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Abstract

We introduce a new edge centrality measure - relative edge betweenness γ(uv) =
b(uv)/

√
c(u)c(v), where b(uv) is the standard edge betweenness and c(u) is the adjusted

vertex betweenness. In this alternative definition, the importance of an edge is normalized
with respect to the importance of its end-vertices. This gives a better presentation of the
”local” importance of an edge, i.e. its importance in the near neighborhood. We present
sharp upper and lower bounds on this invariant together with the characterization of graphs
attaining these bounds. In addition, we discuss the bounds for various interesting graph
families, and state several open problems.
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1 Introduction
One of the fundamental problems in network analysis is to determine the importance (or the
centrality) of a particular vertex or an edge in a network. Since the 1950’s many centrality
indices have evolved, each with specific application and based on a different concept of
what makes a vertex or an edge central to a network. One of the most common measures
of the importance of an edge is its betweenness, i.e. the number of shortest paths passing
through that edge (normalized in the case where multiple shortest paths between some
vertices occur). More precisely, betweenness of an edge e, b(e), is given by

b(e) =
∑

{k,l}∈(V
2)

σk,l(e)

σk,l
,

where σk,l denotes the number of shortest paths between vertices k and l, and σk,l(e)
denotes the number of shortest paths connecting k and l that pass through the edge e.
Caporossi at. al [1] defined adjusted vertex betweenness of a vertex u, c(u), as the sum of
the betweennesses of all edges incident to the vertex u, i.e.

c (u) =
∑

v∈N(u)

b (uv) ,

where N(u) is the set of neighbors of the vertex u. In the original definition given by
Freeman [2], betweenness of a vertex u, b(u), was defined as the number of the shortest
paths that contain the vertex u as an interior vertex. It can be shown that it holds

c(u) = 2b(u) + n− 1.

Some centrality indices, e.g., degree centrality, reflect local properties of the underlying
graph, while others, like betweenness centrality, give information about the global net-
work structure, as they are based on shortest path computation and counting [7]. In [3]
extremal graphs with respect to vertex betweenness for certain graph families were con-
sidered. Some recent applications of betweenness centrality include analyzing social and
protein interaction networks [6, 4, 5] and traffic flow optimization [8, 9].

Note that betweenness of an edge measures only importance of a link to the entire
network, and that link of the highest betweenness may be completely unimportant to some
vertex such that no shortest (or even reasonably short) path from that vertex passes through
this link. Hence, on the level of individuals the same link can be observed in completely
different way. If we observe a social network, the existence of an edge depends on the
level of importance attributed to this edge by its adjacent vertices. These vertices (actors)
are the ones that create, sustain and destroy this edge (relationship). Namely, they decide
how much they want to invest in their friendship. Obviously, edges with high betweenness
should be valuable to both vertices considering that many information circulate through
such edges.

In this paper, we are interested in measuring the relative importance of an edge to its
end-vertices. To clarify the notion of the relative importance, one can use also analogy with
a business venture. It is important to partners in this venture if the size of a deal is large
comparing to the sizes of the companies involved. While a thousand dollars deal might be
extremely important to (say) individual building contractor, it is a very small job to a large
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corporation. Hence, in order to estimate the value of the edge to its end vertices, one needs
to normalize it using their adjusted betweennesses. We define the relative betweenness as

γ(uv) =
b(uv)√
c(u)c(v)

. (1.1)

Note that we use the geometric mean between c(u) and c(v). The reason why we use
the geometric mean and not the arithmetic is that the geometric mean is much lower than the
arithmetic mean when there is a large difference between c(u) and c(v), say c(u)� c(v).
Hence in this case, γ(uv) is significantly larger compared to the usage of the arithmetic
mean. This corresponds to the relationship between persons with large difference in the
influence. We may assume that this relationship is of great value to the actor u and hence
he will put significant effort in sustaining this relationship. Therefore, we give to such edge
high relative betweenness.

