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The naive Bayesian classifier is fast and incremental, can deal with discrete and con-
tinuous attributes, has excellent performance in real-Ufe problems and can explain its
decisions as the sum of information gains. However, its naivety may result in poor per-
formance in domains with strong dependencies among attributes. In this papet, the
algorithm ofthe naive Bayesian ciassifier is applied successively enabling it to solve also
non-linear problems while retaining all the advantages of naive Bayes. The comparison
of performance in various domains confirms the advantages of successive learning and
suggests its application to other learning algorithms.

1 Introduction

Let A{,i = 1 . . .n be a set of attributes, each
having values V,j,j = l . . . i W j . Let Cj be
one out of k possible classes. An object is de-
scribed with vector X = (Xi,...,Xn) where X,
may have one of values V,j,j = 1...JVVJ. Let
an object with unknown class be described with
X1 = (X[,...,Xl

n). If the conditional indepen-
dence of attributes with respect to all classes is
assumed, the naive Bayesian formula can be used
to classify such an object:

(1)

where prior and conditional probabilities on the
right-hand side can be apprcocimated from a set
of training examples with known classes. An ob-
ject is classified by class with maximal probability
calculated with (1).

If a limited number of training data are avail-
able, the approximation of probabilities with rela-
tive frequency becomes unreliable. Cestnik (1990)
has shown that instead of using relative frequen-
cies, it is more appropriate to use the m-estimate

of conditional probabilities:

Nc V:, + m x P(Cj)

}\xt-vt^)- NVij+m , J - I
(2)

and Laplace's law of succession (Good, 1950) for
prior probabilities of k classes:

In the above formulas NCJ,V{ j . represents the
number of training instances with value V^j, of
the i-th attribute and belonging to the j - th class,
NCJ and Nyt _, are interpreted in a similar man-
ner and N is the number of all training instances.
The same formula was also used by Smyth and
Goodman (1990). Parameter m trades off the rel-
ative frequency and the prior probabib'ty. A lower
setting for m suggests stronger beb'ef in training
data, whereas a higher setting implies greater re-
liance on prior probabilities. In our experiments
described in section 4, parameter m was set to 2,
which is an empirically verified appropriate choice
for a typical learning problem (Cestnik, 1990).

The naive Bayesian formula applies to discrete
attributes, while continuous attributes have to be
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discretized in advance. It was shown that fuzzy
discretization for modeling continuous attributes
achieves a better performance and that the re-
sults are less sensitive with respect to factital dis-
cretization (Kononenko, 1991). In experiments
described in this paper, fuzzy discretization was
not applied.

Many authors have experimentally verified that
the naive Bayesian formula achieves better or at
least as good classification accuracy as inductive
learning algorithms in many real-world problems
(Kononenko et al., 1984; Cestnik, 1990; Smyth
and Goodman, 1990) and, surprisingly, the expla-
nation ability of naive Bayes, at least in inexact
domains such as medical diagnosis, is better (as
estimated by physicians) than that of a decision
tree (Kononenko, 1990). The kind of explanation
by naive Bayes is the sum of information gains
by each attribute for/against each class, which is
obtained with logarithm of eq. (1):

log2 - log2 (4)
t = i

The explanation can be presented to human ex-
perts as a list of attribute values with correspond-
ing information gains for each class that appear
in the sum on the right-hand side of equation (4).
Human experts appeared to prefer explanations
of this tvpe to a single if-then rule for a classified
object.

However, the naivety of formula (1) can be
too drastic in certain domains with strong depen-
dencies among attributes. A classical non-linear
problem which cannot be solved by naive Bayes
is exclusive "or" (XOR):

Class(X)= i ^1 '
X2 (5)

This problem is also hard for other machine-
learning algorithms. One class of hard machine-
learning problems contains parity problems of
higher degrees. This paper describes a method for
successive application of naive Bayes which un-
der certain conditions can solve parity problems.
In the next section, the theoretical limitations of
naive Bayes are briefly discussed and results on
well-known problems are compared to those of

other learning algorithms. In Section 3, the suc-
cessive naive Bayesian classifier is described and
section 4 gives empirical results on various prob-
lem domains. In the discussion, a generalization
of the approach to other learning algorithms is
proposed.

