Anali za istrske in mediteranske študijeAnnali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies UDK 5 Annales, Ser. hist. nat., 29, 2019, 2, pp. 159-280, Koper 2019 ISSN1408-533X UDK 5 ISSN 1408-533X (Print) ISSN 2591-1783 (Online) Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 29, 2019, 2 KOPER 2019 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies ISSN 1408-533X (Tiskana izd.) UDK 5 Letnik 29, leto 2019, številka 2 ISSN 2591-1783 (Spletna izd.) Alessandro Acquavita (IT), Nicola Bettoso (IT), Christian Capapé UREDNIŠKI ODBOR/ (FR), Darko Darovec, Dušan Devetak, Jakov Dulčić (HR), Serena COMITATO DI REDAZIONE/ Fonda Umani (IT), Andrej Gogala, Daniel Golani (IL), Danijel BOARD OF EDITORS: Ivajnšič, Mitja Kaligarič, Marcelo Kovačič (HR), Andrej Kranjc, Lovrenc Lipej, Vesna Mačić (ME), Alenka Malej, Patricija Mozetič, Martina Orlando-Bonaca, Michael Stachowitsch (AT), Tom Turk, Al Vrezec Glavni urednik/Redattore capo/ Editor in chief: Darko Darovec Odgovorni urednik naravoslovja/ Redattore responsabile per le scienze naturali/Natural Science Editor: Lovrenc Lipej Urednica/Redattrice/Editor: Martina Orlando-Bonaca Lektor/Supervisione/Language editor: Polona Šergon (sl.), Petra Berlot Kužner (angl.) Prevajalci/Traduttori/Translators: Martina Orlando-Bonaca (sl./it.) Oblikovalec/Progetto grafico/ Graphic design: Dušan Podgornik, Lovrenc Lipej Tisk/Stampa/Print: Založništvo PADRE d.o.o. Izdajatelja/Editori/Published by: Zgodovinsko društvo za južno Primorsko - Koper / Societa storica del Litorale - Capodistria© Inštitut IRRIS za raziskave, razvoj in strategije družbe, kulture in okolja / Institute IRRIS for Research, Development and Strategies of Society, Culture and Environment / Istituto IRRIS di ricerca, sviluppo e strategie della societa, cultura e ambiente© Sedež uredništva/Sede della redazione/ Nacionalni inštitut za biologijo, Morska biološka postaja Piran / Address of Editorial Board: Istituto nazionale di biologia, Stazione di biologia marina di Pirano / National Institute of Biology, Marine Biology Station Piran SI-6330 Piran /Pirano, Fornače/Fornace 41, tel.: +386 5 671 2900, fax +386 5 671 2901; e-mail: annales@mbss.org, internet: www.zdjp.si Redakcija te številke je bila zaključena 21. 12. 2019. Sofinancirajo/Supporto finanziario/ Javna agencija za raziskovalno dejavnost Republike Slovenije Financially supported by: (ARRS), Luka Koper in Mestna občina Koper Annales - Series Historia Naturalis izhaja dvakrat letno. Naklada/Tiratura/Circulation: 300 izvodov/copie/copies Revija Annales, Series Historia Naturalis je vključena v naslednje podatkovne baze / La rivista Annales, series Historia Naturalis e inserita nei seguenti data base / Articles appearing in this journal are abstracted and indexed in: BIOSIS-Zoological Record (UK); Aquatic Sciences and Fisheries Abstracts (ASFA); Elsevier B.V.: SCOPUS (NL). Vsi članki so v barvni verziji prosto dostopni na spletni strani: http://zdjp.si/p/annalesshn/ All articles are freely available in color via website: http://zdjp.si/en/p/annalesshn/ Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies UDK 5 Letnik 29, Koper 2019, številka 2 ISSN 1408-533X (Print) ISSN 2591-1783 (Online) VSEBINA / INDICE GENERALE / CONTENTS 2019(2) 50 LET MORSKE BIOLOŠKE POSTAJE NACIONALNEGA INŠTITUTA ZA BIOLOGIJO I 50 ANNI DELLA STAZIONE DI BIOLOGIA MARINA DELL'ISTITUTO NAZIONALE DI BIOLOGIA 50 YEARS OF THE MARINE BIOLOGY STATION OF THE NATIONAL INSTITUTE OF BIOLOGY Lovrenc LIPEJ, Domen TRKOV, Domen STANIČ, Sara CERNICH & Saul CIRIACO First Record of Sergeant Major, Abudefduf saxatilis (Linnaeus, 1758) in the Adriatic Sea ......... 159 Prvi zapis o pojavljanju velikega seržanta, Abudefduf saxatilis (Linnaeus, 1758) v Jadranskem morju Valentina PITACCO & Selahattin Ünsal KARHAN First Record of Flabelliderma cinari Karhan, Simboura & Salazar-Vallejo, 2012 (Polychaeta: Flabelligeridae) from the Adriatic Sea ................... 167 Prvi zapis o pojavljanju vrste Flabelliderma cinari Karhan, Simboura & Salazar-Vallejo, 2012 (Polychaeta: Flabelligeridae) v Jadranskem morju Ana FORTIČ, Domen TRKOV, Borut MAVRIČ & Lovrenc LIPEJ Assessment of Bryozoan Xenodiversity in the Slovenian Coastal Sea ................................. 173 Ocena ksenodiverzitete mahovnjakov v slovenskem obalnem morju Martina ORLANDO-BONACA, Janja FRANCÉ, Borut MAVRIČ & Lovrenc LIPEJ Impact of the Port of Koper on Cymodocea nodosa Meadow ............................... 