
BLED WORKSHOPS
IN PHYSICS
VOL. 3, NO. 3

Proceedins of the Mini-Workshop
Quarks and hadrons (p. 67)

Bled, Slovenia, July 7-14, 2002

Axial currents in electro-weak pion production
at threshold and in the ∆-region ?
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bJožef Stefan Institute, 1000 Ljubljana, Slovenia
cDepartment of Physics, University of Beira Interior, 6201-001 Covilhã, Portugal
dCentre for Computational Physics, University of Coimbra, 3004-516 Coimbra, Portugal
eDepartment of Physics, University of Coimbra, 3004-516 Coimbra, Portugal
fFaculty of Education, University of Ljubljana, 1000 Ljubljana, Slovenia

Abstract. We discuss electro-magnetic and weak production of pions on nucleons and
show how results of experiments and their interpretation in terms of chiral quark models
with explicit meson degrees of freedom combine to reveal the ground-state axial form
factors and axial N-∆ transition amplitudes.

1 Introduction

The study of electro-weak N-∆ transition amplitudes, together with an under-
standing of the corresponding pion electro-production process at low energies,
provides information on the structure of the nucleon and its first excited state.
For example, the electro-magnetic transition amplitudes for the processes γ?p →

∆+ → pπ0 and γ?p → ∆+ → nπ+ are sensitive to the deviation of the nucleon
shape from spherical symmetry [1]. Below the ∆ resonance (and in particular
close to the pion-production threshold), the reaction γ?p → nπ+ also yields in-
formation on the nucleon axial and induced pseudo-scalar form-factors. While
the electro-production of pions at relatively high [2] and low [3,4] momentum
transfers has been intensively investigated experimentally in the past years at
modern electron accelerator facilities, very little data exist on the corresponding
weak axial processes.

2 Nucleon axial form-factor

In a phenomenological approach, the nucleon axial form-factor is one of the quan-
tities needed to extract the weak axial amplitudes in the ∆ region. There are ba-
sically two methods to determine this form-factor. One set of experimental data
comes from measurements of quasi-elastic (anti)neutrino scattering on protons,
deuterons, heavier nuclei, and composite targets (see [4] for a comprehensive list
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of references). In the quasi-elastic picture of (anti)neutrino-nucleus scattering, the
νN → µN weak transition amplitude can be expressed in terms of the nucleon
electro-magnetic form-factors and the axial form factor GA. The axial form-factor
is extracted by fitting theQ2-dependence of the (anti)neutrino-nucleon cross sec-
tion,

dσ
dQ2

= A(Q2) ∓ B(Q2) (s− u) + C(Q2) (s− u)2 , (1)

in which GA(Q2) is contained in the A(Q2), B(Q2), and C(Q2) coefficients and is
assumed to be the only unknown quantity. It can be parameterised in terms of an
‘axial mass’ MA as

GA(Q2) = GA(0)/(1+Q2/M2
A)2 .

Another body of data comes from charged pion electro-production on pro-
tons (see [4] and references therein) slightly above the pion production thresh-
old. As opposed to neutrino scattering, which is described by the Cabibbo-mixed
V − A theory, the extraction of the axial form factor from electro-production re-
quires a more involved theoretical picture [5,6]. The presently available most pre-
cise determination forMA from pion electro-production is

MA = (1.077± 0.039) GeV (2)

which is ∆MA = (0.051 ± 0.044) GeV larger than the axial mass MA = (1.026 ±
0.021) GeV known from neutrino scattering experiments. The weighted world-
average estimate from electro-production data isMA = (1.069± 0.016) GeV, with
an excess of ∆MA = (0.043 ± 0.026) GeV with respect to the weak probe. The
∼ 5% difference in MA can apparently be attributed to pion-loop corrections to
the electro-production process [5].

