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In 1548, Domenico da Pesaro constructed a gravecembalo for Gioseffo Zarlino, the 
description and sketch of which were later included in the theorist’s famous treatise, 
Istitutioni harmoniche (1558).1 The instrument immediately draws a modern reader’s 

1 Gioseffo Zarlino, Istituzioni armoniche (Treviso: Diastema, 2011), 293–294.
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IZVLEČEK

Prispevek obravnava vprašanje o uglasitvi, kot 
se kaže v osrednjem glasbenoteoretskem spisu 
Gioseffa Zarlina  Istitutioni harmoniche (1558). 
Predstavljen je sistem uglasitve, ki ga Zarlino 
utemeljuje v vokalni glasbi (sintonični diatonični 
sistem), prikazane so njegove omejitve in slednjič 
njegova prilagoditev (temperacija) za rabo v instru-
mentalni glasbi. 
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ABSTRACT

This paper deals with the tuning question as it is 
discussed in Gioseffo Zarlino’s principal musical-
-theoretical treatise, Istitutioni harmoniche (1558). 
First, Zarlino’s tuning system in vocal music (the 
syntonic diatonic) is presented; then, its shortco-
mings are discussed; and finally, its adjustment 
(temperament) for the use in instrumental music 
is explained. 
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attention. It is quite unconventional, with many more keys on the keyboard than one 
would expect to find on a modern piano: Not one but two chromatic keys are placed 
between diatonic keys framing a whole tone, and there is even an additional chromatic 
key between those diatonic keys that frame a semitone. Therefore, questions may be 
posed about why the instrument was constructed this way and what the function of so 
many keys on its keyboard could be. 

Figure 1: The sketch of the instrument that Domenico da Pesaro constructed for Gioseffo 
Zarlino in 1548 (Gioseffo Zarlino, Istitutioni harmoniche (Venezia, 1558), 141).

The answers to the posed questions are closely connected to the tuning of Zarlino’s 
harpsichord. The tuning question (the theoretical search for an acoustic system within 
which practical music evolves) was one of the key questions discussed by the renais-
sance music theorists in their treatises. For centuries, the Pythagorean system, founded 
on perfect consonances whose ratios can be described by the first four numbers,2 pre-
vailed. However, with the rise of equal-voice polyphony, besides the Pythagorean per-
fect consonances, the pleasant-sounding thirds and sixths were becoming more and 
more important, and the framework of the Pythagorean system soon became too nar-
row: The Pythagorean tuning had to be adjusted (tempered) to the contemporary musi-
cal reality, and in Istitutioni harmoniche, Zarlino presented his proposal for the system.

The ancient system as the basis for Zarlino’s discussion of the 
tuning question

Like many other renaissance theorists, Zarlino bases his discussion of the tuning 
system in Istitutioni harmoniche on several important ancient music theorists’ writ-
ings, above all Boethius’ and Ptolemy’s. Consequently, the model for his system is a 

2	 Double octave (4:1), octave plus fifth (3:1), octave (2:1), fifth (3:2), and fourth (4:3). For a more detailed description of the 
Pythagorean system, see André Barbera, “Pythagoras”, and Mark Lindley, “Pythagorean Intonation”.
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double-octave scale of 16 tones in which the five tetrachords of the ancient Greater and 
Lesser Perfect Systems are joined.3

A – hypaton	 B – meson	 C – diezeugmenon	
2 hypate hypaton	 5 hypate meson	 10 paramese 
3 parhypate hypaton	 6 parhypate meson	 11 trite diezeugmenon 
4 lychanos hypaton	 7 lychanos meson	 12 paranete diezeugmenon 
5 hypate meson	 8 mese	 13 nete diezeugmenon 

D – hyperboleon	 E – synemmenon	 1 proslambanomenos
13 nete diezeugmenon	 8 mese
14 trite hyperboleon	 9 trite synemmenon
15 paranete hyperboleon	 11 paranete synemmenon
16 nete hyperboleon	 12 nete synemmenon

Figure 2: The Greater Perfect System with tetrachord synemmenon in diatonic genre. 

When he explains the construction of his system, Zarlino also gives a detailed ac-
count of some of the species of all three tetrachord genera.4 At the beginning of this 
presentation, the theorist informs us that he will not deal with Aristoxenus’, Archytas’, 
Didymus’, or Eratosthenes’ divisions of the tetrachord, as they were rejected by both 
Boethius and Ptolemy and are therefore useless.5 He will only discuss the divisions 
that according to Ptolemy were accepted as the best by the musicians of his time. In 
Zarlino’s opinion, these are the most rational (rationali), and the ear hears them as the 

3	 Zarlino dedicates the major part of the Istitutioni’s second book to the construction of the double-octave system in which 
the ancient Greater and Lesser Perfect Systems are joined (see above all Zarlino, Istituzioni armoniche, 215–242). Zarlino’s 
discussion is based mostly on Chapter 20 from the first book of Boethius’ Fundamentals of Music (Anicius Manlius Severinus 
Boethius, Fundamentals of Music, trans. Calvin M. Bower (New Haven: Yale University Press, 1989), 29–39).

