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Abstract: The numerical procedure of the SPICE simulator is a compromise between accuracy and speed, so that due to efficiency, the simulator
can yield errors. One source is frequency warping, which is discussed in the article. The simulator is presented as a digital signal processor.
General terms describing the distortion emanating from a time discrete treatment of the continuous signal are achieved in the frequency domain by
comparing the Z-transform of the simulator model to the Laplace transform of the model of the actual circuit. The theoretical derivations are
illustrated by examples treating autonomous circuits. Within the first example, the SPICE transient analysis is analysed and the discrepancy
between actual and calculated responses is presented in the time domain. In addition to frequency warping, the discrete treatment can generate
chaotic behaviour. This is presented in the second example, an analysis of a CL oscillator. This example demonstrates the influence of magnitude
of the numerical integration step. It is shown that if a step is not limited, the simulation does not follow the behaviour of the circuit and an unpredict-
able shape is output. The calculated response seems to be chaotic, despite the actual circuit having a closed limit cycle.

Frekvencno izkrivljanje in kaoticho obnasanje simulatorja
SPICE

Kljuéne besede: fizika, elektrotehnika, analize vezij, SPICE orodja ratunalniSka, DSP obdelava signalov digitalna, izkrivijanje frekvencno, integracije
numeriéne, Z-transformacija, LAPLACE transformacije, kaos

Povzetek: Numeriéni postopki, ki jih uporablja simulator SPICE, so kompromis med ucinkovitostjo in to¢nostjo. Clanek opisuje nekaj vidikov
frekvendénega izkrivijanja in kaoti¢nega obnaganja CL oscilatorja pri analizi s simulatorjem SPICE. Simulator smo predstavili kot digitaini procesor
signala. Splosne analitidne izraze za popacenja, ki nastanejo zaradi diskretnega obravnavanja zveznega signala, smo izpeljali v frekvencnem
prostoru prek primerjave rezultatov Z-transformacije odziva modela simulatorja in Laplaceove transformacije odziva dejanskega vezja. Teoreticne
izpeljave ilustrirata dva zgleda analize avtonomnih vezij. Prvi zgled obdeluje linearno vezje. Napake tranzientne analize simulatorja SPICE so
prikazane v prostoru stanj in asovnem prostoru. Drugi zgled je nelinearno vezje, pri katerem je poudarjen vpliv velikosti koraka numeri¢ne integracije.
Ce je maksimaini dopustni korak numeriéne integracije prevelik, analiza vezja s simulatorjem ne sledi obnasanju dejanskega vezja, temvec generira

nepredvidijive rezultate. Izraunani izhodni signal je tedaj videti kaotiéne oblike, Eeprav ima obravnavanoe vezje zakljuCen limitni cikel.

ples if they are nearer each other than haif a period of
the highest spectral component. [f this condition is vio-
lated, the spectrum transposed around multiples of
the sampling frequency is added to the baseband spec-
trum, which causes irreparable corruption of the origi-
nal signal.

1. INTRODUCTION

Implementation in microelectronics technology is im-
possible without the use of a wide palette of CAD tools.
The basic tool, which yields circuit responses at the
level of elements, is the SPICE simulator (Simulation
Program with Integrated Circuits Emphasis) /1/. The

simulation is performed on a digital computer, so its A detailed analysis reveals that the treatment of a sig-