3 N-∆ weak axial amplitudes

The experiments using neutrino scattering on deuterium or hydrogen in the ∆
region have been performed at Argonne, CERN, and Brookhaven [7–11]. (Addi-
tional experimental results exist in the quasi-elastic regime, from which MA has
been extracted.) For pure ∆ production, the matrix element has the familiar form

M = 〈µ∆ |νN〉 =
GF cos θC√

2
jα 〈∆ |Vα −Aα | N〉 ,

where GF is the Fermi’s coupling constant, θC is the Vud element of the CKM
matrix, jα = uµγα(1 − γ5)uν is the matrix element of the leptonic current, and
the matrix element of the hadronic current Jα has been split into its vector and
axial parts. Typically either the ∆++ or the ∆+ are excited in the process. The
hadronic part for the latter can be expanded in terms of weak vector and axial
form-factors [12]

M =
G√
2
u∆α(p ′)

{ [

CV
3

M
γµ +

CV
4

M2
p ′

µ +
CV

5

M2
pµ

]

γ5F
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6 jαγ5

+
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3

M
γµ +
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4
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µ
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α +
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6

M2
qαqµjµ

}

u(p)f(W) ,
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where Fµα = qµjα − qαjµ, u∆α(p ′) is the Rarita-Schwinger spinor describing
the ∆ state with four-vector p ′, and u(p) is the Dirac spinor for the (target) nu-
cleon of massMwith four-vector p. (In the case of the ∆++ excitation, the expres-
sion on the RHS acquires an additional isospin factor of

√
3 since 〈∆++ | Jα | p〉 =√

3〈∆+ | Jα | p〉 =
√
3〈∆0 | Jα | p〉.) The function f(W) represents a Breit-Wigner de-

pendence on the invariant mass W of the Nπ system.
The matrix element is assumed to be invariant under time reversal, hence all

form-factors CV,A
i (Q2) are real. Usually the conserved vector current hypothesis

(CVC) is also assumed to hold. The CVC connects the matrix elements of the
strangeness-conserving hadronic weak vector current to the isovector component
of the electro-magnetic current:

〈∆++ |Vα | p〉 =
√
3 〈∆+ | JαEM(T = 1) | p〉 ,

〈∆0 |Vα | p〉 = 〈∆+ | JαEM(T = 1) | p〉 .

The information on the weak vector transition form-factors CV
i is obtained from

the analysis of photo- and electro-production multipole amplitudes. For∆ electro-
excitation, the allowed multipoles are the dominant magnetic dipole M1+ and
the electric and coulomb quadrupole amplitudes E1+ and S1+, which are found
to be much smaller thanM1+ [2,3]. If we assume thatM1+ dominates the electro-
production amplitude, we have CV

5 = CV
6 = 0 and end up with only one indepen-

dent vector form-factor
CV

4 = −
M

W
CV

3 .

It turns out that electro-production data can be fitted well with a dipole form for
CV

3 ,

CV
3 (Q2) = 2.05

[

1+
Q2

0.54GeV2

]−2

.

An alternative parameterisation of CV
3 which accounts for a small observed devi-

ation from the pure dipole form is

CV
3 (Q2) = 2.05

[

1+ 9
√

Q2

]

exp
[

−6.3
√

Q2

]

.

The main interest therefore lies in the axial part of the hadronic weak current
which is not well known.

Extraction of CA
i
(Q2) from data

The key assumption in experimental analyses of the axial matrix element is the
PCAC. It implies that the divergence of the axial current should vanish as m2

π →

0, which occurs if the induced pseudo-scalar term with CA
6 (the analogue of GP

in the nucleon case) is dominated by the pion pole. In consequence, CA
6 can be

expressed in terms of the strong πN∆ form-factor,

CA
6 (Q2)

M2
= fπ

√

2

3

GπN∆

2M

1

Q2 +m2
π

,
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while CA
5 and CA

6 can be approximately connected through the off-diagonal Gold-
berger-Treiman relation [13]. In a phenomenological analysis, CA

3 (Q2), CA
4 (Q2),

and CA
5 (Q2) are taken as free parameters and are fitted to the data. The axial

form-factors are also parameterised in “corrected” dipole forms

CA
i (Q2) = CA

i (0)

[

1+
aiQ

2

bi +Q2

] [

1+
Q2

M2
A

]−2

.