4	 As is commonly known, in the core of the ancient Greek tonal system was the tetrachord. It was based on the interval, which 
the Greek music theorists understood as the smallest consonance: Each tetrachord was composed of four tones, the outer two 
always being in the ratio of the fourth. On the other hand, the inner two were movable and could divide the fourth in many 
different ways, thus forming many different variants of the tetrachord, some of them more similar to each other than others. 
Consequently, it was already Aristoxenus (fourth century BC) who systematized three different genera of music, the diatonic 
(in a modern approximation composed of the interval sequence semitone – tone – tone), the chromatic (semitone – semitone 
– minor third), and the enharmonic (quartertone – quartertone – major third). The tetrachords systematized into one of the 
given genera became their species. Aristoxenus discussed the genera of music in the first and second books of Harmonica 
Stoicheia (Andrew Barker, Greek Musical Writings II (Cambridge: Cambridge University Press, 1989), 139–144, 159–161).

5	 Boethius deals with the divisions of the tetrachord in Chapters 15, 16, 17, 18, and 19 of Book 5 (Boethius, Fundamentals of 
Music, 174–179); however, he almost literally follows Ptolemy, who discusses the subject in Chapters 12, 13, 14, 15, and 16 of 
Book 1 of Harmonika (Barker, Greek Musical Writings II, 301–314).
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most consonant (più consonanti al udito).6 The tetrachord species Zarlino discusses 
in Istitutioni are listed in the table below. To make things clearer, a presentation of the 
modern approximations of the ancient tetrachord genera has been added to it (figure 
3), and the values of interval ratios (R) have been calculated in cents (C).

Figure 3: Modern approximations of the ancient tetrachord genera. 

Species of tetrachord R 1 C 1 R 2 C 2 R 3 C 3
ditonic diatonic (diatonico diatono) 9:8 203.89 9:8 203.89 256:243 90.227

soft diatonic (diatonico molle) 8:7 231.16 10:9 182.39 21:20 84.46
syntonic or tense diatonic or Natu-
ral (diatonico sintono overo inci-
tato, ò Naturale)

10:9 182.39 9:8 203.89 16:15 111.72

tonic diatonic (diatonico toniaco) 9:8 203.89 8:7 231.16 28:27 62.96
equal diatonic (diatonico equale) 10:9 182.39 11:10 164.99 12:11 150.62
old chromatic (chromatico antico) 19:16 297.49 81:76 110.30 256:243 90.22
soft chromatic (chromatico molle) 6:5 315.61 15:14 119.43 28:27 62.96
tense chromatic (chromatico inci-
tato)

7:6 266.85 12:11 150.62 22:21 80.53

old enharmonic (enharmonico 
antico)

81:64 407.79 499:486 45.70 512:499 44.52

Ptolemy’s enharmonic  
(enharmonico di Tolomeo)

5:4 386.28 24:23 73.67 46:45 38.05

Table 1: Species of tetrachord discussed by Zarlino in Istitutioni.7

In connection with the just-listed species of tetrachord, it should be noted that the 
above-presented double-octave system of 16 tones can only be the result of the con-
struction based on the tetrachord species used by Zarlino (following Boethius): It has 
to be constructed with the first species of the diatonic tetrachord (ditonic diatonic).8 If 

6	 Zarlino, Istituzioni armoniche, 186–187.
7	 The sum of the cents in a single table row has to be 498 – it is the size of the fourth in the ratio 4:3 (which at the same time is 

the sum of all single table row ratios).
8	 As can be seen in the above Table 1, the ditonic diatonic tetrachord is composed of a diatonic semitone in the ratio of 256:243 

and two equal whole tones in the ratio of 9:8. It is on this tetrachord that the so-called Pythagorean tuning system, founded on 
ratios that were supposed to have been discovered in audible music already by Pythagoras, was built. The whole tone in the 
ratio of 9:8 can actually be expressed as a difference between the fifth (3:2) and fourth (4:3): 3---2 : 

4---3 = 3---2 ∙ 
4---3 = (9:8). Moreover, the 

ratio of the diatonic semitone 256:243 can be expressed as a difference between the fourth (composed of two whole tones 
and a semitone) and two whole tones: 4---3 :  

9---8 : 
9---8 = 4---3 ∙ 

9---8 ∙ 
9---8 = (256:243). Also constructed on the ditonic diatonic tetrachord is the 

system in Boethius’ Fundamentals of Music.
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the system were built on any other tetrachord species, the result could be different. The 
differences would indeed occur within tetrachords synemmenon and diezeugmenon, 
namely between paranete synemmenon and trite diezeugmenon and between nete 
synemmenon and paranete diezeugmenon. If we assumed that all semitones in the 
system were of the same size (for example 100 cents, as it is common in modern tun-
ing), then the named tones would sound in unison: 

Since in a ditonic diatonic tetrachord the semitone in the ratio of 256:243 is followed 
by two equal tones in the ratio of 9:8, paranete synemmenon and trite diezeugmenon 
and nete synemmenon and paranete diezeugmenon are of the same relative pitch: 

Quite to the contrary, the differences between the tones in question would emerge 
if the system were constructed with any of the other diatonic tetrachords. In the first 
of the tables below, the ratios of all five species of diatonic genre are compared. For 
a clearer image, the second table shows the summarized ratios between mese and 
paranete synemmenon and mese and trite dizeugmenon, whereas in the third table, 
the summarized ratios between mese and nete synemmenon9 and mese and paranete 
diezeugmenon are listed. 