The aim of this paper is to measure how weak can be the weakest link and how strong
may be the strongest link in the (social) network. In other words, we are interested in find-
ing extremal values for relative edge betweenness and in analyzing distribution of relative
betweenness values on edges of graphs. In Section 2 we give sharp upper and lower bound
for relative betweenness in the case of general graphs, and characterize graphs for which
these bounds are attained. In Section 3 the bounds for various graphs classes are discussed.
We conclude the paper by stating some open problems.

2 Bounds for general graphs
LetBn be the graph obtained from the complete bipartite graphK2,n−2 by adding the edge
that connects two vertices in the part of cardinality 2, see Fig. 1. Let this edge be denoted
as e∗.

Figure 1: Graph Bn and the edge e∗.

Theorem 2.1. Let uv be an edge of a connected graph G with n ≥ 3 vertices. Then,

γ(uv) ≥ 2

n2 − 3n+ 4
. (2.1)

Moreover, equality holds if and only if G is isomorphic to Bn and uv corresponds to e∗.
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Proof. Let us denote by α(u) the sum of all edge betweennesses of edges incident to u (but
not to v), and by α(v) the sum of all edge betweennesses of edges incident to v (but not to
u). In other words, α(u) = c(u)− b(uv) and α(v) = c(v)− b(uv). Note that α(u) +α(v)
consists of three types of contributions:

(a) those from shortest paths not having neither u nor v as an end-vertex. They contribute

in total at most 2

(
n− 2

2

)
= n2 − 5n+ 6.

(b) those from the shortest path with an end-vertex u, but not v. They contribute all to-
gether at most n− 2.

(c) those from the shortest path with an end-vertex v, but not u. They contribute all to-
gether at most n− 2.

By (a)-(c), it holds α(u) + α(v) ≤ n2 − 3n+ 2. Note that c(u) + c(v) = α(u) + α(v) +
2b(uv). Now, as b(uv) ≥ 1, we have

γ(uv) =
b(uv)√
c(u)c(v)

≥ 2b(uv)

c(u) + c(v)
=

2b(uv)

α(u) + α(v) + 2b(uv)

≥ 2b(uv)

n2 − 3n+ 2 + 2b(uv)
≥ 2

n2 − 3n+ 4
,

(2.2)

which establishes inequality (2.1). Note that equality in (2.1) holds if and only c(u) = c(v),
b(uv) = 1 and α(u) + α(v) = n2 − 3n + 2. The latter implies that the numbers given
in (a), (b) and (c) are in fact the exact values of contributions to α(u) + α(v) of the paths
described in (a), (b) and (c), respectively.

To assure that the shortest paths having neither u nor v as an end-vertex contribute
exactly n2−5n+6, the contribution has to be 2 for each pair of vertices from V (G)\{u, v}.
But this is not the case if there exists an edge xy for x, y ∈ V (G) \ {u, v}. Since G is
connected we have V (G) \ {u, v} = N(u) ∪ N(v). Moreover, since b(uv) = 1, every
vertex from N(u) ∪N(v) is adjacent to both u and v. We infer that if for an edge uv of a
graph G equality holds in (2.1), then G is isomorphic to Bn and uv corresponds to e∗.

Now we establish the upper bound for γ(uv). To prove its sharpness we will consider
graphs containing an edge with certain properties. An edge uv of a graph is called a handle
if u is a pendant vertex and the set N(v) \ {u} induces a clique. We will denote the edge
uv by h∗, see Fig. 2. Note that the path Pn contains two handles.

Theorem 2.2. Let uv be an edge of a connected graph G with n ≥ 3 vertices. Then,

γ(uv) ≤
√

n− 1

3n− 5
.

Moreover, equality holds if and only if G contains a handle.

Proof. Let us introduce the following notation:

(a) pu (resp. pv) denotes the contribution to c(u) (resp. c(v)) of all shortest paths for
which both end-vertices are different from u and v, and which do not pass through the
edge uv;
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Figure 2: A handle h∗ in a graph.