187 Vpliv koprskega pristanišča na travnik kolenčaste cimodoceje (Cymodocea nodosa) IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Akraam Faraj KARA, Mohamed AL HAJAJI, Hisham GHMATI & Esmail A. SHAKMAN Food and Feeding Habits of Mustelus mustelus (Linnaeus, 1758) (Chondrichthyes: Triakidae) Along the Western Coast of Libya ......................... Prehranjevalne navade navadnega morskega psa, Mustelus mustelus (Linnaeus, 1758) (Chondrichthyes: Triakidae), vzdolž zahodne obale Libije Youssouph DIATTA, Almamy DIABY, Sihem RAFRAFI-NOUIRA & Christian CAPAPÉ Capture of a Rare Endangered Species Leafscale Gulper Shark Centrophorus squamosus (Chondrichthyes: Squalidae) from the Coast of Senegal (Eastern Tropical Atlantic) .................... Ulov redkega in ogroženega morskega psa Centrophorus squamosus (Chondrichthyes: Squalidae) iz obalnih voda Senegala (vzhodni tropski Atlantik) Sihem RAFRAFI-NOUIRA, Christian REYNAUD & Christian CAPAPÉ Morphological Deformities in a Striped Sea Bream Lithognathus mormyrus (Osteichthyes: Sparidae) from Northern Tunisian Waters (Central Mediterranean Sea) ................................. Morfološke deformacije pri ovčici Lithognathus mormyrus (Osteichthyes: Sparidae) iz severno tunizijskih vod (osrednje Sredozemsko morje) 197 205 211 Sihem RAFRAFI-NOUIRA, Christian REYNAUD & Christian CAPAPÉ On a Occurrence of Gadella maraldi (Osteichthyes: Gadiformes: Moridae) on the Tunisian Coast (Central Mediterranean Sea) .......... 219 O pojavljanju vrste Gadella maraldi (Osteichthyes: Gadiformes: Moridae) ob tunizijski obali (osrednje Sredozemsko morje) Mohamed Mourad BEN AMOR, Marouene BDIOUI, Khadija OUNIFI-BEN AMOR, Christian REYNAUD & Christian CAPAPÉ Unusual Record of Round Fantail Stingray Taeniurops grabata (Chondrichthyes: Dasyatidae) from the Tunisian Coast (Central Mediterranean Sea) ................................. 223 Nenavadni zapis o pojavljanju morskega biča vrste Taeniurops grabata (Chondrichthyes: Dasyatidae) iz tunizijskih voda (osrednje Sredozemsko morje) JADRANSKA MORSKA FAVNA FAUNA MARINA ADRIATICA ADRIATIC MARINE FAUNA Roland R. MELZER, Martin HEß, Manuel A. STAGGL, Tihomir MAKOVEC & Borut MAVRIČ Hippolyte prideauxiana Leach, 1817: First Record for the Northern Adriatic and Observations on Mimetic Colouration .................. 231 Hippolyte prideauxiana Leach, 1817: prvi zapis o pojavljanju v severnem Jadranu s podatki o barvnemu prikrivanju Mona REZAEI, Al VREZEC, Borut MAVRIČ & Lovrenc LIPEJ Biometry and Population Gender Structure of Three Crab Species (Crustacea: Decapoda) from Sandy Bottom in the Northern Adriatic Sea ................................. 235 Biometrija in spolna struktura pri treh vrstah rakovic (Crustacea: Decapoda) iz sedimentnega dna severnega Jadrana ONESNAŽEVANJE OKOLJA INQUINAMENTO DELL’AMBIENTE ENVIRONMENTAL POLLUTION Sezginer TUNÇER, Sedat GÜNDOGDU, Cem ÇEVIK & Aytug ZILIFLI Belone belone (Linnaeus, 1760) and Spicara smaris (Linnaeus, 1758) Entangled in Plastic Collars in the Dardanelles Strait, Turkey ............... 247 Iglica, Belone belone (Linnaeus, 1760), in girica, Spicara smaris (Linnaeus, 1758), zapleteni v plastični ovoj v ožini Dardanele, Turčija Jamila FLIOU, Ali AMECHROUQ, Mohammed ELHOURRI, Ouassima RIFFI & Mostafa EL IDRISSI Determination of Heavy Metal Content in a Daphne gnidium L. Plant Using Atomic Absorption Spectroscopy ...................................... 253 Določevanje vsebnosti težkih kovin v volčinu vrste Daphne gnidium L. z uporabo atomske absorbcijske spektroskopije DELO NAŠIH ZAVODOV IN DRUŠTEV ATTIVITA DEI NOSTRI ISTITUTI E SOCIETA ACTIVITIES BY OUR INSTITUTIONS AND ASSOCIATIONS Simon KERMA Half a Century of the Marine Biology Station Piran ............................................ 261 Pol stoletja delovanja Morske biološke postaje Piran Navodila avtorjem ................................................ 267 Istruzioni per gli autori .......................................... 269 Instruction to Authors ............................................ 271 Kazalo k slikam na ovitku ..................................... 273 Index to images on the cover ................................ 273 received: 2019-10-04 DOI 10.19233/ASHN.2019.18 IMPACT OF THE PORT OF KOPER ON CYMODOCEA NODOSA MEADOW Martina ORLANDO-BONACA, Janja Francé, Borut MAVRIČ & Lovrenc Lipej Marine Biology Station, National Institute of Biology, SI-6330 Piran, Fornace 41, Slovenia E-mail: martina.orlando@nib.si ABSTRACT In the Mediterranean Sea Cymodocea nodosa is considered a valid indicator of environmental changes, due to its extensive distribution, sensitivity to different pressures, and measurability of species responses to those stressors. Navigation routes are recognized among the main pressures on the status of C. nodosa meadows in the Gulf of Trieste, related to a high resuspension of sediments and, in consequence, high water turbidity and reduced light levels. The MediSkew index was applied to samples collected in the C. nodosa meadow growing near the Port of Koper, and the ecological status was evaluated. The results were compared to those obtained for the C. nodosa samples from