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ABSTRACT

In this paper, the parallel setΞR of the facets ((d−1)-faces) of a stationary Poisson-Voronoi tessellation inR
2

andR
3 is investigated. An analytical formula for the spherical contact distribution function of the tessellation

allows for the derivation of formulae for the volume densityand the specific surface area ofΞR. The densities
of the remaining intrinsic volumes are studied by simulation. The results are used for fitting a dilated Poisson-
Voronoi tessellation to the microstructure of a closed-cell foam.

Keywords: contact distribution function, intrinsic volumes, parallel set, surface density, stochastic geometry.

INTRODUCTION

Random tessellations are widely used to model
cellular or polycrystalline materials such as foams
or  sintered ceramics (see,  e.g.,  Telley et al., 1996
Coster et al.,  2005;  Ribeiro-Ayeh, 2005;  Redenbach, 
2009).  For  instance, the system of facets of a random
tessellation can model the wall system in closed-
cell foams or the grain boundaries in polycrystalline
materials (see Fig. 1 for examples of such materials).
Random tessellations are space-filling cell systems by
definition, i.e., their cell facets have zero thickness.
In contrast, real materials typically consist of two
components such that the facets have a certain
thickness. Models for such microstructures can be
obtained using the parallel set (or dilation) of the
facets of the tessellation’s cells. Using these models,
relations between the microstructure of a material
and its macroscopic properties can be investigated
(Redenbach, 2009).

Fig. 1.Sectional microscopic image of an Al2O3 sinter
material (left) and visualisation of a tomographic
image of a closed polymer foam (right).

A well-known tessellation model is the Voronoi
tessellation generated by a stationary Poisson point

process. A huge number of analytic results for
geometric characteristics of this model is available (see
Okabeet al., 2000 for an overview). Here, we will use
explicit formulae for the spherical contact distribution
function to derive formulae for the volume and surface
area density of the dilated system of cell facets. These
characteristics, which are easy to estimate and to
interpret, are sufficient for the estimation of the model
parameters, the intensityλ of the Poisson process and
the dilation radiusR. The densities of the remaining
intrinsic volumes can then be used to validate a fitted
model. So far, however, they can only be studied by
simulation.

The paper is organised as follows: First, we give
an introduction into the concepts and the notation used
in this paper. Then we obtain some results for the
contact distribution function of the random closed set
ΞR formed by the dilated facet system of a stationary
Poisson-Voronoi tessellation. In the following section,
the densities of the intrinsic volumes ofΞR are
given as functions of the dilation radiusR. Section
“Application” is concerned with the application of the
obtained results to the modelling of cellular materials.
We conclude with a discussion of the results and an
outlook on possible future work.

DILATED POISSON-VORONOI
TESSELLATIONS

Throughout this paper we are working ind-
dimensional Euclidean spaceRd equipped with the
Euclidean norm‖ · ‖. For x ∈ R

d and r ≥ 0 let
b(x, r) denote the closedd-dimensional ball of radius
r centred inx. The unit sphere inRd is denoted by
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Sd−1. Write B for the Borel sets inRd, λd for the
d-dimensional Lebesgue measure, andσd−1 for the
surface measure onSd−1.

LetF andK be the system of closed and compact
convex sets inRd, respectively. Elements ofK are
called convex bodies. EquipF with the topology of
closed convergence (Schneider and Weil, 2008, p. 18)
and denote the corresponding system of Borel sets on
F by B(F ). A random closed setΞ is a measurable
mapping from a probability space to(F ,B(F )). It
is called stationary if its distribution is invariant under
translations ofRd.

For setsK ∈ K , the intrinsic volumesVk(K), k =
0, . . . ,d, can be defined using the Steiner formula

λd(K ⊕b(0, r)) =
d

∑
k=0

κkVd−k(K)rk, r ≥ 0.

Here,⊕ denotes Minkowski addition,i.e., A⊕ B =
{a+ b : a ∈ A,b ∈ B} for A,B ∈ B, and κk is the
volume of thek-dimensional unit ball. Ford = 2 the
intrinsic volumes are – up to constant factors – the
areaA = V2, the boundary lengthL = 2V1, and the
Euler characteristicχ = V0, for d = 3 they are the
volumeV =V3, the surface areaS= 2V2, the integral of
mean curvatureM = πV1, and the Euler characteristic
χ = V0, see e. g. (Schneider, 1993, p. 210).

