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Abstract

We give an improvement of a result of Zverovich and Zverovich which gives a condition
on the first and last elements in a decreasing sequence of positive integers for the sequence
to be graphic, that is, the degree sequence of a finite graph.
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1 Statement of Results
A finite sequence of positive integers is graphic if it occurs as the sequence of vertex de-
grees of a graph. Here, graphs are understood to be simple, in that they have no loops or
repeated edges. A result of Zverovich and Zverovich states:

Theorem 1.1 ([8, Theorem 6]). Let a, b be reals. If d = (d1, . . . , dn) is a sequence of
positive integers in decreasing order with d1 ≤ a, dn ≥ b and

n ≥ (1 + a+ b)2

4b
,

then d is graphic.

Notice that here the term (1+a+b)2

4b is monotonic increasing in a, for a ≥ 1 and fixed
b, and it is also monotonic decreasing in b, for a ≥ b ≥ 1 and fixed a. Thus any sequence
that satisfies the inequality n ≥ (1+a+b)2

4b , for any pair a ≥ d1, b ≤ dn, will also satisfy the

inequality n ≥ (1+d1+dn)
2

4dn
. So Theorem 1.1 has the following equivalent expression.
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Theorem 1.2. Suppose that d = (d1, . . . , dn) is a decreasing sequence of positive integers
with even sum. If

n ≥ (1 + d1 + dn)
2

4dn
, (1.1)

then d is graphic.

The simplified form of Theorem 1.2 also affords a somewhat simpler proof, which we
give in Section 2 below. Admittedly, the proof in [8] is already quite elementary, though it
does use the strong index results of [4, 3].

The following corollary of Zverovich–Zverovich’s is obtained by taking a = d1 and
b = 1 in Theorem 1.1.

Corollary 1.3 ([8, Corollary 2]). Suppose that d = (d1, . . . , dn) is a decreasing sequence
of positive integers with even sum. If d1 ≤ 2n

1
2 − 2, then d is graphic.

Note that this can be expressed in the following equivalent form.

Corollary 1.4. Suppose that d = (d1, . . . , dn) is a decreasing sequence of positive integers
with even sum. If n ≥ d2

1

4 + d1 + 1, then d is graphic.

Zverovich–Zverovich state that the bound of Corollary 1.4 “cannot be improved”, and
they give examples to this effect. In fact, there is an improvement, as we will now describe.
The subtlety here is that Zverovich–Zverovich formulated their result as an upper bound on
d1, and, as an upper bound on d1, this upper bound on d1 cannot be improved. However,
the reformulation of their result as a lower bound on n can be slightly improved. We prove
the following result in Section 2.

Theorem 1.5. Suppose that d = (d1, . . . , dn) is a decreasing sequence of positive integers

with even sum. If n ≥
⌊
d2
1

4 + d1

⌋
, then d is graphic.

Example 1.6. There are many examples of sequences that verify the hypotheses of Theo-
rem 1.5 but not those of Corollary 1.4. In fact, there are 81 such sequences of length n ≤ 8.
Figure 1 shows three graphs whose degree sequences have this property; they have degree
sequences (2, 2, 2), (3, 3, 2, 2, 2) and (3, 3, 3, 3, 3, 3) respectively. For infinite families of
examples, for every positive odd integer x, consider the sequence (2x, 1x

2+2x−1), and for
x even, consider the sequence (2x, 2x, 1x

2+2x−2). Here, and in sequences throughout this
paper, the superscripts indicate the number of repetitions of the entry.

Example 1.7. The following examples show that the bound of Theorem 1.5 is sharp when
dn = 1. For d even, say d = 2x with x ≥ 1, let d = (dx+1, 1x

2+x−2). For d odd,
say d = 2x + 1 with x ≥ 1, let d = (dx+1, 1x

2+2x−1). In each case g has even sum,
n =

⌊
d2

4 + d
⌋
−1, but d is not graphic, as one can see from the Erdős–Gallai Theorem [6].