In the simplest approach one takes ai = bi = 0. Historically, the experimental
data on weak pion production could be understood well enough in terms of a
theory developed by Adler [14]. For lack of a better choice, Adler’s values for
CA

i (0) have conventionally been adopted to fix the fit-parameters at Q2 = 0, i. e.

CA
3 (0) = 0 , (3)

CA
4 (0) = −0.3 , (4)

CA
5 (0) = 1.2 . (5)

In such a situation, one ends up withMA as the only free fit-parameter.
Several observables are used to fit the Q2-dependence of the form-factors.

Most commonly used are the total cross-sections σ(Eν), and the angular distribu-
tions of the recoiling nucleon

dσ
dΩ

=
σ√
4π

[

Y00 −
2√
5

[

ρ̃33 −
1

2

]

Y20 +
4√
10
ρ̃31 ReY21 −

4√
10
ρ̃3−1 ReY22

]

,

where ρ̃mn are the density matrix elements and YLM are the spherical harmonics.
Better than from the ρ̃mn coefficients, the Q2 dependence of the matrix element
can be determined from the differential cross-section dσ/dQ2. In particular, since
the dependence on CA

3 and CA
4 is anticipated to be weak at Q2 ∼ 0, then

dσ
dQ2

(Q2 = 0) ∝ (CA
5 (0) )2 .

The refinements of this crude approach are dictated by several observations.
If the target is a nucleus (for example, the deuteron which is needed to access
specific charge channels), nuclear effects need to be estimated. Another important
correction arises due to the finite energy width of the ∆. In addition, the non-zero
mass of the scattered muon may play a role at low Q2.

All these effects have been addressed carefully in [15]. The sensitivity of the
differential cross-section to different nucleon-nucleon potentials was seen to be
smaller than 10% even at Q2 < 0.1GeV2. In the range above that value, this
allows one to interpret inelastic data on the deuteron as if they were data obtained
on the free nucleon. The effect of non-zero muon mass is even less pronounced:
it does not exceed 5% in the region of Q2 ∼ 0.05GeV2. The energy dependence
of the width of the ∆ resonance was observed to have a negligible effect on the
cross-section. The final value based on the analysis of Argonne data [9] is

CA
5 (0) = 1.22± 0.06 . (6)
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At present, this is the best estimate for CA
5 (0), although a number of phe-

nomenological predictions also exist [16]. We adopt this value for the purpose of
comparison to our calculations. There is also some scarce, but direct experimental
evidence from a free fit to the data that CA

3 (0) is indeed small and CA
4 (0) is close to

the Adler’s value of −0.3 (see Figure 1). We use CA
4 (0) = −0.3 in our comparisons

in the next section.
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Fig. 1. One- and three-standard deviation limits on CA
3 (0) and CA

4 (0) as extracted from
measurements of νµp → µ−∆++. The square denotes the model predictions by Adler
[14]. (Figure adapted after [7].)

4 Interpretation of CA
i
(Q2) in the linear σ-model

The axial N-∆ transition amplitudes can be interpreted in an illustrative way in
quark models involving chiral fields like the linear σ-model (LSM), which may
reveal the importance of non-quark degrees of freedom in baryons. Due to dif-
ficulties in consistent incorporation of the pion field, the model predictions for
these amplitudes are very scarce [17]. The present work [18,19] was partly also
motivated by the experience gained in the successful phenomenological descrip-
tion of the quadrupole electro-excitation of the ∆ within the LSM, in which the
pion cloud was shown to play a major role [20].

4.1 Two-radial mode approach

We have realised that by treating the nucleon and the ∆ in the LSM in a simpler,
one-radial mode ansatz, the off-diagonal Goldberger-Treiman relation can not be
satisfied. For the calculation of the amplitudes in the LSM, we have therefore
used the two-radial mode ansatz for the physical baryon states which allows for
different pion clouds around the bare baryons. The physical baryons are obtained
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from the superposition of bare quark cores and coherent states of mesons by the
Peierls-Yoccoz angular projection. For the nucleon we have the ansatz

|N〉 = NNP
1

2 [ΦN|Nq〉 +ΦN∆|∆q〉] , (7)

where NN is the normalisation factor. Here ΦN and ΦN∆ stand for hedgehog co-
herent states describing the pion cloud around the bare nucleon and bare ∆, re-
spectively, and P 1