the reference site in the Gulf of Trieste, the Strunjan Nature Reserve. Key words: Cymodocea nodosa, MediSkew index, leaf lengths, Port of Koper, northern Adriatic Sea IMPATTO DEL PORTO DI CAPODISTRIA SULLA PRATERIA DI CYMODOCEA NODOSA SINTESI Nel mare Mediterraneo Cymodocea nodosa e considerata un valido indicatore di cambiamenti ambientali, vista la sua ampia distribuzione, sensibilita alle diverse pressioni e misurabilita delle risposte della specie a tali fattori di stress. Le rotte di navigazione vengono considerate tra le principali pressioni sullo stato delle praterie di C. nodosa nel Golfo di Trieste, legate a un’elevata risospensione dei sedimenti e, di conseguenza, a un’elevata torbidita dell’acqua e a livelli di luce ridotti. L’indice MediSkew e stato applicato ai campioni raccolti nella prateria di C. nodosa che cresce in prossimita del Porto di Capodistria per valutarne lo stato ecologico. I risultati sono stati confrontati con quelli ottenuti per i campioni di C. nodosa provenienti dal sito di riferimento nel Golfo di Trieste, la Riserva Naturale di Strugnano. Parole chiave: Cymodocea nodosa, indice MediSkew, lunghezza delle foglie, Porto di Capodistria, Adriatico settentrionale 187 INTRODUCTION Marine angiosperms are worldwide considered as ecological engineers on shallow subtidal soft bottoms, since they create seagrass meadows, which are listed among the most valued ecosystems, providing food, shelters and nursery areas for a variety of invertebrate and fish assemblages (Heck et al., 2003; Wright & Jones, 2006; Como et al., 2008; Tuya et al., 2014; Espino et al., 2015). Additionally, seagrass meadows stabilize coastal sediments by trapping fine residues and particles that are suspended in the water column (Cabaço et al., 2008, 2010, 2014), provide protection against coastal erosion (Terrados & Borum, 2004), produce oxygen (Peduzzi & Vukovič, 1990) and are recognized as global carbon sinks (Duarte et al., 2010). For that reason, seagrass meadows are recognized as one of the priority habitats in the EU Habitat Directive (HD, 92/43/EEC). Rapid and widespread decline of seagrass meadows were reported from many coastal areas (Orth et al., 2006; Tuya et al., 2013; Fabbri et al., 2015) in the last fifteen years. Coastal ecosystems are subjected to increasing anthropogenic disturbances, affecting light and nutrient resources (Hemminga & Duarte, 2000), and causing physical damage to different sea bottom types (Mon-tefalcone et al., 2008; Marba et al., 2014). Seagrasses have been disappearing at a rate of 110 km2 yr-1 since 1980, a value equivalent to the loss rates described for mangroves, coral reefs, and tropical rainforests (Waycott et al., 2009). Changes observed in the global seagrass distribution point out that meadow regression phenom­ena should be principally attributed to the cumulative effects of local stressors, rather than to processes at basin scale, such us climate change (Telesca et al., 2015). The Regional Activity Centre for Specially Protected Areas (RAC/SPA) is responsible for drafting guidelines for car­rying out impact studies on seagrass meadows within the Mediterranean basin. Pergent-Martini & Le Ravallec (2007) prepared such guidelines, but their real applica­tion at national levels is quite uncertain. Four native seagrass species are present in the Adriatic Sea: Posidonia oceanica (Linnaeus) Delile, Cymodocea nodosa (Ucria) Ascherson, Zostera marina Linnaeus and Zostera noltei Hornemann (Lipej et al., 2006). The lesser Neptune grass, C. nodosa, is the most common marine angiosperm at shallow sheltered to semi-exposed sites in the Adriatic Sea, as well as along all Mediterranean soft bottom areas and at some loca­tions in the north Atlantic (Mascaró et al., 2009; OSPAR, 2010). This species is known to form meadows that are mono-specific or mixed with Z. noltei, from the surface to 40 m of depth (Mazzella et al., 1993; Borum & Greve, 2004). In the Mediterranean Sea, C. nodosa is consid­ered as an effective indicator of environmental changes, due to its universal distribution, sensitivity to different natural and anthropogenic pressures, and measurability of species responses to those effects (Orfanidis et al., 2007, 2010; Oliva et al., 2012; Orlando-Bonaca et al., 2015; Papathanasiou et al., 2016). Although C. nodosa, is characterized by a large phenotypic plasticity and is adapted to various natural and anthropogenic stressors by different physiological and morphologi­cal adaptations (Tsioli et al., 2018), in recent decades the species faced a severe decline in several Med­iterranean and Atlantic areas (Jensen & Bell, 2001; Papathanasiou, 2013; Rosell-Fieschi & Polifrone, 2014; Fabbri et al., 2015). There is still a lack of long time data series in the northern Adriatic Sea in order