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Abstract

We consider several families of Cayley graphs on the finite Coxeter groups An, Bn,
and Dn with regard to the problem of whether they are Hamilton-laceable or Hamilton-
connected. It is known that every connected bipartite Cayley graph on An, n ≥ 2, whose
connection set contains only transpositions and has valency at least three is Hamilton-
laceable. We obtain analogous results for connected bipartite Cayley graphs on Bn, and
for connected Cayley graphs on Dn. Non-bipartite examples arise for the latter family.
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1 Introduction
The motivational stream for this paper is a confluence of many rivulets varying in age and
intrigue. We now explore this history and do so in spite of postponing definitions until
completing the brief excursion.

The oldest is Lovász’s 1969 question [15] asking whether every connected vertex-
transitive graph has a Hamilton path. A closely related thread arose more or less simul-
taneously, namely, the question of whether every connected Cayley graph has a Hamilton
cycle. The latter question has attracted considerable attention for more than forty years.
There have been three survey papers of which I am aware [2, 9, 17] and many, many in-
dividual papers dealing with the question. References [10, 11, 14] are examples of some
recent papers on the topic.

Altshuler [6] studied Hamilton cycles in certain embeddings of trivalent graphs on the
torus where all faces are hexagons. He was unable to completely settle the problem of
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whether all such graphs are hamiltonian. Many of these graphs (but not all) are Cayley
graphs on dihedral groups. This was the first specific instance of looking for Hamilton
cycles in Cayley graphs on dihedral groups.

The author and Zhang [5] proved that all connected trivalent Cayley graphs on dihedral
groups are hamiltonian. Unfortunately, we were unable to extend the result to any larger
valency. So the general problem of determining whether all connected Cayley graphs on
dihedral groups are hamiltonian remains unresolved. There has been some progress. It has
been known for almost thirty years that the problem has an affirmative answer if it could be
proved that the answer is yes when all the elements in the connection set are reflections. As
a corollary of a general result in a recent paper [4], we now know that all connected Cayley
graphs on dihedral groups are hamiltonian whenever the order of the group is a multiple of
4.

Two apparently unrelated threads come from computer science. The older of the two is
related to algorithms for generating all the permutations of an n-set [13, 16]. Several of the
algorithms correspond to a Hamilton path in a Cayley graph on the symmetric group Sn

with a connection set composed of transpositions. Recently, there has been considerable
interest in other Cayley graphs on symmetric groups, where the connection set contains
only transpositions. The most celebrated graph of this type is the star graph of dimension
n [1] (as it frequently is called).

The penultimate thread is fairly new and arises in computational biology. Analysis
of genomes evolving by inversions leads to a graph theoretic interpretation that involves
signed permutations [12]. This involves the Cayley graphs we study in Sections 3 and 4.

An older paper [8] actually ties these threads together (although it may not yet be ap-
parent). In that paper the following theorem appears.

Theorem 1.1. Let G be a finite group generated by reflections R1, . . . , Rn. Then there is
a hamiltonian circuit in the Cayley diagram for G corresponding to these generators.

Upon reading Theorem 1.1, we might think this settles the problem for connected Cay-
ley graphs on dihedral groups because, as mentioned above, it suffices to settle that problem
when all the members of the connection set are reflections. However, a careful reading of
[8] leads to the discovery that they prove there is a presentation for every finite Coxeter
group so that the corresponding Cayley graph has a Hamilton cycle. It is highly likely that
Theorem 1.1 is true, but it is yet to be proven.

The final thread arises out of a strong generalization of Theorem 1.1 for symmetric
groups (see Theorem 2.3 in the next section). The purpose of this paper is to start extending
Theorem 2.3 to Cayley graphs on other Coxeter groups. The two main results are Theorems
4.3 and 5.2.

We are ready to start useful background information. The Cayley graph Cay(G;S) on
the group G with connection set S is the graph whose vertex set is the set of elements of
G, with an edge joining g and h if and only if h = gs for some s ∈ S. There is a restriction
on the connection set S, namely, 1 6∈ S and S is inverse-closed, that is, s ∈ S if and only
if s−1 ∈ S.

We shall use two notations for permutations because each of them is convenient for
certain contexts. One common notation is cyclic notation in which a permutation is written
as a product of disjoint cycles. The cycles are enclosed in parentheses and upon observing
a cycle (· · · i j · · · ), this is to be interpreted as meaning the permutation maps i to j. There
are no commas in this notation, instead, the elements in the cycles are separated by extra
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space. We also adopt the convention that fixed points, that is, 1-cycles, are not written
down. Thus, the transposition interchanging i and j is written (i j).

The other notation for permutations we use is range notation. That is, if we write a
permutation as a1a2 . . . an, we mean the permutation that maps i to ai for i = 1, 2, . . . , n.
Thus, the identity permutation in the symmetric group S5 is written as 12345.

We shall employ the Orbit-Stabilizer Theorem and state it now for convenience.

Theorem 1.2. If G is a permutation group acting on a finite set A, then the order of G is
given by

|G| = |O(x)||Gx|,
where x ∈ A, O(x) denotes the orbit of G containing x, and Gx is the stabilizer of x.

A graph X is Hamilton-connected whenever one can find a Hamilton path joining any
two arbitrarily chosen vertices. Similarly, a bipartite graph X , for which both parts have
the same cardinality, is Hamilton-laceable whenever one can find a Hamilton path joining
any two arbitrarily chosen vertices lying in different parts.

2 The symmetric groups
A Coxeter group is a group generated by reflections R1, R2, . . . , Rn such that the only
other relations are of the form (RiRj)

k = 1. Given a Coxeter group G, we associate a
graph with it, called a Coxeter diagram, where there is a vertex associated with each of the
generating reflections.

It is easy to see that Ri and Rj commute if and only if (RiRj)
2 = 1. So we do not

place an edge in the Coxeter diagram if and only if (RiRj)
2 = 1. If (RiRj)

3 = 1, then we
join Ri and Rj by an edge and do not label the edge. Finally, if (RiRj)

k = 1 and k > 3,
then we join Ri and Rj by an edge and label the edge with k.

