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Abstract. It is shown that in a flat background one can define higher spin (HS) gauge
theories with an infinite number of fields. In particular here HS YM-like in any dimension
and HS CS-like theories in any odd dimension are introduced and analyzed. They are
invariant under HS gauge transformations which include ordinary U(1) gauge transforma-
tions and diffeomorphisms. It is also shown how to recover local Lorentz invariance. The
action, equations of motion and conserved currents in the HS YM-like theories are explicitly
exhibited.

Povzetek. Avtor v prispevku pokaže, da lahko definira na ravnem ozadju umeritvene
teorije višjih spinov z neskončnim številom polj. Kot poseben primer uvede in analizira
teorije Yang-MIllsovega tipa z višjim spinom v poljubni dimenziji in teorije Cherna-Simmonsa
z višjim spinom v poljubni lihi dimenziji. Te teorije so invariantne na umeritvene transfo-
macije za višje spine, ki vključujejo običajne transformacije U(1) in difeomorfizme. Pokaže
še, kako znova vpeljati lokalno Lorentzovo invarianco. V teorijah Yang-Millsovega tipa z
višjim spinom zapiše akcijo ter enačbe gibanja in ohranitvene tokove.

Keywords: Higher spin theories, Yang-Mills like theories, Chern-Simmons theories,
flat spacetime

3.1 Introduction. . .

There are compelling motivations for research to study spin (HS) theories, that
is theories with an infinite number of fields with increasing spin. In a theory
that unifies all the forces of nature such a feature seems to be inevitable. First
(super)string theories have this characteristic. It is well known that the infinite
number of fields with increasing spins is related to their good UV behavior. Also
the AdS/CFT correspondence indicates that if we wish to resolve the singularities
of the theory on the boundary we have to turn to the dual theory, which is a
(super)string theory. Other arguments suggest that, when gravity is involved,
infinite many local fields of increasing spins are needed in order to avoid possible
conflicts with causality [1].

Starting from on these general motivations, in this contribution I will focus
on a specific problem, for which for a long time there have been no answers, or
only negative ones, in the literature: can one formulate a sensible local massless
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3 HS YM and CS Theories in Flat Spacetime 59

HS theory in a flat space-time? The standard lore in the literature may be sum-
marized by two objections: first, there are the so-called no-go theorems, which
prevent the existence of such theories under rather general conditions; second, the
construction of massless HS theories has been so far only successful in AdS spaces.
However here I will exhibit examples of HS theories defined in flat spacetime
in any dimension, which are massless, gauge invariant and, at least classically,
consistent.

In [3] and, later on, in [4,7] a method has been proposed to produce HS
effective actions by integrating out matter fields coupled to external potentials
and quantized according to the worldline quantization. The method consists in
computing current correlators, see [5,6], and explicitly determine the effective
action. Barring anomalies, we are guaranteed that the result is HS gauge invariant.
Unfortunately the method is very cumbersome and the resulting effective action
is not guaranteed to be local.

In this paper I would like to show that there exists a shortcut. Exploiting
the analogy of the HS gauge transformations with the gauge transformations
in ordinary non-Abelian gauge theories, one can construct analogous local HS
invariants and covariant objects, and in particular actions. In this way one can
define (perturbatively) local HS Yang-Mills theories in any dimension and HS
Chern-Simons theories in any odd dimension. I will focus in particular on the
former. They are characterized by a coupling constant, like the ordinary YM
theories. I will show how to define the action, their equations of motion and
their conserved quantities. The HS gauge transformations contains in particular
the ordinary U(1) gauge transformations and the diffeomorphisms. They do not
include the local Lorentz transformations. Since the HS YM-like theories are
formulated in a frame-like formalism, local Lorentz transformations are relevant
in order to permit their gravitational interpretation. Below I will show how to
local Lorentz invariance is hidden in the formalism and how to recover it.

3.2 Higher spin effective action

This section is devoted to a concise presentation of the effective action method.
The effective action here is defined via the worldline quantization method. This
method consists, roughly speaking, in considering the coordinates on which the
field depends, as the position of a quantum particle, while the latter is quantized
according to the Weyl-Wigner quantization.