to support the conserva­tion status of meadows of C. nodosa, while the species is currently protected only within spatially restricted Marine Protected Areas (MPAs). The ecological status of seven C. nodosa meadows was recently evaluated in the northern Adriatic area with the MediSkew index (Orlando-Bonaca et al., 2015; 2016), developed in accordance with the EU Water Framework Directive (WFD, 2000/60/EC) and the Marine Strategy Framework Directive (MSFD, 2008/56/EC) requirements. Navigation routes are recognized among the main pressures on the status of C. nodosa meadows (Orlando-Bonaca et al., 2015) in the Gulf of Trieste, related to a high resuspension of sediments and, in consequence, high water turbidity and reduced light levels. Therefore, the aim of this study was to assess the ecological status of the C. nodosa meadow growing near the Port of Koper, and discuss the results in comparison to those obtained for the C. nodosa meadow from the reference site for this species, the MPA Strunjan Nature Reserve. MATERIAL AND METHODS Study area, fieldwork and laboratory work The Port of Koper is a Slovenian multi-purpose sea­port, situated in the northern Adriatic Sea, connecting mainly markets of Central and Southeast Europe with the Mediterranean Sea and Far East. The marine part of the cargo port is composed of three basins (Fig. 1), associ­ated mooring piers and 12 specialized loading terminals (Geodetski Inštitut Slovenije, 2016). The resuspension of sediments is mainly due to the vessel propulsion along navigation routes and by the assistance of tugboats within the port’s basin and in front of them. The highest turbidity values were measured during the manoeuvres of large vessels (Žagar et al., 2014). In the last decade the Port of Koper also ordered dredging works on the sedimentary bottom along the access channels to Basin I (Luka Koper, 2015), leading to a high sedimentation/ resuspension rate. Cymodocea nodosa samples were collected in July 2018, according to the sampling protocol presented by Orfanidis et al. (2007). Within the seagrass meadow found near the Port of Koper, two sites (LuKp1 and LuKp2) were chosen (Fig. 1) along the same isobath (3 m) and, within each site, two areas (LuKp1_1, LuKp1_2, and LuKp2_1, LuKp2_2) were selected that were ca. 100 m apart. Within each area, five metallic quadrats (25 cm x 25 cm) were randomly placed on the bottom by SCUBA divers. Those five quadrats were considered as replicates of one sample. All shoots of C. nodosa enclosed by each quadrat were carefully up­rooted. Samples were labelled and individually placed in plastic bags. To adequately assess time-based trends in the status of C. nodosa meadows, including evaluations of the ef­fects of natural disturbances within MPAs, new samples were collected in July 2018 also within the Strunjan Nature Reserve (Fig. 1). The sampling site Cy2 (areas Str_3 and Str_4) was previously sampled in June 2009 and July 2013 and, according to the low score of the Pressure Index for Seagrass Meadows (PISM), the area Str_3 was chosen as the reference area for C. nodosa in the Gulf of Trieste (Orlando-Bonaca et al., 2015). The samples of C. nodosa were stored in a freezer at -20°C at the laboratory of the Marine Biology Station Pi-ran. They were slowly defrosted in a refrigerator on the day prior to analysis. Seagrass shoots were then retained in plastic washbasins with seawater. Twenty shoots from each quadrat were randomly chosen (Orfanidis et al., Fig. 1: Map of sampling sites for Cymodocea nodosa in Slovenian marine waters in 2018: near the Port of Koper (LuKp1 and LuKp2) and in the Moon Bay (Cy2), within the Strunjan Nature Reserve. Sl. 1: Zemljevid vzorčevalnih lokalitet kolenčaste cimo­doceje v slovenskem morju v 2018: blizu Luke Koper (LuKp1 in LuKp2) in v Mesečevem zalivu (Cy2) znotraj naravnega rezervata Strunjan. 2007). For each leaf (usually 5-6 leaves per shoot), the following parameters were measured to the nearest mm: length of the sheath, length of the photosynthetic part, and its width. The age of the leaf was designated as adult (if the sheath was well-developed), intermediate (if the sheath was faintly shaped at the leaf basis), and juvenile (if the sheath was absent). The above measurements were made on at least 60 undamaged photosynthetically active leaves (adults and/or intermediates) from each quadrat. One sample was composed of five replicates of 60 leaves (300 leaves in total). Data analysis To explore the nature of leaf lengths of C. nodosa in the two sampling locations, frequency histograms of ln-transformed data of lengths of the photosynthetic part of leaves (adult and intermediate) were prepared. In par­allel, summary statistics for each area were examined. The normal distribution of ln-transfomed leaf lengths