9	 Since the whole tetrachord synemmenon is in question here, the ratio is always 4:3.
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Diatonic tetrachord
1 ditonic	 3 syntonic or tense	 5 equal
2 soft		  4 tonic 

It can be observed that paranete synemmenon and trite diezeugmenon differ in 
pitch in soft, tonic, and equal diatonic tetrachords and that nete synemmenon and 
paranete diezeugmenon are different in soft, syntonic, and equal diatonic tetrachords. 
Thus, the system will only include 16 tones if built with the ditonic diatonic tetrachord. 
If it were constructed with the syntonic or tonic diatonic tetrachord, the number would 
increase to 17, and if the soft or equal diatonic tetrachord were taken as its foundation, 
there would be 18 different tones in the system. Moreover, the use of different chro-
matic or enharmonic species or even a merging of all three genera in a unified system 
(which is actually done in Istitutioni10) would result in many more variants; in this case, 
the system could include even more than 30 different tones.

Zarlino’s syntonic diatonic tuning in vocal music

After the construction and exploration of the system in all of the presented species 
of all three musical genera, the next obvious step for Zarlino is to find the one used in 
contemporary music or – in other words – to determine the contemporary tuning. He 
maintains that up to his time, everyone was convinced that in playing and singing, the 
first species of diatonic genre, namely the ditonic diatonic, was used; it was advocated 
by both ancient and modern theorists.11 Zarlino does not agree with them: He is con-
vinced that in contemporary music, the syntonic diatonic tuning is in use.

The syntonic diatonic system is constructed on the syntonic diatonic tetrachord, in 
which a diatonic semitone in the ratio of 16:15 is followed by two different tones in the 
ratios of 9:8 and 10:9.

10	 See Zarlino, Istituzioni armoniche, 251–254.
11	 Zarlino, Istituzioni armoniche, 190.
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Figure 4: The syntonic diatonic tetrachord.

The syntonic diatonic system is one of those combinations mentioned above that 
would include 17 tones, as in it, nete synemmenon and paranete diezeugmenon dif-
fer in pitch. In this case, the difference between them is the difference between the 
major tone in the ratio of 9:8 (trite diezeugmenon – paranete diezeugmenon) and 
the minor tone in the ratio of 10:9 (paranete synemmenon – nete synemmenon); it is 
in the ratio of 81:80.12

Figure 5: System in the syntonic diatonic genre.

Zarlino describes the interval that occurs as the difference between the major and 
minor tones as the smallest interval (minimo intervallo) and names it comma.13 Even 
if it is small and cannot be used on its own, it doesn’t mean it’s entirely useless, Zarlino 
explains. Only with the help of this interval can the fifth between d and a14 and the 
minor third between d and f15 be obtained. If in practice, in singing and playing instru-
ments, the comma were used on its own, it wouldn’t please the ear. However, nature 
has seen to it that its effect is dispersed through the voices and does not affect the hear-
ing, Zarlino concludes.16

Zarlino is convinced that intervals, as they were created by nature, can only be 
found within the ratios of the syntonic diatonic system: According to senario,17 only 

12	 9---8 : 
10---------    9  = 9---8 ∙ 

10---------    9  = 81---------    80  = (81:80).
13	 Zarlino, Istituzioni armoniche, 262. Since the comma in question originates in the difference between the major and minor 

tones of the syntonic species of diatonic genera, it is called syntonic comma; its size is 21.5 cents.
14	 Between d and a there is a diminished fifth in the ratio of 40:27:   10---------    9   ∙ 

9---8  ∙ 
16---------    15  ∙  

10---------    9   =  14400--------------------------------               9720   = 40---------    27  = (40:27). If the comma (81:80) is added 
to it, the result is the fifth in its true ratio 3:2: 40---------    27   ∙ 

81---------    80   =  3240--------------------------------               2160   = 3---2 = (3:2)
15	 Between d and f there is a diminished minor third in the ratio of 32:27: 16----- -    15  ∙ 

10---------    9   =   160------------- 135  = 32--------    27  = (32:27). If the comma (81:80) is added 
to it, the result is the minor third in its true ratio 6:5:  32--------    27  ∙ 

81---------    80  =   2592--------------------------------               2160   = 6---8  = (6:5).
16	 Zarlino, Istituzioni armoniche, 262.
17	 As is well known, in Istitutioni, Zarlino rejects the Pythagorean system founded on the first four numbers, from which the ratios of 

perfect consonances can be derived. Besides the Pythagorean consonances, he also defines thirds and sixths as consonant intervals 
(although imperfect). However, the thirds and sixths did not sound good in the Pythagorean system since their ratios are quite 
complex (32:27, 81:64, 128:81, and 27:16). Therefore, instead of number four (numero quaternario), Zarlino advocates the importance 
of number six (numero senario). In addition to the ratios of perfect consonances, from the first six numbers, the simpler ratios of 
better-sounding major (5:4) and minor (6:5) third and major sixth (5:3) can be derived. Since the ratio of minor sixth (8:5), which 
was also considered to be consonant, remains outside the first six numbers, along with the number six, Zarlino also advocates the 
importance of number eight. For a more detailed description of senario, see Zarlino, Istituzioni armoniche, 61–70, 130–133.
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the thirds in the ratios of 5:4 (major) and 6:5 (minor) and sixths in the ratios of 5:3 (ma-
jor) and 8:5 (minor) are consonant, and these are only present in the syntonic species 
of diatonic genre.18 

Figure 6: The ratios of thirds in the syntonic diatonic genre.

Figure 7: The ratios of sixths in the syntonic diatonic genre.