Important characteristics for stationary random
closed setsΞ are the densities of the intrinsic volumes.
They are defined as the limits

VV,k(Ξ) = lim
r→∞

EVk(Ξ∩ rW)

Vd(rW)
, k = 0, . . . ,d, (1)

where W ∈ K is a convex body withVd(W) > 0
andE denotes expectation. A sufficient condition for
the existence of the limit is thatΞ is almost surely
locally polyconvex,i.e., for K ∈ K the setΞ∩K can
almost surely be written as a finite union of convex
bodies, and satisfiesE2N(Ξ∩[0,1]d) < ∞ (Schneider and
Weil, 2008, Theorem 9.2.1). HereN(X) denotes the
smallest numberm such thatX = K1 ∪ . . .∪Km with
K1, . . . ,Km ∈ K .

Analogously to the intrinsic volumes, their
densities have the following meaning: Ford = 2, AA =
VV,2 is the area density,LA = 2VV,1 is the density of the
boundary length, andχA = VV,0 is the density of the
Euler characteristic, ford = 3,VV = VV,3 is the volume
density,SV = 2VV,2 is the surface density (or specific
surface area),MV = πVV,1 is the density of the integral
of mean curvature, andχV = VV,0 is the density of the
Euler characteristic.

Denote byC̊ the interior of the bounded setC ⊂
R

d. Let T be a set of bounded convex d-dimensional
subsets ofRd with

(i) if C1,C2 ∈ T andC1 6= C2 thenC̊1∩C̊2 = /0,

(ii)
⋃

C∈T C = R
d,

(iii) T is locally finite, i.e., for every boundedB∈
B it holds that #{C∈ T : C∩B 6= /0} < ∞.

ThenT is called atessellationof R
d. The cells ared-

polytopes due to their convexity and the fact that the
tessellation is space-filling (Schneider and Weil, 2008,
Lemma 10.1.1). Denote byF k(C) the set of allk-
faces,k = 0, . . . ,d, of a d-polytopeC. The spaceT
of all tessellations ofRd can also be equipped with
the topology of closed convergence. Hence, we can
define a random tessellation as a random variableX
with values inT . Then the union of all facets,i.e.,
(d−1)-faces, of the tessellation forms a random closed
set

Ξ =
⋃

F∈F d−1(X)

F,

whereF d−1(X) =
⋃

C∈X F d−1(C).

The Poisson-Voronoi tessellation is maybe
the most well-known random tessellation model
(Schneider and Weil, 2008; Stoyanet al., 1995). It is
generated by the points of a stationary Poisson process
Φ by assigning to a pointx∈ Φ the cell

C(x,Φ) = {y∈ R
d : ||y−x|| ≤ ||y−z|| for all z∈ Φ}.

In the following, let Φ be a stationary Poisson
process with intensityλ , Vo(Φ) the induced Voronoi
tessellation, andΞ the stationary random closed set
formed by the facets of Vo(Φ). ForR≥ 0 denote by

ΞR = Ξ⊕b(0,R) =
⋃

F∈F d−1(Vo(Φ))

(F ⊕b(0,R)) (2)

the dilated facet system of Vo(Φ). Finally, denote
by Fd(0) the almost surely unique cell of Vo(Φ)
which contains the origin. In the following, we will
investigate geometric characteristics of the random
closed setΞR. Realisations of this set in bothR2 and
R

3 are shown in Fig. 2.

Fig. 2. Realisations of dilated Poisson-Voronoi
tessellations inR2 (left) andR

3 (right).
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CONTACT DISTRIBUTION
FUNCTIONS

Let B∈K be a convex body containing the origin
and letΘ be a random closed set. Then thecontact
distribution function HB of Θ is defined via

HB(r) = P
(

Θ∩ rB 6= /0|0 /∈ Θ
)

, r ≥ 0.

Important special cases are thespherical contact
distribution function Hs, where B = b(0,1) is the
unit ball centred in the origin, and thelinear contact
distribution function Hl , where B = l(u) is a line
segment of unit length in directionu∈ Sd−1.

Explicit formulae for contact and chord length
distribution functions of the Poisson-Voronoi
tessellation are given in Heinrich (1998) and Muche
and Stoyan (1992).

