Scientific paper Synthesis and X-ray Structural Analysis of the Ruthenium(III) Complex Na[trans-RuCl4(DMSO) (PyrDiaz)], the Diazene Derivative of Antitumor NAMI-Pyr Jure Vajs,1 Andrej Pevec,1 Martin Gazvoda,1 Damijana Urankar,1 Evgeny Goreshnik,2 Slovenko Polanc1 and Janez Košmrlj1* 1 Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia 2 Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia * Corresponding author: E-mail: janez.kosmrlj@fkkt.uni-lj.si Received: 09-17-2017 Dedicated to Professor Emeritus Miha Tišler, University of Ljubljana, on the occasion of his 90th birthday. Abstract Novel tetrachloridoruthenium(III) complex Na[trans-RuCl4(DMSO)(PyrDiaz)] (3) with pyridine-tethered diazenedi-carboxamide PyrDiaz ligand (PyrDiaz = N1-(4-isopropylphenyl)-N2-(pyridin-2-ylmethyl)diazene-l,2-dicarboxamide) was synthesized by direct coupling of PyrDiaz with sodium trans-bis(dimethyl sulfoxide)tetrachloridoruthenate(III) (Na-[trans-Ru(DMSO)2Cl4]). Compound 3 is the analogue of the antimetastatic Ru(III) complex NAMI-A and NAMI-Pyr. Single crystal X-ray diffraction analysis revealed that the compound 3 is a polymeric complex with the ruthenium and sodium centres. Keywords: Diazene, pyridine, ruthenium(III), sodium, polymeric complex 1. Introduction Based on the WHO estimates, cancer is one of the leading causes of mortality worldwide accounting for 8.8 million deaths in 2015.1 In addition to surgical removal of tumours and radiation therapy, chemotherapy is one of the most commonly applied treatments of cancer. Burden associated with chemotherapy, however, is intrinsic and acquired resistance,2 and severe side-effects that are responsible for considerable morbidity, greatly reducing the effectiveness of the therapy. This, and the striking estimate that the global incidence of cancer continues to increase, urges for new strategies and chemical entities to be de-vised.3 Commenced with a group of platinum chemothera-peutic agents that has been in clinical use for half of a century,4-6 other precious-metal-based alternatives lately enticed an army of chemists worldwide.7 As a result, some ruthenium-based compounds of unique properties, sur- passing cisplatin in activity, particularly on resistant tumours, and with reduced host toxicity at active doses have been discovered.8,9 In the treatment of a complex disease like cancer it is unlikely for a single drug to be effective. To increase the chemotherapeutic success, a combination of two or more active agents having separate targets is commonly administered at the therapy.10 A promising alternative to these so-called cocktails are hybrid molecules that are composed of two or more covalently bound drugs; the compounds that can possess combined pharmacological properties of the individual drugs10,11 yet superior synergistic effects.12,13 Over the past years, we have investigated redox-ac-tive14 diazenecarboxamides as potential anti-cancer agents.15 The results of the in vitro experiments suggested that they likely target tumour cell redox mechanism by oxidation of glutathione into glutathione disulphide.16 A synergistic effect was noted by treating some tumour cell