Let us consider a free fermion theory

S0 =

∫
ddxψ(iγ·∂−m)ψ, (3.1)

coupled to external sources. According to the Weyl quantization method for a
particle worldline, the full action is expressed as an expectation value of operators

S = 〈ψ|− γa(P̂a − Ĥa) −m|ψ〉 (3.2)
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We recall that a quantum operator Ô can be represented with a symbol O(x, u)
through the Weyl map

Ô =

∫
ddxddy

ddk

(2π)d
ddu

(2π)d
O(x, u) eik·(x−X̂)−iy·(u−P̂) (3.3)

where X̂ is the position operator. The symbol of the product of two operators is
the ∗ product (or Moyal product) of the corresponding symbols.

In (3.2) P̂a is the momentum operator whose symbol is the classical momen-
tum ua

1 . Ĥa is an operator whose symbol is ha(x, u), where

ha(x, u) =

∞∑
n=0

1

n!
hµ1...µna (x)uµ1 . . . uµn (3.4)

s = n+ 1 is the spin and the tensors are assumed to be symmetric in µ1, . . . , µn.
Any field like ha(x, u), which depends also from the momentum u, will be referred
to as master field.

One should notice that there are two kind of labels a and µi. They will be
interpreted later as flat and curved indices, respectively, but in a flat background
they play the same role. Their true nature will illustrated later on.

Now one makes the above formalism explicit in (3.2), where we also insert two
completenesses

∫
ddx|x〉〈x|, and make the identification ψ(x) = 〈x|ψ〉. Expressing

S in terms of symbols one finds

S = S0 +

∫
ddu

(2π)d
ddxddz eiu·zψ

(
x+

z

2

)
γ·h(x, u)ψ

(
x−

z

2

)
(3.5)

= S0 +

∞∑
s=1

∫
ddx J(s)µ1...µs(x)h

µ1...µs
(s) (x)

The tensor field hµ1...µna is linearly coupled to the HS current

Jaµ1...µn(x) =
in

n!

∂

∂z(µ1
. . .

∂

∂zµn)
ψ
(
x+

z

2

)
γaψ

(
x−

z

2

) ∣∣∣
z=0

. (3.6)

For instance, for s = 1 and s = 2 one obtains

J(1)a = ψγaψ (3.7)

J(2)aµ1 =
i

2

(
∂(µ1ψγa)ψ−ψγa∂µ1)ψ

)
(3.8)

The HS currents are on-shell conserved in the free theory (3.1)

∂aJ
aµ1···µs−1
(s) = 0 (3.9)

1 Throughout the paper the position in the phase space are denoted by couples of letters
(x, u), (y, v), (z, t), (w, r), the first letter refers to the space-time coordinate and the second
the the momentum of the worldline particle. The letters k, p, q will be reserved to the
momenta of the (Fourier-transformed) physical amplitudes.
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3.2.1 HS gauge symmetries

The action (3.2) is trivially invariant under the operation

S = 〈ψ|ÔÔ−1ĜÔÔ−1|ψ〉 (3.10)

where Ĝ = −γ·(P̂ − Ĥ) −m. So it is invariant under

Ĝ −→ Ô−1ĜÔ, |ψ〉 −→ Ô−1|ψ〉 (3.11)

Writing Ô = e−iÊ we easily find the infinitesimal version.

δ|ψ〉 = iÊ|ψ〉, δ〈ψ| = −i〈ψ|Ê, (3.12)

and

δĜ = i[Ê , Ĝ] = i[γ·(P̂ − Ĥ) , Ê] = γ·δĤ (3.13)

Let the symbol of Ê be ε(x, u), then the symbol of [iγ·P̂, Ê] is∫
ddy〈x− y

2
|[iγ·P̂, Ê]|x+ y

2
〉 eiy·u = −iγ·∂xε(x, u) (3.14)

Similarly

Symb
(
[Ĥa, Ê]

)
= [ha(x, u) ∗, ε(x, u)] (3.15)

where [a ∗, b] ≡ a ∗ b− b ∗ a is the ∗-commutator. Therefore, in terms of symbols,

δεha(x, u) = ∂
x
aε(x, u) − i[ha(x, u)

∗, ε(x, u)] ≡ D∗xa ε(x, u) (3.16)

where the covariant derivative defined by

D∗xa = ∂xa − i[ha(x, u) ∗, ] (3.17)

has been introduced.
The variation in eq.(3.16) will be referred to hereafter as HS gauge transforma-

tion, and the corresponding symmetry HS gauge symmetry. For the transformations
of ψ, see [4] .

