navaja, da je podpora vodje zanje kljucnega pomena. Vecina bi za VSPR prispevala do 300 € letno. Omejitve pri izvedbi VSPR so predvsem pomanjkanje financnih sredstev in onemogoceno pridobivanje prostih dni za izobraževanje. Zakljucek: Prva tovrstna raziskava na temo VSPR med radiološkimi inženirji v Sloveniji je pokazala naklonjenost do uvedbe sistema VSPR. Kljucne besede: vseživljenjski strokovni poklicni razvoj, radiološki inženirji, licenca, izobraževanje ABSTRACT Introduction: Continuing professional development (CPD) refers to education after completing formal education. In some countries, it is obligatory, while in others it is voluntary. There are several different types of CPD: courses, conferences, workshops, seminars, writing professional and scientifi c articles, reflecting on the work performed at the workplace, visiting other departments, observing various techniques and innovative ways of imaging, self-learning and webinars. Purpose: The purpose of the article was to obtain radiographers’ opinion on CPD. Methods: A quantitative cross-sectional study was conducted. The measuring instrument was a 1ka questionnaire, which we used to obtain data on the number of hours that radiographers were prepared to spend on CPD on a monthly basis, interest areas of CPD, the influence of the tools on their execution, restrictions regarding the participation of individuals in CPD etc. We invited members of the Association of Radiographers of Slovenia to participate. 470 radiographers accepted the invitation. Results and discussion: The introductory address to the questionnaire was opened by 50 % and completed by 30 % of all invited participants. 70 % of the respondents were women and 30 % were men with 2-41 years of professional on-the-job experience. 91 % were employed for an indefinite time period, of whom 52 % were radiographers (R) I, 11 % R II, 20 R III, 13 % were R dosimetrists and R consultants. 80 % of the respondents think that CPD is important. 50 % of the respondents would spend up to 5 hours on CPD and 44 % more than 6 hours a month. The majority of the respondents would like more training in the field of quality, RTG, CT and dosimetrics. More than 85 % of the respondents mentioned support as being highly signifi cant. The majority would contribute up to € 300 a year for CPD. Restrictions in undertaking CPD are especially lack of finances and receiving time-off work for the purposes of education. Conclusion: The first study on CPD among radiographers in Slovenia has shown support for the implementation of the CPD system. Keywords: continuing professional development, radiographers, licence, education Kunšic M in sod. / Vseživljenjski strokovni poklicni razvoj LITERATURA EFRS (2013). Dostopno na: https://www.efrs.eu/publications/ see/2013_EFRS_Statement_on_Continuous_Professional_ Development?file=327 <20.4.2017> Elshami W, Elamrdi A, Alyafie S, Abuzaid M (2016). Continuing professional development in radiography: practice, attitude and barriers. Int J Med Res Health Sci. 5(1): 68–73. doi: 10.5958/2319-5886.2016.00015.1. Dostopno na: http://www.ijmrhs.com/abstract/continuing-professional­dev elopment-in-radiog raph y -prac tic e -attitude -and­barriers-9074.html <20.4.2017> Kennedy, (2005). Models of Continuing Professional Development: a framework for analysis KENNEDY University of Strathclyde, United Kingdom. Dostopno na: http://w w w .tandf online .c om/doi/ pdf/10.1080/13674580500200277?needA c c ess=true <26.4.2017> Marshall G, Punys V, Sykes A (2008). The continuous professional development (CPD) requirements of radiographers in Europe: An initial survey. Radiography 14(4): 332–342. Pravilnik o licencnem vrednotenju strokovnih izpopolnjevanj in izobraževanj v dejavnosti zdravstvene in babiške nege (2011). Dostopnona: http://zbornicazveza.si/sites/default/ fi les/doc_attachments/pravilnik_o_licencnem_vrednotenju_ strokovnih_izpopolnjevanj_in_izobrazevanj_v_dejavnosti_ zdravstvene_in_babiske_nege.pdf. <7.5.2017> Sabel M (2017). Time and life management for medical students and residents. Stuttgart: Thieme. White P, Mckay J (2002). Guidelines and legal requirements which inform role expansion in radiography. Radiography 8(2): 71–78. Sponzorsko predavanje – GH holding Sponzorski clanek / Sponsor article MR PRIHODNOSTI ŽE DANES MR FUTURE ALREADY TODAY Tomaž Kavcic GH Holding d.o.o. E-mail: tomaz.kavcic@gh-holding.si General Electric je na podrocju MR v zadnjem casu naredil kar nekaj korakov, dva med njimi sta razvoj MR z minimalno kolicino helija v zaprti posodi in nove, pacientu prijaznejše tuljave. Tehnologija AIR vkljucuje ne le nove tuljavne elemente temvec tudi nove, miniaturne, preklopnike elementov. Prekrivanje elementov brez interferenc med njimi, 2µs preklopni casi in polovicna teža tuljav omogocajo boljše razmerje signal šum, razvoj novih hitrih sekvenc (0 Te), tuljave so tako prijaznejše do pacienta, ce navedemo le nekatere. Uporabljena MEMS tehnologija (Microelectromechanical systems) je zanesljivejša, širokopasovna in hitrejša od klasicne polprevodniške stikalne tehnologije. Porablja manj energije in je okolju prijaznejša in zato bolj sprejemljiva. Mehke tuljave se tudi bolj prilagajajo anatomiji in s tem še dodatno izboljšajo kvaliteto preiskave. MR vseeno predstavlja eno od najdražjih naprav v medicini. Prostorske zahteve in cena vzdrževanja so ena glavnih ovir za dostopnost MR preiskav, zato je eden od ciljev razvoja tudi znižanje le-teh. Tekoci helij, ki je kljucen za superprevodnost MR naprav bo morda postal odvec, oziroma bo njegova potreba zmanjšana. FREELIUM™ zahteva le še 1% helija v primerjavi s klasicno MR tehnologijo, posoda s He je nepredušno zaprta. Odpade potreba po odvodu helija v primeru prisilne zaustavitve, ni potrebe po dolivanju helija, stabilnost je vecja. General Electric izpolnjuje zavezo, da bo postal prijaznejši do okolja, zmanjšal porabo energije in naredil medicinske naprave bolj prijazne. FREELIUM in AIR sta le dve izmed mnogih izboljšav v tej smeri. Kljucne besede: GE, MR, AIR SUITE, FREELIUM General Electric has done several steps in MR development. Two of them are MR with minimum He content in sealed magnet and new, more patient friendly, coils. AIR technology includes not only new coil elements but also new, miniaturized element switches. Element overlapping without interference, 2µs switching time, reduced coil weight allows better S/N ratio, new ultrafast sequences (0 Te), coils are more patient friendly are just some of achievements. Used MEMS technology (Microelectromechanical systems) is more reliable, wideband and much faster than conventional semiconducting technology. Uses less energy, is environmental friendly so more acceptable for future. Resulting soft, blanket-like, coils adapt to anatomy better and improve exam quality. Anyway MR represents one of most expensive equipment in medicine. Space demands and maintenance prices are challenging availability of MR exams os one of goals is also reduction of these. Liquid Helium, crucial for superconducting MR might become obsolete or quantity will be reduced. FREELIUM™ demands only 1% Helium compared to conventional MR, and MR is sealed meaning no need for venting pipes, no refueling and increased stability. General Electric holds commitment to become eco-friendly, reduce energy consumption and made medical equipment more friendly. FREELIUM and AIR are just two out of many steps into this direction. Key words: GE, MR, AIR SUITE, FREELIUM Diagnosticna radiološka tehnologija PRIMERJAVA PROTOKOLOV RENTGENSKEGA SLIKANJA HRBTENICE PO PROGRAMU ZA SKOLIOZO MED ZDRAVSTVENIMI USTANOVAMI V SLOVENIJI COMPARISON OF PROTOCOLS IN SCOLIOSIS IMAGING BET WEEN HEALTHCARE INSTITU­TIONS IN SLOVENIA Majer Karin, Patricija Jesih1, Tina Starc2 1 Univerzitetni klinicni center Ljubljana, Zaloška 7, 1000 Ljubljana 2 Univerza v Ljubljani, Zdravstvena fakulteta, Zdravstvena pot 5, 1000 Ljubljana Korespondenca/Correspondence: Tina Starc, MSc. E-mail: tina.starc@zf.uni-lj.si Prejeto/Recived: 30.10.2017 Sprejeto/Accepted: 08.04.2018 IZVLECEK Uvod: Skolioza je strukturna deformacija hrbtenice, za katero so znacilne tri spremembe: ukrivljenost dela hrbtenice ali cele hrbtenice vstran, torzija ali vrtenje posameznih vretenc in rotacija hrbtenice okoli vzdolžne osi. Namen: Namen prispevka je primerjava protokolov pri slikanju skolioze med radiološkimi oddelki v Sloveniji. Metode dela: Za pridobitev rezultatov smo uporabili deskriptivno metodo: anketo in pregled