in every area was tested with the Kolmogorov-Smirnov test for normality (Dytham, 2003). To quantify changes in the photosynthetic part of leaf length distribution, the MediSkew index was calculated (for details see Orlando-Bonaca et al., 2015). Boundaries among status classes for the MediSkew index were set equidistantly (Table 1). Five status classes are adequate for the assessment of the Ecological Status (ES) accord­ing to the WFD. Furthermore, High and Good classes indicate a Good Environmental Status (EnS) according to the MSFD, while classes Moderate, Poor and Bad are considered as Not Good EnS. Tab. 1: Boundaries among status classes for the MediS­kew index. For the assessment of ES according to WFD, five classes should be used. For the assessment of EnS according to the MSFD, classes High and Good indicate a Good EnS, while classes Moderate, Poor and Bad are considered as Not good EnS (see Orlando-Bonaca et al., 2015). Tab. 1: Meje med posameznimi razredi stanja za MediS­kew indeks. Za opredelitev ekološkega stanja po Evrop-ski vodni direktivi (OVS) smo uporabili 5 razredov. Za opredelitev okoljskega stanja po Okvirni direktivi o morski strategiji (ODMS), razreda Zelo dobro in Dobro označujeta Dobro okoljsko stanje, medtem ko razredi Zmerno, Slabo in Zelo slabo opredeljujejo Slabo okolj­sko stanje (po Orlando-Bonaca in sod., 2015). Status classes Absolute values of MediSKew High 0 . MediSKew < 0.2 Good 0.2 . MediSKew < 0.4 Moderate 0.4 . MediSKew < 0.6 Poor 0.6 . MediSKew < 0.8 Bad 0.8 . MediSKew . 1 RESULTS Cymodocea nodosa leaf length parameters in 2018 C. nodosa parameters per sampling area are reported in Table 2, while frequency distributions of leaf lengths in different areas are presented in Fig. 2. C. nodosa leaves were much shorter in the areas within the Moon Bay (Cy2) than in those near the Port of Koper, and con­sequently also the median values (Tab. 2, Fig. 2). The differences in the median values of leaf lengths between sampling areas LuKp1_1 and LuKp1_2 were statistically significant (Mann-Whitney U = 52219.5, P = 0.0003), as well as those between sampling areas LuKp2_1 and LuKp2_2 (U = 53753.5, P < 0.0001), and between sampling areas Str_3 and Str_4 (U = 48975, P = 0.0306). Moreover, also between sampling sites LuKp1 and LuKp2 (U = 247070.5, P < 0.0001), between LuKp1 and Cy2 (U = 336657.5, P < 0.0001), and be­tween LuKp2 and Cy2 (U = 331878, P < 0.0001), all the differences in the median values of leaf lengths were statistically significant. Taking into account the frequency distributions of ln-transfomed leaf lengths of every single sample (Fig. 2), the Kolmogorov-Smirnov test for normality revealed that only the samples from areas Str_3 and Str_4 are nor­mally distributed (D = 0.047, P > 0.05, and D = 0.026, P > 0.05, respectively), while all the other samples are not normally distributed. Accordingly, the skewness |G| was the lowest for the sample from area Str_4, while was the highest at the area LuKp2_1 (Tab. 2). Assessment of the status of Cymodocea nodosa MediSkew index values for each sampled area are presented in Table 3. The lowest value of MediSkew was found for the area Str_4, which was the closest to virtual reference conditions (MediSkew = 0). The highest valu­es of MediSkew were calculated from samples collected at the area LuKp1_1 (Tab. 3), the nearest to the Port of Koper. The Ecological Status (according to the WFD) and the Environmental Status (according to the MSFD) of sam­pling sites were assessed according to the boundaries in Table 1. Site Cy2 (and also both areas) was classified as High ES, site LuKp1 as Bad ES and LuKp2 as Poor ES (Table 3). According to MSFD requirements, only the samples collected in Cy2 (both areas) achieved a Good EnS. DISCUSSION The MediSkew value at site Cy2 in July 2018 was even lower than the value in July 2013 (MediSkew = 0.05) and in June 2009 (MediSkew = 0.08; for details see Orlando-Bonaca et al., 2016). This result confirms that this site can still be considered as the reference site for the Gulf of Trieste. However, in 2018 the area Str_4 had a lower MediSkew value than the reference area Str_3, even if the difference between the MediS­kew values for the two areas is insignificant (Tab. 3). According to PISM, site Cy2 is still without any anthro­pogenic pressures, apart from the impact of bathing in the summer period. However, since the site is difficult to reach from the hinterland and anchoring in the bay is not allowed, to our opinion this pressure could be considered as negligible. Light conditions for the C. nodosa meadow in the Moon Bay are mostly influenced by natural sedimentation rates and resuspension of sediments due to the erosion of an 80 m high flysch cliff along the coastline. The leaves of C. nodosa sampled in the meadow