behaviour is similar to digital signal processing. Dig-
ital signal processing does not encompass the entire
signal; it treats a chain of discrete samples only, and
the samples have a limited number of values. This
discrete approach introduces some inevitable impair-
ment of the signal. The transformation of the magni-
tude from continuous to discrete values is a distortion
that is presented as quantization noise. The amount
of the noise is inversely proportional to the distance
between two neighbouring levels. Similar distortion is
caused by errors emanating from unavoidable trun-
cations and by rounding off the intermediate results
of mathematical operations /2,3/. Naturally, the noise
impairs the signals calculated. In addition, manipula-
tion of a signal in discrete instants of time is the sec-
ond source of errors /2/. The sampling theorem states
that an original signal can be reconstructed by its sam-
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nal in discrete instants introduces distortion, even if
they are close enough to fulfil the requirement of the
theorem. This distortion is called frequency warping.
lts size depends on the ratio between the frequency
of the signal and the sampling frequency. Assuming
that an exact result would be obtained incorporating
an infinite number of samples, the difference between
the actual result, acquired by a limited amount of sam-
ples, and the exact one can be defined as the error.
The quantitative estimate of frequency warping is nor-
mally done in the frequency domain by comparing a
Z-transform of the discrete system to a Laplace trans-
form of the continuous counterpart /3, 4/. The error
caused by the discrete approach comes into play as
the observed system is excited by a different fre-
quency, which changes the shape of the response /3/.
Within some applications, analog circuit simulators
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evaluate the response in discrete points of time; there-
fore, they have all the essential properties of a digital
signal processor. The feature denoted is incorporated
into the SPICE simulator. The result of SPICE tran-
sient analysis can be presented as an output of a dig-
ital integrator /5, 6/ whereby sampling time, numeri-
cal accuracy and the integration method can be se-
lected. Due to its discrete nature, numerical integra-
tion causes the distortion mentioned above.
Contrary to standard digital signal processing, SPICE
does not maintain a constant distance between sam-
ples. In order to accelerate analysis, the integration
step of the simulator continues until an initially con-
trolled error surpasses the threshold value chosen.
Interrupting a lengthy step by an abrupt change in a
signal can be another source of errors. The error can
even transform an undoubtedly unstable response into
a stable one /7/. In addition, it can cause completely
irregular results /8/. Despite the possibility of chaotic
behaviour in a Colpitts oscillator /9, 10/, a circuit which
has a simple closed limit cycle with no bifurcation can
yield a strange response with no steady state. It has
been confirmed that the unexpected results are con-
sequences of the imprecise numerical integration of
the simulator.

2. MODEL OF SPICE TRANSIENT
ANALYSIS

SPICE transient analysis has been created to be a
numerical solver of differential equations. In fact, the
analysis has been adapted to cover non-linear circuits
and uses implicit integration methods /1/, where the
magnitudes of signals and their derivatives are simul-
taneously calculated by previous values. However,
since we wish to avoid an overly intricate explanation
by omitting facts not essential to our topic, the circuit
analysed is assumed to be linear and is presented by
a system of equations in a normal form. The excita-
tion vector, the state vector, and its time derivative
are depicted by u(f), y(f) and y(t) respectively. A and
B are corresponding matrices.

y(t) = Ay(t) + Bu(t) (1)

The explicit form of the signal y(t) can be obtained by
integrating the differential equation.

t

t
v = [ya= [y Bl (2)

—oo

The simulator captures and manipulates signals at
discrete time instants only. Suppose that these instants
are equidistant and that they are h units of time apart.

If this is so, vectors can be replaced by their samples
u(t) = u(kh) =, y(t) = y(kh) = vy, y(t) = y(kh)=yx. The
usual numerical integration technique exploited by the
simulator is the trapezoidal methed. The procedure
for one integration step is presented by (3) where h
depicts the time step.

Vet = Yie + 25+ 0
k+1 K 2 k 2 k+1 (3)

Derivatives of the state vector in the equation above
can be replaced by the right side of the equation (1)
for matching instants. After some rearrangement, (4)
is obtained:

A B
YK+1—YK+hE(YK+YK+1)+hE<Uk +Uk1) (4)

A system operating according to equation (4) is
sketched in Figure 1. The block z' depicts a time de-
lay lasting one integration step. The input signals of
the middle summator are formed by the mean value
of the present and past samples of the output signal
and the excitation, multiplied by A and B respectively.
The integrator is presented as an accumulator.

uhl

Yin

Fig. 1. Model of the trapezoid method

Figure 1 confirms that numerical integration can be
treated similarly to digital processing of signals, and
that consequently the SPICE transient analysis can
be regarded as a digital signal processor. The logical
conclusion is that this task of the simulator has all
the main features, including deficiencies, of a proc-
essor of this kind.

3. FREQUENCY WARPING IN THE
FREUENCY DOMAIN

Frequency warping is the phenomenon where a dis-
crete system corresponds to its continuous counter-
part at a distinct frequency. This discrepancy increases
significantly if the frequency of the signal approaches
a value limited by the sampling theorem. An error can
be caused if this fact is neglected when analysing an
oscillator /4/. Our quantitative description of the phe-
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nomenon inside the SPICE analysis is divided into
steps, as follows.