lines with the combination of cisplatin and selected diazenecar- boxamides,16e prompting us to consider novel diazenecar-boxamide-platinum conjugates (Figure 1).6,17 This has led to complex A, possessing higher cytotoxicity against T24 bladder carcinoma cells as compared to the parent platinum precursor ([PtCl(DMSO)(en)]Cl; en = ethylenedi-amine) and organic ligand, for example.18 Redox-active diazenecarboxamides were also combined with organo-metallic [Ru(II)-Arene] to generate complexes with interesting coordination modes and chemical reactivity (Figure 2).19,20 In the context of our endeavour in the field of potential anti-cancer agents, complex B was identified as highly cytotoxic against tumour cell lines with IC50 values in the low micro-molar range.19,21 The activity of B was cell-type specific and comparable in both cancer cell lines and their drug-resistant subline. A tenfold increase in the sensitivity of tumour cervical carcinoma cell lines (HeLa) with depleted intracellular glutathione level in comparison to the untreated HeLa suggested glutathione as the molecular target of B.19 Encouraged by these results and inspired by rutheni-um(III) complexes NAMI-A (imidazolium trans-[tetra-chlorido(dimethyl sulfoxide)imidazole ruthenium(III)]),22 KP1019 (indazolium trans-[tetrachloridobis(1H-inda-zole)ruthenium(III)]) and its sodium salt KP133923 (Fig- H2 fY -K M r"\ ^ Pt ■ ti s A-n n H H>Cr y\ o +2 O r-O CI o n-n. hj ,PI Íb Figure 1. Selected diazenecarboxamide-platinum conjugates. Figure 2. Selected organometallic [Arene-Run-Diazenecarboxamide] compounds. NAMI-Pyr I AziRu Figure 3. Selected Ru(III) complexes having anti-cancer activity. ure 3), we were prompted to examine the coordination ability of diazenedicarboxamide N^(4-isopropylphenyl)-N2- (pyridin- 2-ylmethyl) diazene-1,2- dicarb oxamide ( 1 ) (Scheme 1). Compound 1 has been previously screened for anti-cancer activity.24 2. Experimental Starting materials and solvents for the synthesis of the examined compounds were used as obtained, and without further purification, from Aldrich, Fluka and Alfa Aesar. IR spectrum was obtained with a Bruker ALPHA Platinum ATR spectrometer on a solid sample support (ATR). NMR spectra were recorded in D2O with a Bruker Avance III 500 MHz instrument operating at 500 MHz, at 296 K, and referenced to the peak of HOD (5 = 4.63 ppm). An Agilent 6224 time-of-flight (TOF) mass spectrometer equipped with a double orthogonal electrospray source at atmospheric pressure ionization (ESI) coupled to an Agilent 1260 HLPC was used for recording HRMS spectra. Mobile phase composed of two solvents: A was 0.1% formic acid in Milli-Q water, and B was 0.1% formic acid in acetonitrile mixed in the ratio of 1:1. Compound was prepared by dissolving the sample in acetonitrile and injected (0.1 ^L) into the LC-MS. Flow rate was 0.4 mL/min. Fragmentor voltage was 150 V. Capillary voltage 4000 V. Mass range 100-1100. Elemental analysis (C, H, N) was performed with Perkin Elmer 2400 Series II CHNS/O Analyser. Melting points were determined on the microscope hot stage. 2. 