near the Port of Koper are the longest measured in Slovenian coastal waters so far (see previous results in Tab. 2: Statistic parameters (minimum, maximum, mean, median) and absolute value of skewness (|G|) of ln-transformed lengths of photosynthetically active parts of Cymodocea nodosa leaves from the sampling areas in sites near the Port of Koper (LuKp1 and LuKp2) and in Moon Bay (Cy2, Strunjan Nature Reserve) in 2018. The reference median value in 2018 was 13.95 cm. Tab. 2: Statistični parametri (minimum, maksimum, povprečje, mediana) in absolutna vrednost koeficienta asime­trije (|G|) ln-transformiranih dolžin fotosintetsko aktivnega dela listov kolenčaste cimodoceje iz lokalitet blizu Luke Koper (LuKp1 in LuKp2) in v Mesečevem zalivu (Cy2, Naravni rezervat Strunjan) v 2018. Referenčna mediana v 2018 je bila 13,95 cm. Site Area Date min length (cm) max length (cm) mean (cm) median (cm) |G| Cy2 Str_3 12.7.2018 5.4 30.5 14.5 13.95 0.261 Str_4 12.7.2018 8.1 22.7 13.5 13.20 0.022 LuKp1 LuKp1_1 17.7.2018 5.9 66.2 37.8 41.25 1.423 LuKp1_2 17.7.2018 6.0 57.1 34.7 37.05 1.162 LuKp2 LuKp2_1 17.7.2018 3.7 58.8 30.7 30.45 1.533 LuKp2_2 17.7.2018 6.9 52.2 27.3 28.25 1.130 Fig. 2: Frequency histograms of ln-transformed lengths of the photosynthetic part of adult and intermediate leaves (n = 300) for Cymodocea nodosa in the four areas near the Port of Koper (LuKp1_1, LuKp1_2, LuKp2_1, LuKp2_2) and two areas in the Moon Bay (Str_3 and Str_4) in 2018. Median lengths are denoted by red vertical lines. Fig. 2: Frekvenčni histogrami ln-transformiranih dolžin fotosintetskega dela odraslih in srednjih listov (n = 300) za kolenčasto cimodocejo na štirih območjih v bližini koprskega pristanišča (LuKp1_1, LuKp1_2, LuKp2_1, LuKp2_2) in dveh območjih v Mesečevem zalivu (Str_3 in Str_4) v letu 2018. Mediane so označene z rdečimi navpičnimi črtami. Orlando-Bonaca et al., 2015). Seagrasses are mostly light-limited (Touchette & Burkholder, 2000) therefore, when exposed to low light levels due to high water turbidity, they respond by an increasing allocation of biomass to leaves. By prolonging leaves, marine plants can capture more light and convert it into photosyn­thetic production (Greve & Binzer, 2004). According to the present results, we hypothesize that the sampling area LuKp1_1, the closest to the Port of Koper, is the most impacted by sediment resuspension due to mari­time traffic. Since the average maximum leaf length at site LuKp2 (55.5 cm) is lower than at site LuKp1 (61.65 cm) we can assume that with the increasing distance from the Port of Koper the sediment resuspension rate is decreasing. In order to identify and monitor the main pressures on seagrass meadows and other benthic communities, and to correctly set threshold values, the Port of Koper should prepare and implement a long-term monitoring program inside the harbor area and in its surrounding, especially for water turbidity related to sediment res-uspension/deposition. Recently, Airoldi et al. (2016) summarized the status and trends of the harbour of Ravenna in order to provide scientific support for the regeneration project of this area and to increase the resilience of local fragile ecosystems. The preparation of such an overview would be very useful also for the Port of Koper. Moreover, a long-term monitoring of the status of the C. nodosa meadow growing in the imme­diate vicinity of the port area is strongly recommended. ACKNOWLEDGEMENTS also Milijan Šiško, Tihomir Makovec, Matej Marinac, Enrico Comel and Erik Lipej for their key help during the The authors are grateful to the Port of Koper that fieldwork and laboratory work. Special thanks are due financially supported this study. We would like to thank to Milijan Šiško for the preparation of Figure 1. Tab. 3: MediSkew index values for studied sampling areas of Cymodocea nodosa in 2018 and assessment of the Ecological Status (according to the WFD) and Environmental Status (according to the MSFD) in the Moon Bay and near the Port of Koper. Tab. 3: Vrednosti indeksa MediSkew za raziskane lokalitete s kolenčasto cimodocejo v 2018 in opredelitev ekolo­škega stanja (glede na OVS) in okoljskega stanja (glede na ODMS) v Mesečevem zalivu in blizu Luke Koper. Site Area Area's MediSkew Site's MediSkew Ecological Status Environmental Status Cy2 Str_3 0.065 0.04 High Good / Achieved Str_4 0.024 LuKp1 LuKp1_1 1.00 0.94 Bad Not good / Not achieved LuKp1_2 0.87 LuKp2 LuKp2_1 0.79 0.715 Poor Not good / Not achieved LuKp2_2 0.64 VPLIV KOPRSKEGA PRISTANIŠČA NA TRAVNIK KOLENČASTE CIMODOCEJE (CYMODOCEA NODOSA) Martina ORLANDO-BONACA, Janja Francé, Borut MAVRIČ & Lovrenc Lipej Marine Biology Station, National Institute of Biology, SI-6330 Piran, Fornace 41, Slovenia E-mail: martina.orlando@nib.si POVZETEK Kolenčasta cimodoceja (Cymodocea