It is easy to see that the conservation law in the classical interacting theory

D∗ax Ja(x, u) = 0 (on − shell) (3.18)

follows from the above.
Using the ∗-Jacobi identity (which holds also for the Moyal product, because

the latter is associative) one can easily get

(δε2δε1 − δε1δε2)h
µ(x, u) = i (∂xa[ε1

∗, ε2](x, u) − i[ha(x, u) ∗, [ε1 ∗, ε2](x, u)]])

= iD∗xa [ε1 ∗, ε2](x, u) (3.19)

i.e. the HS ε-transform is of Lie algebra type.
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3.2.2 The HS effective action

The general formula for the effective action is

W[h] =W[0]+

∞∑
n=1

1

n!

∫ n∏
i=1

ddxi
ddui

(2π)d
W(n)
a1,...,an

(x1, u1, . . . , xn, un, ε)

×ha1(x1, u1) . . . han(xn, un) (3.20)

where W(n)
a1,...,an(x1, u1, . . . , xn, un, ε) are the n-point functions of the currents

Ja1(x1, u1), . . . , Jan(xn, un).W[0] is the constant 0-point contribution, which will
be disregarded in the sequel. There are various ways to compute these amplitudes.
The most popular is by means of Feynman diagrams. For instance, the 3-point
function can be calculated via the Feynman diagram integral

〈Ja1(x1, u1)Ja2(x2, u2)Ja3(x3, u3)〉

= −i

∫
ddq1

(2π)d
ddq2

(2π)d
ei(q1+q2)·x1e−iq1·x2e−iq2·x3

× δ
(
u1 −

2p− q1 − q2
2

)
δ

(
u2 −

2p− q1
2

)
δ

(
u3 −

2p− 2q1 − q2
2

)
×
∫
ddp

(2π)d
tr

(
γa1

1
/p+ m

γa2

1
/p− /q1 + m

γa3

1
/p− /q1 − /q2 + m

)
, (3.21)

to which one must add the cross term. q1, q2 are the momenta of two external
outgoing legs. The third one has incoming momentum q1 + q2.

These amplitudes have cyclic symmetry. The invariance of the effective action
under (3.16) is expressed by

0= δεW[h] =

∞∑
n=1

1

(n− 1)!

∫ n∏
i=1

ddxi
ddui

(2π)d
(3.22)

×W(n)
a1,...,an

(x1, u1, . . . , xn, un)D∗µ1x ε(x1, u1)h
a2(x2, u2) . . . h

an(xn, un)

The generalized equations of motion are obtained by varyingW[h] with respect to
the master field ha(x, u). Let us write them in the compact form

Fa(x, u) = 0 (3.23)

where

Fa(x, u) ≡
∞∑
n=0

1

n!

∫ n∏
i=1

ddxi
ddui

(2π)d
W(n+1)
aa1...an

(x, u, x1, u1, . . . , xn, un, ε)

×ha1(x1, u1) . . . han(xn, un)

The EoM’s (3.23) are covariant under HS gauge transformation

δεFa(x, u) = i[ε(x, u) ∗, Fa(x, u)] (3.24)
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3.3 Yang-Mills-like theories

3.3.1 The gauge transformation in the fermion model

Let us return to the gauge transformation (3.16)

δεha(x, u) = ∂
x
aε(x, u) − i[ha(x, u)

∗, ε(x, u)] ≡ Dx∗a ε(x, u) (3.25)

and write it down in components. To avoid a proliferation of numerical indices,
let us write the expansion of ha(x, u) as

ha(x, u) = Aa(x) + χ
µ
a(x)uµ +

1

2
bµνa uµuν +

1

6
cµνλa uµuνuλ + . . . (3.26)

As noted above we use two different types of indices. In the expansion (3.4) the
indices µ1, . . . , µn are upper (contravariant), as it should be, because in the Weyl
quantization procedure the momentum has lower index, since it must satisfy
[xµ, pν] = i δµν. The index a instead is traditionally reserved for a flat index. Of
course when the background metric is flat the indices a and µi are on the same
footing, but it is useful to keep them distinct. Let us see why.