1. The Synthesis of Compound 3 N1-(4-Isopropylphenyl)-N2-(pyridin-2-ylmethyl)di-azene-1,2-dicarboxamide24 (1, 163 mg, 0.5 mmol) was added to a solution of sodium trans-bis(dimethyl sulfox-ide)tetrachloridoruthenate(III) (Na[trans-Ru(DMSO-S)2 Cl4])25 (2, 106 mg, 0.25 mmol) in acetone (10 mL) and stirred at room temperature for 2 h. The solvent was removed under reduced pressure. Dry residue was re-suspended in dichloromethane and filtered off to remove un-reacted ligand 1. The precipitate was dried in air to give compound 3 (165 mg, 99%). Crystal suitable for X-ray structure determination was found in the crude product. Purple solid; mp >250 °C dec.; IR v 3245, 3035, 2959, 1736, 1718, 1603, 1534, 1482, 1459, 1438 cm-1; HRMS (ESI-) m/z for C19H25Cl4N5O3RuS- [M - Na]-: calcd 646.9462, found 646.9467, m/z for C17H18Cl3N5O2Ru-[M-Na-DMSO -HCl]-: calcd 532.9560, found 532.9554; Anal. calcd for C19H25Cl4N5O3NaRuS ■ 0.1 H2O: C, 34.00; H, 3.78; N, 10.43; found: C, 34.48; H, 3.96; N, 10.60. 2. 2. X-ray Structure Determination Crystal data and refinement parameters of 3 ([NaRu-Cl41(DMSO)]n) are listed in Table 1. Single-crystal data were collected at 150 K on a Gemini A diffractometer equipped with an Atlas CCD detector, using graphite monochromated CuKa radiation (À = 1.54184 Â). The data were treated using the CrysAlisPro software suite program package.26 Analytical absorption correction was applied. Structure of compound 3 was solved using direct methods with SHELXS-9727 and refined using the least-squares method on F2 with SHELXL-201428 and using the graphical interface of OLEX2.29 Figures were prepared using Diamond software.30 CCDC 1569486 contains the supplementary crystallographic data for 3. These data can be obtained free of charge from The Cambridge Crystallo-graphic Data Center via www.ccdc.cam.ac.uk/data_re-quest/cif. 3. Results and Discussion The pyridine-tethered diazenedicarboxamide, N1-(4-isopropylphenyl)-N2-(pyridin-2-ylmethyl)diazene-1,2-dicarboxamide (1), was prepared in a three step reaction sequence starting from the commercial reactants as previously described by us (Scheme 1).24 Thus, the addition of carbazate to 4-isopropylphenyl isocyanate gave ethyl 2- ( (4-isopropylphenyl) carb amoyl) hydrazine-1 - carb ox-ylate, which was oxidized with N-bromosuccinimide (NBS) into ethyl 2-((4-isopropylphenyl)carbamoyl)dia-zene-1-carboxylate. Subsequent nucleophilic displacement with 3-picolylamine afforded the target compound 1. Sodium trans--bis(dimethyl sulfoxide)tetrachlori-doruthenate(III) (Na-[trans-Ru(DMSO-S)2ClJ, 2) was selected as the ruthenium(III) precursor. This compound was prepared by the literature procedure starting from the commercial hydrated RuCl3 via hydrogen trans-bis(di-methyl sulfoxide)tetrachloridoruthenate(III) ([(DMSO)2H] [trans-Ru(DMSO-S)2ClJ) as shown in Scheme 2.25 The coordination of ligand 1 to the ruthenium of 2 was performed using procedure based on that reported for Scheme 1. Synthesis of pyridine-tethered diazenecarboxamide ligand 1 (PyrDiaz).24 Scheme 2. Preparation of Ru(III) precursor 2.25 Scheme 3. Synthesis of Ru(III) complex 3 (left) and schematic presentation of sodium ion stabilized three-dimensional framework (right). NAMI-A.31 Combining