literature. K raziskavi smo povabili osem radioloških oddelkov. V anketi smo spraševali o uporabljeni projekciji, velikosti slikovnega polja, uporabi osebne varovalne opreme, slikovnega sprejemnika, razdalji od gorišca do slikovnega sprejemnika, velikosti gorišca, uporabi radiografske rešetke in ekspozicijskih pogojih. Rezultati: Odzivnost je bila 88 %. Slikanje celotne hrbtenice se po radioloških oddelkih slovenskih bolnišnic glede na pregledano literaturo najbolj razlikuje pri uporabi projekcij, v 85% anketirani slikajo preiskovance v antero-posteriorno projekciji. Anketiranci uporabljajo razlicne razdalje gorišce– slikovni sprejemnik, ki so odvisne od detektorskega sistema. Razprava: Glede na priporocila iz literature je slikanje v postero-anteriorni projekciji ustreznejše, saj s tem šcitimo radiosenzibilna tkiva. Zakljucek: Rezultati tokratne raziskave podajajo predloge za optimizacijo radiološkega posega – rentgenskega slikanja hrbtenice po programu za slikanje skolioze. Kljucne besede: hrbtenica, protokol slikanja, preiskovanec, projekcija, skolioza ABSTRACT Introduction: Scoliosis is a structural deformation of the spine, characterized by three changes: the curvature of a part of the spine or the entire spine sideways, the torsion or rotation of the individual vertebrae and the rotation of the spine along the longitudinal axis. Aim: The aim of this paper was to compare protocols for scoliosis imaging between radiological departments in Slovenia. Methods: A descriptive method, using a survey in eight radiological departments and literature review, was used. Questions were related to the projection used for imaging, the field size, use of the lead protection, image receptor, the source-to-image receptor distance, focal spot size, use of the grid and exposure parameters used in their department. Results: Respond rate was 88 %. With regards to our literature review, imaging of the entire spine within radiological departments of Slovenian hospitals differs the most in the use of projections. 85 % use anterior-posterior view for scoliosis imaging. Source-to-image receptor distance diff ers between institutions as it depends on the detector system. Discussion: The responses indicated that most scoliosis imaging is in the anterior-posterior (AP) projection, whereas the literature and recommendations suggest the PA projection to be a better choice since the radiosensitive tissues are protected. Conclusion: The results of this research may enable the optimization of radiological interventions – X-ray imaging of the spine for scoliosis diagnosis, which will allow the subject to receive a lower dose of radiation in the future. Keywords: spine, imaging protocol, investigator, projection, scoliosis. Karin M in sod. / Primerjava protokolov rentgenskega slikanja hrbtenice po programu za skoliozo ... LITERATURA Demšar A (2003). Ortopedija. Maribor: Univerza v Mariboru, Visoka zdravstvena šola, 85. Grauers A, Elinrsdottir E, Gerdhem P (2016). Genetics and pathogenesis of idiopathic Scoliosis. Scoliosis and Spinal Disorders 11:45. doi: 10.1186/ s13013-016-0105-8. Hansen J, Jurik AG, Fürgaard B, Egund N (2003). Optimisation of scoliosis examinations in children. Pediatr Radiol (33): 752. doi:10.1007/s00247-003-1015-5. Herman S, Antolic V, Pavlovicic V (2006). Ortopedija. Ljubljana: samozaložba. Horne J P, Flannery R, Usman S (2014). Adolescent Idiopathic Scoliosis: Diagnosis and Management. Am Fam Physician 69(3): 193–98. Janssen MM, Drevelle X, Humbert L, et al (2009). Diff erences in male and female spino-pelvic alignment in asymptomatic young adults: a three-dimensional analysis using upright low-dose digital biplanar X-rays. Spine 23: 826–32. doi: 10.1097/ BRS.0b013e3181a9fd85. Kelc R, Kljaic N (2012). Funkcionalna anatomija hrbtenice. In: zbornik: VIII. Mariborsko ortopedsko srecanje: Hrbtenica v ortopediji, Maribor 9. november 2012: Univerzitetni klinicni center Maribor, 13–23. Khanna G (2009). Role of imaging in scoliosis. Pediatr Radiol 39(Suppl 2): 247. doi:10.1007/s00247-008-1126-0. Kim H, Kim H S, Moon E S et al. (2010). Scoliosis Imaging: What Radiologists Should Know. RadioGraphics 30(7):1823–42. doi: 10.1148/rg.307105061. Košak R (2012). Skolioticne deformacije hrbtenice pri otroku. In: zbornik: VIII. Mariborsko ortopedsko srecanje: Hrbtenica v ortopediji, Maribor 9. november 2012: Univerzitetni klinicni center Maribor, 41–44. Lehman L (2008). Scoliosis and Spine imaging. Radiologic technology 79(4), 373–77. Lim H I (2014). Scoliosis series x-ray exam in AP or PA projection. Rad Tech on Duty. Dostopno na: http://www.radtechonduty. com/2014/10/scoliosis-series-x-ray-exam-in-ap-or-pa.html <25. 6. 2017>. Long B W, Rollins J H, Smith B J (2016). Merrill’s atlas of Radiographic positioning & procedures. St. Louis, Missouri, 437–40. Mahmaud R, Krause-Parello C A (2013). Ideopathic scoliosis: An overview for school and paedicatric nurses. British Journal of School Nursing. London: Mark Allen Publising Ltd, 349–53. Mohar J, Mihalic R, Hero N (2009). Primerjava operativnega zdravljenja skolioz v Ortopedski bolnišnici Valdoltra v letih 1998 in 2008. Zdrav Vestnik Supl 2009; 78: II-66–72. Zelivyanska K, Tomic B, Kocjancic K (2014). Rentgensko slikanje celotne hrbtenice z digitalnim rotacijskim sistemom. Bilten 31(2): 4–9. Whitley A S, Sloane C, Hoadley G, Moore A D, Alsop C W (2005). Clark’s positioning in radiography 12th editon. London: Hodder Headline Group, 412–15. Diagnosticna radiološka tehnologija NASTAVITEV RAVNIN PRI MAGNETNO RESONANCNEM SLIKANJU SRCA PLANNING THE CARDIAC VIEWS FOR MAGNETIC RESONANCE IMAGING Tina Robida Univerza v Ljubljani, Medicinska fakulteta, Center za klinicno fiziologijo, Vrazov trg 2, 1000 Ljubljana Korespondenca/Correspondence: asist. Tina Robida, dipl. inž. rad. tehnol., mag. posl. ved. E-mail: tina.robida@mf.uni-lj.si Prejeto/Recived: 06.02.2018 Sprejeto/Accepted: 27.02.2018 IZVLECEK Uvod: Magnetno resonancno slikanje srca je postalo pogost nacin slikanja za prikaz pridobljenih in prirojenih bolezni srca. Glavna prednost je visoka kontrastnost med tkivi, možnost izbire velikega preglednega polja, prikaz srca v razlicnih ravninah in neinvazivnost posega. Namen: Namen plakata je prikazati nastavitev razlicnih ravnin pri magnetno resonancnem slikanju srca. Metode dela: Magnetno resonancno slikanje z namenom prikaza nastavitve ravnin sem izvedla na Centru za klinicno fi ziologijo Medicinske fakultete, na magnetno resonancnem tomografu Philips Achieva 3.0T TX, z uporabljeno 16 kanalno tuljavo SENSE XL Torso Coil 16. Razprava in zakljucek: Preiskava magnetno resonancnega slikanja srca se zacne z zajemom preglednih slik v transverzalni, koronarni in sagitalni ravnini. Osnovne ravnine so vertikalna dolga os ali ravnina dveh votlin srca, kratka os in horizontalna dolga os ali ravnina štirih votlin srca. Vertikalno dolgo os srca nastavimo vzporedno s srcnim pretinom v višini prekatov na pregledni sliki v transverzalni ravnini. Kratko os srca nastavimo pravokotno na linijo, ki povezuje apeks srca in sredino mitralnih zaklopk na sliko vertikalne dolge osi srca. Horizontalno dolgo os srca nastavimo vzporedno z linijo, ki povezuje apeks srca in sredino mitralnih zaklopk na sliko vertikalne dolge osi srca in vzporedno z linijo, ki povezuje spodnji rob desnega ventrikla in sredino levega ventrikla na sliko kratke osi srca. Poleg osnovnih ravnin se uporabljajo dodatne ravnine za prikaz srcnih zaklopk. Slika iztoka iz levega ventrikla ali ravnina treh votlin srca je osnova za prikaz aortne zaklopke. Slika iztoka iz desnega ventrikla je osnova za prikaz pulmonalne zaklopke. Slika desne votline srca je osnova za prikaz trikuspidalne zaklopke. Slika leve votline srca je osnova za prikaz bikuspidalne ali mitralne zaklopke. Kljucne besede: magnetna resonanca srca, prirojene in pridobljene bolezni srca, prednosti preiskave, osnovne in dodatne ravnine srca, prikaz srcnih zaklopk ABSTRACT Introduction: Magnetic resonance imaging of the heart has become a common diagnostic method for evaluating congenital and acquired heart diseases. The main advantages are the high contrast between the tissues, the ability to choose a large field of view, planning the cardiac views in diff erent directions and the non-invasiveness of the examination. Purpose: The purpose of the poster is to present the planning of the cardiac views in different direction for magnetic resonance imaging. Patient and methods: Planning the cardiac views for magnetic resonance