For the HS gauge parameter we write

ε(x, u) = ε(x) + ξµuµ +
1

2
Λµνuµuν +

1

3!
Σµνλuµuνuλ + . . . (3.27)

The transformation (3.25) to the lowest order reads,

δAa = ∂aε+ ξ·∂Aa − ∂ρεχ
ρ
a + . . . (3.28)

δχνa = ∂aξ
ν + ξ·∂χνa − ∂ρξνχ

ρ
a + ∂ρAaΛρ

ν − ∂λεba
λν + . . .

δbνλa = ∂aΛ
νλ + ξ·∂baνλ − ∂ρξνbaρλ − ∂ρξλbaρν + ∂ρχ

ν
aΛρ

λ + ∂ρχ
λ
aΛρ

ν

−χρa∂ρΛνλ + . . .

The next nontrivial order contains terms with three derivatives, and so on.
It is natural to compare the previous HS gauge variations with the ordinary

gauge, diff, ... transformations. To this end let us denote by Ãa the standard U(1)
gauge field and by ẽµa = δµa − χ̃µa the standard inverse vielbein, and let us restrict
the previous general transformation to gauge and diff transformations alone. We
have

δÃa ≡ δ
(
ẽµaÃµ

)
≡ δ

(
(δµa − χ̃µa)Ãµ

)
(3.29)

=
(
−ξ·∂χ̃µa + ∂λξ

µχ̃λa
)
Ãµ + (δµa − χ̃µa)

(
∂µε+ ξ·Ãµ

)
≈ ∂aε+ ξ·Ãa − χ̃µa∂µε

and

δẽµa ≡ δ(δµa − χ̃µa) = ξ·∂ẽµa − ∂λξ
µẽλa = −ξ·χ̃µa − ∂aξ

µ + ∂λξ
µχ̃λa (3.30)

so that

δχ̃µa = ξ·∂χ̃µa + ∂aξ
µ − ∂λξ

µχ̃λa (3.31)
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where we have retained only the terms at most linear in the fields. From the above
we see that the natural identifictions are

Aa = Ãa, χµa = χ̃µa (3.32)

The transformations (3.28) are consistent with the ordinary gauge and diffeo-
morphism transformations. Therefore the master field ha can describe in particular
the geometry of the gauge theories and the geometry of gravity. The above does
not explain the nature of the index a. It is natural to interpret it as a flat index, but
this calls for local Lorentz symmetry. This issue will be resumed later on.

3.3.2 Analogy with gauge transformations in gauge theories

It should be remarked that in eq.(3.25) and (3.28) the derivative ∂a means ∂a =

δµa∂µ, not ∂a = eµa∂µ = (eµa − χµa + . . .)∂µ. In fact the linear correction −χµa∂µ is
contained in the term −i[ha(x, u) ∗, ε(x, u)], see for instance the second term in
the RHS of the first equation (3.28). The obvious remark is that the transformation
(3.25) looks similar to the ordinary gauge transformation of a non-Abelian gauge
field

δλAa = ∂aλ+ [Aa, λ] (3.33)

where Aa = AαaT
α, λ = λαTα, Tα being the Lie algebra generators.

In gauge theories it is useful to represent the gauge potential as a connection
one form A = Aadx

a, so that (3.33) becomes

δλA = dλ+ [A, λ] (3.34)

We can do the same for (3.25)

δεh(x, u) = dε(x, u) − i[h(x, u) ∗, ε(x, u)] ≡ Dε(x, u) (3.35)

where d = ∂a dx
a,h = hadx

a and xa are coordinates in the tangent spacetime,
and it is understood that

[h(x, u) ∗, ε(x, u)] = [ha(x, u) ∗, ε(x, u)]dx
a

We will apply this formalism to the construction of HS CS or YM-like actions.

3.3.3 HS Yang-Mills action

In analogy with the ordinary Yang-Mills theory one can introduce the curvature
2-form

G = dh −
i

2
[h ∗, h], (3.36)

whose components are

Gab = ∂ahb − ∂bha − i[ha ∗, hb] (3.37)
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Their transformation rule is

δεGab = −i[Gab ∗, ε] (3.38)

Next we will consider functionals which are integrated polynomials of G or
of its componentsGab. In order to exploit the transformation property (3.16) in the
construction we need the ‘trace property’, analogous to the trace of polynomials
in ordinary non-Abelian gauge theories. The only object with trace properties we
can define in the HS context is