complex 2 with an excess of ligand 1 in acetone solution resulted in displacement of one dimethyl sulfoxide ligand in the ruthenium coordination sphere and the formation of a new compound 3 shown in Scheme 3 (left). In contrast to our previous findings19,20 for arene-ruthenium(II) compounds from Figure 2, in complex 3 diazene moiety did not participate in coordination to the metal centre. Instead, the pyridine part of the molecule replaced one axial dimethyl sulfoxide ligand. The charge compensation was provided by sodium ion. In solid state, the sodium ion interconnects the anionic ruthenium units into a three-dimensional framework, schematically presented in Scheme 3 (right). The structure of the complex 3 was fully characterized by 1H NMR, elemental analysis and ESI-HRMS. Complex 3 was analysed by high-resolution (HRMS) elec-trospray ionization mass spectrometry in negative ion mode (ESI-). The spectrum, shown in Figure 4, was dominated by the parent [RuIIICl4(DMSO)(PyrDiaz)]- ion at m/z 646.9467 (calcd for C19H25Cl4N5O3RuS-: 646.9462). Another peak at m/z 532.9566 was interpreted as a result of in source collision-induced dissociation of the parent ion giving [RuIIICl3(PyrDiaz - H)]- ion at m/z 532.9554 (calcd for C17H18Cl3N5O2Ru- ([M - Na - HCl]-: 532.9560). In positive mode (ESI+), the spectrum of compound 3 was featureless. The paramagnetic ruthenium(III) ion severely broadened the NMR signals of coordinated ligands, not allowing the assignment procedure. The 1H NMR spectra of freshly prepared D2O solutions of complexes 2 and 3 are shown in Figure 5. Chemical shifts of the coordinated DMSO ligand, peaks at ca. -15 ppm to -18 ppm, are in agreement with published data for the NAMI-type complexes.31,32 Monitoring the D2O solution of 3 for 24 h at Figure 4. ESI- HRMS spectrum of compound 3. Peaks at m/z 112.9856 and m/z 1033.9881 are due to calibrants. Figure 5. 'H NMR spectrum of a) complex 3, and b) complex 2 as D2O solutions. Relevant insets are only shown (spectra were recorded with spectral width of 60 ppm, number of scans = 128). room temperature by 'H NMR indicated the formation of a complex mixture of products as seen by the appearance of several overlapping broad resonances in the spectra. The structures of these by-products could not be deduced from the spectra. The structure of compound 3 could unambiguously be determined by a single crystal X-ray structure determination and is displayed in Figure 6. Selected bond lengths and angles are given in Table 2. Compound 3 is a polymeric complex with the ruthenium and sodium metallic atoms. Each of the Ru111 atoms are hexacoordinated by sulphur atom from DMSO molecule and the pyridine nitrogen of 1 in apical positions and four chlorido ligands in an equatorial plane. The sulphur-bound DMSO and ligand 1 are trans in nearly octahedral geometry of ruthenium cen- tral atom. The Ru-N and Ru-S bond distances of 2.109(6) and 2.2924(17) A, respectively, are very similar to those found in the related structures containing trans-RuNCl4S donor set.33-35,37 Three of the chlorido ligands are terminal while Cl4 forms a bridge between the ruthenium and sodium atoms. The