The symmetric group Sn is a Coxeter group corresponding to the Coxeter diagram
given in Figure 1 with the last edge removed. (Thus, we see that Sn is the Coxeter group
An−1.) The generator Ri, 1 ≤ i ≤ n − 1, is the reflection of En, n-dimensional eu-
clidean space, through the orthogonal complement of the vector with -1 in coordinate i, 1
in coordinate i+ 1 and zeros in all other coordinates. We present the known results for the
symmetric groups for completeness and because it takes little space.

Definition 2.1. Let S be a collection of transpositions in Sn. We define an auxiliary graph
aux(S) by letting the vertices be labelled 1, 2, . . . , n and joining i and j with an edge if
and only if (i j) ∈ S.

The following proposition is easily proved by induction using Theorem 1.2.

Proposition 2.2. If X = Cay(Sn;S), where S consists of transpositions only, then X is
connected if and only if aux(S) is connected.

The proof given in [8] for Theorem 1.1 applies to the connection set consisting of the
transpositions (1 2), (2 3), . . . , (n − 1 n). The next theorem is a strong generalization
in that it tells us that all of the connected Cayley graphs on the symmetric group, whose
connection sets contain only transpositions, are Hamilton-laceable. This vastly extends the
connection sets involved, and strongly extends the conclusion as well. Of course, Hamilton-
laceable is the best we can hope for because the graphs are bipartite.

Theorem 2.3. (Araki [7]) If X = Cay(Sn;S) is connected, S consists of transpositions
only, and n ≥ 4, then X is bipartite and Hamilton-laceable.
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3 Path extension and Johnson graphs
The proofs of the main results to follow are variations on a single theme. Namely, choose
a single vertex u and a target vertex v with the object of finding a Hamilton path joining u
to v. We proceed by building longer and longer paths from u until we have a path from u
that spans all the vertices and terminates at v. We call this technique path extension.

The following lemma is the path extension lemma and is used many times. We employ
the notion of a quotient graph arising from a partition of the vertex set. It is defined as
follows. Given a graph X and a partition A1, A2, . . . , At of its vertex set, we define the
quotient graph with respect to the partition to be the graph of order t whose vertices corre-
spond to the parts, where two vertices are adjacent if and only if there was at least one edge
in X between the corresponding parts.

We remind the reader that a k-matching is a set of k vertex-disjoint edges.

Lemma 3.1. Let X be a graph whose vertex set is partitioned into parts A1, A2, . . . , At,
let Yi denote the subgraph induced on Ai, i = 1, 2, . . . , t, and let X/A denote the quotient
graph with respect to the partition. We are interested in two scenarios.

(i) If each Yi is Hamilton-connected, then we assume that whenever two parts are joined
by an edge, there is in fact a 3-matching between the parts. In this case, if there is a
Hamilton path in X/A from Ai to Aj , then there is a Hamilton path in X joining any
vertex in Ai to any vertex in Aj .

(ii) If each Yi is Hamilton-laceable, let Bi, Ci denote the parts of the bipartition of Yi.
We now assume that whenever two parts Ai and Aj are joined by an edge, then there is a
2-matching between Ai and Aj so that the four end vertices of the two edges intersect each
of the sets Bi, Bj , Ci, Cj . In this case, if there is a Hamilton path in X/A from Ai to Aj ,
then there is a Hamilton path joining any vertex of Ci to any vertex of one of Bj or Cj , and
any vertex of Bi to any vertex of the other one of Bj or Cj .

Proof. In scenario (i), choose an arbitrary vertex u in Ai. Let v be the target vertex in Aj .
There is a Hamilton path P ′ joining Ai and Aj in X/A. Let Ak be the second vertex of
P ′.

There must be a vertex u′ ∈ Ai distinct from u such that u′ has a neighbor w ∈ Ak

because there is a 3-matching betweenAi andAk. Thus, take a path from u to u′ that spans
the vertices of Ai. Then add on the edge from u′ to w.

There now must be a vertex w′ ∈ Ak, distinct from w, with a neighbor in the next part.
We then extend the path by adding on a path from w to w′ that spans the vertices of Ak.

We continue in the obvious way noting that we may enter Aj , the last part in P ′, at a
vertex distinct from v because there is a 3-matching between Aj and the preceding part on
P ′. We then complete the path to a Hamilton path from u to v by adding a path spanning
Aj that terminates at v.

The proof when each Yi is bipartite is essentially the same outside of respecting the
bipartition of the subgraphs.

Recall that the Johnson graph J(n, r) has all the r-subsets of an n-set as its vertices,
where two vertices are adjacent if and only if their corresponding subsets have exactly
r − 1 elements in common. We need to define another graph. Let C = {a1, a2, . . . , am}
be a non-empty subset of {0, 1, 2, . . . , n} such that the elements are listed in the order
a1 < a2 < · · · < am. We define the graph QJ(n,C) in the following way. For each
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ai ∈ C, we include a copy of the Johnson graph J(n, ai). Thus far the Johnson graphs
are vertex-disjoint with no edges between them. We then insert edges between J(n, ai)
and J(n, ai+1), for each i, using set inclusion, that is, we join an ai-subset S1 and an
ai+1-subset S2 if S1 is contained in S2.

The graph QJ(n,C) can be pictured as having levels made up of Johnson graphs with
edges between successive levels based on set inclusion. The following theorem is proved
in [3].

Theorem 3.2. The graph QJ(n,C) is Hamilton-connected for every non-empty C.

4 Wreath products
Because we shall be working with signed permutations throughout the rest of the paper, we
adopt a convention that simplifies notation. Instead of writing −k for a positive integer k,
we write k. We extend this in the obvious way in that k = k, and use x for −x.

Consider the Coxeter diagram shown in Figure 1. The generator Ri, 1 ≤ i ≤ n− 1, is
the reflection of En through the orthogonal complement of the vector with 1 in coordinate
i, 1 in coordinate i+1 and zeros in all other coordinates. The generatorRn is the reflection
of En through the orthogonal complement of the vector with 1 in coordinate n and zeros
in all other coordinates. This is the Coxeter group Bn and it is easy to see that

r r r - - - r rR1 R2 R3 Rn−1 Rn

4
Figure 1

it is isomorphic to the wreath product Sn oS2. This group may be visualized as the set of all
permutations acting on the set {1, 1, 2, 2, . . . , n, n} such that if f(i) = y, then f(i) = y.
This then gives us a compact notation for the elements of Sn o S2, namely, we write

a1a2 . . . an

to be the permutation mapping i to ai and i to ai for i = 1, 2, . . . , n. That is, the elements
are all the signed permutations of 1, 2, . . . , n.