〈〈f ∗ g〉〉 ≡
∫
ddx

∫
ddu

(2π)d
f(x, u) ∗ g(x, u)

=

∫
ddx

∫
ddu

(2π)d
f(x, u)g(x, u) = 〈〈g ∗ f〉〉 (3.39)

From this, plus associativity, it follows that

〈〈f1 ∗ f2 ∗ . . . ∗ fn〉〉 = (−1)ε1(ε2+...+εn)〈〈f2 ∗ . . . ∗ fn ∗ f1〉〉 (3.40)

where εi is the Grassmann degree of fi. In particular

〈〈[f1 ∗, f2 ∗ . . . ∗ fn}〉〉 = 0 (3.41)

where [ ∗, } is the ∗-commutator or anti-commutator, as appropriate.
This property holds also when the fi are valued in a Lie algebra, provided

the symbol 〈〈 〉〉 includes also the trace over the Lie algebra generators.
Let us return to Gab. From the propery (3.41) it follows that

δε〈〈Gab ∗Gab〉〉 = −i〈〈Gab ∗Gab ∗ ε− ε ∗Gab ∗Gab〉〉 = 0 (3.42)

Therefore

YM(h) = −
1

4g2
〈〈Gab ∗Gab〉〉 (3.43)

is invariant under the HS gauge transformation and it is a well defined functional
in any dimension.

This construction can be easily generalized to the non-Abelian case, that is
when the master field ha is valued in a Lie algebra with generators Tα: ha = hαaT

α.
See [8] .

3.3.4 HS CS action

Using the above properties it is not hard to prove, [7] that

CS(h) = n
∫1
0

dt〈〈h ∗Gt ∗ . . . ∗Gt〉〉 (3.44)

where

Gt = dht −
i

2
[ht ∗, ht], ht = th, (3.45)

is HS gauge invariant in a space of odd dimension d = 2n− 1. It defines the HS
CS action in any odd-dimensional spacetime.
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3.3.5 Covariant YM-type eom’s

From(3.43) we get the following eom:

∂bG
ab − i[hb ∗, G

ab] ≡ D∗bGab = 0 (3.46)

which is covariant under the HS gauge transformation

δε
(
D∗bGab

)
= −i[D∗bGab, ε] (3.47)

In components this equation splits into an infinite set according to the powers of
u. Let us expand Gab in the notation of sec.3.3.1. We have

Gab = Fab + X
µ
abuµ +

1

2
Bµνabuµuν +

1

6
Cµνλab uµuνuλ + . . . (3.48)

and express them in terms of the component fields of ha(x, u).
For instance, the first eom (O(u0)) is

0 = �Ab − ∂b∂·A+
1

2
(∂σ∂·Aχσb + ∂σA

a∂aχ
σ
b − ∂σ∂

aAbχ
σ
a − ∂σAb∂·χσ)

+
1

2
∂σA

a

(
∂aχ

σ
b − ∂bχ

σ
a +

1

2

(
∂λAab

λσ
b − ∂λAbb

λσ
a + ∂λχ

σ
aχ
λ
b − ∂λχ

σ
bχ
λ
a

))
−
1

2
χσa

(
∂σ∂

aAb − ∂σ∂bA
a

+
1

2

(
∂σ∂λA

aχλb + ∂λA
a∂σχ

λ
b − ∂σ∂λAbχ

aλ − ∂λAb∂σχ
aλ
))

(3.49)

+ . . . . . .

The second (O(u1))

�χµa − ∂a∂
bχµb=

1

2

(
∂b(∂σAa b

σµ
b − ∂σAb b

σµ
a + ∂σχ

µ
aχ
σ
b − ∂σχ

µ
bχ
σ
a) (3.50)

+∂τA
b∂ab

µτ
b − ∂τA

b∂bb
µτ
a + ∂τχ

bµ∂aχ
τ
b − ∂τχ

bµ∂bχ
τ
a

−∂τ∂aAb b
bτµ + ∂τ∂bAa b

bτµ − ∂τ∂aχ
µ
bχ
bτ + ∂τ∂bχ

µ
aχ
bτ
)
+ . . .