Theorem 1. (Heinrich, 1998, Theorem 1) Let B⊂ R
d

be a compact, star-shaped set containing the origin.
For r ≥ 0 the contact distribution function HB(r) of Ξ
is given by

1−HB(r)

= λ
∞

∫

0

∫

Sd−1

td−1e−λVd(
⋃

y∈rB b(tu−y,||tu−y||))σd−1(du)dt .

Remark 1. For d = 2 and d= 3 the spherical contact
distribution function ofΞ has been computed explicitly
in Muche and Stoyan (1992). For d= 2, it is given by

Hs(r) = 1− 1
2

e−4πλ r2
+

1
2

e−6πλ r2

−2πλ
∞

∫

r

ρe
−λ

(

(4r2+2ρ2)(π−arccosr
ρ )+6r

√
ρ2−r2

)

dρ ,

(3)

and for d= 3 we have

Hs(r) = 1−4πλ
r

∫

0

ρ2e−λ 32π
3 r(r2+ρ2)dρ (4)

−4πλ
∞

∫

r

ρ2e−λ 4π
3ρ (r+ρ)4

dρ .

Remark 2. The volume density VV,d of ΞR equals the
spherical contact distribution function ofΞ, i.e.,

VV,d(ΞR) = Hs(R). (5)

For any random closed setΘ and a compact set
B ∈ B, the capacity functional is defined asTΘ(B) =
P(Θ∩B 6= /0). It uniquely determines the distribution
of Θ (Schneider and Weil, 2008, Theorem 2.1.3).

If B ∈ K is a convex body containing the origin,
we have

TΞ(rB) = P(Ξ∩ rB 6= /0) = 1−P(rB ⊂ Fd(0)) = HB(r)

for any r > 0. The capacity functional of the dilated
tessellationΞR is related to the contact distribution
function of the original tessellation via

TΞR(rB) = 1−P
(

rB⊕b(0,R) ⊂ Fd(0)
)

(6)

= HB⊕b(0, R
r )(r).

Theorem 2. The contact distribution function HB,R of
ΞR is given by

1−HB,R(r)

=

∞
∫

0

∫

Sd−1
td−1e−λVd

(

⋃

y∈rB⊕b(0,R) b(tu−y,||tu−y||)
)

σd−1(du)dt

∞
∫

0

∫

Sd−1
td−1e−λVd

(

⋃

y∈b(0,R) b(tu−y,||tu−y||)
)

σd−1(du)dt

Proof. The application of the law of total probability
to the definitions ofHB,R andTΞR(B) yields

HB,R(r) = 1− 1−TΞR(rB)

1−VV,d(ΞR)
. (7)

Now use Eqs. 6, 5, and Theorem 1.

Example 1 (Spherical contact distribution function).
For B = b(0,1), we have

TΞR(rB) = Hb(0,1+ R
r )(r) = Hs(r +R).

Hence, Hs,R(r) = 1 − 1−Hs(r+R)
1−Hs(R) where the explicit

formulae for Hs in d = 2and d= 3are given in Remark
1.

DENSITIES OF THE INTRINSIC
VOLUMES

In this section we study the densities of the
intrinsic volumes of the random closed setΞR in
R

2 and R
3. These exist sinceΞR fulfills the above-

mentioned conditions for the existence of the limit
(Eq. 1) which follows from the representation (Eq. 2).

We derive integral formulae for the densities of
area and boundary length inR2 and for the volume
density and the specific surface area inR

3. The
interpretation of these two densities is straightforward
and they are sufficient for the estimation of the
parametersλ andR.
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Theorem 3. For d = 2, the area density AA,R is given
by Hs(R) in Eq. 3. The density of the boundary length
LA,R of ΞR is given by

LA,R = 4πλ
(

Re−4πλR2 −Re−6πλR2

+4λ
∞

∫

R

ρe
−λ

(

(4R2+2ρ2)(π−arccosR
ρ )+6R

√
ρ2−R2

)

(

R
(

π −arccos
R
ρ

)

+
√

ρ2−R2
)

dρ
)

Proof. By Stoyanet al. (1995, Equation (6.2.4)),LA,R
can be obtained asLA,R = (1−AA,R)H ′

s,R(0).

The integrals can be evaluated numerically. Plots
for the densities of area and boundary length for a
tessellation with unit intensity as functions ofR are
shown in Fig. 3.