imaging was acquired at the Centre for Clinical Physiology at the Faculty of Medicine by Philips Achieva 3.0T TX. Sixteen channel coil SENSE XL Torso Coil 16 was utilized for the acquisition. Discussion and conclusion: Magnetic resonance imaging of the heart starts with the capture of images in axial, coronal and sagittal plane. Standard cardiac views are vertical long axis or two chamber view, short axis and horizontal long axis or four chamber view. Vertical long axis is set parallel with heart septum at the height of the chambers on the scout images in axial plane. Short axis is set perpendicular to the line connecting the apex of the heart and the middle of the mitral valve to the image of the vertical long axis of the heart. Horizontal long axis is set parallel to the line connecting the apex of the heart and the middle of the mitral valve to the image of the vertical long axis of the heart and parallel to the line connecting the lower edge of the right ventricle and the centre of the left ventricle to the short axis of the heart. Besides basic cardiac views some additional cardiac views are used to display the heart valves. Left ventricular outfl ow tract (LVOT ) or three chamber view is basic to display the aortic valve. Right ventricular outflow tract (RVOT ) is basic to display pulmonary valve. Right two chamber (R2CH) is basic to display tricuspid valve. Left two chamber (L2CH) is basic to display bicuspid or mitral valve. Key words: magnetic resonance imaging of the heart, congenital and acquired heart diseases, advantages of the examination, basic and additional cardiac views, heart valves Robida T / Nastavitev ravnin pri magnetno resonancnem slikanju srca LITERATURA Bardo DME (2017). Cardiac Imaging Planes: Planning Basic Cardiac & Aortic Views for MR. Dostopno na: http://w w w.ohsu .edu/xd/education/schools/school-of­medicine/depar tments/clinical-depar tments/diagnostic­radiology/administration/mri-protocols/upload/Cardiac­Imaging-Planes-Bardo.pdf <11.1.2018>. Breeuwer M, Hautvast G, Higgins S, Nagel E (2008). Simplifying cardiac MR analysis. Medica Mundi 52(2): 68–76. De Bourguignon C, Clarysse P, Friboulet D (2015). Slice Planes in Cardiac Imaging. In: Clarysse P, Friboulet D, eds. Multi- modality Cardiac Imaging: Processing and Analysis, 1th ed. London: ISTE, 335–8. George R, Dela Cruz J, Singh R, Ilangovan R (2017). Cardiac MRI. Mrimaster.com. London. Dostopno na: https://mrimaster. com/PLAN%20CARDIC.html <11.1.2018>. Ginat DT, Fong MW, Tuttle DJ, Hobbs SK, Vyas RC (2010). Cardiac Imaging: Part I, MR Pulse Sequences, Imaging Planes and Basic Anatomy. AJR 197(4): 808–15. doi: 10.2214/AJR.10.7231. Hays AG, Schar M, Kelle S (2009). Clinical Applications for Cardiovascular Magnetic Resonance Imaging at 3 Tesla. Current Cardiology Reviews 5(3): 237–42. doi: 10.2174/157340309788970351. Lin EC, Klepac SR, Samett EJ (2016). Cardiac MRI, Technical Aspects Primer. Dostopno na: https://emedicine.medscape.com/ar ticle/352250-over view <11.1.2018>. Magnetic Resonance Imaging (MRI) of the Heart (2017). Johns Hopkins Medicine. Dostopno na: https://w w w.hopk insmedicine .or g/healthlibrar y/t est_ procedures/cardiovascular/magnetic_resonance_imaging_ mri_of_the_heart_92,P07977 <11.1.2018> Planes, Sequences and Protocols (2017). Radiology Web Site. Dostopno na: http://radiology.cornfeld.org/CMR/planes.php <11.1.2018>. Podobnik J (2002). Izbira ravnin pri slikanju srca z magnetno resonanco. Bilten 19(1): 9–16. Souto Nacif M, De Oliveira Junior AC, Pires Carvalho AC, Rochitte CE (2010). Cardiac Magnetic Resonance and its Anatomical Planes – How do I do it?. Arq Bras Cardiol 95(6): 756–63. Diagnosticna radiološka tehnologija MAPIRANJE T2 RELAKSACIJSKEGA CASA ZDRAVEGA HRUSTANCA KOLENA T2 MAPPING OF HEALTHY KNEE CARTILAGE Laura Kocet1, Nika Zalokar1, Katja Romaric2 1 Univerza v Ljubjani, Zdravstvena fakulteta, Zdravstvena pot 5, 1000 Ljubljana 2 Univerza v Ljubljani, Medicinska fakulteta, Center za klinicno fiziologijo, Vrazov trg 2, 1000 Ljubljana Korespondenca/Correspondence: asist. Katja Romaric, mag. inž. rad. tehnol. E-mail: katja.romaric@mf.uni-lj.si Prejeto/Recived: 11.02.2018 Sprejeto/Accepted: 27.02.2018 IZVLECEK Uvod: T2 mapiranje je kvantitativna metoda MR (magnetno resonancnega) slikanja, s katero lahko dolocimo stopnjo poškodbe hrustanca. Deluje na principu zajemanja signala z razlicnimi casi odmeva – TE (time of echo). Namen: Namen plakata je prikazati, kako smo dolocili referencne vrednosti T2 relaksacijskega casa zdravega hrustanca glede na podrocje zanimanja (region of interest– ROI) za MR tomograf Philips Achieva 3.0 T TX. Metode: Izbrali smo 10 prostovoljcev, ki niso imeli znane poškodbe kolena. Uporabili smo pulzno zaporedje T2 mapiranje v sagitalni ravnini ( TR 1000 ms; TE 6 ms, 12 ms, 18 ms, 24 ms, 30 ms, 36 ms, 42 ms, 48 ms; FOV 160 x 160 mm; voksel 0,8 x 0,9 mm; debelina rezine 3 mm; matrika 196 x 161; število povprecitev 1). Na parametricni mapi smo dolocili ROI na treh mestih (anteriorno, centralno in posteriorno), na podrocju medialnega in lateralnega hrustanca stegnenice, medialnega in lateralnega hrustanca golenice in pogacice (proksimalno, centralno, distalno). Povprecno izracunano vrednost smo predstavili kot T2 relaksacijski cas. Rezultati: T2 relaksacijski cas hrustanca (povprecje ± SD): medialni hrustanec stegnenice 42,34 ms (4,11 ms); lateralni hrustanec stegnenice 45,03 ms (6,69 ms); medialni hrustanec golenice 23,69 ms (2,44 ms); lateralni hrustanec golenice 20,98 (0,90 ms); pogacica 38,06 ms (3,63 ms). Razprava in zakljucek: V literaturi so avtorji dolocili T2 relaksacijski cas 47,6 ms, kot tistega, ki loci zdravi hrustanec stegnenice od poškodovanega po ICRS (international cartilage repair) oceni. Razlika med spoloma v T2 relaksacijskem casu ni znacilna. Dolocili smo referencne vrednosti zdravega hrustanca kolena za razlicna podrocja, kar nam lahko služi za nadaljnje razlikovanje med zdravim in poškodovanim hrustancem kolena na MR tomografu Philips Achieva 3.0 T TX. Kljucne besede: T2 mapiranje, T2 relaksacijski cas, hrustanec, koleno, referencna vrednost. ABSTRACT Introduction: T2 mapping is a quantitative MRI (magnetic resonance imaging) method for estimating the degree of knee cartilage damage. It is applied with different values of echo times – TE. Objective: The aim of this study was to define reference values of T2 relaxation time on diff erent ROI (region of interest) of a non-damaged knee-joint cartilage for MR scanner Philips Achieva 3.0 T TX. Methods: 10 patients without any known knee injuries were selected. The T2 mapping pulse sequence in the sagittal plane was used ( TR 1000 ms; TE 6 ms, 12 ms, 18 ms, 24 ms, 30 ms, 36 ms, 42 ms, 48 ms; FOV 160 × 160 mm; voxel 0.8 × 0.9 mm; slice thickness 3 mm; matrix 196 × 161; number of averages: 1). Three ROIs of a cartilage region were defined on a parametric map (anterior, central and posterior) of a medial and lateral femur cartilage, medial and lateral tibia cartilage and patella (proximal, central, distal). Mean value was presented as a T2 relaxation time. Results: T2 relaxation time of cartilage (mean ± SD): medial femur cartilage 42.34 ms (4.11 ms); lateral femur cartilage 45.03 ms (6.69 ms); medial tibial cartilage 23.69 ms (2.44 ms); lateral tibial cartilage 20.98 ms (0.90 ms); patella 38.06 ms (3.63 ms). Discussion and conclusion: In the reference literature, the value for T2 relaxation time, which separates the damaged and non-damaged femur cartilage (ICRS grade) is 47.6 ms. There was no signifi cant diff erence in T2 relaxation time between the sexes. The reference values for a non-damaged knee cartilage were defined for different areas of interest, which could be used in future research. Key words: T2 mapping, T2 relaxation time, cartilage, knee, reference value Kocet L in sod. / Mapiranje T2 relaksacijskega casa zdravega hrustanca kolena LITERATURA Baum T, Joseph GB, Karampinos DC, Jungmann PM, Link TM, Bauer JS (2013). Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthr Cartilage 21(10): 1474–84. Guermazi A, Alizai H, Crema MD, Trattnig S, Regatte RR, Roemer FW (2015). Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthr Cartilage 23(10): 1639–53. Mosher TJ, Collins CM, Smith HE et al. (2004). Effect of gender on in vivo cartilage magnetic resonance imaging T2 mapping. J Magn Reson Imaging 19(3): 322–8. Soellner ST, Goldmann A, Muelheims D, Welsch GH, Pachowsky ML (2017). Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee. Osteoarthr Cartilage 25(11): 1841–9. Diagnosticna radiološka tehnologija POMEN MAGNETNORESONANCNEGA SLIKANJA PRI DISEKCIJI NOTRANJE KAROTIDNE ARTERIJE SIGNIFICANCE OF MAGNETIC RESONANCE IMAGING IN INTERNAL CAROTID ARTERY DISSECTION Gregor Golja, Irena Snoj Univerzitetni klinicni center Ljubljana, Klinicni inštitut za radiologijo - nevroradiološki oddelek, Zaloška 7, 1000 Ljubljana Korespondenca/Correspondence: Gregor Golja, dipl. inž. rad. E-mail: gregor.golja@kclj.si Prejeto/Recived: 12.2.2018 Sprejeto/Accepted: 08.05.2018 IZVLECEK Uvod: Arterijska disekcija je raztrganina v žilni steni, na kateri lahko nastane žilni stenski hematom in katere posledica je lahko embolija, zapora svetline žile in pritisk na okolico. Disekcija vratnih arterij je najpogostejši vzrok za ishemicno možgansko kap pri mlajših odraslih osebah. Namen: Namen je predstaviti pomen MR slikanja za dokazovanje stenskega hematoma, povzrocenega pri disekciji notranje karotidne arterije. Metode dela: CTA vratnih arterij, kot slikovna metoda, je prva metoda izbora pri triaži možganske kapi, saj pokaže dolžino in natancno lokacijo disekcije karotidne arterije, vendar pri njej ne moremo ocenjevati velikosti hematoma v žilni steni. 1.- 4. dan od nastopa disekcije naredimo MRI po protokolu za disekcijo, ki prikaže žilno svetlino, poleg tega lahko opazujemo še spremembe v žilni steni za prikaz stenskega hematoma. Za prikaz se uporablja T1 z zasicenjem signala iz mašcobe (SPIR) v koronarni in v transverzalni ravnini, ki se prikaže kot znak polmeseca v steni žile. Rezultat: Predstavitev primera: 41-letni gospod ob sprejemu pove, da je pred 14 dnevi pri smucanju padel naprej in ob tem mocno flektiral glavo nazaj. Nevroradiolog po opravljenem slikovnem algoritmu CT in CTA vratnih arterij oceni, da gre za disekcijo notranje karotidne arterije. Tretji dan po sprejemu smo opravili še MRI po protokolu za disekcijo, ki je prikazal žilni hematom. Zakljucek: Za ugoden razplet bolezni sta bili pomembni zgodnja radiološka obravnava bolnika in zdravljenje disekcije karotidne arterije. Vloga MR slikanja je potrditev žilnega hematoma v podrocju disekcije in s tem potrditev diagnoze. ABSTRACT Introduction: Arterial dissection is a tear in the vessel wall which may cause a vessel wall hematoma and consequently embolism, occlusion of artery lumen or pressure on the surrounding area. Cervical artery dissection is the most common cause of ischemic stroke in young adults. Purpose: The purpose of the article is to present the signifi cance of MRI in confirming the vessel wall hematoma caused in the internal carotid artery dissection. Methods: CTA of cervical arteries is the first method of choice in the stroke triage since it gives the length and precise location of the carotid artery dissection. It does not, however, allow us to assess the size of the vessel wall hematoma. MRI according to the dissection protocol is conducted on day 1 - 4 from the time the dissection fi rst occurred. The imaging shows the artery lumin and makes the changes in the vessel wall and consequently the wall hematoma, visible. Spectral Presaturation with Inversion Recovery (SPIR), which appears in the shape of a crescent in the vessel wall, is used. Results: Case report: On admission a 41-year old man reports that he fell while skiing 14 days ago and that his head bounced back severely. After CT and CTA of cervical arteries, the neuroradiologist assessed that this was a case of internal carotid artery dissection. On the third day after admission, we conducted the MRI according to the dissection protocol where a vessel hematoma was detected. Conclusion: Early radiological diagnosis of the patient and treatment of carotid artery dissection were of major importance for achieving a favourable outcome. The role of MRI is to confirm the arterial hematoma in the area of the dissection and thus confirm the diagnosis. LITERATURA/REFERENCES Bucik Kajin I, Goljar N (2015). Zapleti in izidi rehabilitacijske obravnave bolnikov po možganski kapi zaradi disekcije vratne arterije. Rehabilitacija 14(1): 39–44. Fabjan J, Bunc A (2017). V: Arterijska sisekcija kot vzrok ishemicni možganski kapi. V: Pretnar Oblak J, Štebljaj S (ur.) Žilna nevrologija II. Ljubljana: Klinicni oddelek za vaskularno nevrologijo in intenzivno nevrološko terapijo, Nevrološka klinika, Univerzitetni klinicni center Ljubljana; Združenje nevrologov Slovenije – Slovensko zdravniško društvo; Katedra za nevrologijo: Medicinska fakulteta, Univerza v Ljubljani: 160–5. Rigler I, Zaletel M (2010). Disekcija karotidne arterije in neglekt leve roke – prikaz primera Zdravniški vestnik 79(11): 800–5. Sponzorsko predavanje – Interexport Sponzorski clanek / Sponsor article DOSE MANAGMENT - KAKOVOST OSREDNJA SKRB V RADIOLOGIJI Uroš Slamic Interexport d.o.o. E-mail: uros.slamic@interexport.si IZVLECEK Potreba po avtomatiziranem spremljanju doze radiacije je v zadnjih letih pridobila na pomenu. Posledicno je zato zelo pomembna tudi opremljenost z ustreznimi orodji. Agfa Healthcare ponuja Dose Monitoring kot orodje za vecjo skladnost z evropsko zakonodajo na podrocju dozimetrije, pa tudi kot orodje za stalno optimizacijo kakovosti. Agfa Healthcare Dose Monitoring je napredna rešitev za avtomatizirano spremljanje kakovosti na podrocju medicinskega slikanja. Zbira podatke iz razlicnih virov v okviru vaših zmogljivosti ter jih združuje za pridobivanje celovitega in oziroma podrobnega prikaza kakovosti vaše storitve. Dose Monitoring zagotavlja tako nadzorovana porocila kot tudi ucinkovito pro-aktivno rešitev glede na stalno potrebo po spremljanju regulativne skladnosti. Ker smo zavezani dolocilom ALARA (As Low As Reasonably Achievable – samo kolikor je potrebno) ter nenehnemu izboljševanju kakovosti, smo osredotoceni na avtomatizirano doziranje radiacije pacientom, ocenjevanje kakovosti slik ter vseživljenjskemu ucenju ekipe. Hitri pregled omogoca uporabnikom, da imajo enostavno ciljno stran, ki prikazuje preprosto analizo kljucne kazalnike vašega oddelka, kot so: skladne študije, opozorila o prejetih dozah, napake pri ekspozicijah, izvedene študije itd. kljucne kazalnike lahko prikažete v skladu z eno specifi cno modalnostjo ali vsem izmed njih. Ker je kakovost za nas najpomembnejša, je Agfa Healthcare kot proizvajalec medicinskih naprav zavezan standardom ISO­13485 in ISO- 14971. Prav tako ima DOSE številne certifi kate ter oznake kakovosti, vkljucno s CE class IIb, CAMCAS level III (Kanada) ter dovoljenje Uprave za hrano in zdravila FDA za ameriški trg. ABSTRACT The need for automated dose monitoring has become more important in recent years. Consequently, it is of the utmost importance to be equipped with the appropriate tools. Agfa Healthcare off ers Dose Monitoring as a tool for better compliance with European legislation for dosimetry and as a tool to continuously optimize quality. Dose Monitoring is an advanced solution for automated quality monitoring in medical imaging. It gathers data from different sources within your facility and connects them to get an overall or detailed impression of the quality of your service. Dose Monitoring assures regulated reports as well that provide an efficient pro-active solution to the labor-intensive regulatory compliance monitoring. As we are committed to the principles of ALARA (As Low As Reasonably Achievable) and constant quality improvement, we focus on automated patient radiation dose management, image quality assessment and lifetime learning of your staff . The Quick Overview allows users to have an easy landing page which shows a simple KPIs analysis of your departement, such as : Compliant studies, Dose warnings, Dose errors, Studies performed etc. You can display the KPIs according to one specific modality or to all of them. As quality is of the utmost importance to us, Agfa Healtcare is a medical device manufacturer adhering to ISO-13485 and ISO- 14971. Also Dose Monitoring has a number of certifi cations and quality labels including CE class IIb, CAMCAS level III (Canada) and FDA clearance for the US market. Confidence for 12 Hours Bayer combines three new safety features in one syringe system for your Stellant. The New Multi-Patient System for your Stellant Confidently perform multiple studies with a single syringe kit – for up to 12 hours. 