Ellipses denote terms with a larger number of spacetime derivatives.
Let us see a few elementary examples. Consider the case of a pure U(1) gauge

field A alone. The equation of motion is

∂aF
ab = �Ab − ∂b∂·A = 0 (3.51)

In the ‘Feynman gauge’ ∂·A = 0 this reduces to �Ab = 0.
Let us suppose next that only gravity is present. Eq.(3.50) becomes

∂aX
abµ = �χµb − ∂b∂·χµ = 0 (3.52)

In the ‘Feynman gauge’ ∂·χµ = 0, (3.52) reduces to �χµb = 02.

2 In ordinary gravity (Rµν = 0) we have to impose the DeDonder gauge in order to obtain
the same result.
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Finally, keeping only the spin 3 field the eom becomes

∂aB
abµν = �bb

µν − ∂b∂
abµνa = 0 (3.53)

Again in the ‘Feynman gauge’ ∂abµνa = 0we get �bbµν = 0.
In general we can impose for all the fields the Feynman gauge

∂aha(x, u) = 0 (3.54)

As is clear from (3.49), for instance, the above eom’s are characterized by
the fact that at each order, defined by the number of derivatives, there is a finite
number of terms. This defines a perturbatively local theory.

3.3.6 Conserved currents

The conservation laws of the HS models can be found following the analogy of a
current in an ordinary gauge theory or the energy momentum tensor in gravity
theories. For instance, if in HS YM we express the invariance of the action under
the HS gauge transformation we can write

0 = −
1

4
δε〈〈Gab ∗Gab〉〉 = 〈〈δεha ∗ D∗bGab〉〉

= 〈〈D∗aε ∗ D∗bGab〉〉 = −〈〈ε ∗ D∗aD∗bGab〉〉, (3.55)

This implies the off-shell relation or conservation law

D∗aD∗bGab = 0 (3.56)

from which we can identify the conserved master current

Ja = D∗bGab (3.57)

These conserved currents vanish on shell and are conserved off-shell. Expanding
in u

Ja =

∞∑
n=0

1

n!
J µ1...µna (x)uµ1 . . . uµn (3.58)

we find the conserved components.

Remark. The approach to covariance implicit in the HS YM theory (but also in
the effective action method) is entirely new. Unlike most HS approaches we do not
start from the EH action for gravity, and we do not replace ordinary derivatives
with Riemannian covariant derivatives. We obtain nevertheless an action invariant
under HS gauge transformations. The gauge transformation (3.16) reproduces
both ordinary U(1) gauge transformations and diffeomorphisms, but the action
functional is defined in the phase space. It gives nevertheless rise to local (HS
gauge covariant) equations of motion that reproduce the ordinary YM eoms, and,
although not completely, the metric equations of motion of EH gravity: the linear
eom coincide with the ordinary one after gauge fixing. Although the equations
(3.50) is very reminiscent of ordinary gravity, this is not yet enough to identify the
type of gravity described by it. In fact this problem requires further investigation
and will be discussed in a forthcoming paper.
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3.4 Local Lorentz symmetry

As pointed out before the HS YM action is fully invariant in particular under
diffeomorphisms. This prompted us to interpret the second component of ha(s, u)
in the u expansion, χµa, as a vielbein fluctuation, and δµa − χµa as a vielbein or local
frame. However this implies that a is a flat index and must transform appropriately
under local Lorentz transformations. But, at least at first sight, local Lorentz
invariance is absent. Consider simply the case in which only the field Aa is non-
vanishing, the form of the Lagrangian is

LA ∼ FabF
ab, Fab = ∂aAb − ∂bAa (3.59)

This is not invariant under a Lorentz transformation, because when Aa → Aa +

Λa
bAb we generate terms ((∂aΛb

c)Ac − (∂bΛa
c)Ac) F

ab, that do not vanish.
This is a simple example of a general problem in HS YM. It is crucial to clarify it.