Note that Sn oS2 is imprimitive with the complete block system composed of the blocks
{i, i} for i = 1, 2, . . . , n. Thus, there is a natural homomorphism

ϕ : Sn o S2 → Sn,

with kernel isomorphic to Sn
2 , representing the action on the block system. If ϕ(f) = (i j)

is a transposition in Sn, then either f = (i j)(i j)g or f = (i j)(i j)g, where g is in
the kernel. When g = 1, we call such an element of Sn o S2 a double transposition. If
f ∈ Sn o S2 is a transposition, it is easy to see that f ∈ ker(ϕ), that is, f = (i i) for some
i in cyclic notation.
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Let X = Cay(Sn o S2;S), where S contains only transpositions and double transposi-
tions. We define an auxiliary graph aux(S) in this case similar to what we did for Cayley
graphs on Sn. The vertices are again the integers 1, 2, 3, . . . , n. We join i and j by an edge
if and only if there is a double transposition f ∈ S for which the homomorphic image
ϕ(f) = (i j).

The next result provides some useful structural information.

Lemma 4.1. If S is a collection of n−1 double transpositions in Sn oS2 such that aux(S)
is a tree, then the subgroup 〈S〉 generated by S is isomorphic to Sn, has two orbits such
that i and i belong to different orbits for 1 ≤ i ≤ n, has index 2n in Sn oS2, and the graphs
induced on the left cosets of 〈S〉 are precisely the components of Cay(Sn o S2;S).

Proof. We induct on n. When n = 2, S contains a single double transposition. We can
check easily that the conclusions follow as there are only two possibilities for the double
transposition. Let S be a collection of double transpositions satisfying the hypotheses for
some n > 2, and assume the result holds for n− 1.

We may assume the elements on which Sn o S2 is acting are labelled so that n is a leaf
of the tree aux(S). Remove from S the double transposition τ involving the element n and
let S′ denote the set of n− 1 transpositions left over. The subgroup 〈S′〉 fixes n and n, and
by induction satisfies the conclusions of the theorem when restricted to {1, 1, 2, 2, . . . , n−
1, n− 1}.

Thus, 〈S〉n, the stabilizer of n, has order (n − 1)! and is isomorphic to Sn−1. If
τ = (n y)(n y), then let the orbit of 〈S′〉 containing y be O1. Because τ maps n to y and
the other n − 1 double transpositions map elements of O1 to elements of O1, the orbit of
〈S〉 containing n is {n} ∪ O1. So the stabilizer of n has order (n − 1)! and the orbit
containing n has cardinality n. We then know that |〈S〉| = n! by Theorem 1.2. Hence, 〈S〉
is isomorphic to Sn.

Clearly, the orbit containing n is {n} ∪ O2, where O2 is the other orbit of the restric-
tion of Sn−1 to {1, 1, 2, 2, . . . , n − 1, n− 1}. Hence, 〈S〉 has two orbits such that {i, i}
intersects both orbits for 1 ≤ i ≤ n.

Because |Sn o S2| = 2nn! and |〈S〉| = n!, it certainly is the case that 〈S〉 has index 2n

in the Sn o s2. So that property holds.
Examining the Cayley graph Cay(Sn o S2;S), we know that we have a component

consisting of the vertices corresponding to the elements of 〈S〉. Because left-multiplication
is an automorphism of a Cayley graph, the components of this Cayley graph are induced
on the left cosets of 〈S〉.

Lemma 4.2. If X = Cay(Sn o S2;S), where S contains only transpositions and double
transpositions, then X is connected if and only if S contains at least one transposition and
aux(S) is connected.

Proof. If aux(S) is not connected, then it is clear that X is not connected. Thus, if X is
connected, then aux(S) is connected.

Multiplying on the right by a double transposition either switches two positions, or
switches two positions and negates both entries. Thus, if S contains only double trans-
positions, the signed permutation 123 . . . n is not in the same component as a signed per-
mutation with a single negative entry. Hence, if X is connected, then S must contain a
transposition. This completes the proof of one direction.
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We now assume that aux(S) is connected and S contains a transposition (i i). Let T
be a spanning tree of aux(S). Let Y = Cay(Sn o S2;T ). We know from Lemma 4.1 that
Y has 2n components so let Y ′ be the component containing 123 . . . n.

Let I(A) denote the involution consisting of the product of the transpositions (k k) as
k runs through elements of A, where A is a subset of {1, 2, . . . , n}. Left multiplication by
I(A) is an automorphism of Y mapping Y ′ to the component containing I(A).

Consider the component containing I(k), where we are writing k rather than {k}. If
we choose any element a1a2 . . . an of Y ′ with ai ∈ {k, k}, then the corresponding element
of the component containing I(k) has all entries the same except that in coordinate i it has
ai. Thus, there is an edge joining these two vertices via (i i). In a similar way, there is an
edge from Y ′ to any component containing I(A), where A is a singleton.

In a similar manner, we can find an edge from the component containing I(k) to any
component containing I(k, `), where ` 6= k and we do not include the set brackets around
k and `. It now is obvious that we can use edges generated by (i i) to connect all the
components of Y into a single component of X .

Theorem 4.3. If X = Cay(Sn o S2;S) is connected, has valency at least three, and S
contains only double transpositions and transpositions, then X is bipartite and Hamilton-
laceable.

Proof. First we show that X is bipartite. Let A consist of the signed permutations f =
a1a2 · · · an such that ϕ(f) is an even permutation and f has an even number of negative
terms, or ϕ(f) is an odd permutation and f has an odd number of negative terms. Let B be
the remaining elements of Sn o S2. It is easy to see that if we multiply any element of A on
the right by an element of S, we obtain an element of B and vice versa. We conclude that
X is bipartite.

Small values of n produce some anomalous situations and we investigate them sepa-
rately. When n = 2, all of the possibilities giving valency 3 are isomorphic to the cartesian
product of a 4-cycle and K2. This is known to be Hamilton-laceable. When the valency is
4, the graph is isomorphic to K4,4 which is Hamilton-laceable. Hence, the result is true for
n = 2.