(b) puv is the contribution to b(uv) of all the shortest paths for which both end-vertices
are different from u and v;

(c) quv (resp. qvu) is the contribution to b(uv) of all paths that start in u (resp. v) and pass
through the edge uv, but do not finish in v (u, respectively).

Note that quv + qvu ≤ n − 2 and c(u) = pu + 2puv + 2qvu + n − 1. In c(u), the
second and the third summand appear with factor 2 since each contributing path passes
through the edge uv and another edge incident with u, and the last summand corresponds
to all paths that start in u. Analogously, c(v) = pv + 2puv + 2quv + n − 1. Further,
b(uv) = puv + quv + qvu + 1. Hence,

γ(uv) =
b(uv)√
c(u)c(v)

≤ puv + quv + qvu + 1√
(2puv + 2qvu + n− 1)(2puv + 2quv + n− 1)

. (2.3)

We need to prove that

puv + quv + qvu + 1√
(2puv + 2qvu + n− 1)(2puv + 2quv + n− 1)

≤
√

n− 1

3n− 5
.

This is equivalent to

(puv +quv +qvu +1)2(3n−5)− (2puv +2qvu +n−1)(2puv +2quv +n−1)(n−1) ≤ 0,

which is further equivalent to

(−1− n)p2uv +
(
−2 + 4n− 2n2 + (6− 2n)(n− 2− quv − qvu)

)
puv

+
(
(quv + qvu + 1)2(3n− 5)− (2qvu + n− 1)(2quv + n− 1)(n− 1)

)
≤ 0. (2.4)

It is obvious that−n−1 ≤ 0, −2 + 4n−2n2 < 0, 6−2n ≤ 0 and n−2− quv− qvu ≥ 0.
Hence, it is sufficient to prove that

(quv + qvu + 1)2(3n− 5)− (2qvu + n− 1)(2quv + n− 1)(n− 1) ≤ 0. (2.5)
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Without loss of generality (because of the symmetry of the last equation), we may assume
that quv ≥ qvu. Let us denote s = quv + qvu and d = quv − qvu. Obviously, 0 ≤ d ≤ s ≤
n− 2. Inequality (2.5) reduces to

(s+ 1)2(3n− 5)− (s− d+ n− 1)(s+ d+ n− 1)(n− 1) ≤ 0,

and further to

(s+ 1)2(3n− 5)−
(
(s+ n− 1)2 − d2

)
(n− 1) ≤ 0.

Since 0 ≤ d ≤ s, it is sufficient to prove that:

(s+ 1)2(3n− 5)−
(
(s+ n− 1)2 − s2

)
(n− 1) ≤ 0. (2.6)

On the left-hand side we have a quadratic function in s,

f(s) = s2(3n− 5) + (−2n2 + 10n− 12)s− n3 + 3n2 − 4, (2.7)

with quadratic coefficient 3n − 5 > 0 and roots n − 2 and −n
2+n+2
3n−5 . Hence, in order

to prove (2.6), it is sufficient to show that −n
2+n+2
3n−5 ≤ 0. A simple check shows that

the numerator is negative and the denominator is positive. This completes the proof that

γ(uv) ≤
√

n−1
3n−5 .

Let h∗ = uv be an edge in a graph Ln such that d(u) = 1 and N(v) \ {u} induces a
clique. Then clearly pu = pv = puv = qvu = 0 and quv = n − 2, hence the upper bound

for γ is attained, i.e. γ(h∗) =
√

n−1
3n−5 .