Remark 1.8. The fact that Theorem 1.2 is not sharp has also been remarked in [1], in the
abstract of which the authors state that Theorem 1.2 is “sharp within 1”. They give the
bound

n ≥ (1 + d1 + dn)
2 − ε′

4dn
, (1.2)
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Figure 1: Three examples

where ε′ = 0 if d1 + dn is odd, and ε′ = 1 otherwise. Consider any decreasing sequence
with d1 = 2x+1 and dn = 1. Note that the bound given by Theorem 1.2 is n ≥ x2+3x+3,
the bound given by (1.2) is n ≥ x2 + 3x+ 2, while Theorem 1.5 gives the stronger bound
n ≥ x2 + 3x + 1. The paper [1] gives more precise bounds, as a function of d1, dn, and
the maximal gap in the sequence.

Remark 1.9. There are many other recent papers on graphic sequences; see for example
[5, 7, 1, 2].

2 Proofs of Theorems 1.2 and 1.5
We will require the Erdős–Gallai Theorem, which we recall for convenience.

Erdős–Gallai Theorem. A sequence d = (d1, . . . , dn) of nonnegative integers in decreas-
ing order is graphic if and only if its sum is even and, for each integer k with 1 ≤ k ≤ n,

k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min{k, di}. (EG)

Proof of Theorem 1.2. Suppose that d = (d1, . . . , dn) is a decreasing sequence with even
sum, satisfying (1.1), and which is not graphic. By the Erdős–Gallai Theorem, there exists
k with 1 ≤ k ≤ n, such that

k∑
i=1

di > k(k − 1) +

n∑
i=k+1

min{k, di}. (2.1)

For each i with 1 ≤ i ≤ k, replace di by d1; the left hand side of (2.1) is not decreased,
while the right hand side of (2.1) is unchanged, so (2.1) still holds. Now for each i with
k + 1 ≤ i ≤ n, replace di by dn; the left hand side of (2.1) is unchanged, while the right
hand side of (2.1) has not increased, so (2.1) again holds. Notice that if k < dn, then (2.1)
gives kd1 > k(k − 1) + (n − k)k = k(n − 1), and so d1 ≥ n. Then (1.1) would give
4ndn ≥ (1+dn+n)

2, that is, (n−(dn−1))2−(dn−1)2+(1+dn)
2 ≤ 0. But this inequality

clearly has no solutions. Hence k ≥ dn. Thus (2.1) now reads kd1 > k(k−1)+(n−k)dn,
or equivalently

(k − 1

2
(1 + d1 + dn))

2 − 1

4
(1 + d1 + dn)

2 + ndn < 0.
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But this contradicts the hypothesis.

The following proof uses the same general strategy as the preceding proof, but requires
a somewhat more careful argument.

Proof of Theorem 1.5. Suppose that d satisfies the hypotheses of the theorem. First suppose
that d1 is even, say d1 = 2x. If dn ≥ 2, then since (1+dn+d1)

2

4dn
is a strictly monotonic

decreasing function of dn for 1 ≤ dn ≤ d1, we have

n ≥ d21
4

+ d1 =
(2 + d1)

2

4
− 1 >

(1 + dn + d1)
2

4dn
− 1,

so n ≥ (1+dn+d1)
2

4dn
and hence d is graphic by Theorem 1.2. So, assuming that d is not

graphic, we may suppose that dn = 1. Furthermore, by Corollary 1.4, we may assume that
n =

d2
1

4 + d1, so n = x2 + 2x.
Now, as in the proof of Theorem 1.2, by the Erdős–Gallai Theorem, there exists k with

1 ≤ k ≤ n, such that

k∑
i=1

di > k(k − 1) +

n∑
i=k+1

min{k, di}. (2.2)

For each i with 1 ≤ i ≤ k, replace di by d1; the left hand side of (2.2) is not decreased,
while the right hand side of (2.2) is unchanged, so (2.2) still holds. For each i with k+1 ≤
i ≤ n, replace di by 1; the left hand side of (2.2) is unchanged, while the right hand side of
(2.2) has not increased, so (2.2) again holds. Then (2.2) reads kd1 > k(k − 1) + (n− k),
and consequently, rearranging terms, (k−x−1)2−1 < 0. Thus k = x+1. Notice that for
1 ≤ i ≤ k, if any of the original terms di had been less than d1, we would have obtained
(k− x− 1)2 < 0, which is impossible. Similarly, for k+1 ≤ i ≤ n, all the original terms
di must have been all equal to one. Thus d = (dk1 , 1

n−k) = ((2x)x+1, 1x
2+x−1). So d has

sum 2x(x + 1) + x2 + x − 1 = 3x2 + 3x − 1, which is odd, regardless of whether x is
even or odd. This contradicts the hypothesis.