2 Performance of naive Bayes

Despite its limitations, the performance of the
naive Bayesian classifier in many real-world prob-
lems is excellent compared to that of other learn-
ing algorithms. In table 1 the performance on
three well-known medical diagnostic problems -
primary tumor, breast cancer, and lymphogra-
phy - is compared to that of other propositional-
logic learning algorithms. We also tested naive
Bayes on the problem of finite element mesh de-
sign (Dolšak & Muggleton, 1991), which has been
a focus of the inductive logic programming (ILP)
community (see section 4 for descriptions of learn-
ing data). Although it cannot use information
about geometric properties of objects in this do-
main (this holds for all propositional logic algo-
rithms) it outperformed all sophisticated ILP al-
gorithms. The comparison is given in table 2.

Let us now examine more closely the limitations
of the naive Bayesian classifier. With appropriate
recoding of objects, the naive Bayesian classifier
can also be interpreted as a linear function which
discriminates between two classes d and Cy.

Class(Y) = Cu PijY > 0
d < o

(6)

where
vector Y = (l,Yltl, ..,Yi<NVl, ...,Yn,i, ..,Yn<Nvn) is
recoded vector X so that each attribute's value
corresponds to one vector's component:

Yi i =
0, (7)

and P'^Y is the inner product of vector P t J ,
which is used to discriminate between classes C,-
and Cj, and vector Y. The term P ' J is obtained
by subtracting two instances of eq. (4):

•* ' = \P6 'Pl',1' "iPl,NVii •" 'Pn,l ' "'Pn,ATVn) (")

where
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algorithm
Assistant
AQ15
Assistant 86
LogArt
CN2
naive Bayes

reference
(Kononenko et al., 1984)
(Michalski et al., 1986) .
(Cestnik et al., 1987)

(Cestnik & Bratko, 1988)
(Clark & Boswell, 1991)

prim.tumor
44 %
4 1 %
4 4 %
4 4 %
46 %
5 1 %

brea.cancer
7 3 %
6 6 %
7 7 %
7 8 %
7 3 %
7 9 %

lymphogr.
7 7 %
8 0 %
76%
8 4 %
82 %
8 4 %

Table 1: Performance of different algorithms in three medical domains.

algorithm
FOIL
mFOIL
GOLEM
LINUS
naive Bayes

reference
(Quinlan, 1990)
(Džeroski, 1991)

(Dolšak & Muggleton, 1991)
(Lavrač & Džeroski, 1991)

accuracy
12%
22%
2 9 %
2 9 %
3 3 %

Table 2: Performance of different algorithms in finite element mesh problem.

V2,

c2

'1,2

Figure 1 Applying delta learning rule to naive
Bayes

and

For each pair of classes we have one linear discrim-
ination function. This derivation confirms that
the naive Bayesian classifier is limited to linear
decision functions, which cannot solve non-linear
problems.

This raises the question of whether it is worth
using a delta learning rule, in the sense of per-

ceptrons (Minsky & Papert, 1969), to adapt the
discrimination function to discriminate more reli-
ably between classes on training data. This can
be achieved by iteratively duplicating training in-
stances not correctly classified by naive Bayes.
This alters the probability distribution so that the
discrimination function moves in an appropriate
direction. This is illustrated in Fig. 1 where, by
duplicating instances (Vj^V^) and (^1,2,^2,1),
the discrimination function is changed into a per-
fect discriminator.

However, such changes in probability distribu-
tion are inappropriate for predicting cases unseen
during learning. The decision function in fact
overfits the training data which affects the per-
formance on unseen cases. We tried the above
(delta) learning rule on several medical diagnos-
tic problems. The performance on training data
increased (in lymphography it even reached 100%
classification accuracy), but the performance on
test data of the classifier drastically decreased.
This suggests that the decision function given
by the original probability distribution is optimal
among linear discrimination functions.