2 is the projection operator on the subspace with isospin and
angular momentum 1

2
. Only one profile for the σ field is assumed. For the ∆ we

assume a slightly different ansatz to ensure the proper asymptotic behaviour. We
take

|∆〉 = N∆

{

P
3

2Φ∆|∆q〉 +

∫

dkη(k)[a†mt(k)|N〉] 3

2

3

2

}

, (8)

where N∆ is the normalisation factor, |N〉 is the ground state and [ ]
3

2

3

2 denotes
the pion-nucleon state with isospin 3

2
and spin 3

2
. We have interpreted the lo-

calised model states as wave-packets with definite linear momentum, as elabo-
rated in [13].

4.2 Calculation of helicity amplitudes

We use the kinematics and notation of [13]. For the quark contribution to the two
transverse (λ = 1) and longitudinal (λ = 0) helicity amplitudes we obtain

Ã
(q)

s∆λ = −〈∆s∆
1

2

|

∫

dr eikzψ†αλγ5
1
2
τ0ψ|Ns∆−λ 1

2

〉

Ã
(q)

s∆λ = −1
2
N∆

∫

dr r2
{

[

j0(kr)

(

u∆uN −
1

3
v∆vN

)

+
2

3
(3λ2 − 2) j2(kr)v∆vN

]

〈∆b||στ||N〉

− cη

[

j0(kr)

(

u2
N −

1

3
v2

N

)

+
2

3
(3λ2 − 2) j2(kr)v2

N

]

×
[

4

9
〈N||στ||N〉 +

1

36
〈N||στ||N(J = 3

2
)〉
]}

C
3
2

s∆

1
2

s∆−λ1λ
C

3
2

1
2

1
2

1
2

10
.

Here u and v are upper and lower components of Dirac spinors for the nucleon
and the ∆, while cη is a coefficient involving integrals of the function η(k) ap-
pearing in (8). The reduced matrix elements of στ can be expressed in terms of
analytic functions with intrinsic numbers of pions as arguments. In all three cases,
we take s∆ = 3

2
. For the scalar amplitudes, we take λ = 0 and s∆ = 1

2
, and obtain

S̃(q) = −〈∆ 1

2

1

2

|

∫

dr eikzψ†γ5
1
2
τ0ψ|N 1

2

1

2

〉

=
1

3
N∆

∫

dr r2 j1(kr) (u∆vN − v∆uN) 〈∆b||στ||N〉 .

For the non-pole meson contribution to the transverse and longitudinal helic-
ity amplitudes we assume the same σ profiles around the bare states, but different
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for the physical states. Introducing an “average” σ field σ̄(r) ≡ 1
2
(σN(r) + σ∆(r))

we obtain

Ã
(m)

s∆λ = 〈∆s∆
1

2

|

∫

dr eikz ((σ− fπ)∇λπ0 − π0∇λσ) |Ns∆−λ 1

2

〉

=
4π

3

{∫

dr r2 j0(kr)

[(

(σ̄− fπ)

(

dϕ∆N

dr
+
2ϕ∆N

r

)

−
dσ̄
dr
ϕ∆N

)]

+(3λ2 − 2)

∫

dr r2 j2(kr)

[(

(σ̄− fπ)

(

dϕ∆N

dr
−
ϕ∆N

r

)

−
dσ̄
dr
ϕ∆N

)]}

×C
3
2

s∆

1
2

s∆−λ1λ
C

3
2

1
2

1
2

1
2

10
,

where ϕ∆N = 〈∆ |π | N〉. To compute the scalar amplitude, we make use of the
off-diagonal virial relation derived in [13] and define

σP(r) =

∫∞

0

dkk2

√

k2 +m2
σ

√

2

π
j0(kr)σ(k) .