DMSO ligand also forms a bridge between a ruthenium centre (through its sulphur atom) and a sodium (through its oxygen) thus forming a five membered RuClNaOS ring in the crystal structure. The sodium has six atoms in its distorted octahedrally coordinated environment with the resulting ClN2O3 donor set. Sodium atom is coordinated by two ligands 1, each through one of the diazene nitrogen and one carbonyl oxygen atom. The coordination sphere of sodium atom in the structure of compound 3 is fulfilled by oxygen (bridging DMSO) and Figure 6. Part of the crystal structure of the compound 3, showing atom numbering scheme and hydrogen bonding interactions. The hydrogens on carbon atoms have been omitted for clarity. Table 1. Crystal data and structure refinement details for 3. 3 formula C19H25Cl4N5NaO3RuS Fw (g mol-1) 669.36 crystal size (mm) 0.59 x 0.12 x 0.01 crystal color Yellow crystal system Orthorhombic space group P n a 2l a (Â) 9.64914(19) b (Â) 21.4978(6) c (Â) 14.5013(3) V (Â3) 3008.07(12) Z 4 calcd density (g cm-3) 1.478 F(000) 1348 no. of collected reflns 9948 no. of independent reflns 4713 Rint 0.0443 no. of reflns observed 4388 no. parameters 323 Flack parameter -0.022(16) R[I > 2a (I)]a 0.0415 wR2 (all data)b 0.1113 Goof, Sc 1.067 maximum/minimum residual +0.909/-0.462 electron density (e Â-3) 0 R = £||Fo| - |Fc||/I|Fo|. b wR2 = {X[w(Fo2 - Fc2)2]/X[w(Fo2)2]}1/2. c S = {X[(F 2 - F 2)2]/(n/p)}1/2 where n is the number of reflections and p is the total number of parameters refined. Table 2. Selected bond lengths (Â) and angles (°) for 3. Ru1 - Cl1 2.3294(17) Cl1 - ■ Ru1 - Cl2 92.44(7) Ru1 - Cl2 2.3624(18) Cl1 - ■ Ru1 - Cl3 90.27(7) Ru1 - Cl3 2.3387(17) Cl1 - ■ Ru1 - Cl4 175.82(7) Ru1 - Cl4 2.3797(17) Cl1 - ■ Ru1 - S1 89.86(7) Na1 - O1 2.397(7) Cl1 - ■ Ru1 - N5 89.57(18) Na1 - O2 2.290(6) N5 - Ru1 - S1 179.32(18) Na1 - O3 2.319(6) Cl2 - ■ Ru1 - Cl3 177.29(7) Na1 - N2 2.558(6) O1 - Na1 - O2 104.3(3) Na1 - N3 2.542(7) O1 - Na1 - O3 141.3(2) Na1 - Cl4 2.683(3) O1 - Na1 - N2 77.2(2) N1 - ■ C10 1.321(11) O1 - Na1 - N3 64.0(2) N2 - N3 1.228(9) O1 - Na1 - Cl4 83.72(19) N2 - ■ C10 1.490(9) N2 - N3 - C11 109.5(6) N3 - ■ C11 1.474(9) N3 - C11 - N4 110.1(6) N4 - ■ C11 1.345(10) N3 - N2 - C10 111.3(6) O1 - ■ C10 1.198(9) C10 - N1 - C7 127.7(7) O2 - ■ C11 1.204(9) C11 - N4 - C12 119.4(6) bridging chlorido ligand. Both diazene nitrogen atoms and both carbonyl oxygen atoms of ligand 1 are involved in the coordination to sodium atoms in the polymeric structure of compound 3. A similar coordination environment around sodium ion has been found in related tetrachlori-doruthenium(III) complexes.33-36 The crystal structure of 3 is further stabilized by three intramolecular hydrogen bonds of the type N-H-O and N-H-F (Table 3). A pyridine-heterocycle unsubstituted analogue of 3, called NAMI-Pyr37 and AziRu38 (Figure 3), has been reported to show interesting reactivity profiles towards biologically relevant targets.9 Derivatives with functionalized pyridine ligand have also been investigated.32 Unfortunately, no biological studies of 3 were possible due to its instability and decomposition in protic solvents (vide supra). 