3.1. Comparison of Transfer Functions

The transfer function of the continuous integrator can
be obtained by performing a Laplace transform on
basic equations (1) or (2) that describe the behaviour
of the system.

Us) s-A (5)

Equation (3) presents the signal in discrete time in-
stants; therefore, the natural approach is a Z-transform.
The transfer function of a numerical integrator which
exploits the trapezoidal method is given by (6).

H(z)= 5
h oz¢1 (6)

A comparison of equations (6) and (5) confirms that
the discrete approach alters the transfer function of a
system. Consequently, a change in the transfer func-
tion results in a difference between the responses of
the discrete system and its continuous (e.g. actual)
counterpart. Nevertheless, it can be noticed that the
structure of equation (5) is equal to the structure of
(6), except that the variable s is replaced by the frac-
tion. The transfer functions are identical if mapping,
defined by equation (7), is introduced.

.2—1 - e 2+hs
z+1 2-hs (7)

s=

TN

As the variables of the transforms have both real
and imaginary parts, the last equation describes two-
dimensional mapping. The map of a significant curve
is additionally highlighted in the next subsection.

3.2. Map of s-Plane Ordinate to z-Plane

The continuous complex frequency s is ex-
pressed as a sum of the real and imaginary parts
( s=a+jo ), and variable z by its polar co-ordi-
nates (z=r-e/"). To distinguish the frequencies,
the upper index in the parenthesis is added at
the discrete signal (v, ,,,= ©@). The portrayal
of harmonic signals in the s-plane is its ordinate.
As our main concern is studying relations be-
tween the frequencies of continuous and discrete
systems, a map of this curve into the z-plane can
explain the point. After replacing the variable s
in equation (7) by jo and after some manipula-
tion, the relation presented by (8) can be found.
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r=1; (@ =Z arctan —
“h 2 (8)

P4

The map of the ordinate of the s-plane is a circle in
the z-plane, as shown in Figure 2. The frequency of
the discrete system corresponds to the phase in the z-
plane.

\Im(s) z-plane A Im(z)
s-plane
AP\ -
jo A
1
Re(s) Re(z)

Fig. 2. Map of the ordinate of the s-plane into the
zZ-plane according to the trapezoidal method.

The relation between continuous and discrete frequen-
cies, dictated by equation (8), is presented in Figure
3. The abscissa is proportional to the frequency in a
continuous (actual) system, and the ordinate to the
frequency of its discrete counterpart (simulated sys-
tem). The scales of both axes are normalised by the
sampling frequency, which is calculated from the time
step (f=1/h).

J f(‘[) /ﬁ
0,4

0,2

Fig. 3. Relations between frequencies of the
continuous system and the discrete
system if equal responses are required.

The curve reveals the relation between the systems.
[t can be inferred that the test tone frequency inside
the simulator (@) has to differ from the actual fre-
quency () if the same magnitude of response is re-
quired. If the ratio between the test and the sampling
frequency is small, the value of the function arc tan is
almost equal to its argument and the differences be-
tween the responses are hardly observed. When the
ratio approaches or even exceeds one half, the corre-
sponding discrete frequency is significantly distinct.
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This non-linear relation emanates from the treatment
of the signal in discrete time instants.

3.3. Approximation

Equation (8) is the exact description of the distortion
of a signal due to treatment of a continuous system by
the simulator. The error can be easily estimated if a
non-linear tangent function is expanded into a trun-
cated Taylor series. The result of the procedure is equa-
tion (9). A detailed analysis reveals that with ten sam-
ples per period, the first neglected term is approxi-
mately 4% of the last included term.

(d)y2
w = ol@ 1+—~~((JJ il
12

(9)

As the integration step of the SPICE transient analy-
sis is adapted automatically to changes in the signal
[11], the number of steps in a period is normally greater
than ten, especially if the signal is formed by a single
spectral compenent. With this in mind, the approxi-
mations of the distortion seem acceptable for obtain-
ing a fair estimate of an error of frequency obtained
by the simulator.