We cannot apply induction for the n = 3 case because the valency may be 3 and upon
deleting an element from the connection set, we obtain a subgraph whose components are
even length cycles. Even cycles are not Hamilton-laceable so that we must do this case
separately.

Let X satisfy the hypotheses and n = 3. Because X is connected, aux(S) is connected
and contains a spanning tree. The spanning tree must be a path of length 2 because n = 3.
By relabelling the elements on which the group Sn o S2 acts, if necessary, we may assume
the spanning tree is 123. Note that the spanning tree does not uniquely determine the
connection set for X . For example, the edge 12 arises from at least one of the double
transpositions (1 2)(1 2) and (1 2)(1 2) belonging to S. (Of course, both of these double
transpositions could belong to S.)
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Figure 2

If the double transpositions (1 2)(1 2) and (2 3)(2 3), and the transposition (3 3)
belong to S, then they generate a spanning subgraph of X isomorphic to the graph shown
in Figure 2. In fact, no matter which double transpositions are chosen corresponding to the
spanning tree together with either of the transposition (1 1) or (3 3), we obtain a spanning
subgraph of X isomorphic to the graph in Figure 2. If we have the transposition (2 2), we
obtain edges between the eight 6-cycles such that the two edges joining two fixed 6-cycles
are incident with diametrically opposed vertices on the 6-cycles instead of neighboring
vertices as in the graph shown in Figure 2.

The essential point is that we have two trivalent bipartite graphs of order 48 that need to
be directly checked whether they are Hamilton-laceable. This may seem to be a daunting
task, but as a matter of fact it is fairly straightforward.

Consider the graph in Figure 2. It suffices to find a Hamilton path from the vertex
123 to any vertex in the other part of the bipartition because X is vertex-transitive. For
example, suppose you want a Hamilton path terminating at the vertex 312 in the figure.
Construct a path starting with 123 that spans the 6-cycle containing 123 and terminates at
132. Continue by taking the edge to 132 followed by using all the vertices of this 6-cycle
and terminating at the vertex 312. We now have a path starting at 123 and terminating at
312.

It is easy to see how to transform this starting path into a Hamilton path terminating at
312. Remove the edge joining 231 and 321 from the path and take the two edges down to
the vertices 231 and 321 in another 6-cycle. Join 321 and 231 using all the vertices of that
6-cycle. It is easy to see that we can continue to delete an edge from the expanding path
and move to another 6-cycle and pick up all of its vertices until reaching a Hamilton path.

The preceding technique together with Posa exchanges establishes that the graph of
Figure 2 is Hamilton-laceable. The other possible isomorph is a little harder to work with,
but it is still fairly easy to establish that it is Hamilton-laceable. Hence, the theorem is true
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for n = 3.
We continue the proof by induction on n. Let n ≥ 4 and assume the theorem holds for

n − 1. Because aux(S) is connected, it has a spanning tree T . Moreover, because T has
at least two leaves, T has a leaf j such that the connection set S contains a transposition
(i i) for which i 6= j. Relabel the elements 1, 2, . . . , n, if necessary, so that a double
transposition g satisfying ϕ(g) = (n− 1 n) belongs to S, where j is relabelled as n.

Now let S′ denote all the elements of S that fix n. The group 〈S′〉 generated by S′ is
isomorphic to Sn−1 o S2 by Lemma 4.2, and the Cayley graph Y = Cay(Sn−1 o S2;S′) is
connected and bipartite. We know that Y is Hamilton-laceable by induction.

The Cayley graphX ′ = Cay(Sn oS2;S′) is disconnected with components isomorphic
to Y . This follows because 〈S′〉 generates all signed permutations of 1, 2, 3, . . . , n with n
fixed and this is the component of X ′ containing the identity. If we left multiply 〈S′〉 by
any element of h ∈ Sn o S2, we get all the signed permutations for which n is mapped to
h(n), that is, the last coordinate is h(n). Left multiplication is an automorphism of both X
and X ′ so that all the left cosets of 〈S′〉 induce isomorphs of Y . This sets the stage for the
induction proof via Lemma 3.1.

We use the components of X ′ to give us the partition of V (X). Let C(z) denote the
component consisting of the signed permutations ending with z. If there is an edge from
one part of the component C(x) to one part of the component C(y), x 6= y, then left
multiplication by a double transposition from S′ gives an edge joining the other two parts
of the same two components. Thus, a crucial hypothesis of Lemma 3.1 is satisfied.

It suffices to show that there are Hamilton paths in X from 123 · · ·n to every vertex of
B because X is vertex-transitive. The double transposition g satisfying ϕ(g) = (n− 1 n)
is either (n − 1 n)(n− 1 n) or (n − 1 n)(n− 1 n). We first consider the case that
g = (n− 1 n)(n− 1 n).

Let x 6= y such that x 6= y. There is a signed permutation in C(x) ending yx. Right
multiplication by g gives an edge from C(x) to C(y).

Let v be an arbitrary vertex in B in a component C(x) such that x 6= n. By Lemma
3.1 it suffices to find a Hamilton path in the quotient graph X/A from C(n) to C(x). We
claim there is a sequence y1, y2, . . . , y2n composed of the elements 1, 1, . . . , n, n such that
y1 = n, y2n = x and j, j are never consecutive.

Letting i < n, use the sequence

n, n− 1, . . . , i+ 1, 1, 2, . . . , n, 1, 2, . . . , i

when x = i. When x = i, we negate every term in this sequence other than the first.
When x = n, use

n, n− 1, . . . , 1, 2, 1, 3, . . . , n.

From the above remark, there are edges joining consecutive components corresponding to
the sequence and the desired Hamilton path exists.

We have to modify the approach somewhat when x = n, that is, the target vertex
v = a1a2 · · · an−1n also lies in C(n). We start with a path P from 123 · · ·n to v that spans
the vertices of C(n). We examine an−1.

As we traverse P backwards, find the first vertexw for which the n−1 entry is different
from an−1. In other words, the subpathP [123 · · ·n,w] terminates in a vertexw whose n−1
entry is not an−1, but every vertex of the subpath P (w, a1a2 · · ·n] has an−1 in coordinate
n− 1. Let w′ be the successor of w on P .
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Remove the edge ww′ from P . The vertices wg and w′g lie in different components
because they differ in coordinate n. It is easy to see how to slightly modify the preceding
argument so that we obtain a path from w to w′ spanning all the vertices of the remaining
components. This yields a Hamilton path joining 123 · · ·n and v.