After discovering that the consonant thirds and sixths are only present within the 
syntonic diatonic genre, Zarlino considers all the other diatonic species imperfect: 
There is no perfect harmony within them.19 And if there is no perfect harmony within 
the other diatonic species, how could it ever be present within the chromatic or enhar-
monic genre? Their species are not only without imperfect consonances but, in many 
cases, also without the perfect ones, Zarlino concludes.20

Since in syntonic tuning only untempered intervals in their basic (natural) ratios 
are used, it is also referred to as just intonation or natural tuning.21 

The weaknesses of syntonic diatonic system

Although Zarlino advocates it as the only perfect system, there are some discrep-
ancies to be found in the syntonic diatonic tuning as well. From the above figures 6 
and 7, it is clear that not all of the thirds and sixths are in the ratios defined as natural 
by Zarlino after all: Between d and f, there is the already mentioned third in the ratio 

18	 Zarlino, Istituzioni armoniche, 231–233.
19	 Zarlino, Istituzioni armoniche, 231.
20	 Zarlino, Istituzioni armoniche, 245, 250.
21	 For a more detailed description see Bruno Ravnikar, Osnove glasbene akustike in informatike (Ljubljana: DZS, 1999), 38–39, 

and Ross W. Duffin, How Equal Temperament Ruined Harmony (and Why You Should Care) (New York: W. W. Norton & 
Company, 2007), 33. 
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of 32:27, which is a comma smaller than minor third in the regular ratio of 6:5, and 
between f and d, there is a sixth in the ratio of 27:16, which is a comma larger than the 
major sixth in the regular ratio of 5:3.22 Some discrepancies can also be found among 
the intervals of fourth, fifth, and seventh.

Figure 8: The ratios of fourths in syntonic diatonic tuning.

Figure 9: The ratios of fifths in syntonic diatonic tuning.

Figure 10: The ratios of sevenths in syntonic diatonic tuning.

Besides the fourth (4:3) and the tritone (45:32), there is also an augmented fourth in 
the ratio of 27:20 (a comma larger than pure23) present in the system. Besides the fifth 
in the ratio of 3:2 and the semidiapente in the ratio of 64:45, there is the fifth in the ratio 

22	 5---3  ∙ 
81---------    80  =  405----------------    320  =  27---------    16  = (27:16).

23	 4---3  ∙ 
81---------    80  = 27---------    20  = (27:20).
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of 40:27 (a comma smaller than pure24). And finally, besides the major (15:8) and minor 
(9:5) sevenths, there’s also the one in the ratio of 16:9 (a comma smaller than minor25). 
In addition to the discrepancies just listed, it is the two different tones (9:8 and 10:9) 
that represent a special and perhaps even bigger problem in the system. For better 
understanding, in the following table, a comparison between the intervals of syntonic 
diatonic and modern (equally tempered) tuning is given. 

Interval
Syntonic tuning Modern tuning Comparison 

(cents)ratio cents no. of semitones cents
comma 81:80 21.5 - - -
semitone 16:15 111.72 1 100 + 11.72
minor tone 10:9 182.39 2 200 - 17.61
major tone 9:8 203.89 2 200 + 3.89
minor third 6:5 315.62 3 300 + 15.62
major third 5:4 386.28 4 400 - 13.72
fourth 4:3 498.00 5 500 - 2.00
augmented fourth 45:32 590.18 6 600 - 9.82
diminished fifth 64:45 609.72 6 600 + 9.72
fifth  3:2 701.90 7 700 + 1.90
minor sixth 8:5 813.62 8 800 + 13.62
major sixth 5:3 884.29 9 900 - 15.71
minor seventh 9:5 1017.52 10 1000 + 17.52
major seventh 15:8 1088.18 11 1100 - 11.82
octave 2:1 1199.91 12 1200 - 0.09

Table 2: The comparison between the intervals of syntonic diatonic and modern tuning.

As can be seen, the differences are significant, especially if one considers them in 
the context of 16th-century polyphony. While in the case of equally tempered tuning 
(based on an absolute mathematical division), the various combinations of intervals in 
a composition are not a problem, considerable discrepancies leading to distunement 
could occur in the case of syntonic diatonic tuning (based on the intervals in their 
pure ratios). Let’s imagine a 16th-century polyphonic composition of equal voices that 
intertwine with all of the listed untempered syntonic intervals: Both between conse-
quent chords and within individual chords, discrepancies could quickly occur. With 
a careful composer and singers’ ability to adjust their intonation while singing, in vo-
cal music, these discrepancies could mostly be avoided.26 On the other hand, to make 
all the intervals in instrumental music simultaneously consonant, above all those on 
keyboard instruments, represented a serious problem: If, for example, the thirds were 

24	 3---2  : 
81---------    80  = 3---2  ∙ 

80---------    81  = 40---------    27  = (40:27).
25	 9---5 : 

81---------    80  = 9---5 ∙ 
80---------    81  =  16---------  -------  9  = (16:9).

26	 The singers’ adjustment of pitch in the case of syntonic intervals whose ratios differ from their pure forms (for example, the 
diminished fifth in the ratio of 40:27) is also confirmed by Zarlino (Zarlino, Istituzioni armoniche, 262). In a way, this means 
that the syntonic diatonic tuning was not consistently employed. 
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consonant, the octaves and fifths were not in their true ratios and vice versa. The just 
said can be illustrated with the juxtaposition of the series of four fifths and the series 
of two octaves plus a major third. 