4. Conclusions We have reported the synthesis of novel tetrachlori-doruthenium(III) complex Na[frans-RuCl4(DMSO) (PyrDiaz)] (PyrDiaz = N1-(4-isopropylphenyl)-N2-(pyri-din-2-ylmethyl)diazene-1,2-dicarboxamide), a pyridine-tethered derivative of NAMI-A that has a redox-active di-azencarobxamide ligand (PyrDiaz) in the structure. It has been designed to target tumour cell-lines synergistically by means of known antiproliferative activity of NAMI-A and glutathione oxidation ability enacted by the diazene part of the molecule. Although in this particular case the instability and decomposition of Na[frans-RuCl4(DMSO)(PyrDiaz)] in protic solvents disabled biological studies, work is in progress to improve the physicochemical properties of such PyrDiaz-ruthenium(III) complexes. 5. Acknowledgments The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P1-0230, Young Researcher Grant to JV, and No. P1-0175). 6. References 1. http://www.who.int/mediacentre/factsheets/fs297/en/ (accessed: July 29, 2017) 2. V Brabec, J. Kasparkova, Drug Resist. Updates 2005, 8, 131146. D01:10.1016/j.drup.2005.04.006 Table 3. Hydrogen bonding geometry for 3. D - H ••• A d(D - H)/ A d(H ••• A)/ A d(D ••• A)/ A <(DHA)/ ° N1 - H1N1 ••• Cl4 0.88 2.72 3.455(5) 141.9 N1 - H1N1 ••• O1 0.88 2.53 3.236(7) 137.4 N4 - H1N4 ••• O3 0.88 2.05 2.922(6) 169.9 3. B. A. Chabner, T. G. Roberts, Jr., Nat. Rev. Cancer. 2005, 5, 65-72. D01:10.1038/nrc1529 4. B. Rosenberg, L. VanCamp, J. E. Trosko, V. H. Mansour, Nature 1969, 222, 385-386. D0I:10.1038/222385a0 5. For selected informative reading, see: (a) M. Galanski, M. A. Jakupec, B. K. Keppler, Curr. Med. Chem. 2005, 12, 20752094; DOI: 10.2174/0929867054637626 (b) A. V. Klein, T. W. Hambley, "Platinum-Based Anticancer Agents", in: T. Storr (Ed.): Ligand design in medicinal inorganic chemistry, John Wiley & Sons, 2014; D0I:10.1002/9781118697191.ch2 (c) T. C. Johnstone, K. Suntharalingam, S. J. Lippard, Chem. Rev. 2016, 116, 3436-3486; D0I:10.1021/acs.chemrev.5b00597 (d) D. M. Cheff, M. D. Hall, J. Med. Chem. 2017, 60, 45174532. DOI: 10.1021/acs.jmedchem.6b01351 6. J. D. White, M. M. Haley, V J. DeRose Acc. Chem. Res. 2016, 49, 56-66. D0I:10.1021/acs.accounts.5b00322 7. For selected informative reading, see: (a) S. P. Fricker, Dalton Trans. 2007, 4903-4917; (b) P. C. A. Bruijnincx, P. J. Sadler, Curr. Opin. Chem. Biol. 2008, 12, 197-206; (c) I. Romero-Canelon, P. J. Sadler, Inorg. Chem. 2013, 52, 12276-12291; (d) K. Dralle Mjos, C. Orvig, Chem. Rev. 2014, 114, 45404563; (e) R. D. Teo, J. Y. Hwang, J. Termini, Z. Gross, H. B. Gray, Chem. Rev. 2017, 117, 2711-2729; (f) T. Lazarevic, A. Rilak, Ž. D. Bugarčic, Eur. J. Med. Chem. 2017. http://dx.doi.org/10.1016/j.ejmech.2017.04.007. 8. For selected informative reading, see: (a) C. S. Allardyce, P. J. Dyson, Platinum Metals Rev. 2001, 45, 62-69; (b) I. Kostova, Curr. Med. Chem. 2006, 13, 1085-1107; D01:10.2174/092986706776360941 (c) W. H. Ang, P. J. Dyson, Eur. J. Inorg. Chem. 2006, 40034018; D0I:10.1002/ejic.200600723 (d) E. S. Antonarakis, A. Emadi, Cancer Chemother Pharmacol. 2010, 66, 1-9; D0I:10.1007/s00280-010-1293-1 (e) A. Bergamo, G. Sava, Dalton Trans. 