3.4.1 Inertial frames and connections

Let us start from the definition of trivial frame. A trivial (inverse) frame eµa(x)
is a frame that can be reduced to a Kronecker delta by means of a local Lorentz
transformation (LLT), i.e. there exists a (pseudo)orthogonal transformationOab(x)
such that

Oa
b(x)eb

µ(x) = δµa (3.60)

As a consequence ebµ(x) contains only inertial (non-dynamical) information. A
full gravitational (dynamical) frame is the sum of a trivial frame and a nontrivial
piece

Ẽµa(x) = ea
µ(x) − χ̃µa(x) (3.61)

By means of a suitable LLT it can be cast in the form

Eµa(x) = δ
µ
a − χµa(x) (3.62)

This is the form we have encountered above in HS theories. But it should not be
forgotten that the Kronecker delta is a trivial frame. If we want to recover local
Lorentz covariance instead of ∂a = δµa∂µ we must understand

∂a = ea
µ(x)∂µ (3.63)

where eaµ(x) is a trivial (or purely inertial) vielbein. In particular, under an in-
finitesimal LLT, it transforms according to

δΛea
µ(x) = Λa

b(x)eb
µ(x) (3.64)

A trivial connection (or inertial spin connection) is defined by

Aabµ =
(
O(x)∂µO

−1(x)
)a
b (3.65)
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where O(x) is a generic local (pseudo)orthogonal transformation (finite local
Lorentz transformation). As a consequence its curvature vanishes

Rabµν = ∂µAabν − ∂νAabµ +AacµAcbν −AacνAcbµ = 0 (3.66)

Let us recall that the space of connections is affine. We can obtain any connection
from a fixed one by adding to it adjoint-covariant tensors. When the spacetime is
topologically trivial we can choose as origin of the affine space the 0 connection.
The latter is a particular member in the class of the trivial connections. To see this
let us suppose we start with the spin connection (3.65). A Lorentz transformation
of a spin connection Aµ = AµabΣab is

Aµ(x)→ L(x)DµL
−1(x) = L(x)(∂µ +Aµ)L−1(x) (3.67)

where L(x) is a (finite) LLT. If we choose L = O−1 we get

Aµ(x)→ 0 (3.68)

But at this point the LL symmetry is completely fixed. Thus choosing the zero spin
connection amounts to fixing the local Lorentz gauge.

The connection Aµ contains inertial and no gravitational information. It will
be referred to as the inertial connection. It is a non-dynamical object (its content is
pure gauge). The dynamical degrees of freedom will be contained in the adjoint
tensor to be added to Aµ in order to form a fully dynamical spin connection3. Aµ
is nevertheless a connection and it makes sense to introduce the inertial derivative

Dµ = ∂µ −
i

2
Aµ (3.69)

which is Lorentz covariant.
It is clear that the results ensuing from the effective action method, as well

as the HS YM and HS CS theories, are all formulated in a trivial frame setting,
eq.(3.62), with a trivial spin connection. In other words the local Lorentz gauge is
completely fixed. However from this formalism it is not difficult to recover explicit
local Lorentz covariance.

3.4.2 How to recover local Lorentz symmetry

Let us restart from the definition of Ja(x, u)

Ja(x, u)=

∞∑
n,m=0

(−i)nim

2n+mn!m!
∂µ1 . . . ∂µmψ̄(x)γa∂ν1 . . . ∂νnψ(x)

× ∂n+m

∂uµ1 . . . ∂uµm∂uν1 . . . ∂uνn
δ(u)

=

∞∑
s=1

(−1)s−1J(s)aµ1...µs−1(x)
∂s−1

∂uµ1 . . . ∂uµs−1
δ(u) (3.70)

3 The splitting of vierbein and spin connection into an inertial and a dynamical part is
characteristic of teleparallelism, [9]
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from which we derive

J(s)aµ1...µs−1(x) =

s−1∑
n=0

(−1)n

ss−1(s− 1)!
∂(µ1 . . . ∂µnψ̄(x)γa∂µn+1

. . . ∂µs−1)ψ(x)(3.71)

Assume now the following LLT

δΛψ = −
i

2
Λψ, Λ = ΛabΣab, Σab =

i

4
[γa, γb] (3.72)

δΛψ̄ =
i

2
ψ̄Λ

and replace in (3.71) the ordinary derivative on ψ with the inertial covariant
derivative

∂µψ→ Dµψ =

(
∂µ −

i

2
Aµ
)
ψ (3.73)

and on ψ̄with

∂µψ̄→ D†µψ̄ = ∂µψ̄+
i

2
ψ̄Aµ (3.74)

Eq.(3.71) becomes

J ′(s)aµ1...µs−1(x) (3.75)

=

s−1∑
n=0

(−1)n

ss−1(s− 1)!
D†(µ1 . . . D

†
µn
ψ̄(x)γaDµn+1

. . . Dµs−1)ψ(x)

Now, given

δΛAµ = −∂µΛ+
i

2
[Aµ, Λ] (3.76)

and (3.12), it is easy to prove that

δΛ(Dµψ) = −
i

2
Λ(Dµψ), δ(D†µψ) =

i

2
(D†µψ)Λ (3.77)

The same holds for multiple covariant derivatives

δΛ(Dµ1 . . . Dµnψ) =
i

2
Λ(Dµ1 . . . Dµnψ), etc.

