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Abstract
In this paper, we design an activity prediction framework
to be used in a smart home environment. Because the
data from target environments is not yet available, we
propose an approach of using an open dataset and adopt-
ing it for the target environment. Two machine learn-
ing techniques were studied, Random Forest and HMM.
Based on preliminary experiments, HMM provide better
results and we decided to study it further in the future.

1 Introduction
Progress of technologies in machine learning and perva-
sive computing has generated interest in the development
of smart environments that will assist humans with many
valuable functions to improve living. A smart home is
the most widely studied smart environment [1]. It has
been researched for nearly a couple of decades, and it
is even more intensive researched today. The main rea-
son for increasing amounts of attention is the rising aging
population. The concept of smart homes gives elder peo-
ple hope to extend the period living independently within
their home environment.

The idea of a smart home, stated more broadly, is
to support the well-being of the residents of the home.
Our goal, presented in this paper, is a prediction of res-
idents’ activity in the smart home environment. To de-
velop the prediction system large and varied data sets
need to be collected over time, as they are necessary to
uncover hidden patterns and unknown correlations be-
tween data. Collecting them is expensive and time-consuming.
In this paper, we propose an approach of using an open
dataset and adopting it for the target environment.

The paper is organized as follows: Section 2 discusses
related work. In Section 3 we describe the general fea-
tures of CASAS open dataset that was chosen for trans-
formation to our target environment. In Section 4 we de-
scribe the target environment and specify how the data
from CASAS dataset was mapped to the foreseen data
in the target environment as well as enriched with third-
party environmental data. In Section 5 an overview of
methods, commonly used for activity prediction is given.
For our practical work, we selected two of them and per-
formed initial experiments. We report the preliminary re-
sults. Section 6 concludes the paper. We give our plan for
future work on the project.

2 Related work
Currently, numerous Smart Home projects intend to make
daily life comfortable. Some of them were developed
for proof-of-concept demonstration, and others were in-
tegrated into real life environments.

In [2] learning techniques were developed to discover
patterns in the resident’s daily activities and to generate
automation policies that mimic these patterns. Ontologi-
cal modeling and semantic reasoning were integrated into
an agent-based system for activity recognition [3]. Data-
driven approaches for predicting future activities shown
that regression learners could be useful to learn an activ-
ity predictor that can reason about relational and temporal
structure among the activities and to forecast future activ-
ity occurrences [4].

A prerequisite for the research on activity prediction
is the availability of datasets which are large enough and
ready to be used and analyzed. Because no data has been
collected in our target environment yet, we have searched
for open datasets available for public use. GCDC [5]
is the collection of data about users cooking meals. It
does not contain information about other activities. In d-
WAR [6] datasets, users were wearing sensors, and the
data was sent by the mobile phone to the base station.
There were no stationary sensors. DRED [7] includes
only sensor data, whereas activities are missing. The
MIT [8], CASAS [9] and ARAS [10] datasets contain
data about stationary sensors and activities. We decided
to use CASAS data collection because the experimental
environment in this project is most similar to our target
environment.

3 CASAS dataset
The CASAS project took place at Washington State Uni-
versity [11]. The idea was to design a ”smart home in a
box” that is ready to be used to perform key functions out
of the box. The CASAS data collection contains 32 smart
home datasets: 19 datasets represent single-resident sites,
4 represent locations with two residents, and the rest house
larger families or residents with pets. Most activity recog-
nition algorithms have been tested in situations where a
single individual is performing activities in a continuous,
sequential manner. CASAS project focuses on a different
complexity issue for home behavior, that of recognizing
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Figure 1: The target environment.

activities of more than one resident. The data collection
includes 20 residents aged 21 to 62 years (mean 33 years),
8 males and 12 females, with a variety of background and
technological familiarity [11].

In the CASAS project, the status of the residents and
their physical surroundings are perceived using sensors.
The examples of sensors are motion sensors, door sen-
sors, temperature sensors, etc. Sensors generated events
that consisted of a date, a time, a sensor identifier, and a
sensor message. Sensor data were captured using a cus-
tomized sensor network and stored in a database. Data
was mapped to corresponding activity labels by using an
activity recognition software, capable to label activities in
real-time as sensor events arrive in a stream. The exam-
ples of activities are: bed-toilet transition, cook, eat, en-
ter home, leave home, personal hygiene, etc. To maintain
privacy the participant names and identifying information
were removed and the collected data was encrypted be-
fore it was transmitted over the network.

In our experiments, only the following CASAS data-
sets were used: 7, 8, 11, 14, 15, 17 and 35. In datasets 7,
8, 11 and 14 one resident was living in an apartment, and
in the rest, two of them.