2011, 40, 7817-7823; D0I:10.1039/c0dt01816c (f) C. G. Hartinger, N. Metzler-Nolte, P. J. Dyson, Organome-tallics 2012, 31, 5677-5685; D0I:10.1021/om300373t (g) A. Bergamo, C. Gaiddon, J. H. M. Schellens, J. H. Beijnen, G. Sava, J. Inorg. Biochem. 2012, 106, 90-99; D0I:10.1016/j.jinorgbio.2011.09.030 (h) C. Mu, C. J. Walsby, "Ruthenium Anticancer Compounds with Biologically-Derived Ligands", in: T. Storr. (Ed.): Ligand design in medicinal inorganic chemistry, John Wiley & Sons, 2014; D0I:10.1002/9781118697191.ch15 (i) M. J. Chow, W. H. Ang, "Organoruthenium(II)-Arene Complexes: Structural Building Blocks for Anticancer Drug Discovery", in: K. Kam-Wing Lo (Ed.): Inorganic and Orga-nometallic Transition Metal Complexes with Biological Molecules and Living Cells, Academic Press, 2016. 9. C. Riccardi, D. Musumeci, C. Irace, L. Paduano, D. Montesar-chio, Eur. J. Org. Chem. 2017, 1100-1119. 10. L. K. Gediya, V. C. O. Njar, Expert Opinion on Drug Discovery 2009, 4, 1099-1111. D0I:10.1002/ejoc.201600943 11. B. Meunier, Acc. Chem. Res. 2008, 41, 69-77. DOI: 10.1021/ar7000843 12. A. Muller-Schiffmann, J. Marz-Berberich, A. Andreyeva, R. Ronicke, D. Bartnik, O. Brener, J. Kutzsche, A. H. C. Horn, M. Hellmert, J. Polkowska, K. Gottmann, K. G. Reymann, S. A. Funke, L. Nagel-Steger, C. Moriscot, G. Schoehn, H. Sticht, D. Willbold, T. Schrader, C. Korth, Angew. Chem. Int. Ed. 2010, 49, 8743-8746. D0I:10.1002/anie.201004437 13. S. Patyar, A. Prakash, B. Medhi, J. Pharm. Pharmacol. 2011, 63, 459-471. D0I:10.1111/j.2042-7158.2010.01236.x 14. J. Košmrlj, M. Kočevar, S. Polanc, J. Chem. Soc., Perkin Trans.1 1998, 3917-3920. D0I:10.1039/a808381i 15. For reviews, see: (a) J. Košmrlj, M. Kočevar, S. Polanc, Synlett 2009, 2217-2235; (b) H. Kaur, S. Yadav, B. Narasimhan, Anti-Cancer Agents in Medicinal Chemistry 2016, 16, 1240-1265. DOI: 10.2174/1871520616666160607012042 16. (a) L. Pieters, J. Košmrlj, R. Lenaršič, M. Kočevar. S. Polanc, Arkivoc 2001, 42-50. (b) T. Čimbora-Zovko, S. Bombek, J. Košmrlj, L. Kovačic, S. Polanc, A. Katalinic, M. Osmak, Drug Dev. Res. 2004, 61, 95-100. DOI: 10.1002/ddr. 10336 (c) I. Martin-Kleiner, S. Bombek, J. Košmrlj, B. Čupic, T. Čimbora-Zovko, S. Jakopec, S. Polanc, M. Osmak, J. Ga-brilovac, Toxicol. In Vitro 2007, 21, 1453-1459. DOI: 10.1016/j.tiv.2007.06.005 (d) S. Jakopec, K. Dubravcic, S. Polanc, J. Košmrlj, M. Osmak, Toxicol. In Vitro 2006, 20, 217-226. DOI: 10.1016/j.tiv.2005.06.008 (e) S. Jakopec, K. Dubravcic, A. Brozovic, S. Polanc, M. Osmak, Cell Biol. Toxicol. 2006, 22, 61-71. DOI: 10.1007/s10565-006-0023-2 17. (a) D. Urankar, A. Pevec, J. Košmrlj, Eur. J. Inorg. Chem. 2011, 1921-1929; DOI:10.1002/ejic.201001051 (b) N. Stojanovic, D. Urankar, A. Brozovic, A. Ambrio-vic-Ristov, M. Osmak, J. Košmrlj, Acta Chim. Slov. 2013, 60, 368-374. 18. S. Grabner, J. Košmrlj, N. Bukovec, M. Čemažar, J. Inorg. Biochem. 