The other case is g = (n n− 1)(n − 1 n). It is different because multiplying on the
right by g not only switches the elements in coordinates n − 1 and n, it also changes the
signs of both. However, it takes only a small modification of the above procedure to handle
this case. Use the same sequences y1, y2, . . . , y2n, but when terminating the path spanning
a left coset, stop at a vertex whose last two coordinates are yi+1yi. Multiplying on the right
by g then takes you to a vertex in the correct left coset. This completes the proof.

5 An Index 2 Subgroup Of Sn o S2

The groups we considered in the preceding section were the signed permutations of length
n. A natural subgroup for each of these groups is the collection of signed permutations
with an even number of negative terms. This group is the Coxeter group Dn. It is easy to
see that Dn has index 2 in Sn o S2.

The Coxeter diagram for the group Dn is shown in Figure 3. The generator Ri, 1 ≤
i ≤ n − 1, is the reflection through the orthogonal complement of the vector with 1 in
coordinate i, 1 in coordinate i+ 1, and zeros elsewhere. The generator Rn is the reflection
through the orthogonal complement of the vector with 1 in the last two coordinates and
zeros elsewhere.

The first step is to decide which connection sets we are going to allow for the Cayley
graphs on Dn. We shall use double transpositions as we have done for Sn oS2, but now we
require a product of two transpositions that negates two coordinates, that is, a permutation
f ∈ Sn oS2 such that f(i) = i, f(j) = j, and f fixes all other elements k, where i 6= j and
k 6∈ {i, j}. We call such a permutation a double negator.

r r r - - - �
�
�

@
@
@

r r
r

r
R1 R2 R3 Rn−3 Rn−2

Rn

Rn−1

Figure 3

In order to set the stage for what follows, we examine n = 2, 3 ahead of time. The
case of n = 2 is particularly simple, and not particularly edifying, because |D2| = 4.
So the only Cayley graph on Dn of valency 3 is K4. It is not bipartite and certainly is
Hamilton-connected.

In general, we letX = Cay(Dn;S) be a Cayley graph onDn such that S contains only
double transpositions and double negators. We again define aux(S) by letting the vertices
be 1, 2, . . . , n, and joining i and j with an edge if and only if there is a double transposition
f ∈ S such that ϕ(f) = (i j).

We return to our consideration of the two smallest values of n. There is considerably
more complexity when n = 3. Note that |D3| = 24.

If aux(S) is not connected, then it must have a singleton component. Without loss of
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generality we may assume vertex 3 is a singleton. This means that every double transposi-
tion in the connection set S fixes both 3 and 3, and double negators fix all the blocks. Thus,
the block {3, 3} is fixed by the group 〈S〉 generated by S. Hence, 〈S〉 is a proper subgroup
of D3 which implies that X is not connected. Therefore, we see that if X is connected,
then aux(S) is connected.

We are assuming that X is connected so that aux(S) contains a spanning tree. The
spanning tree must be a path of length 2 because aux(S) has order 3. Without loss of
generality we may assume the set on which the group D3 is acting is labelled so that the
path forming the spanning tree consists of the edges 12 and 23.

We now consider possible special subgraphs of X . First, suppose the double transpo-
sitions generating the edges 12 and 23 are (1 2)(1 2) and (2 3)(2 3). These two double
transpositions generate the subgraph shown in Figure 4.

t t t t t t

t t t t t t
t t t t t t t t t t t t

Figure 4

123 213 231 321 312 132

123 213 231 321 312 132 123 213 231 321 312 132

123 213 231 321 312 132

In order for X to be connected, we need either a double negator or a negative double
transposition in S (where a double transposition is negative when it has the form (i j)(i j)).
If we have the double negator (1 1)(2 2) in S, we obtain the trivalent spanning subgraph
Y1 shown in Figure 5. The graph Y1 is not bipartite and it can be verified directly that it is
Hamilton-connected.
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Figure 5: The subgraph Y1

If we use the double negator (2 2)(3 3), we obtain a graph that is isomorphic to Y1. The
same conclusions then follow. If instead we use the double negator (1 1)(3 3), we obtain



46 Ars Math. Contemp. 8 (2015) 35–53

the graph Y2 shown in Figure 6. The graph Y2 also is not bipartite and it can be verified
directly that Y2 is Hamilton-connected.
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Figure 6: The subgraph Y2

If we partition the vertices of X so that part A contains the permutations f for which
ϕ(f) is an even permutation in S3, and part B contains the permutations f such that ϕ(f)
is an odd permutation, then the edges generated by any double transposition have one end
in A and one end in B. Hence, if S contains no double negator, then X is bipartite.

Moreover, if S contains no double negator, then there must be a double transposition in
S not contained in the group generated by (1 2)(1 2) and (2 3)(2 3). If we use the negative
double transposition (1 2)(1 2) to connect the components of the spanning graph shown in
Figure 4, we obtain the graph Y3 shown in Figure 7. This graph is bipartite and it is easy to
verify that it is Hamilton-laceable.
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Figure 7: The subgraph Y3

If we use the negative double transposition (2 3)(2 3), we obtain a graph isomorphic
to Y3. This leaves the negative double transposition (1 3)(1 3). In this case we obtain the
graph Y4 shown in Figure 8. It is bipartite and easily shown to be Hamilton-laceable.
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Figure 8: The subgraph Y4

It is obvious that two Cayley graphs on the same group G, with respective connection
sets S′ and gS′g−1 for g ∈ G, are isomorphic via conjugation by g. Therefore, if S contains
exactly one positive double transposition, or S contains no positive double transpositions,
then each Cayley graph we obtain is isomorphic via conjugation to one of those we have
considered above.

This completes the analysis of the case that n = 3. What we have seen is that a spanning
tree of aux(S) always produces a 2-factor composed of four 6-cycles. If any double negator
lies in the connection set S, then the resulting spanning trivalent subgraph is connected, not
bipartite and Hamilton-connected. This implies, of course, that X is Hamilton-connected.