Figure 11: The juxtaposition of four fifths and two octaves plus a major third.

In the case of modern equal temperament (in which the size of all semitones is 100 
cents), the last tone in the series of four fifths (fifth = 7 semitones = 700 cents; 4 ∙ 700 = 
2800 cents) and the last tone in the series of two octaves plus a major third (octave = 
12 semitones = 1200 cents, major third = 4 semitones = 400 cents; 2 ∙ 1200 + 400 = 2800 
cents) will sound in unison. However, the result would be different if the syntonic inter-
vals were used. In this case, the size of four fifths would be 2807.6 cents, whereas the size 
of two octaves with a major third would be 2786.09. The difference (a syntonic comma of 
21.5 cents) is significant, and when thirds and sixths were already completely established 
as important intervals in compositions, it could have posed a serious problem. 

Zarlino’s temperament of the syntonic diatonic system in 
instrumental music

Zarlino was aware of the presented problems and of the fact that it is impossible to 
solve them within the framework of syntonic diatonic tuning. In Istitutioni, he clearly 
states that none of the presented species of diatonic genre is (and none can be) used 
in the tuning of instruments.27 In order to achieve concordance between various inter-
vals, they must, in fact, be slightly changed, tempered. The temperament, however, has 
to be small enough that the thirds still sound consonant and please the ear (even if they 
aren’t in their natural ratios). The starting point for instrumental tuning advocated in 
Istitutioni is therefore the temperament of the syntonic diatonic system. The latter can 
be performed in three different ways:28 (1) All of the intervals become irrational.29 (2) 
Major third and minor sixth remain rational and perfect, whereas all other intervals be-
come irrational. (3) Minor third and major sixth remain rational and perfect, whereas 
all other intervals become irrational. In all three cases, some sort of median system 
between the Pythagorean and syntonic will emerge: In the equality of tones, it will 
resemble the first, and in the consonance of all other intervals, the second. 

In modern theorists’ opinion, the temperament in question is the product of a long 
and thorough study, says Zarlino, who doesn’t agree with them at all: He is certain that 

27	 Zarlino, Istituzioni armoniche, 264.
28	 Zarlino, Istituzioni armoniche, 264–265.
29	 It means that these intervals cannot be expressed by fractions, and consequently, their ratios cannot be determined. 
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musicians only discovered this temperament by coincidence, when one of them inci-
dentally tuned his instrument this way. Since both thirds and sixths were not treated as 
consonances in the past, the theorists certainly didn’t make the effort of including them 
in the system.30 Thus in Zarlino’s opinion (regardless of its accuracy), the instrumental 
tuning was discovered by coincidence in musical practice and was not the result of theo-
retical deliberations – just as thirds and sixths are consonant because (unlike in the past 
and especially in antiquity) they are used as such in the contemporary practice.31

A detailed presentation of the temperament of the syntonic diatonic system, made 
in accordance with the first of the three given possibilities, follows. The starting point 
for its realization is the division of the syntonic comma found between nete synem-
menon and paranete diezeugmenon.32 As a result, both tones will sound in unison, 
and in number of tones, the system will become equal to ditonic diatonic, since it will 
only include 16 tones instead of 17.33 The distribution of the comma has to be made in 
such a way that it will alter the order and the form of the intervals as little as possible 
and the hearing won’t be offended, Zarlino continues to explain. With that in mind, the 
temperament of the individual intervals is as follows:34

(1)	Each fifth has to be diminished by 2/7 of a comma, and each fourth has to be 
augmented by the same amount; since together they form the octave (which is 
unchangeable), the amount taken from the first has to be added to the other.

(2)	The major third is diminished by 1/7 of a comma, and the minor third is dimin-
ished by the same amount; since these two consonances together form the fifth 
that was diminished by 2/7 of the comma, they must both share an equal part of 
that temperament and become equally imperfect.

(3)	The major tone is diminished by 4/7 of a comma, and the minor tone is aug-
mented by 3/7 of a comma; this way, together they will be equally imperfect as 
their whole, which is the major third diminished by 1/7 of a comma.

(4)	The major semitone is augmented by 3/7 of a comma; since with the major tone 
it forms the minor third, this way their sum will equal it.

(5)	Both sixths are augmented by 1/7 of a comma, the major sixth being formed 
from the fourth and the major third, and the minor sixth from the fourth and the 
minor third.

30	 Zarlino, Istituzioni armoniche, 265.
31	 As can be concluded from Zarlino’s explanation, in Istitutioni, he actually gives a theoretical description of a system that had 

already been in use among practicing musicians for quite some time. Therefore, the system is by no means his invention as 
Mark Lindley maintains (see Mark Lindley, “Zarlino’s 2/7-comma meantone temperament,” in Music in performance and society: 
Essays in honor of Roland Jackson, ed. Malcolm S. Cole and John Koegel (Detroit: Harmonie Park Press, 1997): 179–194, in 
particular, 181, 183); in the best case, Zarlino was the first to theoretically describe it. 

32	 Zarlino, Istituzioni armoniche, 267. As was already mentioned, Zarlino defines the comma as the smallest interval, which is, 
however, at this point still further divided for the purpose of temperament of the syntonic diatonic system. As it will be shown 
further on, the smallest interval used by Zarlino is therefore actually a 1/7 comma, which, however, is irrational since it cannot 
be expressed with a fraction. Zarlino’s division of the comma and the use of its parts for the temperament of the already-
constructed system is indeed an important theoretical concept, since intervals smaller than the comma were not considered 
by theorists in this way before. 