2003, 95, 105-112. DOI:10.1016/S0162-0134(03)00092-8 19. M. G. Sommer, P. Kureljak, D. Urankar, D. Schweinfurth, N. Stojanovic, M. Bubrin, M. Gazvoda, M. Osmak, B. Sarkar, J. Košmrlj, Chem. Eur. J. 2014, 20, 17296-17299. DOI: 10.1002/chem.201404448 20. M. G. Sommer, S. Marinova, M. J. Krafft, D. Urankar, D. Schweinfurth, M. Bubrin, J. Košmrlj, B. Sarkar, Organometal-lics 2016, 35, 2840-2849. DOI:10.1021/acs.organomet.6b00424 21. For reviews on organometallic anticancer drugs, see refs. 8f,h,i. 22. J. M. Rademaker-Lakhai, D. van den Bongard, D. Pluim, J. H. Beijnen, J. H. M. Schellens, Clin. Cancer Res. 2004, 10, 37173727. DOI:10.1158/1078-0432.CCR-03-0746 23. C. G. Hartinger, M. A. Jakupec, S. Zorbas-Seifried, M. Groessl, A. Egger, W. Berger, H. Zorbas, P. J. Dyson, B. K. Keppler, Chem. Biodivers. 2008, 5, 2140-2155. DOI: 10.1002/cbdv.200890195 24. J. Vajs, S. Sovicek, P. Kureljak, N. Stojanovic, I. Steiner, D. El-juga, D. Urankar, M. Kocevar, J. Kosmrlj, S. Polanc, M. Os-mak, Acta Chim. Slov. 2013, 60, 842-852. 25. E. Alessio, G. Balducci, M. Calligaris, G. Costa, W. M. Attia, G. Mestroni, Inorg. Chem. 1991, 30, 609-618. DOI: 10.1021/ic00004a005 26. Rigaku Oxford Diffraction, CrysAlisPro Software System, Version 1.171.38.41, Rigaku Corporation, Oxford, UK, 2015. 27. G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112-122. DOI: 10.1107/S0108767307043930 28. G. Sheldrick, Acta Crystallogr. Sect. 2015, C71, 3-8. DOI: 10.1107/S2053273314026370 29. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341. DOI: 10.1107/S0021889808042726 30. Crystal Impact GbR, Bonn, Germany (2004-2005) DIAMOND v3.1. 31. E. Alessio, G. Balducci, A. Lutman, G. Mestroni, M. Calligaris, W. M. Attia, Inorg. Chim. Acta 1993, 203, 205-217. DOI:10.1016/S0020-1693(00)81659-X 32. For selected recent example, see: C. Mu, S. W. Chang, K. E. Prosser, A. W. Y. Leung, S. Santacruz, T. Jang, J. R. Thompson, D. T. T. Yapp, J. J. Warren, M. B. Bally, T. V. Beischlag, C. J. Walsby, Inorg. Chem. 2016, 55, 177-190. DOI:10.1021/acs.inorgchem.5b02109 33. C. M. Anderson, A. Herman, F. D. Rochon, Polyhedron 2007, 26, 3661-3668. DOI:10.1016/j.poly.2007.03.041 34. S. Ferrara, A. Kreider-Mueller, J. M. Tanski, C. M. Anderson, Acta Crystallogr. 2011, E67, m756-m757. 35. C. M. Anderson, S. S. Jain, L. Silber, K. Chen, S. Guha, W. Zhang, E. C. McLaughlin, Y. Hu, J. M. Tanski, J. Inorg. Bio-chem. 2015, 145, 41-50. DOI:10.1016/j.jinorgbio.2014.12.017 36. Z. Travnicek, M. Matikova-Malarova, Acta Crystallogr. 2010, E66, m348-m349. 37. M. I. Webb, R. A. Chard, Y. M. Al-Jobory, M. R. Jones, E. W. Y. Wong, C. J. Walsby, Inorg. Chem. 2012, 51, 954-966. DOI:10.1021/ic202029e 38. G. Mangiapia, G. D'Errico, L. Simeone, C. Irace, A. Radules-cu, A. Di Pascale, A. Colonna, D. Montesarchio, L. Paduano, Biomaterials 2012, 33, 3770-3782. DOI:10.1016/j.biomaterials.2012.01.057 Povzetek Z neposredno reakcijo med PyrDiaz ligandom (PyrDiaz = N1-(4-izopropilfenil)-N2-(piridin-2-ilmetil)diazen-1,2-dikar-boksamid)) in natrijevim trans-bis(dimetil sulfoksid)tetrakloridorutenatom(III) (Na-[trans-Ru(DMSO)2Cl4]) smo sin-tetizirali nov tetrakloridorutenijev(III) kompleks Na[trans-RuCl4(DMSO)(PyrDiaz)] (3) s piridin-funkcionaliziranim diazenkarboksamidnim ligandom PyrDiaz. Spojina 3 je analog antimetastatičnega Ru(III) kompleksa NAMI-A in NAMI-Pyr. Rentgenska difrakcijska analiza monokristala je pokazala, da je spojina 3 polimeren kompleks z rutenijevimi in natrijevimi kovinskimi atomi.