Theorem 4. For d = 3, the volume density VV,R of ΞR
is given by Hs(R) in Eq. 4. The surface area density
SV,R of ΞR is given by

SV,R =
64π2λ 2

3



2

R
∫

0

ρ2e−λ 32π
3 R(R2+ρ2)(3R2 +ρ2)dρ

+

∞
∫

R

ρe−λ 4π
3ρ (R+ρ)4

(R+ρ)3dρ





Proof. By Stoyanet al. (1995, Equation (6.2.4)),SV,R
can be obtained asSV,R = (1−VV,R)H ′

s,R(0).

As in the planar case, the integrals can be evaluated
numerically. Plots for the densities of volume and
surface area for a tessellation with unit intensity as
functions ofRare shown in Fig. 4.

For the interpretation of the remaining intrinsic
volumes we notice that the complement of the random
closed setΞR forms a particle process inRd. It consists
of non-overlapping convex polytopes which are eroded
versions of the cells of the tessellation (see Fig. 2). We
denote its intensity byNV,R. Alternatively, we can write
NV,R = pRλ , wherepR is the probability that the typical
cell ’survives’ an erosion with a ball of radiusR. For
particle processesX of non-overlapping objects with
intensity NV , the additivity of the intrinsic volumes
yields

VV,k(X) = NVEVk(X0),

whereX0 is the typical grain ofX (Schneider and Weil,
2008).

Let now X ⊂ R
d be a compact, polyconvex

and topologically regular set. Then the Euler
characteristics ofX and the topological closureXc of
the complement ofX are related via

χ(X) = (−1)d+1χ(Xc),

see (Ohser and Schladitz, 2009, Formula (3.11)). Since
ΞR ∩ K with K ∈ K fulfils the requirements listed
above, the density of the Euler characteristic can be
interpreted as(−1)d+1NV,R.

For the interpretation ofMV,R, we remark that the
densities of the integral of mean curvature ofX and
Xc just differ by a factor−1 (Ohser and Schladitz,
2009, p.159). Furthermore, the mean widthb̄(K) of
a convex bodyK ∈ K is related to its integral of
mean curvatureM(K) via M(K) = 2πb̄(K) (Ohser and
Schladitz, 2009, p. 21). Hence, we get

MV,R = −2πNV,R
¯̄bR,

where ¯̄bR is the expected mean width of the eroded
cells of the tessellation.

In applications, the values ofMV,R and χV,R (or
χA,R) can be used to validate a Poisson-Voronoi model
which has been fitted usingVV,R andSV,R (or AA,R and
LA,R). This is of particular interest since the estimators
for the intrinsic volume densities used in this paper
estimate all densities simultaneously (see also Ohser
and Schladitz (2009)). Hence, characteristics for
parameter estimation and model validation can be
obtained in one single estimation step.

For these reasons, we believe that also the intrinsic
volume densitiesχA,R for d = 2 andMV,R andχV,R for
d = 3 deserve an investigation. Since we do not see a
way to obtain analytical formulae for them, they are
studied by simulation.

For d = 2, the density of the Euler characteristic
was estimated from 50 realisations of a stationary
Poisson-Voronoi tessellation with intensityλ = 1 in a
square with edge length 40. The dilated edge systems
of the tessellations were discretized in binary images
with 2000× 2000 pixels. The density of the Euler
characteristic was estimated from the image data using
the estimator proposed in Ohser and Schladitz (2009)
which is implemented in the MAVI software package
(Fraunhofer ITWM, 2005); see Fig. 3 and Table 1.

In the cased = 3, the densities of the integral
of mean curvature and the Euler characteristic were
estimated from 30 realisations of Poisson-Voronoi
tessellations with unit intensity in a cube with edge
length 10, i.e., containing 1000 cells on average.
The dilated facet systems of the tessellation were
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discretized in binary images with 10003 voxels. Again,
the densities of the intrinsic volumes were estimated
from the image data using the estimators proposed in
Ohser and Schladitz (2009); see Fig. 4 and Table 2.

Fig. 3. Densities of area, boundary length, and Euler
characteristic of a dilated Poisson-Voronoi tessellation
in R

2 with intensityλ = 1 as a function of R. Circles
correspond to the mean values estimated from 50
realisations of the model. The envelopes plotted in
grey are the minimal and maximal values from the 50
realisations.