33	 Zarlino refers to the above-presented system of united tetrachords in the diatonic genre together with tetrachord synemmenon. 
As was already clarified, since in the ditonic diatonic genre there is only one sort of tone in the ratio of 9:8, nete synemmenon 
and paranete diezeugmenon will be of the same relative pitch.

34	 Zarlino, Istituzioni armoniche, 267–268.
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If the temperament is made according to the given instructions, all intervals (ex-
cept the octave) will be outside their true ratios. Since they will only be changed by 
small amounts, however, the hearing will not be too affected. This shouldn’t surprise 
us, since it is commonly known that the senses are not perfectly accurate and are of-
ten not able to observe small differences, Zarlino maintains, and he goes on to justify 
the temperament with the comparison to other disciplines as well: Imperfection may 
be found in every art and in every other creation too.35 The resulting intervals will all 
be irrational, Zarlino explains: The parts of a comma that are added to or taken from 
them are all irrational and unintelligible (irrationali e incognite), since they cannot be 
described by definite numbers.36 

As we could imagine, the main difficulty of the described procedure was the exact 
search for the needed parts of a comma. Since it cannot be divided rationally, Zarlino 
recommends the use of a special geometrical tool, mesolabe, for its division – he, how-
ever, does not describe the exact procedure.37 It is difficult to imagine that, with the 
use of this geometrical method, an interval as small as a comma could be accurately di-
vided into seven parts, which would then have to be even more accurately added to or 
taken from the already-existing intervals. Let us thus try to test Zarlino’s temperament 
instructions with the help of individual interval values, calculated into cents, wherein 
1/7 of a comma equals approximately 3.07 cents. In the following table, the compari-
son (in cents) of syntonic, Zarlino’s tempered syntonic, and modern equally tempered 
tuning is given. 

Interval
Syntonic 
tuning

Zarlino’s 
temp. 
tuning

Compari-
son

Modern 
equally temp. 

tuning

Zarlino’s 
temp. 
tuning

Compari-
son

semitone 111.72 120.93 + 9.21 100 120.93 + 20.93
minor tone 182.39 191.60 + 9.21 200 191.60 - 8.40
major tone 203.89 191.61 - 12.28 200 191.61 - 8.39
minor third 315.62 312.55 - 3.07 300 312.55 + 12.55
major third 386.28 383.21 - 3.07 400 383.21 - 16.79
fourth 498.00 504.14 + 6.14 500 504.14 + 4.14
fifth 701.90 695.76 - 6.14 700 695.76 - 4.24
minor sixth 813.62 816.69 + 3.07 800 816.69 + 16.69
major sixth 884.29 887.30 + 3.07 900 887.30 + 12.70

Table 3: The comparison between the intervals of syntonic, Zarlino’s tempered syntonic, 
and modern equally tempered tuning.

Let us now return to the above juxtaposition of four fifths and two octaves plus a 
major third and examine it with the values of Zarlino’s tempered intervals. 

35	 Zarlino, Istituzioni armoniche, 268–270.
36	 Zarlino, Istituzioni armoniche, 271.
37	 Zarlino, Istituzioni armoniche, 272. Nevertheless, Zarlino gives a detailed description of the mesolabe and explains its use at 

another place in Istitutioni (see Zarlino, Istituzioni armoniche, 210–211).
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Figure 12: The juxtaposition of four fifths and two octaves with a major third in Zarlino’s 
tempered intervals.

As can be seen, Zarlino’s temperament works: The difference between the values 
of the series of four fifths and that of two octaves with a major third is negligible (0.03 
cents). Furthermore, let us check the effect of Zarlino’s temperament on the above-
presented discrepancies within the syntonic diatonic tuning.

Figure 13: Values of tones and semitones in Zarlino’s tempered system (in cents).

As it was presented, the discrepancies between the intervals were those of the third 
d–f, the fourth a–d, the fifth d–a, the sixth f–d, and the sevenths b–a, f–e, and g–f; they 
all differed from the corresponding intervals in their true ratios by a comma. It is pre-
cisely in the case of discrepant intervals that the effect of Zarlino’s distribution of the 
comma among all intervals can most clearly be observed: Even if after the tempera-
ment none of them is in its true ratio, they are nevertheless all of the same value. The 
minor third between d and f (191.60 + 120.93 = 312.53) is thus equal to the minor third 
between e and g (120.93 + 191.60 = 312.53) and to all other minor thirds; the same can 
be said for all of the other intervals in question as well. Therefore, the temperament 
results in equal intervals, wherein the equal tones seem to be of major importance: It is 
after them that this kind of temperament has been named meantone temperament (the 
tempered tone is in between the minor and major syntonic tones).38 

Even if the system was constructed and tempered in the just-presented way, some 
discrepancies remained. The main problem was connected to the manner in which 
the instruments were tuned: Since the instruments were not tuned in tones but in fifths 
(following the fifth circle),39 the discrepancy of the tuning with tempered fifths was 
even bigger than that of the tuning with the twelve pure fifths (3:2). The difference may 
be illustrated with the juxtaposition of 12 fifths and seven octaves (the latter are in the 
unchangeable ratio of 2:1 in both cases).40

38	 For a more detailed account, see Ravnikar, Osnove glasbene akustike, 39–40, and Duffin, How Equal Temperament Ruined 
Harmony, 34–35.