4 Mapping from CASAS to target environ-
ment

The first step in building the dataset was to collect the ap-
propriate files in the selected CASAS datasets, transform
them into a consistent format, and make a preliminary
analysis of the datasets. This analysis was necessary to
define an appropriate target environment onto which the
CASAS datasets could be mapped.

We also corrected some obvious errors (e.g., correct-
ing the year from 22009 to 2009) and removed inconsis-
tencies between the datasets (e.g., different column de-
limiter characters in datasets) to be later able to build a
concise single-file dataset.

The mapping procedure is intended to construct a mod-
ified and combined dataset, which we call the IQdatabase,
as this work is part of the IQ Home Program (http://www.iq-
home.si/en/).

Table 1: Excerpt from the sensor mapping rules.

ID Original sensors Target sensors
7,8,11 D005, M37 DS301
7,8,11 M38 WS301
7,8,11 M39 WS302
7,8,11 M40,M41 WS303

Table 2: Excerpt from the activity mapping rules.

Original activity Target activity
R1 Meal Preparation meal preparation
R1 prepare dinner meal preparation
R1 prepare lunch meal preparation
R2 Meal Preparation meal preparation

4.1 The target environment
After examining the selected datasets, we designed a cus-
tom target environment into which all data from the used
CASAS datasets were mapped. The target environment
is presented in Figure 1. The number and type of rooms
are determined to fit the CASAS datasets. The most sig-
nificant difference from the CASAS datasets is the use
of a hallway with doors to all other rooms, while in the
CASAS apartments some rooms were directly connected.

The sensors in the target environment have two-letter
designations based on the type of sensor, eg. DS for
door sensor (see figure), followed by a three digit num-
ber, where the first digit identifies the room. This way we
were able to define a more consistent designation system
compared to the original CASAS datasets.

4.2 Mapping procedures
The next step was to determine the mapping rules for sen-
sors and activities. Examining the environments from the
original CASAS datasets, the sensor data associated with
different activities, the position of sensors, and the most
likely rooms for activities, a mapping scheme was deter-
mined. A part of it is shown in Table 1 for sensor map-
pings and Table 2 for activity mappings.

In Table 1 we see that some rules are defined for sev-
eral CASAS datasets, as they were collected in the same
apartment. In Table 2 we see that some activities were
combined into one, as not all original datasets had the
same activities. Also, activities for both residents (R1
and R2) were mapped into one activity. Some activities
were not mapped at all as they appear only in one of the
datasets.

The original datasets, as well as our target environ-
ment dataset, are all text files. We, therefore, used simple
Perl wrappers to perform all preprocessing and mapping.

4.3 Enriching data with environmental information
The context of the activities are the external data (besides
the actions) that can be gathered from various sensors
around or inside the home. CASAS datasets do not have
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any external information in their provided form, so we
were forced to use third-party sources for this task. The
literature of research on this topic shows that there is a
connection between subject actions and the weather and
environment data inside and outside the monitored home.

For this reason, we wanted to enrich the CASAS data
with external environment data from third party sources,
to provide more valuable information, that can later be
used in the pattern recognition process with artificial in-
telligence.

After extensive research, we decided to use weather
information from Dark Sky service [12], where they of-
fer free API to gather historical weather information for
almost any location in the world. Their limitations on the
API calls were inside of our call numbers, so there was
no problem with this, and their terms of using their data
also suited our type of work.

For gathering data from Dark Sky API, we used Python
3, and we used Python wrapper by Ze’ev Gilovitz [13],
which provides an easy way to communicate with Dark
Sky API with Python programming language.

After surveying the literature on the topic, we con-
cluded to enrich CASAS data with the following environ-
ment data: Temperature (outside temperature in Celsius
unit), summary (written summary of the weather condi-
tions), icon (icon code used for the weather maps – can
be used as an indicator of weather conditions), humid-
ity (percentage of the outside humidity), air pressure (in
millibars) and wind speed (in miles per hour).

4.4 The IQdatabase
After mapping, all data were combined into a final dataset,
which we called IQdatabase (currently version 2.0). The
database is formatted as a single text file with 48 columns
per line. The columns indicate the original CASAS dataset
number, date, time, the current status of 32 sensors, the
state of 6 environmental data, and the current status of 7
activities, namely: work, dressing, personal hygiene, eat-
ing, meal preparation, sleeping, and TV.

To be able to perform experiments, the database was
divided into a train set, a development set, and a test
set. Both the development and train sets contain about
a month of data and are taken at the end of the original
dataset number 11, which is the largest original dataset.

The train set was further divided into 3 parts. The first
part includes all other data from dataset 11. The second
includes all data from other datasets from the same apart-
ment as dataset 11. The third dataset includes all data
from other locations. The sizes in terms of lines of data
for all sets are given in Table 3.