It follows that

δΛJ
′(s)
aµ1...µs−1

(x)

= −

s−1∑
n=0

(−1)n

ss−1(s− 1)!
D†(µ1 . . . D

†
µn
ψ̄(x)[γa, Λ]Dµn+1

. . . Dµs−1)ψ(x)

= Λa
b(x) J ′

(s)
bµ1...µs−1

(x) (3.78)
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Therefore the interaction term

S ′int =

∞∑
s=1

∫
ddx J ′(s)aµ1...µs−1(x)h

aµ1...µs−1 (3.79)

is invariant under (3.12) and (3.76) provided

δΛh
aµ1...µn(x) = Λab(x)h

bµ1...µn(x) (3.80)

On the other hand, writing

S ′0 =

∫
ddx ψ̄

(
iγa

(
∂a −

i

2
Aa
)
−m

)
ψ (3.81)

instead of S0, also S ′0 turns out to be invariant under LLT. So, provided we define
LLT via (3.12) and (3.76), S ′ = S ′0 + S

′
int is invariant.

Replacing simple spacetime derivatives ∂µ with the inertial ones Dµ every-
where is not enough. As pointed out above instead of ∂a = δµa∂µ we should write
∂a = ea

µ(x)∂µ, where eaµ(x) is a purely inertial frame. Moreover, whenever it
appears, we should rewrite Aa(x) = eaµ(x)Aµ(x).

With this new recipes all inconsistencies disappear. For instance

δΛ(DaJb) = Λa
c(DcJb) +Λb

c(DaJc)

Therefore δΛ(ηabDaJb) = 0. Likewise

δΛGab = Λa
cGcb +Λb

cGac (3.82)

which implies the local Lorentz invariance of GabGab.

Summary. The HS effective action approach fixes completely the local Lorentz gauge.
This is due the fact that in its formalism (and in the general in the HS YM and CS
formalism) the choice eµa = δµa and Aa = 0 for the inertial frame and connection, is
implicit. However the same formalism offers the possibility to recover the LL invariance by
means of a simple recipe:

1. replace any spacetime derivative, even in the ∗ product, with the inertial covariant
derivative,

2. interpret any flat index a attached to any object Oa as eµa(x)Oµ.

Anticipating future developments we add that in the process of quantization
eµa(x) and Aa(x) will be treated as classical backgrounds.

3.5 Conclusions

The main message of this paper is that it is possible to construct field teory models
of Yang-Mills type with infinite many HS fields in flat spacetime in any dimension.
It is also possible to construct similar models of Chern-Simons type in any odd
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dimensional flat spacetime. We have seen that of such models we can define the
actions, invariant under HS gauge transformations, which encompass the ordinary
gauge transformations and the diffeomorphisms. It was also shown that although
the local Lorentz gauge is fixed in this formalism, local Lorentz invariance can be
easily implemented. We can derive sensible eom’s. A more detailed account and
further developments are contained in related papers[7,8] : for instance one can
introduce matter master scalar and fermion fields, and realize the analog of Higgs
mechanism; one can also introduce ghosts, and carry out the BRST quantization
and develop the practical machinery for perturbative calculations via Feynman
diagrams.

All these results may be at first surprising, because, as noted in the intro-
duction, there exist no-go (Weiberg-Witten) theorems forbidding the existence of
interacting massless HS theories in flat spacetime (for a review see [10]). A full
discussion of this problem will be given in [8] . Here let us simply notice that such
theorems are based on a set of hypotheses, which are very plausible in ordinary
field theories, but can be circumvented in theories like the ones introduced here.
For instance two basic requirements are the minimal coupling of the matter fields
to gravity and the polynomial structure of the energy-momentum tensor. It turns
out that none of these requirements is realized in HS YM-like theories: gravity is
non-minimally coupled to HS fields and the energy-momentum tensor is not a
polynomial of the fields, but a series.
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