39	 The tuning in fifths is also mentioned by Zarlino (Zarlino, Istituzioni armoniche, 268).
40	 As was demonstrated in the above Table 2, the value of the octave in modern equal temperament (1200 cents) is quite close 

to the value of the octave in the ratio of 2:1 (1199.91 cents); the difference between them (0.09 cents) is negligible. 
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Figure 14: The juxtaposition of 12 fifths and 7 octaves.

If the fifths in their pure ratios were used, the difference between the last notes in 
the series of 12 fifths and seven octaves would be 23.43 cents.41 If the tempered fifths 
were used, the difference would be considerably larger, namely, 50.25 cents.42 As a 
consequence, the last (twelfth) fifth was by this amount larger than the others. It was 
called the wolf fifth and it was placed in a way that it could most easily be avoided in 
compositions, usually between c♯ and g♯ (a♭) or between g♯ and d♯ (e♭).43

After the temperament instructions are given in Istitutioni, the division of the mon-
ochord in the tempered system is explained (and thus the practical, audible test of the 
system is performed).44 Zarlino hopes that the detailed presentation given will be of 
use to everyone who wishes to understand the true intervals of the tempered tuning 
and above all to instrument makers.45 From the mathematical-acoustical point of view, 
the major problem of the presented division of the monochord in the tempered syn-
tonic system is its accuracy: Zarlino looks for the parts of the comma with the already-
mentioned geometrical tool mesolabe and transfers them to the monochord’s string 
(that is, to the line drawn underneath it) with a pair of compasses. 

The intensity and versatility of Zarlino’s study of the tuning question may also be 
confirmed by the fact that he not only tried out the theoretically determined ratios 
on the monochord, but on Pesaro’s harpsichord as well. As described in Istitutioni,46 
the instrument was tuned in Zarlino’s tempered syntonic tuning, expanded with the 
tones of the chromatic and enharmonic genera. Thus, besides the diatonic keys (larger 
white keys), the chromatic keys (smaller black keys) and enharmonic keys (smaller 
white keys) were installed on its keyboard as well. The chromatic (minor) semitone 
was the difference between the tempered tone (191.60 cents) and the diatonic (major) 
semitone (120.93 cents): The difference is 70.76 cents, which equals the ratio of 25:24.47

41	 12 untempered fifths equal 8422.8 cents, while seven octaves equal 8399.4 cents. The difference, 23.4 cents, is also referred to 
as the Pythagorean comma; it is in the ratio of 531,411:524,288.

42	 12 tempered fifths equal 8349.12 cents, while seven octaves equal 8399.37 cents; the difference is 50.25 cents.
43	 Duffin, How Equal Temperament Ruined Harmony, 35. Theoretically, in the circle of fifths, c – g – d – a – e – b – f♯ – c♯ – g♯ – 

d♯ – a♯ – e♯ – b♯, any fifth can serve as a starting point for the tuning of an instrument. This also means that, theoretically, any 
of the fifths could be the wolf fifth.

44	 For a detailed discussion, see Zarlino, Istituzioni armoniche, 275–281.
45	 Zarlino, Istituzioni armoniche, 275.
46	 Zarlino, Istituzioni armoniche, 293–294.
47	 For a detailed explanation, see Zarlino, Istituzioni armoniche, 286–290.
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Figure 15: Division of the tempered tone on Zarlino’s harpsichord into diatonic (major) 
and chromatic (minor) semitones.

The major semitone was further divided enharmonically into two dieses (quar-
tertones). The lower of these intervals was larger and equal to the minor semitone 
(25:24), whereas the upper was smaller, in the ratio of 128:125 augmented by 3/7 of 
a comma. Together, they formed the major semitone in the ratio 16:15 augmented by 
3/7 of a comma.48

Figure 16: Division of tempered major semitone on Zarlino’s harpsichord into major 
and minor dieses.

With the presented division of the tone, Zarlino actually made the chromatic raising 
and lowering of all diatonic notes possible. Since the signs for sharp and flat notes in 
fact denoted the raising or lowering of the note by a chromatic (25:24) and not a dia-
tonic semitone,49 the tones g♯ and a♭, for example, did not sound in unison but differed 
by a minor diesis in the ratio of 128:125 (in the case of syntonic or pure intonation) or 
by the same interval, augmented by 3/7 of a comma (in the case of tempered syntonic 
system or meantone temperament).

Figure 17: Division of tempered tone on Zarlino’s harpsichord into two minor semitones 
and minor diesis.

Because the whole tone and the diatonic semitone were both divided into smaller 
units, the octave on Zarlino’s harpsichord was divided into no less than 20 different tones. 

48	 For a detailed explanation, see Zarlino, Istituzioni armoniche, 290–293.
49	 Zarlino, Istituzioni armoniche, 289–290, 355.
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Figure 18: Division of the octave A–a on Zarlino’s harpsichord.