4. EXAMPLE |- FREQUENCY WARPING

This section illustrates the subject through an exam-
ple. It aims to display the typical effect of frequency
warping and to clarify the relation (9).

4.1. The circuit

The simplest form of an autonomous circuit, produc-
ing a response that incorporates only the imaginary
part of the complex frequency ( s=juy ), is a CL
combination with an initial state (v(0), {(0)) different
from zero. The circuit is presented in Figure 4. It can
be described by an homogeneous second order lin-
ear differential equation. lts solution is undamped os-
cillation .

. 2
s i dult) , ut) _,
dt? CL

u==—=C <L
- u(t) = Asin(wgt + )

Fig. 4. The circuit in Example 1

4.2. Numerical Integration in the Time
Domain

Frequency warping of the example is demonstrated

in the time domain. The trapezoidal method has no

amplitude distortion /3/; therefore, any point of the sig-

nals acquired by numerical integration defines a sine
curve with given constant amplitude.

The trapezoidal algorithm (8) includes the initial and
the final derivatives of the signal within each integra-
tion step. For convenience, the step should be divided
into two equal parts. During the first part, the signal of
the discrete integrator is assumed to be changing ac-
cording to the slope through the initial point. This slope
can be unambiguously found from the known point of
the signal. During the second half of the interval, the
simulator follows the tangent of the final point. Pres-
entation of the outcome without calculation is rather
intricate, as the final point is unknown. For a particu-
lar case, the obscurity can be bypassed by choosing
an initial point on the abscissa (y,=0) and by setting
the magnitude of the integration step to the value where
the signal reaches amplitude during its first half. With
this intermediate result, the only solution at the end of
the integration step is the slope parallel to the abscissa,
which holds only at the maximum value of the har-
monic signal. The point after the second integration
step is obtained similarly. The first move within the
step is parallel to the abscissa, and the second has
maximum slope: therefore the abscissa is reached
again, as shown in Figure 5.

y At

h?2 h?2

Fig. 5. Frequency warping demonstrated in time
domain.

The three points describe half a period of the calcu-
lated signal. It can be observed in Figure 5 that the
peak of the signal obtained is shifted rightwards com-
pared to the actual signal. The delay is depicted by At.
Sequential integration steps add the same delay and
the period is prolonged, which means that the fre-
quency of the response is lowered. The difference can
be approximated by (9).

5. EXAMPLE Il - CHAOS

As noted, transient analysis of the simulator consists
of numerical integration with discrete time increments.
A circuit has to be solved inside each step, which re-
sults in a considerable amount of calculations if the
increments are tiny. To output a result in a reasonable
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time, the standard SPICE simulator tends to enlarge
the increment towards (T, -7_)/500r T, whichever
is smaller /11/. The times mentioned are the second,
third and fourth parameters in the .TRAN statement
respectively. Another limitation stems from the slopes
of signals. Slowly varying signals enlarge the time in-
crement, and vice versa. If an abrupt change occurs
in a signal, the integration step shrinks gradually. The
gradual change and asynchronism between the inte-
gration instants and the abrupt change can be another

source of errors.

5.1. The circuit

The active element of the circuit in Figure 7 is a gen-
eral purpose NPN transistor in a common emitter ori-
entation, loaded by a resistor. Two capacitors and an
inductor form the feedback. The latter provides the
quiescent current into the base, so that the transistor
operates near saturation. Note that the ratio of
capacitances causes a considerable signal at the base;
therefore, the transistor is forced to traverse a strongly
non-linear region. The non-linearity yields significant
digress of actual frequency of oscillation (18.5 kHz)
from the resonant frequency of the passive n feed-
back circuit (8.9 kHz).

Fig. 7. The oscillator analysed (U,, =5V,
Q=2N2222, R=1k, C,=47nF,
IC =0.6074422V, C,=100nF,
IC=1.361650V, L = 10mH,
IC = 28.98162E-6 A)

5.2. Results of simulations

The first solution presented is referred to as exact.
Setting a small enough time between outputted re-
sults (7,,,) and the maximum time increment of the
numerical integration (7, ), and starting the simula-
tion with adequate initial conditions, an actual steady-
state response is obtained. Observing the actual time
increment of the integration in the raw file, it was con-
firmed that T__ chosen defines the time increment
inside the entire period. Figure 8 displays the current
into the base, the collector-emitter voltage in the time
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domain and the current through the inductor in the
frequency domain.