One should be careful when changing the rep-
resentation space. In fact, if Y representation is
used instead of X, the space is much sparser, as
many points are illegal (an instance cannot have
more than one attribute's value). On the other
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hand, in the original space (X coding) in general
the discrimination function of naive Bayes is not
linear. For clarity of illustration, in the next sec-
tion we will assume approximately linear discrim-
ination functions in the original space.

3 Successive learning with
naive Bayesian classifier

If one tries to solve the X0R problem with the
naive Bayesian classifier, the result may be one of
the decision curves (a or b) from Figure 2.1. The
direction of the curve depends on the distribution
of training instances. Hovvever, if all instances
are equally likely, no decision curve appears, as
all components of P1 '2 are equal to 0. In such a
case, it is desirable to modify slightly the distri-
bution (e.g., by duplicating one of the instances)
to get one of the decision curves (i.e. breaking the
symmetry).

To enable the naive Bayesian classifier to solve
the X0R problem, the same algorithm may be re-
peatedly applied, each time on a redefined prob-
lem. In each iteration, training instances that are
correctly classified by the current discrimination
function are assigned to an additional special class
Co and the other training instances retain their
original dasses. The resulting learning tasks of
the X0R problem (depending on the current dis-
crimination function) and their solutions are de-
picted in Fig. 2.2a, and 2.2b. There is one dis-
crimination function for each pair of classes (la-
beled with their indices). In both cases, the dis-
crimination is perfect after two successive learn-
ing iterations. Hovvever, for parity problems of
higher order, more iterations may be needed. In
general, it is not always possible to obtain perfect
discrimination with such successive learning. On
the other hand, perfect discrimination of train-
ing instances usually implies overfitting. This is
avoided here by keeping all training instances for
each new learning problem, thus enabling reli-
able probability estimates. Overfitting the train-
ing data may be interpreted as reliance on unre-
liable probability estimates from a small number
of training instances. Fig. 3 illustrates successive
learning in a parity problem involving two three-
valued attributes and three classes. in Fig. 3 (1),
two discrimination lines (between classes 2 and 3
(2-3) and 2 and 1 (2-1)) overlap.

The above discussion leads to the follovving
learning algorithm:

repeat
Train naive Bayes;
Change the class label of correctly classified

training instances to Co;
until all training instances are classified to CQ

Note that the terminating condition does not re-
quire perfect classification (i.e. not all training
instances need be correctly classified). This algo-
rithm may enter an infinite loop if perfect discrim-
ination is impossible. However, more iterations do
not cause overfitting of the training data, as all
training instances are used in all iterations. For
practical reasons, it is necessary to limit the num-
ber of iterations. In our experiments described
in the next section, the number of iterations was
limited to ten.

When classifying new objects, the discrimina-
tion function learned last should be tried first. If
the result is class CQ the next latest function must
be tried, while if the resnlt is one of the original
classes, it is accepted as an ansvver. The reverse
order for classification follows from the training
algorithm, because the classification into a class
other than CQ is more reliable with the latest dis-
crimination function. Eventually, by repeted ap-
plication of discrimination functions in reverse or-
der, a class C,, t > 0 is obtained as an answer.

4 Experimental results

We applied successive naive Bayesian learn-
ing to several data sets from medical diagnostics,
chess endgame, criminology, engineering, and one
artificial data set. Basic data characteristics are
given in table 3. A brief description of each prob-
lem follows:

Primary tumor: Locate the position of the pri-
mary tumor in the body of a patient with
metastases.

Breast cancer: Predict the recurrence of the
disease in five years after the operation.

Lymphography: Classify the type of tumor of
a patient with metastases.



SUCCESSIVE NAIVE BAYESIAN CLASSIFIER Informatica 17 (1993) 167-174 171

C2

a

Co Co Co

0-2
0-1

c,

c2

(1)

1/2

(2b)(2a)
Figure 2

(1) Original XOR problem
(2a) New problem obtained from discrimination function a
(2b) New problem obtained from discrimination function b

c3

c3 c2

(1)

c0

3-2
3;0
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Co

Co

Co
yO-2

(2)
Figure 3 Successive learning on the generalized parity problem

domain
primary tumor
breast cancer
lymphography
rheumatology
criminology
chess 1
chess 2
mesh 1
mesh 2
artificial

#class
22
2
4
6
4
2
2
13
13
2

#atts.
17
10
18
32
11
6
18
3
15
12

#val/att.
2.2
2.7
3.3
9.1
4.5
8.0
2.0
7.0
7.3
2.0

# instances
339
288
148
355
723
1000
1000
278
278
200

Table 3: Basic description of data sets
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Rheumatology: Determine the type of rheuma-
tologic disease.