nodosa) je zaradi široke razprostranjenosti v Sredozemskem morju, ob­čutljivosti na razne pritiske in merljivosti odziva na te pritiske uporabna kot dober indikator okoljskih sprememb. Med glavnimi pritiski je v Tržaškem zalivu še posebej pomembna plovba na plovnih poteh, ki povzroča znatno res-uspenzijo sedimentov in posledično veliko turbidnost ter slabo osvetljenost. Avtorji so vzorce, nabrane na morskem travniku kolenčaste cimodoceje blizu Luke Koper uporabili za ovrednotenje ekološkega stanja z uporabo MediSkew indeksa. Dobljene rezultate so primerjali z rezultati iz referenčnega območja v strunjanskem naravnem rezervatu. Ključne besede: Cymodocea nodosa, MediSkew indeks, dolžine listov, Luka Koper, severni Jadran REFERENCES Airoldi, L., M. Ponti & M. Abbiati (2016): Conservation challenges in human dominated seascapes: The harbour and coast of Ravenna. Reg. Stud. Mar. Sci., 8(2), 308-318. Borum, J. & T.M. Greve (2004): The four European seagrass species. In: J. Borum, C.M. Duarte, D. Krause-Jensen & T.M. Greve (Eds). European seagrasses: an in­troduction to monitoring and management. The M&MS project, pp. 1-7. Cabaço, S., A. Rui Santos & C.M. Duarte (2008): The impact of sediment burial and erosion on seagrasses: A re­view. Estuarine, Coastal and Shelf Science, 79, 354–366. Cabaço, S., Ó. Ferreira & R. Santos (2010): Popula­tion dynamics of the seagrass Cymodocea nodosa in Ria Formosa lagoon following inlet artificial relocation. Estuar. Coast. Shelf S., 87(4), 510-516. Cabaço, S., A. Rui Santos (2014): Human-induced changes of the seagrass Cymodocea nodosa in Ria For­mosa lagoon (Southern Portugal) after a decade. Cah. Biol. Mar., 55, 101-108. Como, S., P. Magni, M. Baroli, D. Casu, G. De Falco & A. Floris (2008): Comparative analysis of macrofaunal species richness and composition in Posidonia oceani-ca, Cymodocea nodosa and leaf litter beds. Mar. Biol., 153(6), 1087-1101. Dytham, C. (2003): Choosing and using statistics: a biologist’s guide. Second edition. Blackwell Publishing, 248 pp. Duarte, C.M., N. Marba, E. Gacia, J.W. Fourqurean, J. Beggins, C. Barrón & E.T. Apostolaki (2010): Seagrass community metabolism: Assessing the carbon sink ca­pacity of seagrass meadows. Global Biogeochem. Cy., 24, GB4032. Espino, F., A. Brito, R. Haroun & F. Tuya (2015): Macroecological analysis of the fish fauna inhabiting Cymodocea nodosa seagrass meadows. J. Fish Biol., 87(4), 1000-1018. Fabbri F., F. Espino, R. Herrera, L. Moro, R. Haroun, R. Riera, N. González-Henriquez, O. Bergasa, O. Mon-terroso, M. Ruiz de la Rosa & F. Tuya (2015): Trends of the seagrass Cymodocea nodosa (Magnoliophyta) in the Canary Islands: population changes in the last two decades. Scientia Marina, 79(1), 7-13. Greve, T.M. & T. Binzer (2004): Which factors regu­late seagrass growth and distribution? In: J. Borum, C.M. Duarte, D. Krause-Jensen, & T.M. Greve (Eds). European seagrasses: an introduction to monitoring and manage­ment. The M&MS project: 19-23. Habitat Directive (1992): Council Directive 92/43/ EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Heck, K.L., G. Hays & R.J. Orth (2003): Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series, 253, 123-136. Hemminga, M.A. & C.M.D. Duarte (2000): Seagrass ecology. Cambridge University Press, 298 pp. Jensen, S. & S. Bell (2001): Seagrass growth and patch dynamics: cross-scale morphological plasticity. Plant Ecology, 155(2), 201-217. Lipej, L., R. Turk & T. Makovec (2006): Ogrožene vrste in habitatni tipi v slovenskem morju (Endangered species and habitat types in the Slovenian sea). Zavod RS za varstvo narave, Ljubljana, 264 pp. Luka Koper (2015): More about port’s history. Avail­able at: https://luka-kp.si/eng/more-about-port-s-history. Marba, N., E. Diaz-Almela & C.M. Duarte (2014): Mediterranean seagrass (Posidonia oceanica) loss be­tween 1842 and 2009. Biol. Conserv., 176: 183–190. Marine Strategy Framework Directive (2008): Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of ma­rine environmental policy. Mascaró, O., S. Oliva, M. Pérez & J. Romero (2009): Spatial variability in ecological attributes of the seagrass Cymodocea nodosa. Bot. Mar., 52(5), 429-438. Mazzella, L., M.B. Scipione, M.C. Gambi, M.C. Buia, M. Lorenti, V. Zuppo & G. Cancemi (1993): The Mediterranean seagrass Posidonia oceanica and Cymo­docea nodosa. A comparative review. 