Fig. 4. Densities of volume, surface area, integral of
mean curvature, and Euler characteristic of a dilated
Poisson-Voronoi tessellation inR3 with intensityλ = 1
as a function of R. Circles correspond to the mean
values estimated from 30 realisations of the model. The
envelopes plotted in grey are the minimal and maximal
values from the 30 realisations.
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Remark 3. The limits of the intrinsic volume densities
for ΞR for R → 0 can be computed from geometric
characteristics of the Poisson-Voronoi tessellation. For
d = 2, we have

AA,0 = 0,

LA,0 = 2L = 4λ
1
2 , and

χA,0 = −λ ,

where L denotes the expected total edge length of
the Poisson Voronoi tessellation per unit volume. For
d = 3, we get

VV,0 = 0,

SV,0 = 2S≈ 5.820λ
1
3 ,

MV,0 = −2πb̄≈−9.161λ− 1
3 , and

χV,0 = λ ,

where S denotes the expected total surface area of the
facets of the tessellation per unit volume, andb̄ is the
expected mean width of its typical cell.

APPLICATION

In this section we apply the formulae forVV,R
andSV,R derived above to fit a Poisson-Voronoi model
to the microstructure of a closed-cell polymer foam
which is used for the insulation of buildings. We
analysed a CT image of the material consisting of
480× 480× 360 voxels with a voxel edge length
of 10.21 µm. The densities of volume and surface
area were estimated from a binarised version of the
image using the estimators of Ohser and Schladitz
(2009). The estimated values arêVV = 7.91% and
ŜV = 6.983 mm−1. Based on the formulae given in
Theorem 4 we fitted the parameters of the dilated
Poisson- Voronoi tessellation to the estimated values
using a Nelder-Mead simplex optimisation procedure
(Nelder and Mead, 1965). The distance function which
was minimised was

f (λ ,R) =

(

V̂V −VP
V (λ ,R)

V̂V

)2

+

(

ŜV −SP
V(λ ,R)

ŜV

)2

,

whereVP
V (λ ,R)andSP

V(λ ,R)are the characteristics for
a dilated Poisson-Voronoi tessellation with intensity
λ and dilation radiusR. The results arêλ = 1.989
mm−3 and R̂ = 9.904 µm which corresponds to
VP

V (λ̂ , R̂) =7.08% andSP
V(λ̂ , R̂) =6.984 mm−1. The

fit of these values is relatively close. However, the
visualisations of the original sample and the model
shown in Fig. 5 show a certain deviation in the cell

shape. This indicates that a tessellation with more
regular cell shapes might be a preferable model for this
material.

Unfortunately, the validation method suggested
above is not applicable for this data set: it is well-
known that the estimators forMV andχV are sensitive
to the resolution of the image (Ohser and Schladitz,
2009). In the current image, the resolution is not high
enough to fully resolve the cell walls which are slightly
perforated in the binary image. While the effect on the
estimates of the volume and surface density (loss of
several pixels) is negligible, the estimatesM̂V = 10.61
mm−2 and χ̂V = −401.2 mm−3 are highly affected.
In particular, the discussion in the previous section
shows that a negative value ofMV should be expected
for the dilated facet system of a three-dimensional
tessellation whileχV should be positive. In the foam
example, the signs of both characteristics are reversed.
Consequently, their interpretation is questionable and
they cannot be used for model validation.

Fig. 5. Visualisations and sectional images of the
original foam (left) and the fitted Poisson-Voronoi
model (right). Sample and CT imaging: R. Schlimper,
Fraunhofer IMW Halle.

Remark 4. If Ξ is a stationary and isotropic random
closed set inR

3 then its volume and surface area
density are related to the area density AS

A and the
boundary length LSA of the two-dimensional section
Ξ∩ (R2×{0}) via

VV = AS
A and SV =

4
π

LS
A .
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Hence, a three-dimensional model can also be fitted
based on measurements in 2D images. Whenever
possible, three-dimensional data should be preferred
for the model fit. In the data presented above, the
area fractions estimated from sectional images vary
between6.74% and 9.41%. Hence, the choice of a
single slice might lead to a significantly different
estimation of the model parameters.