6 lB/mA
4
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uCI/V I/MS
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0.4
| 4
10 30 50 70 90 fkHz

Fig. 8. Base current, base-emitter voltage and the
spectrum of the inductor current

(Toop = T ey = 50NS)
Leaving T unchanged and Ts,ep significantly in-

creased, the simulation is repeated. Figure 9 shows
the results in the state domain formed by the voltage
across the capacitor at the collector side and the
inductor current. The upper part of the trajectory is
spitted. The inset explains that the vertices of curves
are merely different points of the original trajectory.
Thus, presenting the signals using a small number of
points, the distortion appears.

0.2 0.6 1.0 1.4 1.8

Fig. 9. The trajectory with increased T,
us, T =50ns)

tep (Tstep = 1’5
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A simulation with slightly increased T,__ causes the
spectral lines to be lower and wider and the noise floor
raised. In the state domain, the points calculated ran-
domly diverge from the original trajectory, but the limit
cycle can be unambiguously confirmed. Omitting 7,
leads to an unpredictable yield of the simulator (Fig-
ure 10). The spectrum has some peaks around the
original frequency of oscillation. The spikes are less
than 6dB above the vicinity, so all spectral compo-
nents are significant inside a limited interval. In addi-
tion, the trajectory gained is not a closed curve; moreo-

ver, it seems chaotic.
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Fig. 10. The spectrum and the trajectory (T, 1,5

. step =
ws, T = omitted).

5.3. Comments

Observing the current at the base side (Figure 8), it
can be inferred that significant changes occur when
the transistor passes from the cut-off to the active re-
gion. As the amplifier is idle for almost the entire pe-
riod except inside this short interval, the slopes of sig-
nals are defined mainly by passive feedback. Thus,
all signals are smooth before the spike of the base
current occurs. In observing the raw results, it can be
found that the integration increment has its maximum
allowed value at the beginning of the abrupt change.
Overly large steps cause alternation of the calculated
base current. If this numerically provoked alternation
is not damped enough, the process can continue
through the entire period. Not being synchronised with
the signal, the moments of calculation are not congru-
ent to the response. Given this, the calculated amount
of the charge injected into the base randomly varies

from cycle to cycle, so the response is aperiodic.

2. CONCLUSION

The aim of the contribution is to highlight some de-
ficiencies of the SPICE simulator. In addition, it ex-
plains the origin of frequency warping and the ir-
regular behaviour due to manipulation of a signal in
discrete time instants. Considering the equidistant
time steps, a similar approach is found within dig-
ital signal processing, so the transient analysis of
the SPICE simulator is presented as a digital signal
processor. Expressions for the distortion caused by
numerical integration are derived in the frequency
domain. it is shown that the discrepancy between a
continuous system and its discrete counterpart in-
creases if a time steps approach is made to periods
of signals. A simple incorporated electronic circuit,
the solution to which is harmonic oscillation, is pre-
sented to illustrate these features. The circuit is
simulated exploiting numerical integration. Within
this example, the distortion is additionally surveyed
in the time domain. In addition, the SPICE simula-
tor varies the time step of numerical integration,
which introduces another error, treated in the sec-
ond example. The circuit used in the example is a
Colpitts oscillator. It has been confirmed that the
simulator outputs the periodic signals if adequate
controls are set. However, the automatic adapta-
tion of the time increment leads to an aperiodic re-
sponse.

It must be stressed that the SPICE simulator is an
excellent tool for circuit analyses, and usually ac-
complishes its job requiring no additiocnal actions
by its users. Sometimes the facts mentioned above
prevail, so outcomes contain errors. We hope that
the paper clearly elucidates some unpleasant fea-
tures of the SPICE simulator, and trust that consid-
eration of the features and their consequences will
facilitate detection of false results. We advise that
a survey of the simulator’s outputs should be made
and if they seen doubtful, additional controls must
be utilised. As the examples illustrate, the most
powerful control is the limitation of the time step.
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