To prove the converse, assume G is a connected graph of order at least 3 with an edge

uv such that γ(uv) =
√

n−1
3n−5 . This implies equality in (2.3) and (2.4). From equality

in (2.3) follows pu = pv = 0, and form equality in (2.4) we obtain that puv = 0 and
that equality holds in (2.5). The latter is equivalent to the fact that (s + 1)2(3n − 5) −(
(s+ n− 1)2 − d2

)
(n − 1) = 0. As a consequence (since 0 ≤ d ≤ s) we have also

equality in (2.6). Now, it follows that s and d coincide, and hence s = quv and qvu = 0.
Equality in (2.6) implies also that s is a (positive) root of the quadratic function in (2.7), so
s = n− 2 = quv .

To summarize, for uv ∈ E(G) we have pu = pv = puv = qvu = 0 and quv = n − 2.
From this, observe that there is no vertex w ∈ V (G) \ {u, v} such that uw ∈ E(G) and
vw /∈ E(G), otherwise we obtain a contradiction with qvu = 0. The fact that quv = n− 2
implies that every shortest path from u to any other vertex in V (G) \ {u, v} passes through
the edge uv. Thus v is the only neighbor of u. Since G is connected and of order at least
3, N(v) \ {u} is nonempty and induces a clique, otherwise we obtain a contradiction with
pv = 0. Thus, we infer that uv is a handle in G.

Corollary 2.3. For any edge e of a graph with n ≥ 3 vertices, it holds that

2

n2 − 3n+ 4
≤ γ(e) ≤

√
n− 1

3n− 5
.

3 Bounds for some graph classes
In this section, the bounds of Corollary 2.3 for various graph classes are considered.
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Graphs with higher connectivity. The graphs containing handles, for which the upper
bound in Corollary 2.3 is attained, belong to the class of graphs with bridges. Thus, one
might wonder whether this bound can be improved if we forbid them. But it turns out that
even in the case of k-connected graphs the leading term in upper bound remains essentially
1√
3

. To illustrate this, consider the graph Cn,k, constructed as follows: take a complete
graph on n − k vertices, k ≥ 2, n > 2k, choose k of its vertices, make a copy of each
chosen vertex and join it with the original one, and finally add edges so that copied vertices
induce a clique (see Fig. 3 where general situation is presented on the left, while the right
graph is isomorphic to C10,3). Let v be one of k chosen vertices and u its copy in the above
construction of Cn,k. Then we have b(uv) = n−k, c(u) = n+k−2, c(v) = 3n−3k−2,
and thus γ(uv) = n−k√

(n+k−2)(3n−3k−2)
.

Figure 3: A k-connected graph Cn,k (left) and the graph C10,3 (right).

In what follows, we discuss the bounds of the above corollary in a various interesting
graph classes.

Bipartite graphs. The upper bound in Corollary 3.2 is clearly attained also when re-
stricted to two-mode data networks (bipartite graphs). We now give an example of a bipar-
tite graph and an edge of it that achieves asymptotically the lower bound Θ(n−2).

Proposition 3.1. There exist bipartite graphs on n vertices containing an edge e with
γ(e) ∈ Θ(n−2).

Proof. To prove the claim consider the graph G from Fig. 4 constructed in the following
way. Take eight independent sets A0, A1,. . . , A7, each of size k, connect each vertex of
Ai with each vertex of Ai+1, index being taken modulo 8. Finally, take two new adjacent
vertices a0 and a1, and connect each vertex of Ai with ai (mod 2), for i = 0, . . . , 7. Now,
we will show that

b(a0a1) ∈ Θ(1) and c(a0), c(a1) ∈ Θ(n2),

which immediately implies that γ(a0a1) ∈ Θ(1/n2).
First, we evaluate b(a0a1). Consider the contribution to b(a0a1) of shortest paths that

contain a0a1 according to their length. The edge a0a1 is the only path of length 1 that
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contains a0a1, and it contributes 1 to b(a0a1). There are 8k paths of length 2 containing
a0a1 and each of them contributes 1/(2k + 1) to b(a0a1). Notice that there are 8k2 paths
of length 3 that contain a0a1, and each of them contributes 1/(k2 + 4k + 1) to b(a0a1).
Observe that no shortest path of length 4 or more contains a0a1 as the diameter of this
graph is 3. Summing up all together, we obtain that b(a0a1) is slightly less than 13.