Criminology: Determine the education of the
violator.

Chess 1: Detect illegal positions in King-Rook-
King chess endgame given only the coordi-
nates of pieces.

Chess 2: Detect illegal positions in King-Rook-
King chess endgame given the relations such
as "same rank", "neighbour file", etc.

Mesh 1: Determine the number of elements of
an edge in a finite element mesh design, given
the three basic attributes but no geometric
relations.

Mesh 2: Determine the number of elements of
an edge in a finite element mesh design, given
the three basic attributes and additional at-
tributes such as the number and the type of
neighbour edges.

Artiflcial: A data set was generated with two
attributes defining parity relation with class,
5 additional random binary attributes and
5 additional independent and slightly infor-
mative binary attributes. In addition, class
labels were corrupted with 5% noise (5% of
cases had wrong class labels).

Except in the "mesh" problems, the experi-
ments were performed with 10 random splits on
70% of the instances for training and 30 % for
testing. The results were averaged. In "mesh"
problems, experiments were done in the same way
as with ILP systems (see Džeroski, 1991, for de-
tails). The measured parameters were:

— accuracy: the percentage of correctly classi-
fied instances

— average information score (Kononenko &
Bratko, 1991): a measure that eliminates the
influence of prior probabilities. It is defined
as follows:

TT^#testing instances

instances
(9)

problem

primary tumor
breast cancer
lymphography
rheumatology
criminology
chess 1
chess 2
mesh 1
mesh 2
artificial

naive
%

51.0
79.2
84.2
67.2
61.2
66.2
91.7
33.5
34.5
61.8

Bayes
bit
1.57
0.18
0.83
0.51
0.27
0.18
0.73
0.61
0.62
0.24

successive Bayes
%

51.7
78.4
83.9
68.3
61.5
66.5
92.3
32.4
36.0
78.3

bit
1.61
0.16
0.82
0.53
0.27
0.18
0.75
0.60
0.66
0.57

where information score of classification of
the i-th testing instance is defined by (10):

Table 4: Results of naive and successive naive
learning.

where C/,- is the class of i-th testing instance,
P(Cl) is the prior probability of class Cl and
P'{Cl) the probability returned by a classi-
fier.

Results are summarized in table 4.
The results indicate that the performance of

successive learning is the same as that of naive
Bayes in most real-world domains. The only sig-
nificant difFerence according to accuracy and in-
formation score appears in "primary tumor" and
"mesh 2" problems. Both problems are very
difficult (see tables 1 and 2), involving many
classes. The result with the artiiicial data set in-
dicates that successive learning may be much bet-
ter in domains with strong dependencies among
attributes.

5 Discussion

The results of experiments suggest that succes-
sive naive Bayesian learning may improve the per-
formance of naive Bayes while preserving its ad-
vantages: simplicity, efficiency and transparency.
The successive learning approach keeps all train-
ing instances together in all learning iterations
and thus avoids the overfitting problem. However,
the algorithm may reach a non-solvable learning
problem. Covering algorithms (e.g. AQ, Assis-
tant, CN2 and FOIL) discard correctly covered
training instances in each iteration and are able
to discriminate cases in any learning problem, but
with great danger of overfitting the training data.
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l o g 2 ( l -
P'{CU) > P(Ch)
P\CU) < P(Ch) (10)

The principle of successive learning can be
used with any learning algorithm and, probably
more efficiently, different learning algorithms may
be successively applied. Further investigations
shonld empirically verify this hypothesis, as well
as the idea of combining the successive and cover-
ing approaches. More theoretical work is needed
to determine the limitations of successive learn-
ing and answer questions such as: which prob-
lems cannot be solved with successive leaming
and which problems lead the approach into in-
finite cycling.
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