1 Multi-Guard A recessed connection that protects the fluid path from accidental contamination by touch. Check Valves The MEDRAD® Stellant multi-patient system incorporates two check valves on the single patient tube that prevent backflow from the patient. Tubing Design The tubing protects patients with a 15 cm multi-patient tube, connected to the syringes and out of the patients’ reach, while the corresponding single-patient tube is 250 cm long and disposed of after each study. Multi-Patient Spike Spikes can be used to access multiple containers of contrast or saline for up to 12 hours. All rights reser ved. This publication or parts thereof may not be translated into other languages or reproduced in any form mechanical or electronic (including photocopying, tape recording, microcopying) or stored in a data carrier or computer system without written consent of Bayer Pharma AG. Bayer reser ves the right to modif y the specifications and features described herein, or discontinue manufacture of the product described at any time without prior notice or obligation. Please contact your authorized Bayer representative for the most current information. Bayer, the Bayer Cross, and MEDRAD are trademarks of the Bayer group of companies. © 2016 Bayer G.MKT.RI.02.2016.0639 February 2016 Bayer Pharma AG Manufacturer European Authorized Representative 13342 Berlin Bayer Medical Care Inc. Bayer Medical Care B.V. Germany 1 Bayer Drive Horsterweg 24 Indianola, PA 15051-0780, U.S.A. 6199 AC Maastricht Airport More information on Phone: +1 (412) 767-2400 The Netherlands radiology.bayer.com +1 (800) 633-7231 Phone: +31 (0) 43-3585601 Fax: +1 (412) 767-4120 Fax: +31 (0) 43-3656598 Nuklearnomedicinska tehnologija PREDNOSTI PET/CT V DIAGNOSTIKI OBŠCITNICNIH ADENOMOV THE ADVANTAGES OF PET/CT IN THE DIAGNOSIS OF PARATHYROID ADENOMAS Sebastijan Rep1, Marko Hocevar2, Luka Ležaic1 1 UKC Ljubljana, Klinika za nuklearno medicino, Zaloška cesta 2, 1000 Ljubljana 2 Onkološki inštitut, Oddelek za onkološko kirurgijo, Ljubljana, Korespondenca/Correspondence: mag. Sebastijan Rep, dipl. inž. rad. E-mail: sebastijan.rep@guest.arnes.si Prejeto/Recived: 16.12.2017 Sprejeto/Accepted: 21.03.2018 IZVLECEK Uvod: Primarnim hiperparatiroidizmom (PHPT ) je motnja v metabolizmu kosti, kalcija in fosfata, povzrocena s povecano koncentracijo parathormona (PTH). Vzrok za PHPT je najpogosteje adenom obšcitnicnih žlez ali hiperplazija vseh žlez in zelo redko karcinom obšcitnicnih žlez. Za odštevno scintigrafijo (OS) in SPECT/CT (eno fotonska emisijska racunalniška tomografi ja) scintigrafijo obšcitnicnih žlez se najpogosteje uporabljamo radiofarmak 99mTc-sestaMIBI (MIBI), ki se kopici v adenomih obšcitnic in šcitnicni žlezi. V kombinaciji z radiofarmakom 99mTcO4 ( TcO), ki se kopici samo v žlezi šcitnici, se opravi odštevna scintigrafi ja ( TcO/ MIBI). Pozitronska emisijska tomografija (PET ) je funkcionalna slikovna metoda, ki se v diagnostiki PHPT uporablja redkeje. Opravljeno je bilo majhno število študij s spremenljivim uspehom. 18F-fluorodeoksiglukoza (FDG) je zaradi sorazmerno dolgega razpolovnega casa široko dostopen in uveljavljen PET radiofarmak. Izkazal se je kot omejeno uporaben s širokim razponom obcutljivosti in ni v rutinski uporabi. Zelo omejeno dostopni, ciklotronsko proizvedeni radiofarmaki (11C-metionin) so se prav tako izkazali s širokim razponom obcutljivosti v malem številu opravljenih študij; primerjalno s SPECT so potencialno uporabni, ko slednji ne lokalizira lezije. Komaj pred kratkim je bila uvedena 18F-holin (FCH) PET/CT slikovna metoda za lokalizacijo povecanih obšcitnic žlez. Metode dela: Pregled znanstvenih clankov in analiza podatkov za pozitronske radiofarmake (RF). Za primerjavo FCH PET/CT s konvencionalnimi nuklearno medicinskimi diagnosticnimi metodami (OS in SPECT/CT ) smo primerjali 22 bolnikov, pri katerih smo racunali senzitivnost, specificnost in efektivno dozo (ED). Pri vseh smo naredili 2-fazni (5 min in 60 min po aplikaciji) FCH PET/CT po aplikaciji 100MBq 18F-holin. SPECT/ CT smo naredili v 2 fazah (5 min in 60 min po aplikaciji 500 MBq 99mTc-SestaMIBI) in odštevno scintigrafijo po aplikaciji 500MBq 99mTc-SestaMIBI in 150 MBq 99mTcO4. ED po aplikaciji RF smo izracunali na osnovi ICRP utežnih faktorjev za doloceni RF. Rezultati in razprava: FDG se je izkazal s širokim razponom obcutljivosti (13–94%) in ni v rutinski uporabi. Prav tako se je s širokim razponom obcutljivosti (53–95%) izkazal 11C-metionin. Rezultati pri 22 bolnikih so pokazali senzitivnost in specifi cnost pri FCH PET/CT 95% in 98%, pri SPECT/CT 66% in 95% in pri OS 43% in 98%. ED po priporocljivi aplicirani aktivnosti 400 MBq FDG in 400MBq 11C-metionina je 8 mSv (0,02 mSv x 1 MBq) in 3,4 mSv (0,0084 mSv x 1MBq). Po opravljenem SPECT/CT in OS je bila povprecna ED 5,35 ± 0,33 mSv (aplicirali povprecno 609,72 ± 31,98 MBq 99mTc-SestaMIBI) in 7,27 ± 0,49 mSv (609,72 ± 31,98 MBq 99mTc-sestaMIBI in 154,48 ± 7,01 MBq). Povprecna ED po opravljenem FCH PET/CT je bila 2,11 ± 0,31 mSv (aplicirali povprecno 105 ± 15,38 MBq FCH). ED po aplikaciji FCH je bila statisticno signifikantno nižja (p<10-3). Zakljucek: Senzitivnost in specifi cnost FCH PET/CT je boljša od drugih scintigrafskih pristopov, vkljucno z OS in SPECT/ CT. Pomembna prednost je tudi nizka sevalna obremenitev bolnikov po opravljenem FCH PET/CT v primerjavi z drugimi metodami. Kljucne besede: SPECT/CT, PET/CT, korekcija atenuacije, radiofarmak ABSTRACT Introduction: Primary hyperparathyroidism (PHPT ) is a disorder in the bone, and calcium and phosphate metabolism caused by increased concentrations of parathyroid hormone (PTH). The most common cause of PHP is adenoma of the parathyroid gland or hyperplasia of all glands, while it is quite rarely caused by parathyroid carcinoma. For subtraction scintigraphy (SS) and SPECT/CT scintigraphy of parathyroid glands, the most commonly used radiopharmaceutical (RF) is 99mTc-MIBI (MIBI) that accumulates in parathyroid adenomas and the thyroid gland. In combination with 99mTcO4 ( TcO) RF, which accumulates only in the thyroid gland, the SS ( TcO/MIBI) is performed. Positron emission tomography (PET ) is a functional imaging method that is rarely used in PHPT diagnostics. A small number of studies with variable success were performed. 18F-fluorodeoxiglucose (FDG) is a widely available and well-established PET radiopharm due to a relatively long half-life. It has proven to be of limited use with a wide range of sensitivity and is therefore not used routinely. Accessible with limit, cyclotron-produced radiopharmaceutical (11C-methionine) also showed a wide range of sensitivity in a small number of studies performed; Comparison with SPECT is potentially useful when the latter does not localize the lesion. Only recently, a 18F-choline (FCH) PET/CT imaging method for the localization of increased parathyroid glands was introduced. Methods: Review of scientific articles and data analysis for Rep S in sod. / Prednosti PET/CT v diagnostiki obšcitnicnih adenomov positron r radiopharmaceutical (RF). To compare FCH PET/CT with conventional NM diagnostic methods (SS and SPECT/ CT ), we included 22 patients with PHTP. For FCH PET/CT, MIBI SPECT/CT and SS we compared sensitivity, specifi city and eff ective dose (ED). With all of them, 2 phases (5 min and 60 min after administration) of FCH PET/CT were performed after 100 MBq 18F-Holin application. SPECT/CT was performed in 2 phases (5 min and 60 min after the application of 600MBq 99mTc-SestaMIBI) and SS after the application of 600MBq 99mTc-SestaMIBI and 150MBq 99mTcO4. ED after RF application was calculated based on ICRP weighting factors for a particular RF. Results and discussion: FDG proved to have a wide range of sensitivity (13-94%) and is not routinely used. 11C-methionine also showed a wide range of sensitivity (53-95%). Results in 22 patients showed sensitivity and specificity in FCH PET/CT 95% and 98% for SPECT/CT 66% and 95% and for OS 43% and 98% respectively. ED according to the recommended activity of 400MBq FDG and 400MBq 11C-methionine is 8 mSv (0.02mSv x 1MBq) and 3.4 mSv (0.0084mSv x 1MBq). After SPECT/CT and OS was performed, the calculated average ED was 5.35 ± 0.33 mSv (an average of 609.72 ± 31.98 MBq 99mTc-SestaMIBI was applied) and 7.27 ± 0.49 mSv (609.72 ± 31.98 MBq 99mTc­mesaMIBI and 154.48 ± 7.01 MBq). The average ED after FCH PET/CT was performed, was 2.11 ± 0.31 mSv (an average of 105 ± 15.38MBq FCH was applied). ED after FCH was statistically significantly lower (p<10-3). Conclusion: The sensitivity and specificity of FCH PET/CT is better than other scintigraphic approaches, including SS and SPECT/CT. An important advantage is also the low radiation load of patients after FCH PET/CT compared to other methods. Key words: SPECT/CT, PET/CT, attenuation correction, radiopharmaceutical LITERATURA Beyer T, Veit-Haibach P (2014). State-of-the-art SPECT/CT: technology, methodology and applications–defining a new role for an undervalued multimodality imaging technique. Eur J Nucl Med Mol Imaging 41(suppl 1): 1–2. doi: 10.1007/ s00259-014-2696-8. Brenner DJ, Hall EJ (2007). Computed tomography-an increasing source of radiation exposure. N Engl J Med 357(22): 2277–84. doi: 10.1056/NEJMra072149. Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP et al (2005). Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 46(4): 608–13. Einstein AJ, Henzlova MJ, Rajagopalan S (2007). Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298(3): 317–23. Goldman LW (2007). Principles of CT: radiation dose and image quality. J Nucl Med Technol. 35(4): 213–25. Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S (2007). Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J Nucl Med 48(7): 1112–21. Greenspan BS, Dillehay G, Intenzo C, Lavely WC, O’Doherty M, Palestro CJ, Scheve W, Stabin MG, Sylvestros D, Tulchinsky M (2012). SNM practice guideline for parathyroid scintigraphy 4.0. J Nucl Med Technol 40(2): 111–8. doi: 10.2967/ jnmt.112.105122. Guttikonda R, Herts BR, Dong F, Baker ME, Fenner KB, Pohlman B (2014). Estimated radiation exposure and cancer risk from CT and PET/CT scans in patients with lymphoma. Eur J Radiol 83(6):1011–5. doi: 10.1016/j.ejrad.2014.02.015. Hoang JK, Reiman RE, Nguyen GB, Januzis N, Chin BB, Lowry C, Yoshizumi TT (2015). Lifetime Attributable Risk of Cancer From Radiation Exposure During Parathyroid Imaging: Comparison of 4D CT and Parathyroid Scintigraphy. AJR 204(5): W579–8. doi: 10.2214/AJR.14.13278 International Commission on Radiological Protection (1998). ICRP Publication 80: Radiation dose to patients from radiopharmaceuticals (addendum 2 to ICRP publication 53). Ann ICRP. Kennedy JA, Israel O, Frenkel A (2009). Directions and magnitudes of misregistration of CT attenuation-corrected myocardial perfusion studies: incidence, impact on image quality, and guidance for reregistration. J Nucl Med 50(9): 1471–8. doi: 10.2967/jnumed.109.062141. Khamwan K, Krisanachinda A, Pasawang P (2010). The determination of patient dose from (18)F-FDG PET/CT Djuric N / Prepoznavnost poklica radiološki inženir examination. Radiat Prot Dosimetry 41(1): 50–5. doi: 10.1093/ rpd/ncq140. Kluijfhout WP, Vorselaars WMCM, Vriens MR, BorelRinkes IHM, Valk GD, de Keizer B (2015). Enabling minimal invasive parathyroidectomy for patients with primary hyperparathyroidism using Tc-99m-sestamibi SPECT-CT, ultrasound and first results of (18)F-fl uorocholine PET-CT. Eur J Radiol 84(1): 1745–1751. doi: 10.1016/j.ejrad.2015.05.024. Krausz Y, Bettman L, Guralnik L et al. (2006).Technetium-99m­MIBI SPET/CT in PHPT. World J Surg 30(1) : 76–83. Larkin AM, Serulle Y, Wagner S, Noz ME, Friedman K (2011). Quantifying the increase in radiation exposure associated with SPECT/CT compared to SPECT alone for routine nuclear medicine examinations. Int J Mol Imaging 2011:897202. doi: 10.1155/2011/897202. Lavely WC, Goetze S, Friedman KP et al. (2007) . Comparison of SPET/CT, SPET, and planar imaging with single- and dual-phase 99mTc-MIBI parathyroid scintigraphy. J Nucl Med 48(7): 1084–9. Lezaic L, Rep S, Sever MJ, Kocjan T, Hocevar M, Fettich J (2014). 18F-Fluorocholine PET/CT for localization of hyperfunctioning parathyroid tissue in primary hyperparathyroidism: a pilot study. Eur J Nucl Med Molecular Imaging 41(11): 2083–9. doi: 10.1007/s00259-014-2837-0. Michaud L, Balogova S, Burgess A, Ohnona J, Huchet V, Kerrou K et al. (2015). A pilot comparison of 18F-fl uorocholine PET/ CT, ultrasonography and 123I/99mTc-sestaMIBI dual-phase dual-isotope scintigraphy in the preoperative localization of hyperfunctioningparathyroid glands in primary or secondary hyperparathyroidism: influence of thyroid anomalies. Medicine 94(41): e1701. doi: 10.1097/MD.0000000000001701. Montes C, Tamayo P, Hernandez J, Gomez-Caminero F, García S, Martín C, Rosero A (2013). Estimation of the total eff ective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/ CT explorations. Ann Nucl Med 27(7): 610–7. doi: 10.1007/ s12149-013-0724-6. Preuss R, Weise R, Lindner O, Fricke E, Fricke H, Burchert W (2008). Optimisation of protocol for low dose CT-derived attenuation correction in myocardial perfusion SPECT imaging. Eur J Nucl Med Mol Imaging 35(6): 1133–41. Rep S, Lezaic L, Kocjan T, Pfeifer M, Sever MJ, Simoncic U, Tomse P, Hocevar M (2015). Optimal scan time for evaluation of parathyroid adenoma with [(18)F]-fl uorocholine PET/CT. Radiol Oncol 49(4): 327–33. doi: 10.1515/raon-2015-0016. Souvatzoglou M, Bengel F, Busch R, Kruschke C, Fernolendt H, Lee D, et al. (2007) Attenuation correction in cardiac PET/ CT with three diff erent CT protocols: a comparison with conventional PET. Eur J Nucl Med Mol Imaging 34: 1991–2000. Townsend DW (2004). Physical principles and technology of clinical PET imaging. Ann Acad Med Singapore 33(2): 133–45. Wei WJ, Shen CT, Song HJ, Qiu ZL, Luo QY (2015). Comparison of SPET/CT, SPET and planar imaging using 99mTc-MIBI as independent techniques to support minimally invasive parathyroidectomy in primary hyperparathyroidism: A meta-analysis. Hell J Nucl Med 18(2): 127–35. doi: 10.1967/ s002449910207. Zanzonico P (2012). Principles of nuclear medicine imaging: planar, SPECT, PET, multi-modality, and autoradiography systems. Radiat Res 177(4): 349–64. Diagnosticna radiološka tehnologija DOLOCITEV BOLNIŠNICNIH DIAGNOSTICNIH REFERENCNIH RAVNI PRI IZBRANIH TRAVMATOLOŠKIH OPERATIVNIH POSEGIH SET TING HOSPITAL DIAGNOSTIC REFERENCE LEVELS FOR CHOSEN TRAUMA SURGICAL PROCEDURES Katja Korez, Damijan Škrk 1 Univerzitetni klinicni center Ljubljana, Klinicni inštitut za radiologijo, Zaloška cesta 7, 1000 Ljubljana 2 Ministrstvo za zdravje, Uprava za varstvo pred sevanji, Ajdovšcina 2, 1000 Ljubljana Korespondenca/Correspondence: Katja Korez, dipl. inž. rad.tehn. E-mail: katika.korez@gmail.com Prejeto/Recived: 07.02.2018 Sprejeto/Accepted: 23.03.2018 IZVLECEK Uvod: Diagnosticne referencne ravni (DRR) so vrednosti doz ionizirajocega sevanja pri diagnosticnih radioloških posegih, za katere pricakujemo, da pri optimiziranih posegih niso presežene. Diagnosticne referencne ravni se defi nirajo kot vrednost na tretjem kvartilu porazdelitve vzorca povprecnih vrednosti doz. V diaskopiji sta priporocljivi DRR velicini produkt doze in površine obsevanega polja (PKA) in kerma v zraku v referencni tocki (Ka,r). Namen: Dolocitev bolnišnicnih diagnosticnih referencnih ravni za izbrane travmatološke posege in primerjava le-teh z enakimi preiskavami iz literature. Namen raziskave je tudi primerjava izpostavljenosti med dvema razlicnima tehnologijama diaskopskega aparata (ojacevalnik slike in tankoslojni detektor). Metode dela: Za raziskavo smo uporabili deskriptivno in retrospektivno študijo. Vkljucili smo travmatološke preiskave: dinamicni kolcni vijak, proksimalni stegnenicni žebelj, proksimalni nadlahticni žebelj, parcialna endoproteza, perkutana posteriorna fiksacija htbtenice. Za posamezni poseg smo zbirali naslednje podatke: starost pacienta, masa pacienta, produkt doze in površine (DAP, dose area product) ter cas diaskopije. V raziskavo so bili zajeti pacienti z maso od 60 do 90 kg. Podatke smo zbirali na aparatu Philips Veradius s tehnologijo tankoslojnega detektorja in na aparatu Siemens Arcadis Orbic s tehnologijo ojacevalnika slike. Rezultati in razprava: DRR za dinamicni kolcni vijak je znašala 1,07 Gycm2, za proksimalni stegnenicni žebelj 0,74 Gycm2, za proksimalni nadlahtnicni žebelj 0,35 Gycm2. Pri posegu parcialna endoproteza s tehnologijo tankoslojnega detektorja je DRR znašala 0,17 Gycm2, na aparatu s tehnologijo ojacevalnika slike 0,31 Gycm2 . Za poseg perkutana posteriorna fiksacija hrbtenice je DRR na aparatu s tehnologijo tankoslojnega detektorji znašala 1,59 Gycm2, na aparatu s tehnologijo ojacevalnika slike pa 5,27 Gycm2. Primerjava s tujo literaturo je pokazala, da so vrednosti DRR v naši ustanovi nižje. Rezultati so pokazali, da je izpostavljenost pri tankoslojnem detektorju nižja, kot pri ojacevalniku slike. Zakljucek: Na podlagi pridobljenih podatkov lahko potrdimo dobro radiološko prakso v naši ustanovi. Meritev DAP za posamezno travmatološko preiskavo je dobro orodje za optimizacijo, kar