Continuing in this vein, if S contains no double negators, then X is bipartite and
Hamilton-laceable when it is connected. The subgraph generated by any two double trans-
positions τ1, τ2, corresponding to a spanning tree, is a 2-factor composed of four 6-cycles.
Any double transposition τ3 ∈ 〈τ1, τ2〉 results in a disconnected spanning trivalent sub-
graph. So for X to be connected, we need a double transposition that is not an element of
the group 〈τ1, τ2〉.

Lemma 5.1. If X = Cay(Dn;S) is a Cayley graph on Dn such that S contains only
double transpositions and double negators, then X is connected if and only if aux(S) is
connected and one of the following two conditions holds:

(a) S contains a double negator, or

(b) S contains no double negators, but if τ1, τ2, . . . , τn−1 are elements of S corresponding
to a spanning tree of aux(S), then there is a τ ∈ S such that τ does not belong to
the group 〈τ1, τ2, . . . , τn−1〉 generated by τ1, τ2, . . . , τn−1.

Moreover, X is not bipartite when n > 2 and (a) holds, whereas, X is bipartite when (b)
holds.

Proof. Observe that if aux(S) is not connected, then it is obvious that X is not connected.
Thus, if X is connected, then aux(S) also is connected.

If X is connected, let τ1, τ2, . . . , τn−1 be the double transpositions for some spanning
tree of aux(S). The groupH = 〈τ1, τ2, . . . , τn−1〉 is a proper subgroup ofDn by Theorem
4.1. So if S does not contain a double negator, then in order for X to be connected, there
must be a double transposition τ such that τ 6∈ H . Hence, if X is connected, then aux(S)
is connected and at least one of the two conditions holds.



48 Ars Math. Contemp. 8 (2015) 35–53

Now let aux(S) be connected and let condition (a) or (b) hold. Let τ1, τ2, . . . , τn−1 be
as in the preceding paragraph, letX ′ be the subgraph ofX generated by these n−1 double
transpositions, and let Y be the component of X ′ containing 123 · · ·n.

First suppose that condition (a) holds and that the double negator is (i i)(j j) The proof
that X is connected closely mirrors the corresponding proof of Lemma 4.2. First, recall
that I(A), whereA is a subset of {1, 2, . . . , n}, denotes the permutation which is a product
of the transpositions (i i) as i runs through A and fixes all other elements. The components
of X ′ are then the subgraphs containing the permutations I(A) as A runs over all subsets
of even cardinality of {1, 2, . . . , n}. We then show that X is connected using an argument
that is the same as that used for Lemma 4.2 except that we now use two coordinates at a
time instead of one. This takes care of connectivity.

We cannot claim that X is not bipartite for n = 2 because the graph may be a cycle
of length 4. To conclude the proof for condition (a), we must show that X is not bipartite
when S contains a double negator and n > 3 (n = 3 was done above). Let τ denote the
double negator (i i)(j j). We can always find a permutation f = a1a2 · · · an, where ai
and aj are fixed, with f ∈ A by inverting two elements in two coordinates different from i
and j if necessary.

Let f1 denote a permutation in Y such that ai ∈ {i, i}, aj ∈ {r, r}, r 6= j, and f1 ∈ A.
There is then an edge joining f1 and f1τ in the left coset I(i, r)H .

In a similar manner, there is a permutation f2 in Y such that ai ∈ {j, j}, aj ∈ {r, r},
and f2 ∈ A. There is then an edge joining f2 and f2τ in the left coset I(j, r)H . We
then find a permutation f3 in the left coset I(i, r)H belonging to A with ai ∈ {i, i} and
aj ∈ {j, j. This is then adjacent to f3τ in the left coset I(j, r)H and f3τ ∈ A. The paths
joining f1 and f2 in Y , f3 and f3τ in I(i, r)H , and f2τ and f3τ in I(j, r)H all have even
lengths because the vertices all belong to A. Thus, we have an odd length cycle in X so
that it is not bipartite.

When condition (b) holds, then S contains no double negators but it does contain a
double transposition τ not contained in the group H . The double transposition τ satisfies
ϕ(τ) = (i j) for some i 6= j. We know there is an element τ ′ ∈ H such that ϕ(τ ′) = (i j)
because H is isomorphic to Sn by Lemma 4.1. Moreover, Lemma 4.1 informs us that k
and k are in different orbits for all k so that τ ′ fixes all elements not in {i, i, j, j}. This
implies that τ ′τ = (i i)(j j) which is a double negator. Because multiplying on the right
by τ ′ keeps one in the same left coset of H , we see that τ joins the same left cosets as the
preceding double negator. Therefore, X is connected by the argument for condition (a).

Note that if we let A be all the permutations f ∈ Dn for which ϕ(f) is an even permu-
tation and letB be all those for which ϕ(f) is an odd permutation, then any edge generated
by a double transposition has one end vertex in A and one end vertex in B. Thus, if S
contains no double negators, then X is bipartite.

Theorem 5.2. If X = Cay(Dn;S) is a connected Cayley graph of valency at least 3 on
Dn, n ≥ 2, such that S contains only double transpositions and double negators, then X
is Hamilton-laceable when it is bipartite, or Hamilton-connected when it is not bipartite.

Proof. The results of this theorem have been proved for n = 2 and n = 3 earlier. We
proceed by induction on n.

First consider the case that X is bipartite. As before, let

H = 〈τ1, τ2, . . . , τn−1〉,
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where τ1, τ2, . . . , τn−1 are the double transpositions corresponding to the edges of a span-
ning tree of aux(S). We know there is a double transposition τ ′ not contained in H from
Lemma 5.1. Furthermore, we saw in the proof of Lemma 5.1 that edges between the sub-
graphs induced on the left cosets of H join the same left cosets as do the edges generated
by a double negator τ = (i i)(j j). For simplicity we work with τ .

As before, let A denote the elements f of 〈S〉 such that ϕ(f) is an even permutation
and let B denote the other elements of the group. Clearly, A and B are the two parts of the
bipartition of X .

We know that I(L)H are the left cosets of H as L runs through all even cardinality
subsets of {1, 2, . . . , n}. If E1 and E2 are two subsets of the same even cardinality α and
they have α − 1 elements in common, then there is an edge joining a vertex of I(E1)H
and a vertex of I(E2)H . To see this let x, y be the two elements of E1∆E2 (symmetric
difference). Let f = a1a2 · · · an be an element of H so that ai ∈ {x, x} and aj ∈ {y, y}.
Then we have I(E1)fτ = I(E2)f which implies there is an edge between the left cosets
I(E1)H and I(E2)H .