5 Activity prediction
Models, used for activity prediction, can be classified as
hand-crafted, logic based or probabilistic. In hand-crafted
models, training data is manually examined to find pat-
terns that are used to predict activities. Logic-based mod-
els automatically learn rules from training data. The learn-
ing system is based on the principles of inductive logic

Table 3: The data sizes in the IQdatabase.

Set Size
Test 211,722
Development 194,220
Train 1 1,210,515
Train 2 663,363
Train 3 2,255,638
Train - total 4,129,516
Total 4,535,458

programming (especially search, representations, opera-
tors, background knowledge) with transformation-based
tagging (e.g., error-driven search).

Hand-crafted and logic-based models are determin-
istic. As activities are commonly performed in a non-
deterministic way, probabilistic models are the most pop-
ular approaches for activity prediction. These models
take into account that sensor readings in a real smart home
are sometimes noisy. Several probabilistic models have
been proposed to model the sequence classification prob-
lem of activity prediction: naı̈ve Bayes classifiers, hidden
Markov models, support vector machine, artificial neural
networks, conditional random fields, random forest clas-
sifier, etc. In our research, we decided to use Random
Forest (RF) and hidden Markov models (HHM). Both of
them were successfully used in other researches [14].

5.1 Predicting with Random Forest
The Random Forest was proposed in [15] and further de-
veloped in [16] and is an ensemble learning algorithm,
used for classification and regression problems. An RF
classifier consists of a group or ensemble of decision tree
predictors, each capable of producing a result when pre-
sented with a set of previously unknown data. The result
of the decision tree takes the form of one of the prede-
fined classes. The ensemble of decision tree results are
aggregated, and the most popular class is chosen.

The main difference between the bag of decision trees
and the RF method is that the bag of decision trees com-
bines the result of independently constructed decision trees
each on their own randomly selected subset of training
data, but RF method also changes the way each decision
tree in the ensemble is constructed. In the construction
of one decision tree for the RF ensemble, each process
of making a decision tree node consist of an additional
step - the independent predictor value choosing for that
particular node is done on a random subset of predictor
values. Besides the random sampling of training data for
each decision tree present in the creation of the decision
tree, this step of randomly subsetting of available predic-
tors ensures that more diverse trees are constructed and
widen the search space for the classification prediction.

The problem of activity prediction is a time series
problem, where prediction is made on the current infor-
mation and the past data. Thus, we had to preprocess the
available data in such way that every instance should also
include information from the past, and so regular classi-
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Table 4: Results of activity prediction in the IQdatabase.

Precision Recall F1-score
Random Forest

Train 1 0.75 0.26 0.27
Train 1+2 0.35 0.28 0.19

Train 1+2+3 0.25 0.20 0.14
HMM

Train 1 0.47 0.21 0.15
Train 1+2 0.42 0.16 0.11

Train 1+2+3 0.45 0.18 0.14

fiers could perform prediction. This was done with the
sliding windows procedure.

For our experiment, we used the following settings:
window size: 10 past events; RF size: an ensemble of 100
decision trees in the forest. We used the default classifier
output.

5.2 Predicting with Hidden Markov Models
Hidden Markov Models (HMM) are an extension of a
Markov chain random process, hidden from the observer,
and an observable random variable depended only on the
current state of the Markov chain. HMMs are used to
model processes, where the system has only input data,
available through a noise channel. The most known ex-
ample of using HMMs is acoustic modeling in speech
recognition [17].

In our system, the hidden states represent the current
activity in the environment. One possible state is also the
absence of any activity. The Markov chain is the model
for transitions between activities. The observable random
variable is the state of all sensors and environmental data.

Since our training sets contain all activity and sensor
data, it is simple to train the HMM. The Markov chain
is directly trained based on all transitions between activ-
ities. The observable variable is trained as a set of in-
dependent variables. Most of them have discrete values,
e.g., a sensor is ON in OFF.

5.3 Results
We performed two series of experiments. The first was
based on Random Forest and the second one on HMM.
In both series, the experiments were repeated three times,
each time with a different training set. The results of pre-
liminary experiments are collected in Table 4. Precision
was selected to be the key metric. When Using all train-
ing material, HMM brought more promising results. We
will continue the research with HMM in the future.

6 Conclusion
In this paper, we have proposed an approach to adopting
an open dataset for activity prediction in smart home en-
vironments, for which the data is not yet available. HMMs
have shown promising results for activity prediction and
will be studied in more details in the future. Our next step

is also to conduct Wizard of Oz experiments in real-life
environments.

The application of these methods will be further ap-
plied in smart home environments for the IQ Home project,
which is meant for establishing a supportive environment
for smart home residents.
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