pomeni še dodatno zmanjšanje izpostavljenosti pacienta ob nespremenjeni ali boljši diagnosticni informaciji. Kljucne besede: diagnosticne referencne ravni, travmatološki operativni posegi, produkt doze in površine polja ABSTRACT Introduction: Diagnostic reference levels (DRL) are values of ionising radiation doses for diagnostic radiological procedures for which it is expected not to be exceeded if the procedure is optimized. Diagnostic reference levels are defi ned as the third quartile value of the representative sample mean dose distribution. In fluoroscopy, two DRL quantities are recommended; dose area product (PKA) and reference air kerma (Ka,r). Purpose: Setting diagnostic reference levels for the selected trauma surgical procedures and making a comparison with equivalent procedures found in reference literature as well as exposure comparison between two diff erent fl uoroscopy technologies (image intensifier and flat panel detector). Methods: A descriptive and retrospective study was used. The following trauma surgical procedures were used: dynamic hip screw, proximal femoral nail, proximal humeral nail, partial endoprothesis, percutaneous posterior spine fi xation. For each procedure respectively, the following data was gathered: patient age, patient weight, dose area product (DAP) and fluoroscopy time. Patients weighing in the range from 60 to 90 kg were included in the research. Data was gathered using the Philips Veradius machine with flat panel technology and the Siemens Orbic machine with image intensifi er technology. Results and discussion: DRL for dynamic hip screw was set at 1.07 Gycm2, for proximal femoral nail at 0.74 Gycm2 and for proximal humeral nail at 0.35 Gycm2. For partial endoprothesis, when using flat panel technology, DRL was set at 0.17 Gycm2 and 0.31 Gycm2 when using the image intensifi er technology. For percutaneous posterior spine fixation, when using fl at panel technology, DRL was set at 1.59 Gycm2 and 5.27 Gycm2 when using image intensifi er technology. Comparing the Korez K in sod. / Dolocitev bolnišnicnih diagnosticnih referencnih ravni pri izbranih travmatoloških operativnih posegih results of our research with those found in reference literature shows lower DRLs in our institution. The results have shown that exposure is lower for the flat panel technology than image intensifi er technology. Conclusion: According to the gathered data good practice in diagnostic radiology can be confirmed in our institution. DAP measurement for individual trauma surgical procedures is a good tool for optimization, leading to further patient exposure reduction, while keeping or increasing the quality of diagnostic information. Key words: diagnostic reference levels, trauma surgical procedures, dose area product LITERATURA European Commission (2014). Radiation protection N° 180. Diagnostic Reference Levels in Thirty-six European Countries: Part 2/2. Luxembourg: Publications Office of the European Union. https://ec.europa.eu/energy/sites/ener/files/documents/ RP180%20part2.pdf Hardman J, lvey M, Shah N, Simson N, Patel S, Anakwe R (2015). Defining reference levels for intra-operative radiation exposure in orthopaedic trauma: A retrospective multicentre study. Injury 46(12):2457–60. https://www.ncbi.nlm.nih.gov/ pubmed/26604035 ICRP International Commision on Radiological Protection (2016). Diagnostic reference levels in medical imaging. ICRP Publication 135. Annals of the ICRP 46(1). Kwon D, Little MP, Miller DL (2011). Reference air kerma and kerma-area product ea estimators of peak skin dose for fl uoroscopically guided intervantions. Med Phys 38(7): 4196– 4204. https://www.ncbi.nlm.nih.gov/pmc/ar ticles/PMC3145218/ <25.3.2017>. Vassileva J, Rehani M (2015). Diagnostic reference levels. AM J Roentgenol 204(1): W1-W3. http://www.ajronline.org/doi/ abs/10.2214/AJR.14.12794 <19.1.2017>. Vešligaj Z, Faj D, Margaretic D (2000). Uloga bolusa u radioterapiji. Radiološki vjesnik 30(2): 25–6. Dostopno na: http://hdimr.hr/hr/wp-content/uploads/2013/10/2000-br-2. pdf <6. 11. 2016> Wells M, Macmillan M, Raab G et al. (2004). Does aqueous or sucralfate cream affect the severity of erythematous radiation skin reactions? A randomised controlled trial. Radiother oncol 73(2): 153-62. doi: 10.1016/j.radonc.2004.07.032. Dostopno na: https://www.ncbi.nlm.nih.gov/pubmed/15542162 <10. 4. 2017> Zadnik V, Primic - Žakelj M, Žagar T (2016). Osnovni podatki o raku v Sloveniji. Ljubljana: Onkološki inštitut. Dostopno na: http://www.onko-i.si/fi leadmin/onko/datoteke/dokumenti/ RRS/Rak_v_Sloveniji.pdf <6. 11. 2016> Diagnosticna radiološka tehnologija CT VODENA PUNKCIJA TAKO IN DRUGACE CT- GUIDED BIOPSY IN PERSPECTIVE Maja Fujan Onkološki inštitut Ljubljana, Oddelek za diagnosticno radiologijo, Zaloška cesta 2, 1000 Ljubljana Korespondenca/Correspondence: Maja Fujan, dipl. inž. rad. E-mail: mfujan@onko-i.si Prejeto/Recived: 22.11.2017 Sprejeto/Accepted: 25.04.2018 IZVLECEK Uvod: Punkcija pod kontrolo CT-ja je poseg, pri katerem s pomocjo CT slikanja punktiramo doloceno patološko spremembo v telesu. Punkcijo pod kontrolo CT-ja opravljamo le tedaj, kadar se z drugo metodo, pri kateri ni ionizirajocega sevanja ali pa je tega manj, kot pri CT vodeni punkciji, patološke spremembe ne da definirati. Pri tem posegu je zelo pomembno, da optimiziramo protokol slikanja tako, da bo slika še primerna za izvedbo posega, dozna obremenitev pa bo cim nižja, po pricipu ALARA. Namen: Želja je, optimizirati vsako CT vodeno punkcijo tako, da bo opravljena uspešno in po principu ALARA. Tako bomo te posege opravili z nižjo dozno obremenitvijo preiskovanca. Namen tega predavanja je prikazati vpliv izbire razlicnih protokolov in njihovo prilagajanje na dozo in kvaliteto slike. Prikazati želim tudi, da to lahko pomembno vpliva na uspešnost posega in zmanjšanje dozne obremenitve preiskovanca. Metoda dela: Na oddelku smo imeli primer, ker smo pri istem preiskovancu opravili CT vodeno punkcijo dvakrat na isti leziji. Za izhodišce sem vzela prvo preiskavo in jo retrospektivno primerjala z drugo, ki je bila opravljena en mesec kasneje. Ugotovila sem, da odvzem vzorca prvic ni bil uspešen, pri drugi preiskavi pa je bilo diagnozo mogoce postaviti. V ocenjevanje sem vkljucila dva neodvisna radiologa s 15-letnimi izkušnjami. Ocenjevala sta, kako se lezija loci od okolice in kako je prikazana konica igle. Ocenjevanje je bilo vecstopenjsko: nezadovoljivo, še zadovoljivo, zadovoljivo dobro in odlicno. Sama sem izmerila dolžino in/ali širino artefakta tršanja žarkov. Primerjala sem tudi dozno obremenitev preiskovanca pri prvi in drugi preiskavi. Rezultati in razprava: Ocena kvalitete prikazanih struktur, ki sta jo opravila dva neodvisna radiologa, je pokazala, da so pri prvi preiskavi strukture prikazane v izhodišcnem slikanju, brez prilagajanja izvirnega protokola, odlicno. Pri kontrolnem slikanju z vodilno iglo je znižanje napetosti iz 100 na 80 kV privedlo do slabšanja resolucije slike, a je bilo locevanja preiskovane tvorbe od okolnega tkiva ocenjeno kot dobro, prikaz konice vodilne igle pa odlicno. V nadaljevanju slikanja je bil prikaz tvorbe ob uvedeni punkcijski igli ob enakih ekspozicijskih pogojih zaradi prevelikega artefakta tršanja žarkov ocenjen nezadostno. Pri drugi preiskavi je bilo opravljeno izhodišcno slikanje, ki je bilo že z znižanjem produkta mAs prilagojeno potrebam punkcije in ocenjeno kot zadovoljivo. Naslednje slikanje z vodilno iglo, pri katerem je bil produkt mAs znižan iz 100 na 80, je bilo ocenjeno z zadovoljivo, prikaz konice igle dober in artefakt tršanja minimalen. Pri slikanju s punckijsko iglo je bil viden artefakt tršanja, ki je bil krajši in ožji, kot pri prvi preiskavi. Slike so bile ocenjene z oceno zadovoljivo. Glede dozne obremenitve preiskovanca pa lahko vidimo, da je bilo pri prvi preiskavi izhodišcno slikanje opravljeno s CTDI/vol/ 9,05 mGy, pri drugi preiskavi pa 3,77 mGy, razlika je 58,34%. Pri kontrolnih slikanjih je bil CTDI/vol/ pri prvi preiskavi 4,30 mGy, pri drugi pa 3,03 mGy, razlika je 29,54%. Pri zadnjem kontrolnem slikanju je pri prvi preiskavi CTDI/vol/ 8,74 mGy, pri drugi pa 3,05 mGy, razlika je 65,21%. Dozna obremenitev je bila pri prvi preiskavi višja kot pri drugi. Ocene radiologov so bile pri prvi preiskavi od odlicno do nezadovoljivo, kar pomeni, da v primeru, ko je bila ocena odlicno, ni bilo potrebe za tako dobro kvaliteto slike pri takšnem posegu, zato bi lahko ekspozicijske pogoje znižali na raven ocene zadovoljivo