Now consider the case where d1 is odd, say d1 = 2x − 1. The theorem is trivial for
d = (1n), so we may assume that x > 1. We use essentially the same approach as we
used in the even case, but the odd case is somewhat more complicated. By Corollary 1.4,
assuming d is not graphic, we have d2

1

4 +d1+1 > n, and hence, as d1 is odd, d2
1

4 +d1+
3
4 ≥ n.

Thus, since n ≥
⌊
d2
1

4 + d1

⌋
=

d2
1

4 +d1− 1
4 , we have n =

d2
1

4 +d1+
3
4 or n =

d2
1

4 +d1− 1
4 .

Thus there are two cases:

(i) n = x2 + x− 1,

(ii) n = x2 + x.

By the Erdős–Gallai Theorem, there exists k with 1 ≤ k ≤ n, such that

k∑
i=1

di > k(k − 1) +

n∑
i=k+1

min{k, di}. (2.3)

As before, for each i with 1 ≤ i ≤ k, replace di by d1 and for each i with k + 1 ≤ i ≤ n,
replace di by dn, and note that (2.3) again holds. Arguing as in the proof of Theorem 1.2,
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notice that if k < dn, then (2.3) gives kd1 > k(k − 1) + (n − k)k = k(n − 1), and so
d1 ≥ n. In both cases (i) and (ii) we would have 2x−1 ≥ n ≥ x2+x−1 and hence x ≤ 1,
contrary to our assumption. Thus k ≥ dn and (2.3) reads kd1 > k(k − 1) + (n − k)dn,
and consequently, rearranging terms, we obtain in the respective cases:

(i) dnx2 − dnk + k2 + dnx− 2kx− dn < 0.

(ii) dnx2 − dnk + k2 + dnx− 2kx < 0,

In both cases we have dnx2 − dnk + k2 + dnx − 2kx − dn < 0. Consider dnx2 −
dnk + k2 + dnx − 2kx − dn as a quadratic in k. For this to be negative, its discriminant,
4dn+d

2
n+4x2−4dnx

2, must be positive. If dn > 1 we obtain x2 < 4dn+d2
n

4(dn−1) . For dn = 2

we have x2 < 3 and so x = 1, contrary to our assumption. Similarly, for dn = 3 we have
x2 < 21

8 and so again x = 1. For dn ≥ 4, the function 4dn+d2
n

4(dn−1) is monotonic increasing in
dn. So, as dn ≤ d1,

x2 <
4d1 + d21
4(d1 − 1)

=
4x2 + 4x− 3

8x− 8
<

x2 + x

2(x− 1)
,

which again gives x = 1. We conclude that dn = 1.
So the two cases are:

(i) x2 − k + k2 + x− 2kx− 1 = (k − x)(k − x− 1)− 1 < 0.

(ii) x2 − k + k2 + x− 2kx = (k − x)(k − x− 1) < 0,

In case (ii) we must have x < k < x+ 1, but this is impossible for integer k and x.
In case (i), either k = x or k = x+ 1. Notice that for 1 ≤ i ≤ k, if any of the original

terms di had been less than d1, we would have obtained (k − x)(k − x− 1) < 0, which is
impossible. Similarly, for k+1 ≤ i ≤ n, all the original terms di must have been all equal
to one. Thus d = (dk1 , 1

n−k). Consequently, if k = x, we have d = ((2x − 1)x, 1x
2−1)

as n = x2 + x − 1. In this case, d has sum x(2x − 1) + x2 − 1 = 3x2 − x − 1,
which is odd, regardless of whether x is even or odd, contradicting the hypothesis. On
the other hand, if k = x + 1, we have d = ((2x − 1)x+1, 1x

2−2). Here, d has sum
(2x− 1)(x+ 1) + x2 − 2 = 3x2 + x− 3, which is again odd, regardless of whether x is
even or odd, contrary to the hypothesis.
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