Now, we evaluate c(a0). Note that any shortest path from a vertex in A0 to a vertex
in A4 is of length 2 and it contributes 2 to c(a0). As these paths are k2, it follows that
c(a0) ∈ Θ(k2) = Θ(n2). Similarly, we evaluate c(a1).

Figure 4: A bipartite graph from the proof of Proposition 3.1.

Trees. As the trees are bipartite graphs the same upper bound holds but regarding the
lower bound we get slightly different result.

Theorem 3.2. For any edge e of a tree with n ≥ 3 vertices, it holds that

1√
n− 1

≤ γ(e) ≤
√

n− 1

3n− 5
, (3.1)

and the lower bound is attained at an edge of the n-star unless n = 4 and e is the middle
edge of a 4-path, in which case γ(e) = 4

7 .

Proof. Obviously, the upper bound holds by Corollary 2.3, and is attained at any edge
incident to a leaf and to a vertex of degree 2, e.g. such an edge is an end-edge of a path on
n-vertices.

Now, we argue the lower bound. In its proof we use the following notation: for an edge
f = w1w2, as T − f has two components, we name them by Tf (w1) and Tf (w2), where
the first one contains w1 and the second contains w2.

Let T be a tree and e = xy its edge with minimum γ. Suppose Te(x) has a vertices,
and Te(y) has b vertices; hence n = a+ b.
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We claim that x is of degree a. Suppose to the contrary that it is of degree strictly less
than a. Then there is a leaf u of T that belongs to Te(x) and is not adjacent to x. Let
f = xv be the edge the removal of which from T , separates x and u. Then u belongs to
the component Tf (v), and let this component have s vertices. As u and v belong to Tf (v),
we have s ≥ 2.

Let T ∗ be the tree obtained from T by first removing u from T and then reattaching it
to x. Notice that

cT∗(x)− cT (x) = (s− 1)(n− s+ 1) + 1 · (n− 1)− s(n− s) = 2s− 2 > 0.

So, we have cT (x) < cT∗(x). Notice that bT (e) = bT∗(e) = ab, and cT (y) = cT∗(y).
Thus, γT∗(e) < γT (e), which is a contradiction. This establishes the claim.

Similarly we prove that y is of degree b, and hence T is a double star. Now, notice that

γ(e) =
ab√

ab+ (a− 1)(n− 1)
√
ab+ (b− 1)(n− 1)

.

We want to prove that

γ(e) ≥ 1√
n− 1

,

(unless the exceptional case) and this is equivalent to

(n− 1)a2b2 ≥ (ab+ (a− 1)(n− 1))(ab+ (b− 1)(n− 1)).

As n = a+ b, this equality can be rewritten into

((ab− a− b)(a+ b− 2)− 1)(a− 1)(b− 1) ≥ 0 . (3.2)

Notice that this inequality does not hold only if a = b = 2, but then G is a 4-path and e is
its middle edge, which is the exceptional case. In all other cases, it is easy to see that (3.2)
holds. Also notice that equation holds in (3.2) if a = 1 or b = 1 but in that case G is a
star.

In the classes of graphs with girth 3 and 4 the lower bound of γ is asymptotically
Θ(n−2), for the trees which are class of graphs of girth infinity, it is Θ(1/

√
n). We expect

that at girth 5 the following change happens.

Conjecture 3.3. In graphsG on n ≥ 3 vertices and with girth≥ 5 it holds γ(e) ∈ Ω(n−1)
for every edge e.

Regarding the lower bound for trees we wonder if some finite girth may occur.

Problem 3.4. Is there any finite number g such that for graphsGwith girth at least g, every
edge e has γ(e) ∈ Ω(1/

√
n)?
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