ali pa celo še zadovoljivo. Pri uvedeni punkcijski igli, kjer je bila ocena nezadovoljivo, je prišlo zaradi znižanja kV (namesto da bi znižali produkt mAs) do prevelike kolicine artefaktov tršanja žarkov, kar je prekrilo punktirano tvorbo. Pri drugi preiskavi bi se dalo bolje prilagoditi ekspozicijske pogoje, ker je pri takem posegu ocena zadovoljivo ali celo še zadovoljivo dovolj za njegovo uspešnost. Zakljucek: Dokazala sem, da se da s primernim prilagajanjem protokola ohraniti še sprejemljivo kvaliteto slike, da bi uspešno izvedli CT punkcijo. Z napacno izbiro parametrov lahko pride do povecanja tršanja žarkov, kar poslabša preglednost lezije in konice punkcijske igle. Iz porocila slikanj, je razvidno, da je dozna obremenitev preiskovanca pri drugi preiskavi nižja, lezija pa je bila še dovolj dobro prikazana, artefakt tršanja manjši in prikaz konice dober. ABSTRACT Introduction: A CT-guided biopsy is performed only in cases when other methods, where there is no ionizing radiation, or it is lower compared to the one in CT-guided biopsy. For this procedure it is extremely important to optimize the scanning protocol to such an extent as to allow the performance of the procedure with the lowest possible radiation dose, following the ALARA principle. Purpose: The research presented is aimed at optimizing every CT-guided biopsy with a view to enhancing its effi ciency, following the ALARA principle, which means that the procedures will be performed with a lower radiation dose. The Fujan M / CT vodena punkcija tako in drugace main purpose of the paper is to present the effect of selecting different protocols and their adjustments to diff erent doses and image quality. I would like to argue that this can have a considerable influence on the success of the procedure and the reduction of the radiation dose. Methods: In a particular case in our department, a CT-guided biopsy of the same lesion was performed on the same subject. The first examination was used as the basis and was subsequently retrospectively compared with the second examination, performed a month later. I concluded that the first sample extraction was not successful while the diagnosis was possible in the second examination. Two independent radiologists from our department with 15-year work experience were invited to evaluate and assess the ways in which the lesion is extracted from the surroundings and the tip of the biopsy needle is shown. The procedure was assessed on a 5-level scale: insuffi cient, just suffi cent, suffi cient, good, and excellent. I measured the beam hardening artefact myself. In addition, I compared the radiation dose used between the first and second examination of the subject. Results and discussion: The quality of the structures assessed by two independent radiologists has shown that the examination of a particular structure in the first examination, without adjustments of the original protocol, was assessed as excellent. The second, control scan showed a lower image resolution as a result of the reduction of kV from 100 to 80 but the assessment of the separation of the lesion from the surrounding tissue was ranked as good and the image of the tip of the biopsy needle as excellent. The image of the lesion at the insertion of the biopsy needle at the same exposure value was ranked as insufficient owing to the increased beam hardening artefact. In the second examination, the first scan performed was already adjusted to the requirements of the biopsy with the reduction of mAs values and was ranked as sufficient. In the second scan with the guided biopsy needle in which the mAs values were further reduced from 100 to 80, the assessment was sufficient, the image of the tip of the needle good and a minimal beam hardening artefact. The scan with the biopsy needle shows a beam hardening artefact which is shorter and narrower than in the first examination. The scan images were ranked as sufficient. With respect to the radiation dose used we can see that the initial scan in the first examination was performed with CTDI/ vol/ 9.05mGy and the second with 3.77mGy - a diff erence of 58.34%, while in the control scan CTDI/vol/ was performed with 4.30mGy in the first examination and 3,03mGy in the second – a difference of 29.54%. The last control scan was performed with CTDI/vol/ 8.74mGy in the fi rst examionation and 3.05mGy in the second – a difference of 65.21%. It is clear that the radiation dose is higher in the fi rst examination than in the second. The assessments performed by two independent radiologists range from excellent to insufficient in the first examination. I would like to argue that in the cases in which the image was ranked as excellent there was no need for such a high quality of the image for this particular procedure. The exposure value could be reduced to the level of sufficent or even just insufficent. In the biopsy needle insertion, rated as insufficient, the reduction of kV led to an increased amount of beam hardening artefacts instead of mAs values, which in turn led to the covering of the lesion on which the biopsy was performed. The analysis of the second examanation shows that the exposure value could further be adjusted since the rate sufficient or even just sufficient is enough for a successful performance of this procedure. Conclusion: I have shown that by appropriately adjusting the protocol we can still assure a sufficient quality of the scan image and therefore a successful performance of the CD biopsy. It is clear that an unsuitable selection of parameters may result in increased beam hardening which in turn leads to a poorer image of the lesion and the tip of the biopsy needle. The analysis of the scans indicates that the radiation dose is lower in the second examination of the subject even if the image of the lesion is still sufficiently good, the beam hardening artefact lower and the image of the tip of the needle good. LITERATURA Geleijns J, Artells M S, Bruin P W, Mather R, Muramatsu Y, McNitt-Gray MF (2009). Computed Tomography dose assessment for a 160 mm wide, 320 detector row, cone beam CT scanner. Physic med biol 54(19): 3141-3159. doi: 10.1088/0031-9155/54/10/012. Kalender W (2005). Computed tomography: fundamentals, system technology, image quality, aplications. Erlagen: Publicis Corporate Publishing. Kukovic A, Kocijancic K, Kocijancic I, Guna F (2006). Biopsija sprememb v trebuhu pod CT kontrolo. V: Lipovec V, ur. Radiološki posegi v trebušni votlini: zbornik predavanj in posterjev. Društvo radioloških inženirjev Slovenije - strokovni seminar, Radenci, 12.–14. maj 2006. Ljubljana: Društvo radioloških inženirjev Slovenije, 21-25. Lee S, Yoon S, Yoo S, Ji Y G, Kim K A, Kim S H et al. (2011). Comparisonof image quality and radiation dose between combined automatic tube curent modulation and fi xed tube current technique in CT of abdomen and pelvis. Acta Radiol 52(10): 1101–6.doi.org/10.1258/ar.2011.100295. Peng Y, Li J, Ma D, Zhang Q, Liu Y, Zeng J et al. (2009). Use of automatic tube current modulation with a standardised noise index in young children undergoing chest computed tomography scans with 64 slice multidetector Computed Tomography. Acta Radiol 50(10):1175–81. Söderberg M, Gunnarson M (2010). Automatic exposure control in computed tomography - an evaluation of systems from different manufactures. Acta Radiol 51(6) 635–34. Sookpeng S, Martin C J, Gentle D J, Lopez-Gonzalez M R ( 2014). Relationships between patient sizes, doses and image noise under automatic tube current modulation (ATCM) systems, J Radiol Prot 34(1): 103–23. Yates SJ, Dendy PP, (2011). Tomographic imaging with X-rays. In: Dandy PP, Heaton B, eds. Physics for diagnostic radiology 3rd ed. New York: CRC press Taylor & Francis Group, 257–292. Zastopnik za Slovenijo: Image & Information d.o.o. Litostrojska cesta 60 1000 Ljubljana info@image-info.si www.image-info.si Azurion 7 The new-generation image guided therapy platform 12" Flat Detector 20" Flat Detector gehealthcare.com © 2017 General Electric Company. GE, monogram GE in Visipaque so blagovne znamke podjetja General Electric Company. GE Healthcare Limited, Amersham Place, Little Chalfont, Buckinghamshire, England HP7 9NA www.gehealthcare.com 11-2017 MB003530/OS SLOVENIA Distribucija in marketing za Slovenijo: Apta medica Internacional d.o.o., Likozarjeva ulica 6, 1000 Ljubljana 11-2017 | Samo za strokovno javnost | Povzetek glavnih znacilnosti zdravila je na voljo na spletni strani www.cbz.si