Nevertheless, the possibility to fit a model using
2D observations is valuable for materials which are
not tractable to 3D imaging techniques, e.g., the sinter
material shown in Fig. 1.

DISCUSSION

We have studied the densities of the intrinsic
volumes of the dilated facet systems of stationary
Poisson-Voronoi tessellations inR2 and R

3. We
obtained analytical formulae for the densities of the
area and boundary length inR2 and the volume and
surface area inR3. The densities of the remaining
intrinsic volumes could only be studied by simulation.
The results presented in this paper allow for a
quick and easy fitting of stationary Poisson-Voronoi
tessellations to cellular materials. Since two of
the intrinsic volume densities are sufficient for the
parameter estimation, the remaining ones can be used
for model validation.

In many applications, tessellation models
generated by regular point processes might provide
better model fitting results. Nevertheless, the Poisson-
Voronoi tessellation could be sufficient in cases
where the cell shape is of minor importance.
Furthermore, thanks to its analytical tractability it
plays an important role as reference model. Due to
the independent placement of the cells’ generators in
the Poisson-Voronoi tessellation this model yields a
very disordered structure. Hence, it could also be seen
as an extreme case which can possibly provide bounds
for characteristics of more regular tessellation models.

Formulae for the spherical contact distribution
function of more general Voronoi tessellations and of
Poisson Laguerre tessellations were given in Heinrich
(1998) and Lautensack (2007), respectively. These
formulae could be used to extend the results from this
paper to further tessellation models. So far, however,
these formulae are given in less explicit form than the
formulae for the Poisson-Voronoi tessellation which
hinders their applicability.

APPENDIX

Tables 1 and 2 contain the means and standard
deviations of χA,R, MV,R, and χV,R estimated by
simulation.

Table 1.Values ofχA,R in R
2 estimated by simulation.

R χA,R χA,R
mean sd

0.025 -0.9993 0.0224
0.050 -0.9995 0.0226
0.100 -0.9976 0.0224
0.150 -0.9853 0.0210
0.200 -0.9484 0.0194
0.250 -0.8784 0.0159
0.300 -0.7682 0.0114
0.350 -0.6308 0.0094
0.400 -0.4829 0.0105
0.450 -0.3435 0.0108
0.500 -0.2257 0.0116
0.550 -0.1359 0.0098
0.600 -0.0771 0.0072
0.650 -0.0406 0.0044

Table 2.Values of MV,R and χV,R in R
3 estimated by

simulation.

R MV,R MV,R χV,R χV,R
mean sd mean sd

0.025 -8.9695 0.2039 1.0025 0.0335
0.050 -8.5529 0.1901 1.0022 0.0347
0.100 -7.7027 0.1598 1.0026 0.0341
0.150 -6.8224 0.1268 1.0014 0.0348
0.200 -5.8910 0.0928 0.9989 0.0329
0.250 -4.8739 0.0550 0.9758 0.0327
0.300 -3.7635 0.0250 0.9218 0.0283
0.350 -2.6042 0.0390 0.7827 0.0193
0.400 -1.5528 0.0516 0.5707 0.0141
0.450 -0.7594 0.0484 0.3366 0.0161
0.500 -0.2938 0.0311 0.1542 0.0138
0.550 -0.0872 0.0160 0.0532 0.0069
0.600 -0.0199 0.0082 0.0134 0.0043
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thesis, Universiẗat Karlsruhe. Weiler bei Bingen: Verlag
Lautensack.

Muche L, Stoyan D (1992). Contact and chord length
distributions of the Poisson Voronoi tessellation. J Appl
Probab 29:467–71.

Nelder J, Mead R (1965). A simplex method for function
minimization. Comput J 7:308–13.

Ohser J, Schladitz K (2009). 3D images of materials
structures – Processing and analysis. Weinheim: Wiley.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial

tessellations – Concepts and applications of Voronoi
diagrams, 2nd ed. Chichester: Wiley.

Redenbach C (2009). Modelling foam structures using
random tessellations. In: Capasso V, Aletti G, Micheletti
A, eds. Stereology and Image Analysis. Proc 10th Eur
Conf ISS (ECS10), vol. 4 of The MIRIAM Project
Series. Bologna: Esculapio.

Ribeiro-Ayeh S (2005). Finite Element Modelling of the
Mechanics of Solid Foam Materials. Ph.D. thesis,
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