We obtain

S̃(m) = −〈∆ 1

2

1

2

|

∫

dr eikz ((σ− fπ)Pπ0 − Pσπ0) |N 1

2

1

2

〉

= −
8π

3

∫

dr r2 j1(kr)
{

1
2

(

σP
N(r) − σP

∆(r)
)

ϕ∆N(r) − (σ̄(r) − fπ)ω∗ϕ∆N(r)
}
.

By using

Ãs∆λ =
(

A0 − (3λ2 − 2)A2
)

C
3
2

s∆

1
2

s∆−λ1λ
C

3
2

1
2

1
2

1
2

10
,

the quark and non-pole meson contributions to the transverse amplitudes can
finally be broken into L = 0 and L = 2 pieces,

ÃA
3

2

=

√

2

3

(

A0 −A2
)

, (9)

ÃA
1

2

=
1√
3
ÃA

3

2

=

√
2

3

(

A0 −A2
)

, (10)

L̃A =
2

3

(

A0 + 2A2
)

, (11)

and inserted into (76), (77), and (78) of [13]. The pole part of the meson contribu-
tion is

CA
6 (pole)(Q

2) = fπ
GπN∆(Q2)

2MN

M2
N

m2
π +Q2

√

2

3
.

The strong N∆ form-factor GπN∆ can be computed through

GπN∆(Q2)

2MN

M∆ +MN

2M∆

=
1

ik
〈∆ ‖

∫

dr eikr J(r) ‖ N〉 ,
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where the current J has a component corresponding to the quark source and a
component originating in the meson self-interaction term (see (58) of [13]),

J0(r) = j0(r) +
∂U(σ, ~π)

∂π0(r)
.

4.3 Results

Fig. 2 shows the CA
5 (Q2) amplitude with the quark-meson coupling constant of

g = 4.3 and mσ = 600MeV compared to the experimentally determined form-
factors. The figure also shows the CA

5 (Q2) calculated from the strong πN∆ form-
factor using the off-diagonal Goldberger-Treiman relation.

Fig. 2. The amplitude CA
5 (Q2) in the two-radial mode LSM. The experimental uncertainty

at Q2 = 0 is given by Eq. (6). The error ranges are given by the spread in the axial-mass
parameter MA as determined from neutrino scattering experiments (broader range, [11])
and from electro-production of pions (narrower range, Eq. (2)). Full curves: calculation
from helicity amplitudes (9), (10), and (11); dashed curves: calculation from GπN∆.

The magnitude of CA
5 (Q2) is overestimated in the LSM, with CA

5 (0) about
25% higher than the experimental average. Still, the Q2-dependence follows the
experimental one very well: the MA from a dipole fit to our calculated values
agrees to within a few percent with the experimental MA. On the other hand,
with CA

5 (Q2) determined from the calculated strong πN∆ form-factor, the abso-
lute normalisation improves, while theQ2 fall-off is steeper, withMA ≈ 0.80GeV.
Since the model states are not exact eigenstates of the LSM Hamiltonian, the dis-
crepancy between the two calculated values in some sense indicates the quality
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of the computational scheme. At Q2 = −m2
π where the off-diagonal Goldberger-

Treiman relation is expected to hold, the discrepancy is 17%. The disagreement
between the two approaches can be attributed to an over-estimate of the meson
strength, a characteristic feature of LSM where only the meson fields bind the
quarks.

Essentially the same trend is observed in the “diagonal” case: for the nucleon
we obtain gA = 1.41. The discrepancy with respect to the experimental value of
1.27 is commensurate with the disagreement in CA

5 (0). The overestimate of gA

and GA(Q2) was shown to persist even if the spurious centre-of-mass motion
of the nucleon is removed [21]. An additional projection onto non-zero linear
momentum therefore does not appear to be feasible.

The effect of the meson self-interaction is relatively less pronounced in the
strong coupling constant (only ∼ 20%) than inCA

5 (Q2). BothGπN∆(0) andGπNN(0)

are over-estimated in the model by ∼ 10%. Still, the ratio GπN∆(0)/GπNN(0) =

2.01 is considerably higher than either the familiar SU(6) prediction
√

72/25 or
the mass-corrected value of 1.65 [22], and compares reasonably well with the ex-
perimental value of 2.2. This improvement is mostly a consequence of the renor-
malisation of the strong vertices due to pions.