Now form a quotient graph by contracting each left coset to a single vertex making two
vertices adjacent if there is an edge joining vertices of the corresponding left cosets. From
the preceding paragraph, we see that two vertices corresponding to left cosets I(E1)H and
I(E1)H , |E1| = |E2|, are adjacent if E1 and E2 have all but one element in common.
Thus, all left cosets corresponding to subsets of {1, 2, . . . , n} of the same cardinality k
induce a subgraph containing the Johnson graph J(n, k).

It is also easy to see that if E1 is a subset of E2 with |E1| = |E2| − 2, then there is an
edge between the corresponding left cosets. Hence, the quotient graph contains a spanning
subgraph isomorphic to QJ(n,C), where C is the collection of all even cardinality subsets
of {1, 2, . . . , n}. This graph is Hamilton-connected by Theorem 3.2. Thus, we may employ
Lemma 3.1 to easily find Hamilton path in X from 123 · · ·n to any vertex of B in any left
coset different from H .

If the target vertex v happens to lie in H , then there is a path from 123 · · ·n to v
spanning the vertices of H by induction. We then find any edge w1w2 in this path such that
w1 and w2 have neighbors in different left cosets of H . We then use QJ(n,C − ∅), which
also is Hamilton-connected by Theorem 3.2, along with Lemma 3.1 to find a path Q from
w1τ

′ to w2τ
′ spanning all the vertices of the remaining left cosets. We remove the edge

w1w2 from the initial path spanning H and patch Q in to get a Hamilton path in X from
123 · · ·n to v. This completes the bipartite case.

Now assume that S contains the double negator τ = (i i)(j j). Note that ϕ(f) and
ϕ(fτ) either are both even permutations or both odd permutations. Thus, an edge generated
by a double negator either has both end vertices in A or both end vertices in B.

There are two cases to consider: Either aux(S) has a spanning tree with a leaf k differ-
ent from both i and j or there is no such spanning tree. We first consider the case that there
is such a tree T .

Without loss of generality we assume that n is the leaf of T different from i and j. In
other words, n is fixed by τ . Let S′ be the subset of S containing all double transpositions
and double negators that fix the element n.

Because aux(S′) contains a spanning tree and the double negator τ , the components of
Cay(Dn;S′) have order 2n−2(n− 1)! and are Hamilton-connected by induction. We now
have exactly the same situation as in the proof of Theorem 4.3, namely, a subgraph each of
whose components is composed of all the permutations whose last coordinate is constant.
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There is one component for each element of {1, 1, . . . , n, n}. The double transposition cor-
responding to the edge of T incident with n is then used to connect the components together
exactly as was done in the proof of Theorem 4.3. Hence, X is Hamilton-connected.

This leaves us with the other case, namely, there is no spanning tree with a leaf different
from i and j. The preceding induction proof cannot be applied. It is not hard to see that
this forces aux(S) to be a path whose end vertices are i and j.

We maintain the same notation, that is, we let S′ = {τ1, τ2, . . . , τn−1} be the double
transpositions corresponding to the edges of the spanning tree, H = 〈S′〉, X ′ be the sub-
graph Cay(Dn;S′), and Y the component of X ′ containing 123 · · ·n. By Lemma 4.1, X ′

has 2n−1 components. The components are bipartite and Hamilton-laceable by Theorem
2.3. Moreover, all the components are isomorphic to Y .

For each L ⊆ {1, 2, . . . , n}, |L| even, the action of the involution I(L) on each per-
mutation is to negate the entries in the coordinates corresponding to the elements of L.
Hence, the 2n−1 components of Cay(Dn;S′) are the subgraphs induced on the left cosets
I(L)H as L runs through all subsets of {1, 2, . . . , n} of even cardinality. As we saw earlier
in this proof, the quotient graph of X obtained by contracting each left coset to a single
vertex, deleting all loops, and replacing multiple edges by a single edge yields a spanning
subgraph isomorphic to QJ(n,C), where C contains all even integers between 0 and n
inclusive. We employ Theorem 3.2 frequently.

We define the bipartition A and B as before. Because X is vertex-transitive, it suffices
to find a Hamilton path in X from 123 · · ·n to any other vertex v. We shall refer to v as the
target vertex.

Let v be a target vertex in the partA of any component I(L)H different from Y . Theo-
rem 3.2 provides a Hamilton path in the quotient graph from the vertex corresponding to Y
to the vertex corresponding to I(L)H . Since edges generated by τ have both end vertices
in either A or B, we use a (slightly) modified version of Lemma 3.1 to obtain a Hamilton
path from 123 · · ·n to v using the fact that there are an even number of components.

Now let the target vertex v be in part B of Y . There is a path P from 123 · · ·n to
v spanning the vertices of Y by Theorem 2.3. There must be two successive vertices
w1, w2 on P with neighbors y1, y2 in different components I(a, b)H and I(a, c)H for
some a, b, c. Considering the graph QJ(n,C ′), where C ′ = {2, 4, . . . , 2bn/2c}, Theorem
3.2 and Lemma 3.1 imply there is a path Q from y1 to y2 spanning all the vertices of the
components corresponding to C ′. We then obtain a Hamilton path from 123 · · ·n to v by
removing the edge w1w2, adding the edges y1w1 and y2w2, and adding the path Q. Thus,
X has a Hamilton path from 123 · · ·n to any vertex in part B of Y .

To complete the proof of the theorem, we must find a way to circumvent the fact that the
components are only Hamilton-laceable. Before introducing the trick we use, let’s review
the strategy we have used so far. We find a path Q spanning Y that starts at 123 · · ·n and
finishes at any vertex w of part B in Y . We choose w so that wτ belongs to a left coset
I(L)H not containing the target vertex v. We then use the fact that the graph QJ(n,C),
where C contains all the even integers in {2, 3, 4, . . . , n}, is Hamilton-connected so that
we may apply Lemma 3.1 to find a path P from wτ to v spanning all the left cosets of H
distinct from H itself. We attach P to Q using the edge from w to wτ to obtain a Hamilton
path in X from 123 · · ·n to v. Because the number of left cosets of H distinct from H is
odd (that is, the number of vertices of Q(n,C) is odd), this works only for vertices in part
A.