1st International Conference Mediterranean Coastal Environment, MED­COAST’93. Ankara, Turkey, pp. 103-116. Montefalcone, M., M. Chiantore, A. Lanzone, C. Morri & G. Albertelli (2008): BACI design reveals the decline of the seagrass Posidonia oceanica induced by anchoring. Mar. Pollut. Bull., 56(9), 1637-1645. Oliva, S., O. Mascaró, I. Llagostera, M. Pérez & J. Romero (2012): Selection of Metrics Based on the Seagrass Cymodocea nodosa and Development of a Biotic Index (Cymox) for Assessing Ecological Status of Coastal and Transitional Waters. Estuar. Coast. Shelf S., 114, 7-17. Orlando-Bonaca, M., J. Francé, B. Mavrič, M. Grego, L. Lipej, V. Flander Putrle, M. Šiško & A. Falace (2015): A new index (MediSkew) for the assessment of the Cymodocea nodosa (Ucria) Ascherson meadows’s status. Marine Environmental Research, 110, 132-141. Orlando-Bonaca, M., L. Lipej & J. Francé (2016): The most suitable time and depth to sample Cymodocea nodosa (Ucria) Ascherson meadows in the shallow coastal area. Experiences from the northern Adriatic Sea. Acta Adriatica, 57(2), 251-262. Orfanidis, S., V. Papathanasiou & S. Gounaris (2007): Body size descriptor of Cymodocea nodosa indicates anthropogenic stress in coastal ecosystem. Transitional Waters Bulletin, 2, 1-7. Orfanidis, S., V. Papathanasiou, S. Gounaris, & T. Theodosiou (2010): Size distribution approaches for monitoring and conservation of coastal Cymodocea habitats. Aquatic Conservation: Marine and Freshwater Ecosystems, 20, 177–188. Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, F.T. Short, M. Waycott & S.L. Williams (2006): A global crisis for sea-grass ecosystems. BioSci., 56, 987-996. OSPAR Commission (2010): Background Document for Cymodocea meadows. London, OSPAR Commis­sion, 487/2010, 30 pp. Papathanasiou, V. (2013): Cymodocea nodosa as a bioindicator of coastal habitat quality: an integrative approach from organism to community scale. School of Marine Science and Engineering Faculty of Science and Technology. University of Plymouth, UK. Doctoral Thesis, 151 pp. Papathanasiou, V., S. Orfanidis & M.T. Brown (2016): Cymodocea nodosa metrics as bioindicators of anthro­pogenic stress in N. Aegean, Greek coastal waters. Ecol. Indic., 63, 61-70. Peduzzi, P. & A. Vukovič (1990): Primary production of Cymodocea nodosa in the Gulf of Trieste (Northern Adriatic Sea): a comparison of methods. Mar. Ecol. Progr. Ser., 64, 197-207. Pergent-Martini, C. & C. Le Ravallec (2007): Guide­lines for Impact Assessment on Seagrass Meadows. Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P. 337­1080 Tunis CEDEX, 48 pp. Rosell-Fieschi M. & M. Polifrone (2014): Degrada­tion of Cymodocea nodosa (Ucria) Ascherson meadow at Las Canteras Beach (Gran Canaria, Canary Islands, Atlantic Ocean). Journal of Coastal Life Medicine, 2(4), 270-27. Telesca, L., A. Belluscio, A. Criscoli, G. Ardizzone, E. T. Apostolaki, S. Fraschetti, M. Gristina, L. Knittweis, C. S. Martin, G. Pergent, A. Alagna, F. Badalamenti, G. Ga-rofalo, V. Gerakaris, M. Louise Pace, C. Pergent-Martini & M. Salomidi (2015): Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Sci. Rep., 5: 12505, doi: 10.1038/srep12505. Terrados, J. & J. Borum (2004): Why are seagrasses important? - Goods and services provided by seagrass meadows. In: J. Borum, C.M. Duarte, D. Krause-Jensen, & T.M. Greve (Editors). European seagrasses: an intro­duction to monitoring and management. The M&MS project, pp. 8-10. Touchette B.W. & J.M. Burkholder (2000): Overview of the physiological ecology of carbon metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology, 250, 169-205. Tsioli, S., S. Orfanidis, V. Papathanasiou, C. Katsa­ros & A. Exadactylos (2018): Effects of salinity and temperature on the performance of Cymodocea nodosa and Ruppia cirrhosa: a medium-term laboratory study. Botanica Marina, 62(2), 97-108, doi:10.1515/bot-2017­0125 Tuya, F., H. Hernandez-Zerpa, F. Espino & R. Haroun (2013): Drastic decadal decline of the seagrass Cymodocea nodosa at Gran Canaria (eastern Atlantic): Interactions with the green algae Caulerpa prolifera. Aquat. Bot., 105, 1-6. Tuya, F., L. Ribeiro-Leite, N. Arto-Cuesta, J. Coca, R. Haroun & F. Espino (2014): Decadal changes in the structure of Cymodocea nodosa seagrass meadows: Natural vs. human influences. Estuar. Coast. Shelf S., 137, 41-49. Water Framework Directive (2000): Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Waycott, M., C. M. Duarte, T.J. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, KL. Heck JR., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short & S.L. Williams (2009): Accelerating loss of seagrasses across the globe threat­ens coastal ecosystems. P. Natl. Acad. Sci. USA, 106, 12377-12381. Wright, J.P. & C.G. Jones (2006): The Concept of Or­ganisms as Ecosystem Engineers Ten Years On: Progress, Limitations, and Challenges. BioSci., 56, 203-209. Žagar, D., V. Ramšak, M. Jeromel, M. Perkovič, M. Ličer & V. Malačič (2014): Modelling sediment resus­pension caused by navigation, waves and currents (Gulf of Trieste, northern Adriatic). In: de Almeida A.B. et al. (eds.), 3rd IAHR Europe Congress: Water engineering and research. Book of abstracts. Faculty of Engineering of the University of Porto (FEUP), Portugal, pp. 86-87.