Fig. 3. The amplitude CA
4 (Q2) in the two-radial mode linear σ-model, with model param-

eters and experimental uncertainties due to the spread in MA as in Fig. 2, and in the
Cloudy-Bag Model (see below for discussion). Experimentally, CA

4 (0) = −0.3 ± 0.5 (see
[7] and Fig. 1). For orientation, the value for CA

4 (0) is used without error-bars.

The determination of the CA
4 (Q2) is less reliable because the meson contribu-

tion to the scalar component of this amplitude [13] is very sensitive to small vari-
ations of the profiles. However, the experimental value is very uncertain as well.
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Neglecting the non-pole contribution to the scalar amplitude and CA
6 (Q2) (with

the pole contribution canceling out), CA
4 (Q2) is fixed to −(M2

N/2M
2
∆)CA

5 (Q2). At
Q2 = 0, this is in excellent numerical agreement with (4). In the LSM, the non-
pole contribution to CA

6 (Q2) happens to be non-negligible and tends to increase
CA

4 (Q2) at small Q2, as seen in Fig. 3. An almost identical conclusion regarding
CA

4 (Q2) applies in the case of the Cloudy-Bag Model, as shown below.
The CA

6 amplitude is governed by the pion pole for small values of Q2 and
hence by the value of GπN∆ which is well reproduced in the LSM, and under-
estimated by ∼ 35% in the Cloudy-Bag Model. Fig. 4 shows that the non-pole
contribution becomes relatively more important at larger values of Q2.

Fig. 4. The non-pole part and the total amplitude CA
6 (Q2) in the two-radial mode linear

σ-model. Model parameters are as in Fig. 2.

5 Interpretation of CA
i
(Q2) in the Cloudy-Bag Model

For the calculation in the Cloudy-Bag Model (CBM) we have assumed the usual
perturbative form for the pion profiles using the experimental masses for the nu-
cleon and ∆. Since the pion contribution to the axial current in the CBM has the
form fπ∂

απ, only the quarks contribute to theCA
4 (Q2) andCA

5 (Q2), whileCA
6 (Q2)

is almost completely dominated by the pion pole (see contribution by B. Golli
[13]). With respect to the LSM, the sensitivity of the axial form-factors to the non-
quark degrees of freedom is therefore almost reversed.

In the CBM, only the non-pole component of the axial current contributes
to the amplitudes, and as a result the CA

5 (0) amplitude is less than 2/3 of the
experimental value. The behaviour of CA

5 (Q2) (see Fig. 5) is similar as in the pure
MIT Bag Model (to within 10%), with fittedMA ∼ 1.2GeV fm/R. The off-diagonal
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Goldberger-Treiman relation is satisfied in the CBM, but CA
5 from GπN∆ has a

steeper fall-off with fittedMA ∼ 0.8GeV fm/R.

Fig. 5. The amplitude CA
5 (Q2) in the Cloudy-Bag Model for three values of the bag radius.

Experimental uncertainties are as in caption to Fig. 2.

The large discrepancy can be partly attributed to the fact that the CBM pre-
dicts a too low value for GπNN, and consequently GπN∆. We have found that the
pions increase the GπN∆/GπNN ratio by ∼ 15% through vertex renormalisation.
The effect is further enhanced by the mass-correction factor 2M∆/(M∆+MN), yet
suppressed in the kinematical extrapolation of GπN∆(Q2) to the SU(6) limit. This
suppression is weaker at small bag radii R: the ratio drops from 2.05 at R = 0.7 fm
to 1.60 (below the SU(6) value) at R = 1.3 fm.

The determination of the CA
4 (Q2) is less reliable for very much the same rea-

son as in the LSM. The non-pole contribution to CA
6 (Q2) tends to add to the ex-

cessive strength of CA
4 (Q2) at low Q2, as seen in Fig. 3. Never the less, the exper-

imental data are too coarse to allow for a meaningful comparison to the model.
For technical details regarding the calculation in the CBM, refer to [13].
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