The trick we are about to introduce is based on removing either one or three special
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vertices from the QJ(n,C) graph mentioned above. If we remove a single vertex corre-
sponding to any 2-subset, or three vertices corresponding to three 2-subsets of the form
{a, b}, {a, c}, {b, c}, or three 2-subsets of the form {a, d}, {b, d}, {c, d}, then the resulting
subgraph of QJ(n,C) remains Hamilton-connected. We leave this up to the reader and
refer to [3] if guidance is required. The key is to prove that removing these three vertices
from J(n, 2), n ≥ 4, leaves a Hamilton-connected graph.

When the target vertex v is in part B of some component I(L)H different from Y ,
choose a vertex w in part B of Y such that the neighbor wτ of w belongs to a left coset
I(a, b)H different from I(L)H . Then choose a path Q from 123 · · ·n to w that spans Y .

Suppose there is an edge xy on Q so that both xτ and yτ lie in the same left coset
C, and C does not contain v and is different from I(a, b)H . We then remove the edge xy
from Q and attach the edges to xτ and yτ . We now find a path from xτ to yτ spanning the
vertices of C. This now gives us a path Q′ from 123 · · ·n to w spanning the two left cosets
H and C. The graph QJ(n,C) with a single vertex corresponding to a 2-subset removed
is still Hamilton-connected. However, the number of left cosets left over is now even so
that when we apply the strategy outlined above, we can reach a target vertex in part B as
required.

Alternatively, suppose there is an edge xy of Q so that xτ and yτ are in different left
cosets C1 and C2, respectively, and a third left coset C3 so that C1, C2, C3 are all distinct
from I(L)H and I(a, b)H . If there is a path from xτ to yτ spanning the vertices of the
three left cosets C1, C2, C3, then we can replace the edge xy in Q with a path that spans the
three left cosets, then we have a path from 123 · · ·n to w spanning the four left cosets. The
number of left cosets remaining is even and we can find a Hamilton path to a target vertex
in any part B

We need to show that one of the preceding conditions holds. If the target vertex v is in
a left coset I(L)H such that |L| > 2, we don’t concern ourselves with designating the set
L. If |L| = 2, then we let the left coset containg v be I(a, c)H . Choose w in part B of Y
so that wτ ∈ I(a, b)H , where b 6= c.

Let Q be a path from 123 · · ·n to w spanning the vertices of Y . Because n ≥ 4, there
is an element d distinct from a, b, c. If there is an edge xy of Q so that both xτ and yτ lie
in any single one of the left cosets I(c, d)H, I(b, c)H, I(b, d)H , then the first condition
above holds and there is a Hamilton path from 123 · · ·n to v in X .

If we cannot find an edge xy such that xτ and yτ lie in the same left coset, we need to
examine aux(S) with more care. We know aux(S) is a path with end vertices i and j with
the double negator τ = (i i)(j j) joining the left cosets. Note that any double transposition
in S alters at most one of the entries in coordinates i and j. Hence, if x and y are adjacent
vertices of Y , then xτ and yτ either lie in the same left coset or lie in different left cosets
I(L1)H and I(L2)H such that |L1| = |L2| = 2, and L1 and L2 have one element in
common.

The number of edges from Y to a fixed coset I(L)H , where |L| = 2, is 2(n − 2)!
which is at least 4 because n ≥ 4. Hence, there is an internal vertex x of Q such that
xτ ∈ I(c, d)H , where d is distinct from a, b and c. Consider the predecessor y of x on Q.

If yτ ∈ I(c, d)H , we are done. If yτ ∈ I(a, d)H , then the three left cosets I(a, d)H,
I(b, d)H, I(c, d)H do the job. If yτ ∈ I(b, d)H , then the three left cosets I(b, d)H,
I(c, d)H, I(b, c)H do the job. If yτ lies in I(b, c)H , we also easily find three left cosets
that work.

In fact, the only left coset that is bad for yτ is I(a, c)H . But if yτ lies in the left coset
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I(a, c)H , then the successor of x on Q, call it z, cannot have zτ in I(a, c)H because
this forces the edges yx followed by xz to be generated by the same double transposition
because aux(S) is a path. However, double transpositions are involutions so that we cannot
use them consecutively when generating distinct vertices. Thus, xτ and zτ must lie in left
cosets satisfying one of the conditions above.

This leaves us with the target vertex being in part A of Y as the only missing case.
Suppose that v lies in part A of Y and vτ ∈ I(a, b)H . Let w be in part B of Y such that
wτ lies in I(a, b)H as well. Let Q be a path from 123 · · ·n to w spanning the vertices of
Y .

The vertex v is an internal vertex of Q. Remove the edge between the predecessor u of
v and v. This breaks Q into a subpath Q1 from 123 · · ·n to u, and a subpath Q2 from v to
w. Because u is adjacent to v and by changing the labels, if necessary, we may assume that
uτ ∈ I(a, e)H for some e.

If e = c, then find a vertex z internal to either Q1 or Q2 such that zτ ∈ I(b, d)H . Just
as above, one of the two neighbors of z on Q allows us to use either one or three left cosets
to augment either Q1 or Q2. We then cover all the remaining cosets using a path with wτ
and uτ as the end vertices as before because there are an even number of cosets unused.
We have the desired Hamilton path.

If e = d a similar argument works. If e 6∈ {b, c, d} it is even simpler because we have
a new symbol to work with. However, it is possible that e = b so that wτ and uτ lie in the
same left coset I(a, b)H .

We now have the situation thatQ1 has been extended to partB of the left coset I(a, b)H
via the edge to uτ . Similarly, Q2 has been extended to part B of the same left coset via the
edge to vτ . Now choose a vertex u1 in part A of I(a, b)H whose i, j entries are disjoint
from the i, j entries of uτ . Then choose a path Q′ from u1 to wτ that spans the vertices
of I(a, b)H . The successor u2 of uτ then is adjacent to a vertex in a different left coset
of H than is u1. This allows us to obtain a Hamilton path from 123 · · ·n to v in X and
completes the proof.
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