Conclusion

Based on everything presented, it is clear that in Zarlino’s opinion, two different 
tuning systems were used in his time. True, pure or natural intervals were only present 
in the syntonic diatonic tuning, which was only used in singing. On the other hand, in 
instrumental music, the intervals in their true forms could not be used, so for the pur-
pose of tuning instruments, the system had to be tempered. For Zarlino, this duality is 
not surprising at all: Singing voices are natural, and nature is much better at creating 
things than art, the products of which are the (artificial) instruments. In fact, art only 
imitates nature, and everything that is created by art is imperfect compared to what is 
created by nature.50

That explained, a question becomes self-evident: What about the tuning in composi-
tions in which voices and instruments conjoin? Zarlino gives the following answer: Na-
ture always aims to adjust to the good. Since the hearing cannot suffer the dissonance 
that would most certainly happen if the singers were to stick with the intervals based on 
senario, the voice tries to adjust to the instruments as much as possible. By its nature, the 
human voice is actually able to adjust to both the lower and the higher pitches, whereas 
the artificial instruments are unable to do so. Such is the case in vocal-instrumental music 
– however, when the instruments and voices are separated again, the voices will return to 
their perfection, while the instruments will remain imperfect, Zarlino concludes.51

If Zarlino’s discussion on tuning is considered from a historical point of view, the 
following may be concluded: The audible world of the modern musician is built on the 
equal temperament. The audible world of the renaissance musician was, quite to the 
contrary, built on intervals determined by the natural ratios: Every deviation from them 
(every temperament) meant a step on the way towards dissonance and something un-
natural. However, because of the changes in music linked to the rise of polyphony, 
temperament was necessary. Therefore, various and at times quite sharp discussions 
on the tuning question among the 16th-century musical theorists (and musicians in 
general) are not surprising at all: Different ideas were advocated, experiments were 
performed, special instruments were constructed, etc. In this context, Zarlino’s discus-
sion on the tuning question may be seen as one of the first steps towards the modern 
equal temperament, although there was still a long way to go before arriving there. 
From this point of view, the temperament of the system (of which, as a product of his-
torical development, the modern tuning is the final result) was in fact its distunement. 

50	 Zarlino, Istituzioni armoniche, 269.
51	 Zarlino, Istituzioni armoniche, 284–285.
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POVZETEK

Vprašanje o uglasitvi (utemeljevanje akustičnega 
sistema, znotraj katerega poteka glasba) je bilo 
eno osrednjih vprašanj, ki so jih v svojih traktatih 
obravnavali renesančni glasbeni teoretiki; v svojem 
osrednjem glasbenoteoretskem spisu Istitutioni 
harmoniche (1558) se mu podrobno posveča tudi 
Gioseffo Zarlino. 
V razpravi o sistemu uglasitve je Zarlino izhajal iz 
premislekov nekaterih antičnih piscev o glasbi, 
predvsem Boetija in Ptolemaja. Po postavitvi in 
temeljiti preučitvi sistema v nekaterih vrstah vseh 
treh antičnih rodov glasbe (diatonični, kromatični, 
enharmonski) želi Zarlino določiti tistega, ki se rabi 
v glasbi njegovega časa: prepričan je, da se v sodobni 
glasbi uporablja sintonična diatonična uglasitev, 
saj so le med razmerji sintoničnega diatoničnega 
sistema prisotni intervali, kot jih je ustvarila narava. 
Iz senaria namreč izhaja, da so konsonančne le terce 
v razmerjih 5 : 4 (velike) in 6 : 5 (male) ter sekste v 
razmerjih 5 : 3 (velike) in 8 : 5 (male), te pa so prisotne 
le v sintonični vrsti diatoničnega rodu. 
Čeprav ga Zarlino zagovarja kot edinega popolne-
ga, so tudi v sintoničnem diatoničnem sistemu do-
ločena odstopanja, ki so v polifonih kompozicijah 
16. stoletja lahko povzročila veliko težav. Tem se 
je v vokalni glasbi ob pazljivosti skladatelja in ob 
možnosti pevcev, da po potrebi sproti prilagajajo in-

tonacijo, v veliki meri dalo izogniti. Posebno težavo 
pa je predstavljala želena hkratna konsonančnost 
vseh intervalov v uglasitvi instrumentov, posebno 
tistih s tipkami. Da so nakazane težave znotraj 
sistema sintonične diatonične uglasitve nerešljive, 
se je zavedal tudi Zarlino, ki je v Istitutioni razložil, 
da morajo biti za uporabo v instrumentalni glasbi 
posamezni intervali nekoliko spremenjeni, tempe-
rirani. Prilagoditev sintonične diatonične uglasitve 
je nato podrobno pojasnjena. 
Kako poglobljeno se je Zarlino ukvarjal z vpraša-
njem o uglasitvi, kaže tudi dejstvo, da o sistemu ni 
le teoretično razpravljal, temveč ga je tudi praktično 
preizkusil, tako na monokordu, kot na posebnem 
čembalu, ki ga je posebej zanj izdelal znani italijan-
ski izdelovalec instrumentov Domenico da Pesaro. 
Kot je opisan v Istitutioni, je bil instrument uglašen 
v Zarlinovi temperirani sintonični uglasitvi, razširje-
ni s toni kromatičnega in enharmonskega rodu, kar 
pomeni, da so bile ob diatoničnih nanj umeščene 
še kromatične in enharmonske tipke.
Z zgodovinskega stališča se Zarlinova razprava o 
uglasitvi kaže kot eden prvih korakov k enakomer-
no temperirani uglasitvi, kot je v rabi danes, čeprav 
je pot do nje še dolga. S tega gledišča je tempera-
cija sistema (katere rezultat je kot končni produkt 
zgodovinskega razvoja tudi sodobna uglasitev) 
pravzaprav njegova razglasitev.
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